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Abstract: Gauge and gravitational theories in asymptotically flat settings possess infinitely
many conserved charges associated with large gauge transformations or diffeomorphisms
that are nontrivial at infinity. To what extent do these charges constrain the scattering in
these theories? It has been claimed in the literature that the constraints are trivial, due to
a decoupling of hard and soft sectors for which the conserved charges constrain only the
dynamics in the soft sector. We show that the argument for this decoupling fails due to
the failure in infinite dimensions of a property of symplectic geometry which holds in finite
dimensions. Specializing to electromagnetism coupled to a massless charged scalar field in
four dimensional Minkowski spacetime, we show explicitly that the two sectors are always
coupled using a perturbative classical computation of the scattering map. Specifically,
while the two sectors are uncoupled at low orders, they are coupled at quartic order via
the electromagnetic memory effect. This coupling cannot be removed by adjusting the
definitions of the hard and soft sectors (which includes the classical analog of dressing
the hard degrees of freedom). We conclude that the conserved charges yield nontrivial
constraints on the scattering of hard degrees of freedom. This conclusion should also apply
to gravitational scattering and to black hole formation and evaporation.

In developing the classical scattering theory, we show that generic Lorenz gauge solutions
fail to satisfy the matching condition on the vector potential at spatial infinity proposed by
Strominger to define the field configuration space, and we suggest a way to remedy this. We
also show that when soft degrees of freedom are present, the order at which nonlinearities
first arise in the scattering map is second order in Lorenz gauge, but can be third order in
other gauges.

Keywords: Black Holes, Gauge Symmetry, Space-Time Symmetries

ArXiv ePrint: 2210.11585

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP05(2023)185

mailto:eef3@cornell.edu
mailto:is354@cornell.edu
https://arxiv.org/abs/2210.11585
https://doi.org/10.1007/JHEP05(2023)185


J
H
E
P
0
5
(
2
0
2
3
)
1
8
5

Contents

1 Introduction and summary 1
1.1 Background and motivation 1
1.2 Summary of results 2
1.3 Overview of paper 4

2 Electromagnetism coupled to a charged scalar field: phase space of asymp-
totic data 7
2.1 Foundations 7
2.2 Space of solutions of the field equations 10
2.3 Presymplectic form 12
2.4 Gauge specialization and scattering map 13
2.5 Soft and hard variables and Poisson brackets 15

3 Classical scattering map: foundations, definition and parameterization 18
3.1 Asymptotic field expansions in a more general class of gauges 18
3.2 Transformation to preferred asymptotic gauge 20
3.3 Perturbative framework 21
3.4 First order solutions and scattering map 22
3.5 General parameterization of the scattering map 23
3.6 Scattering map in terms of a generating functional 26

4 Coupling of soft and hard degrees of freedom: general arguments and
their validity 27
4.1 Argument for triviality of soft dynamics 27
4.2 Argument for decoupling based on theorem in symplectic geometry 28
4.3 Argument for decoupling based on factorization theorem for S matrix elements 31

5 Explicit computation of scattering map: second order 32
5.1 Preamble 32
5.2 Second order dynamics 32

6 Explicit computation of scattering map: third and fourth orders 33
6.1 Overview 33
6.2 Two nonzero pieces of fourth order scattering 34
6.3 Hard and soft sectors are coupled for first version of scattering map 35

6.3.1 Definition of invariant interactions 36
6.3.2 Two invariant nonzero interactions at quartic order 38

6.4 Hard and soft sectors are coupled for second version of scattering map 40

7 Discussion and conclusions 42

– i –



J
H
E
P
0
5
(
2
0
2
3
)
1
8
5

A Symplectically orthogonal hard and soft sectors exclude certain forms of
scattering map 43

B Free Lorenz gauge solutions with nontrivial soft charges 44
B.1 Global Lorenz gauge 44
B.2 Asymptotic Lorenz gauge 46
B.3 Scattering map for free solutions 46

C Properties of interacting Lorenz gauge solutions 46

D Presymplectic form is independent of choice of Cauchy surface 47

E Field configuration space in the magnetic sector 48

F Asymptotic edge modes 49
F.1 Equivalence of soft degrees of freedom and edge modes 49
F.2 Necessity of including edge modes 51

G Derivation of generating functional representation of scattering map 52

H Sufficient conditions for decoupling in finite dimensions 54

I Computation of Lorenz gauge scattering map to second order 54

J Leading order change in electromagnetic memory 59

1 Introduction and summary

1.1 Background and motivation

Recent years have seen significant progress in our understanding of the dynamics of gauge
and gravitational theories in the deep infrared. In particular, a remarkable web of relations
has been discovered between three seemingly unrelated areas of infrared physics (see the
review [1]): soft theorems, which govern universal properties of scattering amplitudes in the
limit where the energy of some external massless particles are taken to zero [2–7]; asymptotic
symmetries, which are gauge transformations or diffeomorphisms that act on the boundary
of spacetime and that are associated with conservation laws [1, 8–12]; and memory effects,
zero frequency components of bursts of radiation that are potentially observable for example
with future gravitational wave observations [13–17]. New avenues continue to be explored in
this rich subject: aspects of the triangular web of relations have been extended to enlarged
symmetry groups, to higher dimensional spacetimes, to subleading orders, to new spacetime
boundaries and to new theoretical contexts; see, e.g, refs. [18–22].

One interesting aspect of this field has been the discovery of a new kind of black hole
hair in general relativity [23, 24]. Asymptotic symmetry transformations at null infinity and
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at future horizons are associated with an infinite number of charges called soft hair which are
conserved in scattering processes.1 It has been argued that during black hole evaporation,
effects involving the heretofore neglected soft hair open the door to possible new avenues
for resolving the information loss paradox [23, 24, 27, 28]. One possible mechanism is that
the soft hair acts as a kind of catalyst in its interactions with the Hawking radiation and
engenders correlations between different Hawking quanta. Another possibility is that the
Hawking radiation is purified at late times by its entanglement with soft hair degrees of
freedom [29].

A number of arguments have been made against the relevance of the soft conservation
laws to information loss. First, it has been argued that in some contexts the number of
accessible soft hair degrees of freedom is too small to be relevant,2 for example in anti-
deSitter spacetimes [31]. Second, it has been argued that the interactions between the soft
(zero-energy) and hard (non-zero energy) sectors of a gauge or gravitational theory in any
scattering process are too trivial to impact the information puzzle [32–35].

In particular, it has been argued that soft charges reside in a sector of the theory that
is decoupled from all the other dynamics [32–34]. In other words, the soft conservation laws
constrain only a sector of the theory that is decoupled from the sector that contains all the
hard degrees of freedom, including the Hawking radiation. As a result, the soft charges do
not constrain the scattering problem in an essential way. This has been described as soft
hair comprising a “soft wig” that is easily removed [33].

While motivated by deep questions in the quantum theory, the question of whether the
soft and hard degrees of freedom are dynamically decoupled has a well defined classical limit,
and so can be investigated within the classical theory. Note that the claimed decoupling is
considerably stronger than properties of the classical theory implied by the soft factorization
theorems in quantum field theory [36, 37] (see section 4.3). The claim is that, first, the
classical phase space Γ can be expressed as a product Γ = Γsoft× Γhard, for some definitions
of soft and hard sectors Γsoft and Γhard (subject to the loose requirement that Γsoft contains
only zero energy degrees of freedom). Second, the classical scattering map3 S : Γ→ Γ is
claimed factorize as

(s, h)→ [s̄(s), h̄(h)] (1.1)

for s ∈ Γsoft and h ∈ Γhard. We will argue that such factorization cannot occur.

1.2 Summary of results

The purpose of this paper is to reexamine the coupling of hard and soft degrees of freedom in
classical gauge theories. We focus for simplicity on perhaps the simplest context where these
issues arise, electromagnetism coupled to a massless complex scalar field in four dimensional
Minkowski spacetime. In this context we argue that for any choice of definitions of hard
and soft sectors, the two sectors are always dynamically coupled, and that therefore the soft

1It has been argued that these charges can be used to compute the entropy of Kerr black holes [25, 26].
2See also ref. [30] which argues that a maximal entanglement between hard and soft sectors in black hole

evaporation would require involving soft degrees of freedom beyond the leading and subleading orders.
3By scattering map we mean the mapping from the phase space of initial data on past null infinity to the

phase space of final data on future null infinity.
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conservation laws yield nontrivial constraints on the dynamics. We expect that our results
will generalize to nonabelian gauge theories and to general relativity, and will constrain the
quantum as well as the classical theories. This would support the original arguments of
Hawking, Perry and Strominger that these conservation laws constrain in a nontrivial way
the formation and evaporation of black holes [23, 24].

There are two different versions of our analysis. The two versions arise because the
scattering map is not really a map from phase space Γ to itself, as described above. Instead
it is a mapping S : Γ− → Γ+ from the space Γ− of initial data at past null infinity I − to
the space Γ+ of final data at future null infinity I +. Our analysis allows for adjusting
the definitions of hard and soft sectors, but imposes that the “same” definitions of hard
and sectors be used at I − and at I + (otherwise it is always trivially possible to find
definitions which decouple the dynamics). To make this requirement precise requires an
identification of Γ− and Γ+. The first version of our analysis (used in most of the paper)
adopts the identification

ϕ0 ∗ : Γ− → Γ+ (1.2)

which is the pullback action of the mapping ϕ0 : I + → I − defined by identifying points that
are connected by a null geodesic through Minkowski spacetime.4 Using this identification
effectively means that we are considering the modified scattering map S1 : Γ+ → Γ+ given by

S1 = S ◦ ϕ−1
0 ∗ . (1.3)

The second version of our analysis instead identifies Γ− and Γ+ using the free field scattering
map S0, detailed in section 3.4 below. This differs from the identification (1.2) due to a
nontrivial action of the free field scattering in the soft sector [eq. (3.23e) below]. Using
the identification S0 effectively means that we are considering the modified scattering map
S2 : Γ+ → Γ+ given by

S2 = S ◦ S−1
0 . (1.4)

This definition is similar to using the interaction representation in quantum mechanics.
In the first version of our analysis, we show that the scattering map S1 cannot be of

the factorized form (1.1), and we also exclude the more general forms

(s, h)→ [s̄(s, h), h̄(h)] (1.5)

and
(s, h)→ [s̄(s), h̄(s, h)]. (1.6)

A scattering map of the form (1.5) would support the arguments against the relevance
of soft variables to information loss, since it would imply that the hard variables evolve
independently of the soft variables. Maps of the form (1.5) and (1.6) are automatically

4In curved spacetimes this construction is problematic since caustics can occur. An alternative prescription
would be to choose any diffeomorphism ϕ0 : I− → I + that preserves the appropriate asymptotic structures
that determine the BMS group (see, e.g., eq. (E.5) of ref. [38]). Such diffeomorphisms are unique up to
compositions with BMS transformations. Our results in the Minkowski context would be unchanged if we
used any of these more general identifications.
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excluded if one assumes that the hard and soft variables are symplectically orthogonal,
that is, have vanishing Poisson brackets with one another, a necessary condition for a
factorization of the total Hilbert space into hard and soft factors (see appendix A). Our
analysis excluding the forms (1.5) and (1.6) does not impose this requirement.

The second version of our analysis yields different results, since the free field scattering
map S0 can in general mix the two sectors together, depending on the definitions of hard
and soft sectors chosen. It is possible to define versions of the soft degrees of freedom which
are exactly conserved by the scattering map S2, as pointed out by Bousso and Poratti
(BP) [33]. It is natural to use these variables to define the soft sector, in which case the
general form of S2 is

(s, h)→
[
s, h̄(s, h)

]
. (1.7)

(Note that this form of mapping is disallowed for S1.) However we show that it is not
possible to adjust the definition of the hard sector to eliminate the dependence of h̄ on s in
eq. (1.7). That is, we again exclude completely factorized scattering maps of the form (1.1)
when we use the conserved soft variables.

1.3 Overview of paper

Our analysis will proceed in three main stages: (i) The development of the classical
scattering theory (sections 2 and 3); (ii) An analysis of the arguments that have been made
for trivial soft dynamics (section 4); and (iii) Explicit computations of the scattering map
in perturbation theory (sections 5 and 6).

The classical scattering theory of electromagnetism in Minkowski spacetime including
soft degrees of freedom has been treated in detail in refs. [1, 39–42], so we focus in the brief
overview given here on one or two points where we deviate from these previous treatments.
The theory is based on the following well-known sequence of steps of the covariant phase
space approach [43–46]: (i) Define a field configuration space F by specifying appropriate
boundary conditions at spatial and null infinity. (ii) Define a presymplectic form on the
on-shell subspace F of the field configuration space in terms of an integral over Cauchy
slices, and ensure that it is independent of choice of Cauchy slice by adjusting the definition
and adjusting the choice of F if necessary. (iii) The gauge freedom is defined in terms
of degeneracy directions of the presymplectic form. By suitably fixing all the asymptotic
gauge freedom, define a space of initial data Γ− on past null infinity I − and a space of final
data Γ+ on future null infinity I +. (iv) Mod out the space F by degeneracy directions
of the presymplectic form to obtain the phase space Γ, which can be identified with the
space of initial data Γ− and with the space of final data Γ+. These identifications define
the classical scattering map S : Γ− → Γ+ which is a symplectomorphism.

A key role in the analysis is played by the leading order piece of the angular components
of the vector potential in an expansion in 1/r about null infinity, which we denote by
A+A(u, θ, ϕ) = A+A(u,θ) on I + and by A−A(v,θ) on I −. We write the electric parity
pieces of these fields in terms of potentials as DAΨe

+(u,θ) and DAΨe
−(v,θ). Finally we define

the (assumed finite) limiting values of the potentials at spatial infinity i0 or at the timelike
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infinities i± as

Ψe
+
+

= lim
u→∞

Ψe
+, Ψe

+–
= lim

u→−∞
Ψe

+, Ψe
–
+

= lim
v→∞

Ψe
−, Ψe

–– = lim
v→−∞

Ψe
−. (1.8)

It is also convenient to use the following linear combinations of these quantities:

∆Ψe
+ = Ψe

+
+
−Ψe

+–
, Ψ̄e

+ =
Ψe

+
+

+ Ψe
+–

2 , ∆Ψe
− = Ψe

–
+
−Ψe

–– , Ψ̄e
− =

Ψe–
+

+ Ψe––

2 . (1.9)

These fields are called soft degrees of freedom since they correspond to distributional
components of the Fourier transforms of the fields Ψe

+(u,θ) and Ψe
−(v,θ) at zero frequency

or zero energy.
Some of the issues that arise in our analysis of the classical scattering theory that are

important for our conclusions are as follows (see sections 2 and 3 for more details):

• Use independent coordinates on phase space. We decompose the function Ψe
−(v,θ) as

Ψe
−(v,θ) = Ψ̃e

−(v,θ) + g(v)∆Ψe
−(θ) + Ψ̄e

−(θ), (1.10)

where g(v) is a fixed smooth monotonic function with g(−∞) = −1/2 and g(∞) = 1/2.
Then the field Ψ̃e

− obeys the boundary conditions Ψ̃e
− → 0 as v → ±∞. The fields Ψ̃e

−,
∆Ψe

− and Ψ̄e
− can be varied independently and are thus good coordinates on phase

space. Refs. [1, 33] use instead the coordinates ∆Ψe
−, Ψ̄e

− and Ψe
− − Ψ̄e

−, which are not
independent since

lim
v→∞

[
Ψe
− − Ψ̄e

−

]
= ∆Ψe

−/2. (1.11)

This issue underlies why our conclusions on soft-hard coupling differ from those of
ref. [33].

• Ensure uniqueness of presymplectic form. When large gauge transformations that are
nontrivial at null infinity are allowed, the standard expression for the presymplectic
form evaluated at past null infinity I − does not coincide with the version evaluated
at I + [see eq. (2.32) and appendix D]. Thus it is problematic to choose one of these
to define the presymplectic form as in refs. [39–42]. The usual way of dealing with
this difficulty, suggested by Strominger [1, 47], is to restrict the field configuration
space by imposing a matching condition that relates the fields Ψe–

+
and Ψe

+–
[eq. (2.38)].

While this condition excludes generic Lorenz gauge solutions (see appendix B), it is
possible to generalize the framework to encompass these solutions (see section 2.4).

• Include edge modes. It is well known that when gauge theories are formulated in
finite regions of spacetime, the theory contains physical degrees of freedom on the
boundary, so-called edge modes, that are necessary to preserve gauge invariance [48–
52]. Whether or not it is necessary to include edge modes that arise at asymptotic
boundaries is less clear, with some treatments in the literature including them [1, 47]
and others excluding them [33, 39, 40, 42, 53]. We shall find it convenient to include
edge modes, but our results would be unchanged if they were excluded. See appendix F
for further discussion.
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The way edge modes arise in the present context is as follows [1]. After some
preliminary gauge fixing [eq. (2.34)], the potentials transform under large gauge
transformations as Ψe

−(v,θ)→ Ψe
−(v,θ) + ε−(θ) and Ψe

+(u,θ)→ Ψe
+(u,θ) + ε+(θ) for

some free functions ε− and ε+. One linear combination of these two functions is
fixed by the matching condition referred to above. The other linear combination is
not a degeneracy direction of the presymplectic form and thus is not a true gauge
degree of freedom. It is the physical symmetry that underlies the soft conservation
laws [47]. The quantity that transforms under this symmetry, a corrected version of
Ψ̄e
− [eq. (2.51)], is essentially the edge mode (see sections 2.4 and 2.5 and appendix F).

Note that excluding this edge mode as in refs. [33, 39, 40, 42, 53] does not exclude
memory effects.

We now turn to a consideration of the arguments that have been made for the decoupling
of hard and soft degrees of freedom [32–35] (section 4). There is a theorem in symplectic
geometry in finite dimensions which we review in section 4.2 and appendix H. It says that
if a set of phase space functions are exactly conserved by a symplectomorphism, and their
Poisson brackets with each other are constants, then the symplectomorphism factorizes as in
eq. (1.1). All of the conditions of this theorem, except for the restriction to finite dimensions,
are satisfied in the context of the scattering map S2 defined in eq. (1.4) above [33]. As noted
above, it is possible to define versions of the soft degrees of freedom which are conserved
by S2. This arises because of the soft conservation laws and because of the matching
condition [33]. Also the Poisson brackets of these soft degrees of freedom are constants
on phase space (section 4.2). Thus one expects the factorization result to apply; this is
essentially the factorization argument of Bousso and Poratti (BP) [33].5 In section 4.2 we
show explicitly that this argument fails because the theorem does not apply in our infinite
dimensional context. This indicates that the soft and hard degrees of freedom are coupled
in a manner which has no analog in finite dimensions.

Another argument for decoupled soft and hard sectors was given in ref. [32], based on
the soft factorization theorems for S-matrix elements in quantum field theory [2]. However,
this argument is based on an assumption on how the factorization theorems constrain the
quantum theory which we argue is invalid in section 4.3.

The last portion of the paper is an explicit perturbative computation of the scattering
map that confirms that the hard and soft sectors are always coupled. The scattering is
trivial at second order with the gauge fixing we use in this paper, as we show in section 5
and appendix I (although there is a nonlinear hard-soft coupling in Lorenz gauge). Section 6
considers third and fourth order scattering. We first show in section 6.2 and appendix J
that there are two particular pieces of the fourth order scattering which are nonzero in
general, one of which is the change in electromagnetic memory in the scattering process.
The change in memory constitutes a transformation between an incoming purely hard
scalar field and an outgoing electromagnetic field with a nontrivial soft component, so it

5More precisely, instead of explicitly invoking the theorem BP attempt to compute the phase space
coordinates that give rise to the decoupled dynamics (1.1). The resulting coordinates are not independent
which invalidates the decoupling conclusion.
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is a soft-hard coupling. We then show in section 6.3 that these pieces of the fourth order
scattering cannot be removed by any adjustment of the definitions of soft and hard sectors,
using the first version S1 of the scattering map, ruling out the possibilities (1.1), (1.5)
and (1.6). Section 6.4 considers the second version S2 of the scattering map, and again
shows that the hard and soft sectors are always coupled, when the soft variable definitions
are restricted to quantities which are conserved by the scattering.

2 Electromagnetism coupled to a charged scalar field: phase space of
asymptotic data

In this section we review the phase space and symplectic form of electromagnetism coupled
to a charged scalar field in Minkowski spacetime, expressed in terms of data at past null
infinity or at future null infinity. This subject has been treated in detail by Strominger and
collaborators [1, 47], by Ashtekar [40], and by Prabhu, Satishchandran and Wald [41, 42].
We mostly follow these references, but we also highlight below some points where we deviate
from them, as discussed in the Introduction.

To construct the phase space we follow the strategy outlined in the Introduction. In
particular, we would like to fix the asymptotic gauge degrees of freedom in order to obtain
good coordinates on phase space and a nondegenerate symplectic form that can be inverted
to obtain Poisson brackets. Gauge transformations can be divided into two categories,
those which correspond to degeneracy directions of the presymplectic form (true gauge
transformations) and those which do not. The latter category includes the so-called “large
gauge transformations” that have non-trivial behavior at infinity and that correspond to the
infinity of conserved charges in gauge theories discovered in the past few years [11, 47, 54].
Our strategy here will be to fix all of the true gauge degrees of freedom, but avoid fixing
any of the gauge degrees of freedom that correspond to nondegenerate directions of the
presymplectic form.

2.1 Foundations

The action of the theory is

S = − 1
4e2

∫
d4x
√
−gFabF ab −

∫
d4x
√
−g (DaΦ)∗DaΦ, (2.1)

where Aa is the vector potential, Φ is a complex scalar field, e is the electric charge,
Da = ∇a − iAa, and Fab = ∇aAb −∇bAa. The equations of motion are

�Aa −∇b∇aAb = e2ja = −ie2(Φ∇aΦ∗ − Φ∗∇aΦ) + 2e2AaΦ∗Φ, (2.2a)
�Φ = 2iAa∇aΦ +AaAaΦ + iΦ∇aAa. (2.2b)

The theory is invariant under the local gauge transformations

Aa → Aa +∇aε, Φ→ eiεΦ, (2.3)

which may or may not be true gauge transformations.
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We now consider asymptotic conditions near future null infinity I +. We use retarded
coordinates (u, r, θ, ϕ) = (u, r, θA) in terms of which the metric is

ds2 = −du2 − 2dudr + r2hABdθ
AdθB, (2.4)

where the unit metric on the two-sphere is hABdθAdθB = dθ2 + sin2 θdϕ2. We assume the
following asymptotic behavior of the components of the Maxwell tensor in the limit to I +,
that is, r →∞ at fixed u:

Fur = 1
r2F+ur + 1

r3 F̂+ur +O

( 1
r4

)
, (2.5a)

FuA = F+uA + 1
r
F̂+uA +O

( 1
r2

)
, (2.5b)

FrA = 1
r2F+rA + 1

r3 F̂+rA +O

( 1
r4

)
, (2.5c)

FAB = F+AB + 1
r
F̂+AB +O

( 1
r2

)
. (2.5d)

We are using a notational convention where caligraphic quantities are used to represent the
pieces of fields that appear at leading order in an expansion in 1/r, the + subscripts denote
quantities on I +, and hatted caligraphic quantities are subleading. The scalings of the
leading terms can be deduced from the physical arguments given by Strominger [1], or from
demanding smoothness of the solution on the conformal completion of the spacetime [55].

We assume the following asymptotic behavior of the vector potential and scalar field as
r →∞ at fixed u, slightly more general than that of [1]:

AA = A+A + 1
r
Â+A +O

( 1
r2

)
, (2.6a)

Au = A+u + 1
r
Â+u + 1

r2
ˆ̂A+u +O

( 1
r3

)
, (2.6b)

Ar = 1
r2A+r + 1

r3 Â+r +O

( 1
r4

)
, (2.6c)

Φ = 1
r
χ+ + 1

r2 χ̂+ +O

( 1
r3

)
. (2.6d)

The expansion coefficients in the expansions (2.5) and (2.6) are then related by

F+ur = ∂uA+r + Â+u, F̂+ur = ∂uÂ+r + 2 ˆ̂A+u, (2.7a)
F+uA = ∂uA+A −DAA+u, F̂+uA = ∂uÂ+A −DAÂ+u, (2.7b)
F+rA = −DAA+r − Â+A, (2.7c)
F+AB = DAA+B −DBA+A, (2.7d)

where DA is a covariant derivative with respect to the two-sphere metric hAB.
The components of the current (2.2a) are

ju = J+u/r
2 +O(r−3), jr = J+r/r

4 +O(r−5), j+A = JA/r2 +O(r−3), (2.8)
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where

J+u = −i(χ+∂uχ
∗
+ − χ∗+∂uχ+) + 2A+uχ

∗
+χ+, (2.9a)

J+r = i(χ+χ̂
∗
+ − χ∗+χ̂+) + 2A+rχ

∗
+χ+, (2.9b)

J+A = −i(χ+∂Aχ
∗
+ − χ∗+∂Aχ+) + 2A+Aχ

∗
+χ+. (2.9c)

The leading order pieces of Maxwell’s equations are [1]

∂uF+ur +DAF+Au = e2J+u, (2.10a)
F̂+ur +DAF+Ar = e2J+r, (2.10b)

−∂uF+rA + F̂+uA +DCF+CA = e2J+A, (2.10c)

where DA = hABDB.
The expansion coefficients of the various fields transform under gauge transformations

as follows. Under the gauge transformation (2.3) with

ε = ε+ + 1
r
ε̂+ + 1

r2
ˆ̂ε+ +O

( 1
r3

)
, (2.11)

we have

A+u → A+u + ∂uε+, Â+u → Â+u + ∂uε̂+,
ˆ̂A+u → ˆ̂A+u + ∂u ˆ̂ε+, (2.12a)

A+A → A+A +DAε+, Â+A → Â+A +DAε̂+, (2.12b)
A+r → A+r − ε̂+, Â+r → Â+r − 2ˆ̂ε+, (2.12c)
χ+ → eiε+χ+, χ̂+ → eiε+(χ̂+ + iε̂+χ+). (2.12d)

A similar analysis can be carried out for the limiting behavior of the fields near past
null infinity I −. We use advanced coordinates v, r, θA given by v = u+ 2r. The expansion
of the Maxwell tensor at I −, as r →∞ at fixed v, is similar to the expansion (2.5) and is
given by

Fvr = 1
r2F−vr + 1

r3 F̂−vr +O

( 1
r4

)
, (2.13a)

FvA = F−vA + 1
r
F̂−vA +O

( 1
r2

)
, (2.13b)

FrA = 1
r2F−rA + 1

r3 F̂−rA +O

( 1
r4

)
, (2.13c)

FAB = F−AB + 1
r
F̂−AB +O

( 1
r2

)
. (2.13d)

Here the subscripts − denote expansion coefficients of an expansion near I −. The corre-
sponding expansions of the vector potential and scalar field are

AA = A−A + 1
r
Â−A +O

( 1
r2

)
, (2.14a)

Av = A−v + 1
r
Â−v + 1

r2
ˆ̂A−v +O

( 1
r3

)
, (2.14b)
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Ar = 1
r2A−r + 1

r3 Â−r +O

( 1
r4

)
, (2.14c)

Φ = 1
r
χ− + 1

r2 χ̂− +O

( 1
r3

)
, (2.14d)

and the gauge transformation parameter can be expanded as

ε = ε− + 1
r
ε̂− + 1

r2
ˆ̂ε− +O

( 1
r3

)
. (2.15)

2.2 Space of solutions of the field equations

We will restrict attention to field configurations on I − for which satisfy three conditions:

1. The limits
lim

v→±∞
A−A, lim

v→±∞
A−r, lim

v→±∞
A−v, (2.16)

exist, as functions on the two-sphere.

2. The field A−A satisfies the fall off conditions near timelike infinity and spatial infinity

∂vA−A ∼
1
|v|1+ε , v → ±∞, (2.17)

for some ε > 0. This condition is sufficient to ensure the convergence of the symplectic
form (2.43) below.

3. The initial data χ− for the scalar field falls off like6

χ− ∼
1
|v|1+ε , v → ±∞, (2.18)

for some ε > 0. We will assume that the conditions (1) and (2) are preserved by the scattering
process, so that solutions which obey these conditions at I − also satisfy analogous conditions
at I +.

We introduce the following notations for the limiting values of fields on I − at past
timelike infinity i− and at spatial infinity i0. For any function f− = f−(v,θ) defined on I −,
where θ = (θ1, θ2), we define

f––(θ) = lim
v→−∞

f−(v,θ), f–
+
(θ) = lim

v→∞
f−(v,θ). (2.19)

Similarly for functions f+ defined on I + we denote the limiting functions at i+ and at i0 by

f+
+
(θ) = lim

u→∞
f+(u,θ), f+– (θ) = lim

u→−∞
f+(u,θ). (2.20)

We now assume that for solutions to the field equations we have the following behavior
near past timelike infinity [1]:

F––vr(θ) = 0, (2.21a)
F––rA(θ) = 0, (2.21b)
F––AB(θ) = 0, (2.21c)
χ̂––(θ) = 0. (2.21d)

6Our assumed fall off for the scalar field is stronger than that for the gauge field. We are excluding for
simplicity any nontrivial soft behavior on I− in the scalar sector.

– 10 –



J
H
E
P
0
5
(
2
0
2
3
)
1
8
5

These conditions can be derived if the initial data for χ− is of compact support on I −. In this
case there exists a neighborhood of i− in which Φ vanishes, and so in that neighborhood Aa
satisfies the homogeneous Maxwell equations with no sources. Solutions of these equations
satisfy the conditions (2.21a)–(2.21c) (see appendix B). Similar arguments can be given for
the condition (2.21d). We will assume that the conditions (2.21) continue to be valid under
the weaker assumption (2.18) on the behavior of χ−; this should follow from continuity
of the dependence of the solutions of the equations of motion on the initial data on I −.
Conditions analogous to (2.21) at future timelike infinity i+, namely

F+
+ur

(θ) = 0, (2.22a)

F+
+rA

(θ) = 0, (2.22b)

F+
+AB

(θ) = 0, (2.22c)

χ̂+
+
(θ) = 0, (2.22d)

should similarly follow from the assumptions on the final data on I + that we have discussed.
Another key property of the solutions is the validity of the matching conditions

F+–ur(θ) = P∗F–
+vr

(θ), (2.23a)
F±AB(θ) = −P∗F–

+AB
(θ). (2.23b)

Here P : S2 → S2 is the antipodal inversion mapping given by (θ, ϕ)→ (π − θ, π + ϕ), and
P∗ is the pullback (P∗f)(θ, ϕ) = f(π− θ, π+ϕ) for functions f . These identities are related
to the existence of charges related to large gauge transformations and were discovered by
Strominger [1, 56]. They were proven rigorously in Minkowski spacetime by Campiglia and
Eyheralde [57], and generalized to all asymptotically flat spacetimes by Prabhu [58].

We next claim that solutions are determined up to gauge by specifying on I − the
initial data

A−A, A−v, A−r, χ−. (2.24)

Subleading fields can be obtained from these fields from the analog on I − of the asymptotic
expansion (2.10) of Maxwell equations. For example, the subleading field Â−v can be
obtained from the leading fields (2.24) and from F−vr, from the analog of eq. (2.7a) on
I −. In turn, the field F−vr can be obtained from its evolution equation, the analog on
I − of eq. (2.10a), together with the initial condition (2.21a) at v = −∞. Similarly Â−A is
obtained from F−rA from the analogs of eqs. (2.7c), the evolution equation (2.10c) and the
initial condition (2.21b). Similar arguments apply to the subleading scalar field χ̂− using an
expansion of the scalar field equation (2.2b).

Therefore we can take the four fields (2.24) on I − to parameterize the phase space
(up to gauge transformations which we discuss below). Similarly the fields

A+A, A+u, A+r, χ+ (2.25)

on I + also uniquely determine the solution, up to gauge transformations.
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2.3 Presymplectic form

The presymplectic form obtained from the action (2.1) depends on a pair of linearized
perturbations (δ1Aa, δ1Φ) and (δ2Aa, δ2Φ) about a background solution Aa,Φ [59]. It is
given by the integral over any Cauchy surface Σ,

ΩΣ(Aa,Φ; δ1Aa, δ1Φ, δ2Aa, δ2Φ) =
∫

Σ
ωabc (2.26)

of the 3-form

ωabc = 1
e2 εabcdδ1F

dfδ2Af + εabcd(Ddδ1Φ∗δ2Φ +Ddδ1Φδ2Φ∗)− (1↔ 2). (2.27)

Here the orientation of Σ is that determined by taεabcd where ta is any future-pointing
timelike vector field. We define

ΩI− =
∫

I−
ωabc, ΩI + =

∫
I +

ωabc, (2.28)

the limiting integrals over past and future null infinity. The limits to I + and I − of ωabc
exist by virtue of our assumed expansions (2.5), (2.6), (2.13) and (2.14). We will discuss in
section 2.5 below the conditions necessary for the integrals (2.28) to converge and be finite.

Before considering the presymplectic forms (2.28) for general perturbations, it will
be useful to first specialize to the case where the second perturbation is a pure gauge
transformation,

δ1Aa = δAa, δ1Φ = δΦ, δ2Aa = δεAa = ∇aε, δ2Φ = δεΦ = iεΦ. (2.29)

In this case ωabc is always exact [59], and here we have ωabc = 3∇[aQbc], where

Qab = 1
2e2 ε εabcd δF

cd. (2.30)

We assume expansions of the form (2.11) for the gauge transformation function ε near
I + and I −, and we further assume that at each angle θ the leading order coefficients
ε+, ε− asymptote to constants as |u| or |v| go to infinity, to be consistent the assumed
asymptotic behavior of the fields at i± and i0 discussed above eq. (2.20). Following the
notational conventions (2.19) and (2.20) these limiting values will be denoted ε+

+
, ε+– , ε–

+
and ε––. Converting the integrals over I + and I − to integrals over their boundaries using
eq. (2.30) we obtain

ΩI + = 1
e2

∫
d2Ω

[
−δF+

+ru
ε+
+

+ δF+–ruε+–

]
, (2.31a)

ΩI− = 1
e2

∫
d2Ω

[
−δF––rvε–– + δF–

+rv
ε–
+

]
. (2.31b)

We now simplify using the asymptotic conditions (2.21a) and (2.22a), and the matching
condition (2.23a). This gives

ΩI + − ΩI− = 1
e2

∫
d2Ω δF+–ru

[
ε+– − P∗ε–

+

]
. (2.32)
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Now we would like to specialize our definition of the field configuration space to make

ΩI + = ΩI− (2.33)

for general on-shell perturbations, that is, to make the presymplectic forms on past null
infinity and future null infinity coincide. In other words, the scattering map from data at
past null infinity to data at future null infinity should be a symplectomorphism (the classical
version of unitarity in the quantum theory). From eq. (2.32) we see that the condition (2.33)
cannot be preserved under general transformations of the form Aa → Aa +∇aε. In the
next section we will discuss a specialization of the definition of the field configuration space
suggested by Strominger [47] which makes the quantity (2.32) vanish, and thus removes the
obstruction to achieving (2.33) for general perturbations.

2.4 Gauge specialization and scattering map

We now fix some of the gauge degrees of freedom that correspond to degeneracy directions
of the presymplectic form (2.26), and so correspond to true gauge degrees of freedom. First,
we use the free function ε+ to set A+u to zero, using eq. (2.12a). In doing so we specialize
to ε+– = ε+(u = −∞) = 0, in order to correspond to a degeneracy direction of (2.31a), from
eq. (2.22a). Next, we use the free function ε̂+ to set A+r to zero, from eq. (2.12c). We
perform similar specializations at I −. Summarizing, we have fixed the gauge so that

A+u = A+r = A−v = A−r = 0. (2.34)

The remaining gauge freedom that acts on the data on I + and I − consists of functions
ε+ = ε+(θ) and ε− = ε−(θ) that are functions of angle only. In particular we have ε+– = ε+

+
= ε+

and ε–
+

= ε–– = ε−. We define the even and odd linear combinations of these gauge
transformations via

εe = 1
2(ε+ + P∗ε−), (2.35a)

εo = 1
2(ε+ − P∗ε−). (2.35b)

We next decompose the fields A+A and A−A into electric and magnetic parity pieces on
the two sphere, as

A+A = DAΨe
+ + εABh

BCDCΨm
+ , (2.36a)

A−A = DAΨe
− + εABh

BCDCΨm
− , (2.36b)

which determines the potentials Ψe
+ etc. up to their l = 0 parts which we take to vanish.

Under the gauge transformation given by eqs. (2.11) and (2.15) we have

Ψe
− → Ψe

− + ε−, Ψe
+ → Ψe

+ + ε+, (2.37a)
Ψm
− → Ψm

− , Ψm
+ → Ψm

+ , (2.37b)

assuming that ε− and ε+ have no l = 0 pieces.
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Finally, following Strominger [47], we specialize our definition of the field configuration
space by imposing the condition7

Ψe
+–

= P∗Ψe
–
+
, (2.39)

which can be achieved by using the odd gauge transformation (2.35b), from eqs. (2.37a)
and (2.36). The condition (2.39) then eliminates the odd gauge transformation freedom,
and consequently the quantity (2.32) vanishes as desired, removing the obstruction to the
scattering symplectomorphism property (2.33) discussed in the last section. In appendix D
we generalize this result and show that the symplectic forms on I − and I + coincide in
general, and not just for field configurations of the form (2.29), using results of Campiglia
and Eyheralde [57]. We also show there that the condition (2.39) follows from imposing a
Lorenz-like gauge condition on the fields to leading order in an expansion around spatial
infinity. We note that the condition (2.39) is generally incompatible with Lorenz gauge (see
appendix B); this point is discussed further after eq. (2.42) below.

The condition (2.39) is called a “matching condition” in refs. [33, 47]. However its
status is very different from that of the matching conditions (2.23), being a specialization of
the definition of the configuration space rather than a property of generic physical solutions.
Note also that it is not accurate to call it a gauge specialization, even though it is enforced
by making use of the transformations (2.35b), since true gauge transformations are defined
in terms of degeneracy directions of the presymplectic form, and the specialization (2.39) is
needed before a unique presymplectic form can be defined.

The condition (2.39) together with the gauge fixing (2.34) determines a unique gauge
for initial data on I − and final data on I + which we will call the preferred asymptotic
gauge. From eq. (2.24), the space Γ− of initial data in this gauge consists of the pairs
(A−A, χ−) on I −. Similarly the space Γ+ of final data consists of the pairs (A+A, χ+) on I +.

We do not fix the even transformation freedom (2.35a), as it corresponds to a non-
degenerate direction of the presymplectic form, so it is a physical symmetry transfor-
mation rather than a gauge freedom. The corresponding charges are the new conserved
charges of [1]. Specifically, the variation in the charge is given by [cf. eq. (8) of ref. [59]]
δQε = Ω(Aa,Φ; δAa, δΦ, δεAa, δεΦ), and using eqs. (2.31) and (2.35a) and integrating in
phase space gives [1]

Qε = 1
e2

∫
d2ΩF+–ruε+– = 1

e2

∫
d2ΩF–

+rv
ε–
+
. (2.40)

There are also magnetic conserved charges analogous to the electric charges (2.40) [56],
which we review in appendix E. For simplicity will restrict attention to the sector of the
theory where all the magnetic charges (E.4) vanish, which by eqs. (2.7d), (2.36), (E.5)
and (E.6) is equivalent to the requirement that

Ψm
+–

= Ψm
–
+

= 0. (2.41)

7Note that the corresponding relation for the magnetic potentials Ψm,

Ψm
+
–

= P∗Ψm
–
+
, (2.38)

is a consequence of the matching condition (2.23b) together with eqs. (2.7d) and (2.36).
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To summarize, the field configuration space F of the theory is given by the set of fields
that obey the asymptotic conditions (2.6) and (2.14), the matching condition (2.39), the
vanishing magnetic charges condition (2.41), and for which the initial data on I − obeys
the conditions (2.16)–(2.18) and the final data satisfies analogous conditions on I +. The
phase space Γ of the theory is the on-shell subspace F of the field configuration space,
modded out by degeneracy directions of the presymplectic form [46], which correspond to
gauge transformations that act trivially on the boundaries I − and I +. This phase space
is in one-to-one correspondence with the space Γ− of initial data (A−A, χ−) on I − in the
preferred asymptotic gauge. It is similarly in one-to-one correspondence with the space Γ+
of final data (A+A, χ+) on I + in the preferred asymptotic gauge. In the remainder of the
paper we will be concerned with properties of the scattering map

S : Γ− → Γ+ (2.42)

which is a symplectomorphism.
While our on-shell field configuration space F is well defined, it is also useful to consider

the larger space F ext of solutions that is obtained by relaxing the matching condition (2.39).
This larger space is necessary, for example, to accommodate Lorenz gauge solutions, as
we show in appendix B. We extend the definition of the presymplectic form Ω from F to
F ext as follows. Given a pair of solutions in F ext, we transform that pair to preferred
asymptotic gauge using the transformations (2.35b), and then use the prescription for Ω
discussed above. Modding out by degeneracy directions of Ω then yields the same phase
space Γ as before. From the point of view of the extended space F ext, the role of the
matching condition (2.39) is to modify the definition of the presymplectic form rather than
to restrict the field configuration space. In the remainder of the paper we will work mostly
within the extended space F ext, transforming back and forth between Lorenz gauge and
preferred asymptotic gauge as needed.

2.5 Soft and hard variables and Poisson brackets

The presymplectic form (2.26) when evaluated on the space Γ− of initial data (A−A, χ−) is
now nondegenerate, so from now on we will call it the symplectic form. It can be written as

ΩI−(Aa,Φ; δ1Aa, δ1Φ, δ2Aa, δ2Φ) =
∫
dv

∫
d2Ω

[ 1
e2h

AB∂vδ1A−Aδ2A−B − (1↔ 2)
]

+
∫
dv

∫
d2Ω [∂vδ1χ

∗
−δ2χ− + ∂vδ1χ−δ2χ

∗
− − (1↔ 2)] . (2.43)

In terms of the potentials Ψe and Ψm defined in eq. (2.36) the symplectic form is

ΩI− = − 1
e2

∫
dv

∫
d2Ω

[
∂vΨe

1 −D
2Ψe

2 − + ∂vΨm
1 −D

2Ψm
2 − − (1↔ 2)

]
+
∫
dv

∫
d2Ω [∂vδ1χ

∗
−δ2χ− + ∂vδ1χ−δ2χ

∗
− − (1↔ 2)] . (2.44)

Here for simplicity we have written Ψe
1 instead of δ1Ψe etc.
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We next make a change of coordinates on Γ−, from the set [Ψe
−(v,θ),Ψm

− (v,θ), χ−(v,θ)]
to a new set [

Ψ̃e
−(v,θ),Ψm

− (v,θ), χ−(v,θ),∆Ψe
−(θ), Ψ̄e

−(θ)
]

(2.45)

defined as follows. We pick a smooth function g(v) which increases monotonically with
boundary values

g(−∞) = −1/2, g(∞) = 1/2. (2.46)

We define

∆Ψe
− = Ψe

–
+
−Ψe

–– , (2.47a)

Ψ̄e
− = 1

2
(
Ψe

–
+

+ Ψe
––

)
, (2.47b)

Ψ̃e
−(v,θ) = Ψe

−(v,θ)− Ψ̄e
−(θ)− g(v)∆Ψe

−(θ). (2.47c)

Note that it follows from these definitions that

Ψ̃e
–
+

= Ψ̃e
–– = 0. (2.48)

We will use the terminology “hard variables” for the quantities Ψ̃e
−, Ψm

− , and χ− which
depend on u, and “soft variables” for the quantities ∆Ψe

−, Ψ̄e
− which do not and which

correspond to zero energy degrees of freedom, following ref. [1]. We similarly define the
phase space variables [

Ψ̃e
+(u,θ),Ψm

+ (u,θ), χ+(u,θ),∆Ψe
+(θ), Ψ̄e

+(θ)
]

(2.49)

at future null infinity I +, using the same function g.
It may seem strange that we have to introduce an arbitrary function g(v) in order to

separate out the soft variables from the hard variables. However, it is necessary to make
such a choice in order to get a complete separation. Of course, the choice of g(v) is arbitrary
and no observable quantities will depend on this choice. Any two phase space coordinate
systems corresponding to two different choices of g(v) are related by a symplectomorphism
[see eqs. (2.52) below, which are independent of g].

We note that a transformation of phase space variables similar to our transforma-
tion (2.47) was used in refs. [1, 33], except that those authors did not include the third term
on the right hand side of eq. (2.47c). As a consequence, their variables are not independent,
obeying the constraint (in our notation) of ∆Ψe

− = Ψ̃e
−(u =∞)− Ψ̃e

−(u = −∞). This lack of
independence of phase space coordinates is the key reason why our results on the coupling
of hard and soft degrees of freedom differ from those of ref. [33], as discussed in more detail
in section 4.2 below.

Rewriting the symplectic form (2.44) in terms of the new variables (2.45) gives

ΩI− = − 1
e2

∫
dv

∫
d2Ω

[
∂vΨ̃e

1 −D
2Ψ̃e

2 − + ∂vΨm
1 −D

2Ψm
2 − − (1↔ 2)

]
− 1
e2

∫
d2Ω

{
D2∆Ψe

1 −

[
Ψ̄e

2 − + 2
∫
dvg′Ψ̃e

2−

]
− (1↔ 2)

}
+
∫
dv

∫
d2Ω [∂vδ1χ

∗
−δ2χ− + ∂vδ1χ−δ2χ

∗
− − (1↔ 2)] . (2.50)
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We see that the soft and hard phase space variables (2.45) are not symplectically orthogonal,
that is, there are nonvanishing Poisson brackets between the hard and soft variables. This
can be remedied by defining the new soft variable

Ψ̂e
−(θ) = Ψ̄e

−(θ) + 2
∫
dvg′(v)Ψ̃e

−(v,θ). (2.51)

Then the soft variables ∆Ψe
−(θ), Ψ̂e

−(θ) and the hard variables Ψ̃e
−(v,θ),Ψm

− (v,θ), χ−(v,θ)
are symplectically orthogonal, from eq. (2.50). The corresponding nonzero Poisson brackets
can be obtained from eqs. (2.50) and (2.51) by expanding in spherical harmonics and using
the boundary conditions (2.18), (2.48), (E.5) and (2.41), and are8,9

{
Ψ̃e
−(v,θ) , D2Ψ̃e

−(v′,θ′)
}

= e2

2

[
Θ(v − v′)− 1

2

] [
δ(2)(θ,θ′)− 1

4π

]
, (2.52a){

Ψm
− (v,θ) , D2Ψm

− (v′,θ′)
}

= e2

2

[
Θ(v − v′)− 1

2

] [
δ(2)(θ,θ′)− 1

4π

]
, (2.52b){

∆Ψe
−(θ) , D2Ψ̂e

−(θ′)
}

= e2
[
δ(2)(θ,θ′)− 1

4π

]
, (2.52c)

{
χ−(v,θ) , χ∗−(v′,θ′)

}
= −1

2

[
Θ(v − v′)− 1

2

]
δ(2)(θ,θ′). (2.52d)

Here Θ(x) = 1 for x > 0 and Θ(x) = 0 for x < 0, and δ(2)(θ,θ′) = δ(θ − θ′)δ(ϕ− ϕ′)/
√
h

is the covariant delta function on the unit sphere. The formulae (2.52a)–(2.52c) contain
factors of D2 inside the Poisson brackets, but they determine the corresponding formulae
without factors of D2 since all of the functions of θ (except χ−) have no l = 0 components.

Note that it follows from eqs. (2.47) and (2.52) that the field Ψe
−(v,θ) satisfies the

same Poisson bracket relation (2.52a) as the field Ψ̃e
−(v,θ). However, one cannot replace

eqs. (2.52a) and (2.52c) with the single equation (2.52a) with Ψ̃e
−(v,θ) replaced by Ψe

−(v,θ),
because limits u→ ±∞ of the Poisson brackets do not coincide with Poisson brackets of
limits [1].

We remark that the soft degrees of freedom (∆Ψe
−, Ψ̂e

−) can alternatively be described
in the language of edge modes [48–51], as was conjectured in ref. [1]. This equivalence is
outlined in appendix F.

Turn now to the situation at future null infinity I +. An analogous analysis yields
versions of the formulae (2.50)–(2.52) with v replaced by u everywhere, and with the
subscripts + replaced by subscripts −.

Finally, we note that the main differences between the construction of the phase space
given here and previous treatments [1, 39, 40] are as follows:

• Ashtekar [39, 40] constructs the phase space by imposing Ψe
+–

= Ψe–
+

= 0 instead of
the matching condition (2.39) suggested by Strominger. This eliminates one of the

8Note that many of these Poisson bracket relations are not continuous in the limits v, v′ → ±∞. That is,
for example, the limit v → ±∞ of a Poisson bracket of a field will not coincide with the Poisson bracket of
the limit of the field. However, there is no inconsistency.

9These Poisson brackets agree with those of ref. [1] but not those of ref. [39]. We believe that the right
hand side of eq. (C.5) of ref. [39] should be proportional to the derivative of a delta function instead of a
step function.
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physical degrees of freedom (the edge mode) and also the symmetry that underlies
the conservation laws (2.40). Including the extra degree of freedom will modify the
character of the quantum theory constructed in [39]. Similarly, the analysis of infrared
scattering of the recent paper [42] is based on an algebra obtained by excluding this
degree of freedom. See appendix F for further discussion.

• In fixing the gauge we restrict to degeneracy directions of the presymplectic form,
and demonstrate that the gauge conditions (2.34) used are degeneracy directions.10

• In separating out hard and soft variables, we use a coordinate system on phase space
in which all the variables are independent, unlike the set of variables in refs. [1, 33].
This change does not affect the computation of Poisson brackets, but will be important
in the decoupling discussions in sections 4 and 6 below.

3 Classical scattering map: foundations, definition and parameterization

Having completed our analysis of the symmetries, charges and asymptotics of the theory,
and the definition of the phase space, we now turn to an exploration of the dynamics of the
theory in the deep infrared. Our goal is to determine the extent to which the conserved
charges (2.40) constrain in a nontrivial way the dynamics of the theory. In this section
we will define the scattering map and derive some of its properties as well as some useful
parameterizations. We also set up the framework for computing the scattering map in
perturbation theory, and compute the free field scattering. In later sections we will explicitly
compute higher order contributions, and we will show that the scattering map cannot be
factored into maps that act individually on hard and soft sectors.

3.1 Asymptotic field expansions in a more general class of gauges

It will be convenient to use Lorenz gauge for our explicit computations, since the equations
of motion reduce to simple wave equations in this gauge. However, the form (2.6) of the
asymptotic expansions that we have assumed are insufficiently general for this purpose,
as Lorenz gauges generically requires logarithmic terms when sources are present [41, 60].
Indeed, starting from the expansions (2.6) we obtain

∇aAa = −2
r
A+u + 1

r2

[
−∂uA+r − Â+u +DAA+A

]
+O

( 1
r3

)
= −2

r
A+u + 1

r2

[
e2
∫ ∞
u

du′J+u(u′) +DAA+
+A
−
∫ ∞
u

du′D2A+u

]
+O

( 1
r3

)
, (3.1)

where we have used the asymptotic Maxwell’s equations (2.10) and the boundary con-
ditions (2.22) to rewrite the coefficient of the 1/r2 term. Thus our assumed expansions
are incompatible with Lorenz gauges, since when the first term in eq. (3.1) vanishes

10An exception is the gauge condition (2.39) that we have adopted which is not a degeneracy direction of
the presymplectic forms (2.28). However ΩI + and ΩI − do not coincide until after this condition is imposed,
so one can argue that (2.28) is not the correct presymplectic form until after the condition is imposed.
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the second term is generically nonzero and cannot be made to vanish using the gauge
transformations (2.12).

We therefore generalize the form of the expansion (2.6) to encompass Lorenz gauges,
following refs. [41, 60]. In the limit to I +, we assume

AA = A+A −
ln r
r
DAÃ+r + 1

r
Â+A −

ln r
2r2DA

˜̃A+r + 1
r2

ˆ̂A+A +O

( ln r
r3

)
, (3.2a)

Au = A+u −
ln r
r
∂uÃ+r + 1

r
Â+u −

ln r
2r2 ∂u

˜̃A+r + 1
r2

ˆ̂A+u +O

( ln r
r3

)
, (3.2b)

Ar = Q

r
+ ln r

r2 Ã+r + 1
r2A+r + ln r

r3
˜̃A+r + 1

r3 Â+r +O

( ln r
r4

)
, (3.2c)

Φ = eiQ ln r
[1
r
χ+ − i

ln r
r2 Ã+r χ+ + 1

r2 χ̂+ +O

( 1
r3

)]
. (3.2d)

Here the notational conventions are as follows. Caligraphic font quantities are coefficients
in the double expansion in 1/r and ln r/r, functions of u and θA. The quantities A+A, A+u

and A+r without any tildes or carets are the leading order fields discussed in section 2.1
above. Quantities with one or more carets like Â+r are coefficients of subleading terms in
the 1/r expansion, while quantities with one or more tildes like Ã+r are coefficients of log
terms, new in this section. Finally eqs. (3.2c) and (3.2d) depend on a quantity Q which is a
constant (the total ingoing or outgoing charge multiplied by 4π).

The specific relations between the coefficients of the log terms in eqs. (3.2) are chosen
to ensure that the expansions (2.5) of the Maxwell tensor and (2.8) of the current are still
valid in this context. The formulae (2.7) for the expansion coefficients are replaced by

F+ur = ∂uA+r+∂uÃ+r+Â+u, F̂+ur = ∂uÂ+r+2 ˆ̂A+u+ 1
2∂u

˜̃A+r, (3.3a)

F+uA = ∂uA+A−DAA+u, F̂+uA = ∂uÂ+A−DAÂ+u,
ˆ̂F+uA = ∂u

ˆ̂A+A−DA
ˆ̂A+u,

(3.3b)

F+rA =−DAA+r−Â+A−DAÃ+r, F̂+rA =−DAÂ+r−2 ˆ̂A+A−
1
2DA

˜̃A+r, (3.3c)

F+AB =DAA+B−DBA+A, F̂+AB =DAÂ+B−DBÂ+A. (3.3d)

The gauge transformation expansion (2.11) is replaced by the more general version

ε = δQ ln r + ε+ + ln r
r
ε̃+ + 1

r
ε̂+ + ln r

r2
˜̃ε+ + 1

r2
ˆ̂ε+ +O

( 1
r3

)
, (3.4)

under which we have

Q→ Q+ δQ, (3.5a)

A+u → A+u + ∂uε+, Â+u → Â+u + ∂uε̂+,
ˆ̂A+u → ˆ̂A+u + ∂u ˆ̂ε+, (3.5b)

A+A → A+A +DAε+, Â+A → Â+A +DAε̂+,
ˆ̂A+A → ˆ̂A+A +DA

ˆ̂ε+, (3.5c)
A+r → A+r + ε̃+ − ε̂+, Â+r → Â+r + ˜̃ε+ − 2ˆ̂ε+, (3.5d)

Ã+r → Ã+r − ε̃+,
˜̃A+r → ˜̃A+r − 2˜̃ε+, (3.5e)

χ+ → eiε+χ+, χ̂+ → eiε+(χ̂+ + iε̂+χ+). (3.5f)
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The Lorenz gauge condition can be written using the expansion (3.2) as

0 = ∇aAa = 1
r

[−2A+u] + 1
r2

[
Q−A+r,u − Â+u +DAA+A + Ã+r,u

]
+ ln r

r3

[
− ˜̃A+r,u −D2Ã+r

]
+ 1
r3

[
Ã+r − Â+r,u − Â+u +DAÂ+A + 1

2
˜̃A+r,u

]
+O

( ln r
r4

)
, (3.6)

where D2 = hABDADB. Setting the coefficients of this expansion to zero gives four
conditions for Lorenz gauge, and starting from a general gauge of the form (3.2) one can
check that it is possible to use the transformation freedom (3.5) to satisfy these conditions.

3.2 Transformation to preferred asymptotic gauge

We now discuss the transformation from Lorenz gauge to the preferred asymptotic gauge
discussed in section 2 above, which is defined by the expansion (2.6) and the conditions (2.34)
and (2.39). We start from an expansion of the form (3.2), specialized to Lorenz gauge
(which implies A+u = 0):

AA = A+A −
ln r
r
DAÃ+r + 1

r
Â+A −

ln r
2r2DA

˜̃A+r + 1
r2

ˆ̂A+A +O

( ln r
r3

)
, (3.7a)

Au = ln r
r
∂uÃ+r + 1

r
Â+u −

ln r
2r2 ∂u

˜̃A+r + 1
r2

ˆ̂A+u +O

( ln r
r3

)
, (3.7b)

Ar = Q

r
+ ln r

r2 Ã+r + 1
r2A+r + ln r

r3
˜̃A+r + 1

r3 Â+r +O

( ln r
r4

)
, (3.7c)

Φ = eiQ ln r
[1
r
χ

+
− i ln r

r2 Ã+rχ+
+ 1
r2 χ̂+

+O

( ln r
r3

)]
. (3.7d)

Here and throughout underlined quantities refer to quantities in Lorenz gauge. We now
make a gauge transformation of the form (3.4) with the expansion coefficients chosen to be

δQ = −Q, ε+ = 0, ε̃+ = Ã+r, ε̂+ = A+r + Ã+r, ˜̃ε+ = 1
2

˜̃A+r, (3.8)

which enforces the required conditions (2.6) and the first two equations of (2.34) by eqs. (3.5).
We make a similar gauge transformation near I − to enforce (2.14) and the last two equations
of (2.34).

We have not yet enforced the condition (2.39) of the preferred asymptotic gauge. To do
so we use an odd transformation of the form (2.35b). The gauge transformation function
is determined by the condition (2.39) of preferred asymptotic gauge, together with the
condition (B.13) of asymptotic Lorenz gauge, which is valid for interacting solutions as well
as free solutions as discussed in appendix C. The resulting transformation between Lorenz
gauge fields and preferred asymptotic gauge fields is

Ψe
+ = Ψe

+ + ε+, Ψe
− = Ψe

− − P∗ε+, (3.9a)
Ψm

+ = Ψm
+ , Ψm

− = Ψm
− , (3.9b)

χ+ = eiε+χ
+
, χ− = e−iP∗ε+χ

−
. (3.9c)
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with
ε+ = 1

2
(
P∗Ψe

–
+
−Ψe

+–

)
. (3.10)

The inverse transformation is given by the same formulae (3.9) but with ε+ now expressed
in terms of the preferred asymptotic gauge fields:

ε+ = 1
2
(
Ψe

+
+
− P∗Ψe

––

)
. (3.11)

3.3 Perturbative framework

The scattering map (2.42) can be written schematically as

χ+(u,θ) = χ+[u,θ;χ−,A−A], (3.12a)
A+A(u,θ) = χ+[u,θ;χ−,A−A], (3.12b)

where the functional dependence on the initial data is indicated by the square brackets. We
will compute this map perturbatively by considering general Lorenz gauge solutions, and
by transforming from Lorenz gauge to preferred asymptotic gauge using eqs. (3.9).

We make the following ansatz for the scalar field and vector potential

Φ = αΦ(1) + α2Φ(2) + α3Φ(3) +O(α4), (3.13a)
Aa = αA(1) a + α2A(2) a + α3A(3) a +O(α4), (3.13b)

where α is the perturbative expansion parameter.11 There is a corresponding expansion for
the initial data A−A, χ− on I − in the preferred asymptotic gauge given by eqs. (2.14), (2.34)
and (2.39):

χ− = αχ(1)
− + α2χ(2)

− + α3χ(3)
− +O(α4), (3.14a)

A−A = αA(1)
−A + α2A(2)

−A + α3A(3)
−A +O(α4). (3.14b)

We will take the second order initial data χ(2)
− and A(2)

−A and higher order initial data to
vanish. This is done for convenience and incurs no loss in generality, since terms linear,
quadratic, cubic etc. in the first order fields χ(1)

− and A(1)
−A give complete information about

the scattering map. The corresponding expansion of the final data at I + in preferred
asymptotic gauge is

χ+ = αχ(1)
+ + α2χ(2)

+ + α3χ(3)
+ +O(α4), (3.15a)

A+A = αA(1)
+A + α2A(2)

+A + α3A(3)
+A +O(α4). (3.15b)

We will denote the Lorenz-gauge fields with underlines, and write them as Φ, Aa. The
general equations of motion (2.2) reduce in this gauge to

�Φ = 2iAa∇aΦ +AaAaΦ , (3.16a)
�Aa = −ie2(Φ∇aΦ∗ − Φ∗∇aΦ) + 2e2AaΦ∗Φ . (3.16b)

11This expansion is equivalent to expanding in powers of the charge e at fixed Φ and fixed Aa/e.
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Now using the expansions (3.13) yields the leading order equations of motion

�Φ(1) = 0 , (3.17a)
�A(1) a = 0 , (3.17b)

the subleading order equations

�Φ(2) = 2iA(1) a∇aΦ(1) , (3.18a)
�A(2) a = −ie2Φ(1)∇aΦ(1)∗ + ie2Φ(1)∗∇aΦ(1), (3.18b)

and the subsubleading equations

�Φ(3) = 2iA(1) a∇aΦ(2) + 2iA(2) a∇aΦ(1) +A(1) aA(1)
a Φ(1) , (3.19a)

�A(3) a = −ie2Φ(1)∇aΦ(2)∗ + ie2Φ(1)∗∇aΦ(2) − ie2Φ(2)∇aΦ(1)∗ + ie2Φ(2)∗∇aΦ(1)

+ 2e2A(1) aΦ(1)∗Φ(1) . (3.19b)

3.4 First order solutions and scattering map

Appendix B reviews the general solutions of the leading order Lorenz gauge equations
of motion (3.17) which have nontrivial soft charges. These solutions satisfy our assumed
expansions (2.6) and (2.14) near I + and I −, and our asymptotic gauge conditions (2.34).
They do not satisfy the matching condition (2.39), a reflection of the fact that the Lorenz
and preferred asymptotic gauges do not coincide in general.

From these solutions one can evaluate the free field scattering map. One might expect
this map to be trivial for free solutions, and to reduce essentially to the identity map (up
to antipodal identification). However the presence of the nontrivial soft charges makes
the situation slightly more complicated, and in particular the identity map would not
be consistent with the matching condition (2.39) at spatial infinity. The scattering map
when written in terms of the potentials Ψe and Ψm, and denoting Lorenz gauge fields with
underlines, is [cf. eq. (B.15)]

Ψe
+(u,θ) = P∗

[
Ψe
−(u,θ)−Ψe

–
+
(θ) + Ψe

––(θ)
]

+O(α2), (3.20a)

Ψm
+ (u,θ) = −P∗Ψm

− (u,θ) +O(α2), (3.20b)
χ

+
(u,θ) = −P∗ χ

−
(u,θ) +O(α2). (3.20c)

We can rewrite this scattering map in terms of the preferred asymptotic gauge fields
using the gauge transformation (3.9) applied to both the initial and final fields. The result
for the scalar field is

χ+ = − exp
[
2iP∗(Ψe

–
+
−Ψe

––)
]
P∗χ− +O(α2). (3.21)

However the phase factor here is a nonlinear effect that should be discarded in a perturbative
expansion. Discarding this phase factor the full free field scattering map is, from eqs. (3.9)
and (3.20),

Ψe
+ = P∗

[
Ψe
− −Ψe

–– + Ψe
–
+

]
+O(α2), (3.22a)

Ψm
+ = −P∗Ψm

− +O(α2), (3.22b)
χ+ = −P∗χ− +O(α2). (3.22c)
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Note that some of the signs in eq. (3.22a) differ from those in eq. (3.20a). The scattering
map (3.22) manifestly satisfies the matching condition (2.39). It also preserves the symplectic
form (2.44), as it should, which provides a nontrivial consistency check of some of the
coefficients of the u-independent terms.

We can rewrite the free field scattering map (3.22) in terms of the hard variables
(Ψ̃e,Ψm, χ) and soft variables (∆Ψe, Ψ̄e) defined in section 2.5 above. The result is

P∗Ψ̃e
+ = Ψ̃e

− +O(α2), (3.23a)
P∗Ψm

+ = −Ψm
− +O(α2), (3.23b)

P∗χ+ = −χ− +O(α2), (3.23c)
P∗∆Ψe

+ = ∆Ψe
− +O(α2), (3.23d)

P∗Ψ̄e
+ = Ψ̄e

− + ∆Ψe
− +O(α2). (3.23e)

Note that the hard and soft sectors are decoupled to this order,12 with the soft sector
evolving via eqs. (3.23d)–(3.23e) and the hard sector via eqs. (3.23c)–(3.23b).

3.5 General parameterization of the scattering map

The scattering map S : Γ− → Γ+ must satisfy a number of constraints. In this section we
derive the most general form of the map that obeys all the constraints, as a foundation for
the non-decoupling analysis of the later sections.

The various constraints are:

• The scattering map must satisfy the conservation law (2.40) for the soft charges Qε.
This conservation law can be written as [1]

Q+(θ) = P∗Q−(θ), (3.24)

where the charges can be decomposed into hard and soft pieces as

Q+(θ) = Qhard
+ (θ) + 1

e2D
2∆Ψe

+(θ), Q−(θ) = Qhard
− (θ) + 1

e2D
2∆Ψe

−(θ), (3.25)

from eqs. (2.10a), (2.21a), (2.22a), (2.7b) (2.34), (2.36) and (2.47a). Here

Qhard
− =

∫
dvJ−v, Qhard

+ =
∫
duJ+u (3.26)

are the total ingoing and outgoing hard charges per unit angle. Since we have special-
ized to the sector where the magnetic charges (E.4) vanish, there is no corresponding
constraint from the magnetic charges.

• It must be compatible with the transformations of initial and final data associated
with the residual even transformations εe discussed in section 2.4 above, which act on

12This remains true if we express the mapping in terms of the symplectically orthogonal variables
(Ψ̃e,Ψm, χ,∆Ψe, Ψ̂e) obtained by replacing Ψ̄e with Ψ̂e using eq. (2.51), instead of the variables (3.23).
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the physical phase space since they are not degeneracy directions of the presymplectic
form. Specifically, under the transformation of initial data

χ− → eiεχ−, A−A → A−A +DAε, (3.27)

where ε = ε(θ), the final data must transform as

χ+ → eiP∗εχ+, A+A → A+A +DAP∗ε. (3.28)

• It must obey the gauge specialization condition (2.39) that was imposed in order to
correlate the gauge freedom on I − and I + in such a way as to allow the scattering
map to be a symplectomorphism, as discussed in section 2.4.

• It must transform appropriately under Poincaré symmetries. While this is an important
constraint we will not make it explicit in this section.

• It must be a symplectomorphism on phase space. We will impose this requirement in
section 3.6 below where we parameterize the scattering map in terms of a generating
functional.

Taken together, these requirements strongly constrain the scattering map.
For the analysis in this section it will be convenient to use as the basic variables

particular combinations of the preferred asymptotic gauge fields, namely Ψm, χ, Ψ̄e and [cf.
eqs. (2.47) above]

Ψ̆e ≡ Ψe − Ψ̄e = Ψ̃e + g∆Ψe. (3.29)

The general scattering map (3.12) can be written in terms of these variables as

P∗Ψ̆e
+ = Ψ̆e

− +He
[
u, Ψ̆e

−, Ψ̄e
−,Ψm

− , χ−
]
, (3.30a)

P∗Ψ̄e
+ = Ψ̄e

− + ∆Ψe
− + I

[
Ψ̆e
−, Ψ̄e

−,Ψm
− , χ−

]
, (3.30b)

P∗Ψm
+ = −Ψm

− +Hm
[
u, Ψ̆e

−, Ψ̄e
−,Ψm

− , χ−
]
, (3.30c)

P∗χ+ = −χ− +K
[
u, Ψ̆e

−, Ψ̄e
−,Ψm

− , χ−
]
, (3.30d)

in terms of some functionals He, Hm, I and K, where the functional dependence on the
initial data is indicated by the square brackets. Here for convenience we have separated out
the terms that arise in the free evolution (3.23), so that the functionals parameterize the
nonlinear interactions. The functionals do depend on the angles θ but we have suppressed
this dependence for simplicity.

We start by imposing the transformation property (3.27) and (3.28). The functionals
He, Hm and I need to be invariant under the transformation, while K needs to transform
by a phase. Choosing ε = −Ψ̄e

−, the invariance implies for example that

He
[
u, Ψ̆e

−, Ψ̄e
−,Ψm

− , χ−
]

= He
[
u, Ψ̆e

−, 0,Ψm
− , e

−iΨ̄e
−χ−

]
. (3.31)

– 24 –



J
H
E
P
0
5
(
2
0
2
3
)
1
8
5

Hence by redefining the functionals the scattering map can be written in the general form

P∗Ψ̆e
+ = Ψ̆e

− +He
[
u, Ψ̆e

−,Ψm
− , e

−iΨ̄e
−χ−

]
, (3.32a)

P∗Ψ̄e
+ = Ψ̄e

− + ∆Ψe
− + I

[
Ψ̆e
−,Ψm

− , e
−iΨ̄e

−χ−
]
, (3.32b)

P∗Ψm
+ = −Ψm

− +Hm
[
u, Ψ̆e

−,Ψm
− , e

−iΨ̄e
−χ−

]
, (3.32c)

P∗χ+ = −χ− + exp
[
iΨ̄e

−

]
K
[
u, Ψ̆e

−,Ψm
− , e

−iΨ̄e
−χ−

]
. (3.32d)

Next we impose the matching condition (2.39). From the definition (3.29) of Ψ̆e we
have that Ψ̆e

+(u =∞) = −Ψ̆e
+(u = −∞), and He must also have this property by eq. (3.32a).

Defining the functional

He
∞ = lim

u→∞
He(u) = − lim

u→−∞
He(u), (3.33)

we find from eqs. (2.39) and (3.32) that I = He
∞. Therefore the scattering map can be

written as

P∗Ψ̆e
+ = Ψ̆e

− +He
[
u, Ψ̆e

−,Ψm
− , e

−iΨ̄e
−χ−

]
, (3.34a)

P∗Ψ̄e
+ = Ψ̄e

− + ∆Ψe
− +He

∞

[
Ψ̆e
−,Ψm

− , e
−iΨ̄e

−χ−
]
, (3.34b)

P∗Ψm
+ = −Ψm

− +Hm
[
u, Ψ̆e

−,Ψm
− , e

−iΨ̄e
−χ−

]
, (3.34c)

P∗χ+ = −χ− + exp
[
iΨ̄e

−

]
K
[
u, Ψ̆e

−,Ψm
− , e

−iΨ̄e
−χ−

]
. (3.34d)

Finally we impose the conservation laws (3.24). Taking the limits u→ ±∞ of eq. (3.34a)
and using the definitions (2.47a), (3.29) and (3.33) yields

P∗∆Ψe
+ = ∆Ψe

− + 2He
∞

[
Ψ̆e
−,Ψm

− , e
−iΨ̄e

−χ−
]
. (3.35)

It follows that He
∞ is essentially the change in the electromagnetic memory ∆Ψe [15, 16, 61]

between I − and I +. Now combining this with the conservation law (3.24) gives

He
∞ = −1

2e
2P∗D−2∆Qhard(θ), (3.36)

where the total change in the charge per unit angle is ∆Qhard = Qhard
+ (θ) − P∗Qhard

− (θ),
which can be computed from the functional K from eqs. (2.9a), (3.24), (3.26) and (3.34d).
This tells us that the functionals are not all independent, as He

∞ can be computed from K.
To summarize, we have derived a general parameterization of the scattering map that

is consistent with all of the constraints listed above, given by eq. (3.34), assuming that the
various functionals transform appropriately under Poincaré transformations.

We can rewrite the scattering map (3.34) in terms of the symplectically orthogonal
variables (Ψ̃e,Ψm, χ,∆Ψe, Ψ̂e) introduced in section 2.5 using the definitions (2.47), (2.51)
and (3.29). The resulting map is given by eqs. (3.34c), (3.34d), and (3.35) together with

P∗Ψ̃e
+ = Ψ̃e

− +He(u)− 2g(u)He
∞, (3.37a)

P∗Ψ̂e
+ = Ψ̂e

− + ∆Ψe
− +He

∞ + 2
∫
dug′(u)He(u), (3.37b)

where for convenience we have suppressed the arguments of the functionals He and He
∞.
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We can also rewrite the scattering map (3.34) in terms of asymptotic Lorenz gauge
fields using the gauge transformation (3.9). The arguments of the functionals in eq. (3.34)
are invariant under the transformation, and so we can simply insert underlines on all of
these arguments to indicate asymptotic Lorenz gauge fields. The gauge transformation
function (3.11) evaluates to ε+ = P∗∆Ψe

− + P∗He
∞, and the final result is

P∗Ψ̆
e
+ = Ψ̆e

− +He
[
u, Ψ̆e

−,Ψm
− , e

−iΨ̄e
−χ

−

]
, (3.38a)

P∗Ψ̄
e
+ = Ψ̄e

− −∆Ψe
− −He

∞

[
Ψ̆e
−,Ψm

− , e
−iΨ̄e

−χ
−

]
, (3.38b)

P∗Ψm
+ = −Ψm

− +Hm
[
u, Ψ̆e

−,Ψm
− , e

−iΨ̄e
−χ

−

]
, (3.38c)

P∗χ
+

= exp
{
−2iHe

∞

[
Ψ̆e
−,Ψm

− , e
−iΨ̄e

−χ
−

]
− 2i∆Ψe

−

}
×
{
−χ

−
+ exp

[
iΨ̄e

−

]
K
[
u, Ψ̆e

−,Ψm
− , e

−iΨ̄e
−χ

−

]}
. (3.38d)

This has the same form as the original scattering map (3.34) except for sign flips in two of
the terms in eq. (3.38b) and the overall phase factor in the scalar field (3.38d).

3.6 Scattering map in terms of a generating functional

In this section we discuss a more efficient parameterization of the scattering map, in terms
of a generating functional on phase space. This representation will be used extensively in
the discussions in sections 4.1, 4.2 and 6.4 below.

We start by decomposing the scattering map S : Γ− → Γ+ as described in the introduc-
tion:

S = S2 ◦ S0, (3.39)

where S0 : Γ− → Γ+ is the linear order scattering map (3.23) and S2 : Γ+ → Γ+ encodes the
nontrivial part of the scattering.13 Here Γ− and Γ+ are the spaces of initial and final data
on I − and I + defined in section 2.4. Since S and S0 are both symplectomorphisms, so
is S2. We now define the generating functional G : Γ+ → R by demanding that for any
functional f : Γ+ → R we have

f ◦ S2 = exp
[
{. . . , G}

]
f ≡ f + {f,G}+ 1

2 {{f,G} , G}+ . . . (3.40)

Here the notation {. . . , G} means the differential operator that acts on functionals f and
returns {f,G}. The definition (3.40) uses the fact that a general symplectomorphism can
be obtained by exponentiating, as for any Lie group. The functional G is similar to a
Hamilton-Jacobi functional in that it encodes the dynamics (except that it is a functional
of original coordinates and original momenta instead of being a functional of original
coordinates and new momenta).

The results of sections 5 and 6 below imply that G = O(α3), and it follows that through
O(α5) it is sufficient to use a truncated version of the formula (3.40) that retains only the

13This is similar to using the interaction representation in quantum mechanics.
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first two terms. In particular, if ya are arbitrary coordinates on phase space, the scattering
map S2 can be represented by

ya ◦ S2 = ya + {ya, G}+O(α6). (3.41)

In appendix G we relate the generating functional G to the various functionals He, Hm

and K defined in section 3.5 above. We also show in appendix G that G has the specific
form

G
[
Ψ̃e

+,Ψm
+ , χ+,∆Ψe

+, Ψ̂e
+

]
= G

[
Ψ̆e

+,Ψm
+ , e

−iΨ̄e
+ei∆Ψe

+/2χ+

]
. (3.42)

Here on the left hand side the arguments(
Ψ̃e

+,Ψm
+ , χ+,∆Ψe

+, Ψ̂e
+

)
(3.43)

are the independent phase space coordinates defined in section 2.5, on the right hand side
G is some functional, and its arguments are given in terms of the fields on the left hand
side by

Ψ̆e
+(u,θ) = Ψ̃e

+(u,θ) + g(u)∆Ψe
+(θ), (3.44a)

Ψ̄e
+(θ) = Ψ̂e

+(θ)− 2
∫
dug′(u)Ψ̃e

+(u,θ), (3.44b)

[cf. eqs. (2.51) and (3.29)]. The functional G must obey the constraint (G.10), whose
interpretation is that its functional derivative with respect to its first argument Ψ̆e

+ involves
just a bulk term and no boundary term. It must also obey the constraint (G.7). These
constraints together with the form (3.42) of the generating functional guarantee that
the corresponding symplectomorphism (3.40) satisfies the required conditions discussed
in section 3.5: it preserves the conserved quantities (3.35) and (2.39) and transforms
appropriately under the symmetry (3.28).

4 Coupling of soft and hard degrees of freedom: general arguments and
their validity

We now turn to an assessment of some of the arguments that have been made in the
literature about the nature of the dynamics of the soft degrees of freedom, using as a
foundation properties of the scattering map derived in the previous section. In the following
three subsections, we will discuss three different lines of reasoning for why the soft dynamics
is either trivial or completely decoupled from the dynamics of a hard sector. We will argue
that these conclusions are unfounded.

4.1 Argument for triviality of soft dynamics

One argument that might be made about the dynamics of the soft degrees of freedom is
that they are a trivial extension of the dynamics of the hard degrees of freedom. Specifically,
the full dynamics can be derived from the generating functional [cf. eq. (3.42) above]

G
[
Ψ̆e

+,Ψm
+ , e

−iΨ̄e
+ei∆Ψe

+/2χ+

]
, (4.1)
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where we recall that the definition (3.29) of the field Ψ̆e
+ requires the boundary condition

lim
u→±∞

Ψ̆e
+(u,θ) = ±∆Ψe

+(θ)/2. (4.2)

Suppose now that one considers scattering with purely hard initial data, for which Ψ̄e
+ =

∆Ψe
+ = 0.14 Such scattering is defined by a functional G [Ψ̆e

+,Ψm
+ , χ+], and fully general

scattering is defined by the same functional (4.1) except that one of the arguments is
modified by a phase factor. Therefore fully general scattering is a trivial extension of purely
hard scattering.

A potential loophole in this argument is the fact that the functionals in the two different
cases are defined on different function spaces. The purely hard scattering functional is
defined on a function space where Ψ̆e

+ satisfies the boundary conditions (4.2) with vanishing
right hand side, whereas the fully general functional is defined on the larger function space
where the right hand side is nonzero. However, it turns out that within the context of
perturbative classical scattering, the general functional G is determined by continuity by its
restriction to the smaller function space. This follows from the constraint (G.10) that the
generating functional must satisfy. See section 5 below for further discussion of this point
within the context of second order perturbation theory. Thus the more general functional is
determined uniquely by the restricted functional.

There is, however, a flaw in the argument. Scattering with initial data with Ψ̄e
+ =

∆Ψe
+ = 0 is not “purely hard” scattering, since these variables will generically be nonzero

after the scattering due to the electromagnetic memory effect (see section 6.2 and appendix J
below for more details). Thus, even within the restricted functional, the hard and soft
degrees of freedom are intertwined.

4.2 Argument for decoupling based on theorem in symplectic geometry

A more fruitful approach, following Bousso and Porrati [33] (henceforth BP), is to focus on
the quantities that are preserved under the scattering map (1.4), instead of on ∆Ψe

+ and Ψ̄e
+.

These quantities are the charge Q+(θ) given by eq. (3.24), and the quantity Ψe
+–
(θ) given by

eqs. (2.47) and (2.49) which is preserved by eq. (2.39). From eqs. (2.52) these quantities
have the Poisson brackets

{
Q+(θ), Q+(θ′)

}
= 0, (4.3a){

Ψe
+–
(θ),Ψe

+–
(θ′)

}
= 0, (4.3b){

Q+(θ),Ψe
+–
(θ′)

}
= δ(2)(θ,θ′)− 1

4π . (4.3c)

One can now attempt to make an argument for the decoupling of hard and soft degrees
of freedom based on the following theorem in symplectic geometry, which is proved in
appendix H:

14This condition is equivalent to Ψ̄e
− = ∆Ψe

− = 0, since we are working within a framework where the +
and − variables are related by the linear order scattering map (3.23), cf. eqs. (3.39) and (3.40) above.
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Theorem. Let (M,Ωab) be a symplectic manifold of finite dimension n, with associated
Poisson bracket defined by {f, g} = Ωab∇af∇bg for any functions f , g on M , where
ΩabΩbc = δac. Let S2 : M →M be a symplectomorphism. Suppose that there exists a set of
functions sA : M → R for 1 ≤ A ≤ t which satisfies the two properties:

1. The functions are preserved under the symplectomorphism,

sA ◦ S2 = sA. (4.4)

2. The Poisson brackets

ωAB =
{
sA, sB

}
(4.5)

are constants on M and form an invertible t× t matrix.

Then locally the symplectomorphism factorizes, that is, locally one can find coordinates
(s1, . . . , st, h1, . . . hn−t) for which the symplectomorphism takes the form

sA → sA, hΓ → h̄Γ(hΣ), (4.6)

for 1 ≤ A ≤ t and 1 ≤ Γ,Σ ≤ n− t.

Interpreting sA as soft and hΓ as hard degrees of freedom, the theorem would seem
to give sufficient conditions for the two sets of degrees of freedom to decouple from one
another. Indeed, if we take sA to be the conserved quantities Q+(θ) and Ψe

+–
(θ) discussed

above, and use the definition (1.4) of the scattering map S2, then both conditions of the
theorem are satisfied, from eqs. (4.3). It should follow that there exists a complementary
set of hard variables that are completely decoupled from the soft dynamics, as in eq. (4.6).
This is essentially the decoupling argument of BP.15

This argument fails for a subtle reason: the theorem is valid in finite dimensions but
not in the infinite dimensional context in which we want to apply it. We can demonstrate
this failure as follows. If the theorem were applicable, it would establish the existence of
a set of coordinates on phase space which satisfy the following three conditions: (i) The
coordinates are independent; (ii) They are symplectically orthogonal (canonical); and (iii)
They include the conserved charges Q+(θ) and Ψe

+–
(θ). Such coordinates do not in fact exist.

To see this, we can start from the coordinates (3.43) which satisfy (i) and (ii) but not (iii).
Assuming that coordinates exist which satisfy (i), (ii) and (iii), it follows that there exists a
symplectomorphism that maps ∆Ψe

+ onto Q+ and Ψ̂e
+ onto Ψe

+–
. We attempt to solve for this

symplectomorphism by using a type II generating functional following BP. This yields the

15BP present their argument in somewhat different terms: instead of invoking the theorem they attempt
to directly derive the change of phase space coordinates to the decoupled set satisfying eq. (4.6). They also
focus on the gravitational case rather than the electromagnetic case. However the theorem captures the
essential idea of their argument.
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following coordinates that satisfy (ii) and (iii):

Ψ̃e
new(u,θ) = Ψ̃e

+(u,θ) + g(u)∆Ψe
+(θ), (4.7a)

Ψm
new(u,θ) = Ψm

+ (u,θ), (4.7b)

χnew(u,θ) = exp
{
−i
[
Ψ̂e

+(θ)− 1
2∆Ψe

+(θ)− 2
∫
dūg′(ū)Ψ̃e

+(ū,θ)
]}

χ+(u,θ), (4.7c)

∆Ψe
new(θ) = ∆Ψe

+(θ) + e2D−2Qhard(θ)[χ+], (4.7d)

Ψ̂e
new(θ) = Ψ̂e

+(θ)− 1
2∆Ψe

+(θ)− 2
∫
dug′(u)Ψ̃e

+(u,θ), (4.7e)

where Qhard is defined by eqs. (3.26) and (2.9a). One can check that these new coordinates
have the same Poisson brackets as the original + coordinates, and so are symplectically
orthogonal. However these coordinates do not satisfy (i), i.e. they are not independent,
since we have

∆Ψe
new(θ) = 2 lim

u→∞
Ψ̃e

new(u,θ) + e2D−2Qhard(θ)[χnew], (4.8)

from eqs. (2.46) and (2.48). What has happened is that the original Ψ̃ coordinate satisfied
the boundary conditions Ψ̃(u)→ 0 as u→ ±∞, whereas the new Ψ̃ coordinate does not
and so effectively encodes more information.16 Thus the requirements of an autonomous
soft sector, independence of phase space coordinates, and symplectic orthogonality of hard
and soft sectors are incompatible.

A useful perspective on the dynamics can be obtained by defining an enlarged phase
space Γ̃ in which the would-be symplectomorphism (4.7) is actually a symplectomorphism.
This space is parameterized by the coordinates on the left hand sides of eqs. (4.7), where
we demand that

lim
u→∞

Ψ̃e
new(u,θ) = − lim

u→−∞
Ψ̃e

new(u,θ), (4.10)

but we do not demand that this limit satisfy the constraint (4.8). The enlarged phase
space factors as Γ̃ = Γ̃hard × Γ̃soft, where Γ̃hard is parameterized by the coordinates (4.7a)–
(4.7c), and Γ̃soft by the coordinates (4.7d) and (4.7e). We can define a scattering map
S̃2 : Γ̃→ Γ̃, which factorizes, acts on Γ̃soft as the identity, and acts on Γ̃hard as determined
by the generating functional (3.42) [note that the arguments of the generating functional G

coincide with the coordinates (4.7a)–(4.7c)]. The physical phase space Γ is then given by
restricting to the subspace of Γ̃ given by the constraint (4.8), and the physical scattering map

16A similar phenomenon arises if one tries to diagonalize the Hamiltonian functional

H =
∫
du

∫
d2Ω(∂uΨ)2. (4.9)

In finite dimensions one can always find canonical coordinates that diagonalize a positive definite quadratic
Hamiltonian (Williamson’s theorem [62, 63]). However Williamson’s theorem does not apply in our infinite
dimensional context: applying standard methods to find the canonical phase space coordinates that
diagonalize the Hamiltonian (4.9) gives rise to coordinates that are not independent, just as in eq. (4.8).
The origin of the difficulty in both cases is that the inverse (2.52) of the symplectic form (2.50) does not
lie in Γ⊗ Γ as it would if the phase space Γ were finite dimensional, instead it lies in a larger space. See
Ashtekar [40] for a rigorous treatment of Γ as a Fréchet space.
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S2 is given by restricting the action of S̃2 to this subspace. Thus, although the scattering
map does not factorize as argued by BP, it descends from a mapping on a larger phase
space which does.

In the enlarged phase space, even though the scattering map S̃2 factorizes, the map
on the hard factor Γ̃hard is constrained by the existence of the soft conservation laws. In
particular, the right hand side of eq. (4.8) is preserved, because of the constraint (G.7) on
the generating functional G . This is necessary for the mapping S̃2 to preserve the physical
phase space Γ. Thus, the argument of BP for the triviality of the soft conservation laws —
that they act only on a soft sector and do not affect the dynamics in a hard sector — does
not apply.

4.3 Argument for decoupling based on factorization theorem for S matrix
elements

Another kind of argument for the triviality of scattering of soft degrees of freedom was given
by Mirbabayi and Porrati (henceforth MP) [32], based on the soft theorems for S-matrix
elements [2]. MP assumed that

1. The system including soft degrees of freedom can be described by a Hilbert space H.

2. There is a factorization of the Hilbert space into hard and soft factors

H = Hhard ⊗Hsoft, (4.11)

a basis |a〉 of Hhard, and a set of unitary operators Ω(a) on Hsoft for which the S
matrix can be expressed as

S = Sab |a〉 〈b|Ω(a)Ω(b)†. (4.12)

MP defined the factorization (4.11) in terms of an infrared cutoff on mode energy, and took
the basis |a〉 of hard states to be the usual particle number eigenstates used in Feynman
diagrams. They then argued for the decomposition (4.12) from soft theorems [2], with the
operators Ω(a) providing the universal soft factors for S matrix elements when some of the
ingoing and outgoing particles become soft.

The assumptions (4.11) and (4.12) are equivalent to a decoupling of two sectors. We
can write

S = U(Shard ⊗ 1)U † (4.13)

with U being the unitary operator U = ∑
a Ω(a) |a〉 〈a| and Shard = Sab |a〉 〈b|. It follows

that there exists another factorization of the Hilbert space H = H̄hard ⊗ H̄soft for which the
scattering matrix S factorizes and acts as the identity on H̄soft. Taking the classical limit it
then follows that the scattering map S2 is of the factorized form (4.6) discussed earlier, for
some choice of hard and soft variables.

This conclusion is in conflict with explicit computations within the classical theory
detailed in sections 5 and 6 below (where we use an exact decomposition into hard and soft
degrees of freedom rather than a decomposition based on letting a cutoff go to zero). We
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conclude that the assumptions 1 and 2 above are not valid in such a context: the correct
description of the soft theorems within the quantum theory must be more involved than
eqs. (4.11) and (4.12). It is possible that no Hilbert space description of the dynamics
exists when soft degrees of freedom are included, as argued by Prabhu, Satishchandran, and
Wald [42] (see section 7 below for further discussion). Another possibility is that the Hilbert
space cannot be expressed as a tensor product of hard and soft factors, the appropriate
structure might be something like the fusion product defined by Donnelly and Freidel [48].

5 Explicit computation of scattering map: second order

5.1 Preamble

In the previous section we refuted some general arguments for the existence of decoupled
hard and soft sectors. However to show that the sectors are actually always coupled requires
an explicit computation of the dynamics. Such an explicit computation in the context
of perturbation theory is the goal of the rest of this paper. We start in this section by
considering the second order scattering map, and proceed to third and fourth orders in the
following section.

5.2 Second order dynamics

The scattering at second order is trivial in the sense that all the functionals defined in
eq. (3.34), that parameterize the nonlinear interactions in preferred asymptotic gauge,
vanish to this order:

He = O(α3), He
∞ = O(α3), Hm = O(α3), K = O(α3). (5.1)

As a consequence, the explicit form of the scattering map coincides with the linear order
scattering map (3.23),

P∗Ψ̃e
+ = Ψ̃e

− +O(α3), (5.2a)
P∗Ψm

+ = −Ψm
− +O(α3), (5.2b)

P∗χ+ = −χ− +O(α3), (5.2c)
P∗∆Ψe

+ = ∆Ψe
− +O(α3), (5.2d)

P∗Ψ̄e
+ = Ψ̄e

− + ∆Ψe
− +O(α3), (5.2e)

from eqs. (2.47) and (3.29). In particular, the hard sector (Ψ̃e,Ψm, χ) and the soft sector
(∆Ψe, Ψ̄e) are decoupled from one another and evolve independently. Thus we will need go
to higher order in perturbation theory to find the leading order couplings between the soft
and hard sectors. We will return to this story in section 6 below. In the remainder of this
section we will discuss some properties of the second order scattering and its derivation.

Although the scattering is trivial in preferred asymptotic gauge, it is not trivial in
asymptotic Lorenz gauge, where there is a nonlinear soft-hard interaction at quadratic order.
This can be seen by substituting the result (5.1) into the general Lorenz gauge scattering

– 32 –



J
H
E
P
0
5
(
2
0
2
3
)
1
8
5

map (3.38), which yields from eqs. (2.47) and (3.29) that

P∗Ψ̃
e
+ = Ψ̃e

− +O(α3), (5.3a)
P∗Ψm

+ = −Ψm
− +O(α3), (5.3b)

P∗χ
+

= −χ
−

+ 2i∆Ψe
−χ− +O(α3), (5.3c)

P∗∆Ψe
+ = ∆Ψe

− +O(α3), (5.3d)
P∗Ψ̄

e
+ = Ψ̄e

− −∆Ψe
− +O(α3). (5.3e)

The nonlinear term in eq. (5.3c) arises from the phase factor in eq. (3.38d), and can be
written in terms of the expansion coefficients (3.14) and (3.15) as

P∗χ(2)
+

(u,θ) = 2i∆Ψe(1)
− (θ)χ(1)

−
(u,θ). (5.4)

The nonlinear scattering map (5.3), which is equivalent to the result (5.1), is derived in
appendix I.

The nonlinearity in the second order Lorenz gauge scattering map (5.3) arises only
because of the presence of soft degrees of freedom. It vanishes if we specialize to incoming
data that is purely hard (∆Ψe

− = Ψ̄e
− = 0). This is a well-known result, familiar in

the quantum context from the Feynman rules for scalar QED [64]. The argument is
that quadratic scattering corresponds to a three particle interaction and to the operator
AaΦ∗∇aΦ+ c.c. in the Lagrangian. If we combine the conservation of four-momentum and
the fact that the final momentum must be null to be on-shell, this forces all the momenta
to be collinear. Finally the Lorenz gauge condition forces the final result to vanish. In
appendix I we translate this argument into the language of perturbative classical scattering
used in this paper, and explain how it breaks down in the presence of soft degrees of freedom.

One consequence of the nonlinear soft-hard interaction is that the scattering map (5.3) is
not continuous, in the following sense. Consider a sequence (n)Ψe

− of incoming configurations,
each of which has no soft part [(n)∆Ψe

− = (n)Ψ̄e
− = 0], which converges pointwise to Ψe

−:

lim
n→∞

(n)Ψe
−(v,θ) = Ψe

−(v,θ). (5.5)

For each element in the sequence, the result (5.4) vanishes, and so the n→∞ limit of the
scattered fields also has this property. However the result (5.4) does not vanish for the
scattering of the n→∞ pointwise limit (5.5) of the initial data. Thus, the scattering of
soft degrees of freedom cannot be obtained by simply taking a naive limit of hard scattering.
Equivalently, the scattering map is not determined by continuity by its restriction to initial
data that consists of smooth wavepacket states. This property is specific to asymptotic
Lorenz gauge, and does not occur in preferred asymptotic gauge where the scattering map
is continuous, as can be seen from eqs. (G.10) and (G.11) of appendix G.

6 Explicit computation of scattering map: third and fourth orders

6.1 Overview

In the previous section we showed that the classical scattering map factorizes into decoupled
hard and soft sectors at quadratic order. We now proceed to third and fourth orders in
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perturbation theory. We will show in this section that no factorization into decoupled
sectors is possible at these orders.

It will be sufficient for our arguments to consider only two specific pieces of the fourth
order scattering. The first piece is the change in electromagnetic memory between I − and
I +. In section 6.2 and appendix J we compute this quantity explicitly and show that it is
nonzero, as would be expected on general grounds [1]. The second piece is the contribution
to χ+ that is linear in Ψ̄e

− and cubic in χ−, which we show in section 6.2 is nonzero.
Next, in order to show that the hard and soft sectors are always dynamically coupled,

we need to address an ambiguity in the definitions of these sectors. Roughly speaking the
soft sector consists of zero energy modes, while the hard sector consists of finite energy
modes, but these requirements allow for considerable leeway in the definitions. Our strategy
will be to show that for any definitions of hard and soft sectors, the two sectors are
dynamically coupled. However, we do require that the same definitions of hard and soft
be used at I − and at I + (otherwise it is always trivially possible to find definitions
which decouple the dynamics). As discussed in the introduction, we adopt two different
conventions for identifying the phase spaces Γ− at I − and Γ+ at I +, that allow us to
enforce this requirement.

Section 6.3 considers the first convention, based on identifying I − and I + using null
geodesics. First, in section 6.3.1, we consider cubic and quartic terms in the scattering
map which couple together the soft and hard sectors. Some of these terms are invariant
under linear field redefinitions and perturbative field redefinitions that alter the definitions
of the two sectors. We will call such terms invariant interactions, as they cannot be
removed by field redefinitions, and we derive criteria for interactions to be invariant. Then,
in section 6.3.2, we show that the two pieces of the fourth order scattering discussed in
section 6.2 are such invariant interactions. Since these quantities are generically nonzero,
the hard and soft sectors are always coupled. These invariant interactions also disallow
scattering maps of the forms (1.5) and (1.6).

In section 6.4 we turn to the second convention, which is based on the free field
scattering map. For this case there exist definitions of the soft variables which are conserved,
discussed in section 4.2 above, and it is natural to restrict to definitions of soft variables
which preserve this property. With this assumption we show that it is not possible to
find definitions of soft and hard variables for which the scattering map has the uncoupled
form (1.1), again using the results of section 6.2.

6.2 Two nonzero pieces of fourth order scattering

In this section we focus attention on two particular pieces of the fourth order scattering
which we will show are nonzero.

The first piece is the total change ∆Ψe
+ − P∗∆Ψe

− in electromagnetic memory between
I − and I +. From the conservation law (3.24) this quantity is proportional to

∆Qhard(θ) = Qhard
+ (θ)− P∗Qhard

− (θ), (6.1)

the change in the total hard charge per unit angle in the scalar field. It also corresponds to the
functional He

∞ in the general parameterization (3.34) of the scattering map, from eq. (3.36).
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It is clear that this quantity is nonzero in general [1]. For example, for electromagnetism
coupled to massive charged particles, if one has two incoming charged particles, there will
in general be a nontrivial scattering and the outgoing particles will have different directions
of propagation from the incoming ones. In this paper our source is a massless scalar field
and so we deal instead with wave packet ingoing and outgoing states, but it is clear that
generically there will be nontrivial scattering. In appendix J we verify this explicitly by
computing the leading order contribution to ∆Qhard(θ), which is quartic in the initial scalar
field χ(1)

− and is given by the expressions (J.4) and (J.6).
The second piece of the fourth order scattering that we consider is the contribution

to χ+(u,θ) that is linear in Ψ̄e
− and cubic in χ−(v,θ). We can show that this contribution

is nonzero as follows. Combining the leading order formula (3.41) for the scattering map
S2 in terms of the generating functional G together with the Poisson bracket (2.52d) gives
that the change in χ+(u,θ)∗ is

− 1
2

∫
du′K(u− u′) δG

δχ+(u′,θ) , (6.2)

where K(u) = Θ(u)− 1/2. Combining this with the specific form (3.42) of the generating
functional, the definition (1.4) of the scattering map S2 and the free field scattering
map (3.23) we obtain

P∗χ+ = −χ− −
1
2

∫
du′K(u− u′)eiΨ̄e

−ei∆Ψe
−/2 δG

δχ+

[
Ψ̃e
− + g∆Ψe

−,−Ψm
− ,−e−iΨ̄

e
−e−i∆Ψe

−/2χ−
]∗
.

(6.3)
If we now specialize to a vanishing incoming electromagnetic field we obtain

P∗χ+ = −χ− −
1
2

∫
du′K(u− u′) δG

δχ+

[0, 0,−χ−]∗ . (6.4)

The second term here is computed explicitly in the last paragraph of appendix J and is
cubic in χ− and nonzero. Consider now the contribution to the general result (6.3) that is
linear in Ψ̄e

− evaluated at ∆Ψe
− = Ψ̃e

− = 0. Because of the form of the expression (6.3), this
contribution can be computed from the known expression (6.4) by inserting the complex
exponential factors. Therefore we conclude that the contribution which is linear in Ψ̄e

− and
cubic in χ− is nonzero. We write this contribution as

χ+ = F̂ [Ψ̄e
−, χ−, χ−, χ−] (6.5)

where the function F̂ is linear in its first, second and third arguments and antilinear in its
fourth (see appendix J).

6.3 Hard and soft sectors are coupled for first version of scattering map

We now specialize to the first version (1.3) of the scattering maps discussed in the intro-
duction. For this version the phase spaces Γ− and Γ+ are identified using the mapping ϕ0
from I − to I+ defined with null geodesics, allowing us to define the scattering map S1
from Γ+ to Γ+. We will allow general definitions of hard and soft sectors of Γ+, and will
not require these sectors to be symplectically orthogonal.
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6.3.1 Definition of invariant interactions

The general form (3.34) of the scattering map can be written schematically as

ȳa = Laby
b +Ma

bcdy
bycyd +Na

bcdey
bycydye +O(y5), (6.6)

where ya are abstract phase space coordinates and the map is parameterized in terms of
some phase space tensors Lab, Ma

bcd and Na
bcde. Here we are using a notation where the

indices a, b, . . . run over the various fields and also encode the dependence of these fields on
the coordinates u, θA, so that contractions over these indices encompass integrals over these
variables. The barred coordinates ȳa refer to the final data on I +,

ȳa =
(
Ψ̃e

+,Ψm
+ , χ+,∆Ψe

+, Ψ̄e
+

)
, (6.7)

while the unbarred coordinates ya refer to the data on I + obtained from the identification
map (1.2) acting on the initial data on I −. This mapping amounts to evaluating the initial
data at v = u and applying the pullback P∗, so the functions on I + are

ya = P∗
(
Ψ̃e
−,Ψm

− , χ−,∆Ψe
−, Ψ̄e

−

)
. (6.8)

Finally the schematic scattering map (6.6) encodes the fact that there are no quadratic terms
when using preferred asymptotic gauge, cf. eqs. (5.2) above, so the leading nonlinearities
arise at cubic order.

As in the previous section the phase space coordinates can be decomposed into hard
and soft components,

ya = (hA, sΓ), (6.9)

where the hard variables hA refer to the first three fields in (6.8), which depend on u and
θA, while the soft variables sΓ refer to the last two fields in (6.8), which depend only on
θA. As discussed in section 3.4, the two sectors are uncoupled in the linear order scattering
map (3.23), so the tensor Lab is block diagonal with vanishing off-diagonal blocks:

LΓ
A = 0, LAΓ = 0. (6.10)

The diagonal block LAB in the hard sector is given by eqs. (3.23b)–(3.23c), with the pullback
operators P∗ removed because of eq. (6.8), while the diagonal block LΓ

Σ in the soft sector
is similarly given by eqs. (3.23d) and (3.23e) with P∗ removed.

As we showed in section 6.2 above, the hard and soft sectors are coupled via the higher
order terms in eq. (6.6) which mix the two sectors together. Our goal here is to determine
when such interactions can be removed by field redefinitions that alter the definitions of the
hard and soft sectors. We first consider perturbative field redefinitions of the form

ya = za + Υa
bcdz

bzczd + Ξabcdezbzczdze +O(z5), (6.11)

which defines new phase space coordinates za, together with an identical transformation
for the barred variables. Here we have assumed that the transformation is the identity to
linear order, as linear transformations are considered separately below. We also exclude
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any quadratic terms in the transformation (6.11), since such terms would not generally
maintain the property of the scattering map (6.6) of having no quadratic terms.17

Using the transformation (6.11) and its inverse, we can write the scattering map (6.6)
in terms of the new phase space variables za. The result is

z̄a = L̂abz
b + M̂a

bcdz
bzczd + N̂a

bcdez
bzczdze +O(z5), (6.14)

where the transformed tensors are

L̂ab = Lab, (6.15a)
M̂a

bcd = Ma
bcd + LaeΥe

bcd −Υa
efgL

e
bL

f
cL

g
d, (6.15b)

N̂a
bcde = Na

bcde + LafΞfbcde − ΞafghiL
f
bL

g
cL

h
dL

i
e. (6.15c)

We denote by V the linear space of tensors (Ma
bcd, N

a
bcde). Consider now linear maps

` : V → R, elements of the dual space V∗. For example `(M,N) could be a particular
component of the tensor N . We define Wmixed to be the subspace of V∗ that is spanned
by components of M and N with both hard and soft indices, excluding the purely soft
components (MΣ

Γ∆Υ, N
Σ
Γ∆ΥΛ) and purely hard components (MA

BCD, N
A
BCDE). We will

call maps ` in Wmixed interactions, since they couple the hard and soft sectors together in
the dynamics. An example of such an interaction is the change in electromagnetic memory
discussed in section 6.2 above. We define a linear map A : V → V that takes

A : (Υa
bcd,Ξabcde)→

(
LaeΥe

bcd −Υa
efgL

e
bL

f
cL

g
d , L

a
fΞfbcde − ΞafghiL

f
bL

g
cL

h
dL

i
e

)
.

(6.16)
We define the subspace Winvariant of V∗ to be the set of maps ` for which ` ◦A = 0, which is
the kernel of the transpose of A. The space Winvariant depends on the linear order scattering
map Lab, for example if Lab = δab then it is the entire space V∗. The key property of this
definition is that nonzero interactions in Winvariant ∩Wmixed cannot be set to zero using the
field redefinitions (6.11), from eqs. (6.15) and (6.16).

17Terms of the form ρabcz
bzc in eq. (6.11) with ρabc chosen to satisfy

Laeρ
e
bc = ρaefL

e
bL

f
c (6.12)

will maintain the property of no quadratic terms in the scattering map. However the contributions of such
terms to eqs. (6.15) vanish when Υa

bcd = Ξabcde = 0, except for the contribution

3Ma
f(bcρ

f
de) − 2ρafgMf

(bcdL
g
e) (6.13)

to eq. (6.15c). These terms do not contribute to the interaction (6.23). This follows from the fact that the
condition (6.12) together with eq. (3.23) allow the following components of ρ to be freely specified: ρ1

11,
ρ1

14, ρ1
12, ρ1

33, ρ1
44, ρ1

42, ρ1
22, ρ3

13, ρ3
34, ρ3

32, ρ4
14, ρ4

44, ρ4
42, ρ5

11, ρ5
14, ρ5

12, ρ5
33, ρ5

44, ρ5
42, ρ5

22, ρ5
11,

ρ5
14, ρ2

12, ρ2
33, ρ2

44, ρ2
42, ρ2

22, with the remaining components constrained to vanish except for ρ5
15 = ρ4

14,
ρ5

45 = ρ4
44/2, ρ5

52 = ρ4
42 and those determined by ρabc = ρacb. Here we are using the convention (6.8) for

ordering the fields. Also the components M4
133 = M∆Ψe

Ψ̃eχχ and M4
533 = M∆Ψe

Ψ̄eχχ in eq. (6.13) vanish from
eq. (I.28) and an equation analogous to eq. (J.8) at one lower order. Since general transformations can
be obtained by composing those with ρabc = 0 and those with Υa

bcd = Ξabcde = 0, we can without loss of
generality neglect those with nonzero ρabc.
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Turn now to linear field redefinitions of the form

ya = Ωa
bz
b. (6.17)

The transformed scattering map is again of the form (6.14) with the transformed tensors
being

L̂ab =
(
Ω−1

)a
c
LcdΩd

b, (6.18a)

M̂a
bcd =

(
Ω−1

)a
e
M e

fghΩf
bΩ

g
cΩh

d, (6.18b)

N̂a
bcde =

(
Ω−1

)a
f
Nf

ghijΩ
g
bΩ

h
cΩi

dΩj
e. (6.18c)

We restrict attention to transformations Ωa
b which preserve the decoupling (6.10) of the

two sectors at linear order:
L̂Γ
A = 0, L̂AΓ = 0. (6.19)

Without loss of generality for analyzing decoupling we can assume that

ΩΓ
Σ = δΓ

Σ, ΩA
B = δAB. (6.20)

The conditions (6.19) are then equivalent to, from eqs. (6.10) and (6.18a),

ΩA
ΣL

Σ
Γ = LABΩB

Γ, ΩΓ
BL

B
A = LΓ

ΣΩΣ
A. (6.21)

For each such map Ωa
b, we define the map AΩ : V → V by

AΩ : (Ma
bcd,N

a
bcde)→

(
Ma

bcd−Ω−1a
e M

e
fghΩf

bΩ
g
cΩh

d , N
a
bcde−Ω−1a

f N
f
ghijΩ

g
bΩ

h
cΩi

dΩj
e

)
.

(6.22)
We define the subspaceW ′invariant of V∗ to be the set of maps ` for which `◦AΩ = 0 for all Ωa

b

satisfying the conditions (6.20) and (6.21). Equivalently, W ′invariant is the intersection of the
kernels of the transposes of the maps AΩ. From eqs. (6.18) and (6.22) we see that nonzero
interactions ` in W ′invariant ∩Wmixed cannot be set to zero using the field redefinitions (6.17).

We will refer to the interactions in Winvariant ∩W ′invariant ∩Wmixed as invariant interac-
tions. These interactions are not altered by either type of transformation, linear or nonlinear.
Which specific cubic and quartic interactions are invariant depends on the details of the
free field scattering map Lab.

6.3.2 Two invariant nonzero interactions at quartic order

We next show that the two quartic interactions discussed in section 6.2 above are invariant
interactions.

Consider first the change (6.1) in electromagnetic memory, specialized to the case when
there is an incoming scalar field but no electromagnetic field. We show in appendix J that
this quantity is of order O(α4), so it contributes to the tensor Na

bcde. Since the incoming
scalar field χ− is assumed to have no soft part [cf. Eq˙ (2.18) above] the corresponding
component of N is

`(M,N) = NΛ
ABCD (6.23)
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where the Λ index corresponds to the field ∆Ψe, and the indices A, B, C and D correspond
to the field χ, from eqs. (3.34b), (3.35) and (6.9).

We now consider the action of the map (6.16) on the interaction (6.23). From
eqs. (6.10), (6.16) and (6.23) we have that ` ◦ A = 0 if

LΛ
ΣΞΣ

ABCD = ΞΛ
EFGHL

E
AL

F
BL

G
CL

H
D, (6.24)

where the indices Λ, A, B, C and D have the values discussed after eq. (6.23), and Ξabcde
is the transformation tensor defined in eq. (6.11). By using the linear order scattering
map (3.23) together with eq. (6.8), we see that the effect of the mappings LEA on the right
hand side is to replace χ− with −χ−. Similarly the mapping LΛ

Σ on the left hand side acts
as the identity map. Therefore the condition (6.24) can be written as

F [χ−] = F [−χ−], (6.25)

where we have defined the quartic functional F [χ−] to be ΞΛ
ABCDy

AyByCyD with the
same values of Λ and A,B,C,D. On the right hand side, the minus sign in the argument
will cancel out, since the term is a quartic function of this argument. Therefore the
condition (6.25) is satisfied, and so the interaction (6.23) is invariant under the perturbative
redefinitions (6.11) and is an element of Winvariant ∩Wmixed.

We now turn to invariance under the linear phase space transformations (6.17). These
transformations are strongly constrained by the conditions (6.20) and (6.21) and by the
explicit form (3.23) of the free field scattering map. The most general linear map consistent
with these conditions is18

Ψ̃e → Ψ̃e + β[∆Ψe], (6.26a)
Ψm → Ψm, (6.26b)
χ→ χ, (6.26c)

∆Ψe → ∆Ψe, (6.26d)
Ψ̄e → Ψ̄e + σ[Ψ̃e], (6.26e)

where β and σ are linear functionals of their arguments. The electromagnetic memory
produced by an incoming scalar field with no incoming electromagnetic field is invariant
under these transformations. This follows from the fact that it is the change in the quantity
∆Ψe, which is invariant by eq. (6.26d), and it is a functional only of χ, which is invariant
by (6.26c).

Since the change in memory ∆Qhard(θ) is both generically nonzero from section 6.2 and
an invariant interaction, and since it constitutes a transformation of incoming hard degrees
of freedom to outgoing soft degrees of freedom, we conclude that there is an unavoidable
coupling between the hard and soft sectors for the scattering map S1. Furthermore this
interaction rules out the form (1.6) of the scattering map.

18These transformations encompass transformations caused by changes in the choice of function g(v) in
the definition (2.47c), and also the change of variables (2.51) used to diagonalize the Poisson brackets.
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A similar argument applies to the interaction (6.5) and rules out the form (1.5) of the
scattering map. By paralleling the derivation of eq. (6.25), we find that this interaction will
be invariant under the perturbative redefinition (6.11) if

F̃ [Ψ̄e
−, χ−] = −F̃ [Ψ̄e

−,−χ−]. (6.27)

Here we have defined the quartic functional F̃ [Ψ̄e
−, χ−] to be ΞAΛBCDyΛyByCyD, where the

index A corresponds to the field χ+, Λ to the field Ψ̄e
− and B, C and D to the field χ−.

The condition (6.27) is satisfied since F̃ is cubic in χ−. Similarly one can check that the
interaction (6.5) is invariant under the linear field redefinition (6.18c) using the explicit
formula (6.26). Finally one can check that the conditions of footnote 17 are satisfied using
the conditions on ρabc listed there and the properties of third order scattering

Mχ

Ψ̄eΨ̄eχ
= Mχ

Ψ̃eΨ̄eχ
= M∆Ψe

Ψ̄eχχ = M Ψ̃e

Ψ̄eχχ = 0, (6.28)

which can be derived using the methods of appendices I and J.

6.4 Hard and soft sectors are coupled for second version of scattering map

We next turn to the second version (1.4) of the scattering maps discussed in the introduction.
For this case there exist definitions of the soft variables which are conserved, and it is
natural to restrict to definitions of soft variables which preserve this property. We will show
that in this context it is not possible to find definitions of hard and soft variables for which
the scattering map has the uncoupled form (1.1).

We take our initial definition of hard and soft sectors to be given by the phase space
coordinates

ya = (hA, sΓ) =
(
Ψ̃e

+,Ψm
+ , χ̆+, Q+,Ψe

+–

)
. (6.29)

Here the hard variables hA consist of the first three fields which depend on u and θ, while
the soft variables sΓ consist of the last two fields, which depend only on θ and which
are conserved in the scattering as discussed in section 4.2. Note that these phase space
coordinates are not symplectically orthogonal but they are independent, cf. the discussion
in section 4.2 above. Also we have defined

χ̆+ = e
−iΨe

+–χ+, (6.30)

motivated by the form (3.42) of the generating functional; this definition removes some (but
not all) of the soft-hard coupling.

We denote by Σs the subspace of the phase space Γ+ given by fixing values of the soft
variables s. Taking the pullback of the symplectic form (2.50) to Σs yields a symplectic
form ΩAB whose inverse yields a Dirac bracket on Σs which we denote by { , }D. This
Dirac bracket is easiest to compute starting from the Poisson brackets of the variables (4.7).
The result is that the Dirac brackets of the hard variables (Ψ̃e

+,Ψm
+ , χ̆+) coincide with the

Poisson brackets (2.52) (with χ+ replaced by χ̆+) except for the bracket{
D2Ψ̃e

+(u,θ) , χ̆+(u′,θ′)
}

D
= ie2g(u)δ(2)(θ,θ′)χ̆+(u′,θ′). (6.31)
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Since the soft variables s are conserved, the restriction of the scattering map S2 to Σs

gives a map Ss : Σs → Σs, which we can write as

hA → h̄A(h, s). (6.32)

When the right hand side is independent of s then the two sectors are uncoupled. If we
make an s-dependent change of the coordinates hA on Σs (effectively changing the definition
of the hard sector), the effect is to make the replacement

Ss → S̄s = ϕs ◦ Ss ◦ ϕ−1
s , (6.33)

for some diffeomorphism ϕs : Σs → Σs. We do not require that ϕs be a symplectomorphism.
We would like to show that there is no choice of diffeomorphism that removes the s

dependence from the right hand side of eq. (6.32). We will show that attempting to derive
such a diffeomorphism runs into the same kind of obstacle as in section 4.2 above: one
obtains a unique result but it is not a diffeomorphism, since the resulting coordinates are
not independent.

To show that no such diffeomorphism exists it is sufficient to work to linear order in s
and to linear order in the deviation of Ss from the identity map (appropriate to the small h
limit), since if it is impossible to remove the coupling in this regime then it is impossible in
general. Within this limit we can write the mapping (6.32) as

hA → hA + ξA(h) + vA(h, s), (6.34)

where ξA is independent of s and vA is linear in s. The effect of the transformation (6.33)
to linear order is to add to the right hand side of eq. (6.34) a term (L~η~ξ)A for some vector
field ηA on Σs. Thus the condition for the dependence on s to be removable is that there
exists a ηA which depends linearly on s for which

~v = −L~η~ξ. (6.35)

Next, the generating function (3.42) for the scattering map can be written in terms of
the coordinates (6.29) used in this section as

G
[
Ψ̃e

+ + ge2D−2Q+ − ge2D−2Qhard[χ̆+],Ψm
+ , χ̆+

]
, (6.36)

from eqs. (2.47), (3.24), (3.29) and (6.30). Note that this expression depends on only one of
the two soft variables, Q+. Evaluating this generating functional at Q+ = 0 and inserting
into the linearized transformation19 (3.41) yields the vector field ξA. Evaluating the piece
of G linearized in Q+, which is

e2
∫
du

∫
d2Ω g(u) δG

δΨ̆e
+(u,θ)

D−2Q+(θ), (6.37)

19Using the Dirac brackets discussed around eq. (6.31).
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gives instead the vector field vA. Note that the quantity (6.37) is generally nonzero, by
eqs. (3.33), (3.36), (G.6c) and the result of section 6.2. With these inputs we find that the
solution to eq. (6.35) for ηA is

~η = −e2
∫
du

∫
d2Ω g(u)[D−2Q+(θ)] δ

δΨ̃e
+(u,θ)

. (6.38)

However the corresponding coordinate transformation on Σs is similar to eq. (4.7a), and
leads to a set of coordinates which are not independent. Thus, just as in section 4.2, it is
not possible to decouple the two sectors.

7 Discussion and conclusions

In this paper, we computed the perturbative classical scattering map from I − to I + of
electromagnetism coupled to a massless, charged scalar field in four-dimensional Minkowski
spacetime. We consider various definitions hard and soft sectors of the theory, and adopt
two different conventions for how to ensure that the same definitions of hard and soft are
used at I − and at I +. For both conventions, we showed that the soft and hard sectors
of the theory evolve independently to quadratic order, but that at higher orders the two
sectors are coupled. In the first convention, this coupling between the hard and soft sectors
cannot be eliminated using linear or perturbative redefinitions of the two sectors, which
includes any possible “dressing” of the hard degrees of freedom. In the second convention,
the coupling cannot be eliminated by any field redefinitions which preserve the fact that
the soft variables are conserved by the scattering process.

Our conclusions disagree with those of ref. [33], which argued that there exist definitions
of the two sectors for which there is an exact decoupling. We showed that the explanation
for the disagreement is a property of symplectic geometry which holds in finite dimensions
but fails in infinite dimensions.

We expect this nontrivial coupling of soft and hard sectors to generalize to nonabelian
gauge theories and to general relativity, and to the quantum as well as classical regimes.20 As
a result, the infinitely many conserved soft hair charges should yield non-trivial constraints
on gravitational scattering and on black hole formation and evaporation, as argued in
refs. [23, 24].

To probe this issue further, it would be interesting to study the quantization of the
gauge theory studied in this paper, while carefully accounting for the soft degrees of freedom.
A recent detailed study of infrared issues in scattering by Prabhu, Satishchandran and Wald
(PSW) [42] shows that for massless fields it is not possible to find in and out Hilbert spaces
that accommodate nontrivial changes in memory. However, as mentioned in section 2.5
above, PSW start from an algebra of observables which is different from the algebra obtained
from our phase space Γ, due to our inclusion of the edge mode (2.51) that is canonically
conjugate to memory which PSW exclude as being pure gauge. It would be interesting to
study the consequences for the analysis of PSW of adopting the different algebra used here.

20As discussed in section 4.3, the statement that the quantum theory does not admit a decomposition
into two decoupled sectors is not in conflict with the factorization theorems that constrain the soft behavior
of S matrix elements [36, 37].
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A Symplectically orthogonal hard and soft sectors exclude certain forms
of scattering map

In this appendix we show that a scattering map S : Γ→ Γ on a phase space Γ cannot have
the forms (1.5) or (1.6) if the soft and hard variables are symplectically orthogonal. We
assume a finite dimensional phase space although we expect the result to generalize.

By assumption the phase space can be expressed as a product of hard and soft factors
Γ = Γsoft × Γhard, and we denote by ya = (sA, hΓ) corresponding coordinates. Defining
Ωab = {ya, yb}, we have by assumption that

0 =
{
sA, hΓ

}
= Ωab∂as

A∂bh
Γ. (A.1)

Applying the pullback operator S∗ to this equation gives

(S∗Ω)ab∂a(S∗sA)∂b(S∗hΓ) = 0. (A.2)

We now use the fact that the scattering map is a symplectomorphism so that S∗Ωab = Ωab,
and use the definitions s̄A = S∗sA = sA◦S, h̄Γ = S∗hΓ = hΓ◦S. This gives Ωab∂as̄

A∂bh̄
Γ = 0,

and expanding this out and using eq. (A.1) again gives

ΩBC ∂s̄
A

∂sB
∂h̄Γ

∂sC
= −ΩΣΛ ∂s̄

A

∂hΣ
∂h̄Γ

∂hΛ . (A.3)

We now assume a scattering map of the form (1.5), which implies that

∂h̄Γ

∂sC
= 0, (A.4)

so the left hand side of eq. (A.3) vanishes. On the right hand side the first factor is invertible
by eq. (A.1) since Ωab is invertible, and similarly the third factor is invertible by eq. (A.4).
This implies that

∂s̄A

∂hΣ = 0, (A.5)

which contradicts the assumed form (1.5). A similar argument excludes the form (1.6).
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B Free Lorenz gauge solutions with nontrivial soft charges

In this appendix we review the solutions of the free, noninteracting theory which satisfy
everywhere the Lorenz gauge condition. We show that these solutions satisfy the gauge-
invariant asymptotic properties at i+ and i− given in eqs. (2.21) and (2.22), but fail to
satisfy the matching condition (2.39) [cf. eq. (B.11) below]. We then generalize the solutions
to a larger class which satisfy Lorenz gauge only asymptotically, and deduce the general
form of the Lorenz gauge scattering map for free solutions.

B.1 Global Lorenz gauge

In inertial coordinates (t, xi) the homogeneous global Lorenz gauge solutions are

A0 = 0, (B.1a)

Ai =
∑
l≥0

{
∂ijL

[
DjL(t− r)

r
− DjL(t+ r)

r

]
− ∂L

[
D′′iL(t− r)

r
− D′′iL(t+ r)

r

]}

+
∑
l≥0

εipq∂pL

[
CqL(t− r)

r
− CqL(t+ r)

r

]
. (B.1b)

The notation here follows ref. [65] and is as follows. The symbol L is the multi-index
L = (i1, i2, . . . il), and DiL, CiL are Cartesian tensors which are symmetric and trace-free
on all of their indices. The symbol ∂L means ∂i1 . . . ∂il . Here and throughout underlines
mean that the corresponding quantities are in Lorenz gauge. Note that, for a given
solution, the tensors DiL and CiL are not unique, since the solution (B.1) is invariant under
transformations of the form

DiL(x)→ DiL(x) + δDiL(x), CiL(x)→ CiL(x) + δCiL(x), (B.2)

for l ≥ 0, where δDiL and δCiL are a polynomials in x of degree 2l + 2.
We will restrict attention to solutions for which the asymptotic behavior of the symmetric

tracefree tensors DiL and CiL as x→∞ is given by

DiL(x) = D̃+iL(x) + P+iL(x), CiL(x) = C̃+iL(x) +Q+iL(x), (B.3)

where D̃+iL, C̃+iL go to 0 as x → ∞, and P+iL and Q+iL are polynomials in x of degree
l + 2 and l + 1 respectively. Similarly as x→ −∞ we require that

DiL(x) = D̃−iL(x) + P−iL(x), CiL(x) = C̃−iL(x) +Q−iL(x), (B.4)

where D̃−iL, C̃−iL → 0 as x→ −∞, and P−iL and Q−iL are again polynomials in x of degree
l + 2 and l + 1 respectively. Because of the invariance property (B.2), the solution (B.1)
depends only on the differences ∆PiL = P+iL − P−iL and ∆QiL = Q+iL −Q−iL between
these polynomials and not on P±iL or Q±iL individually. The assumptions (B.3) and (B.4)
are compatible with the large r field expansions (2.6) and (2.14) that we have assumed,21

and also yield solutions with finite energy.
21This would no longer be true if the polynomials P±iL and Q±iL were of higher degree than l+2 and l+1.
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The coefficients of the large r expansions of the fields near I + are given by A+u =
A+r = 0, and

A+A(u,θ) =
∑
l

(−1)l+1nLeiA

[
D̃

(l+2)
+iL (u) + εipqn

pC̃
(l+1)
+qL (u)

]
, (B.5)

where ni = xi/r, eiA = DAn
i, nL = ni1 . . . nil , and the superscripts (l + 2) and (l + 1)

indicate the number of derivatives taken. This expression satisfies the condition

A+A → 0 (B.6)

as u → ∞ at i+, which yields the condition (2.22c), from eq. (2.7d). In the other limit
u→ −∞ at i0 we have, from eqs. (B.3) and (B.4),

A+A(u,θ)→ A+–A(θ) =
∑
l

(−1)lnLeiA
[
∆P (l+2)

iL + εipqn
p∆Q(l+1)

qL

]
. (B.7)

Here the right hand side is independent of u since ∆PiL is a polynomial of order l + 2 and
∆QqL is a polynomial of order l + 1.

Similar results apply for the limiting behavior of the solutions near I −. The expansion
coefficients are A−v = A−r = 0, and

A−A(v,θ) =
∑
l

nLeiA

[
D̃

(l+2)
−iL (v)− εipqnpC̃(l+1)

−qL (v)
]
. (B.8)

This satisfies the condition as v → −∞ at i−

A−A → 0, (B.9)

yielding the condition (2.21c), while as v →∞ at i0 we have, from eqs. (B.3) and (B.4)

A−A(v,θ)→ A–
+A

(θ) =
∑
l

nLeiA

[
∆P (l+2)

iL − εipqnp∆Q(l+1)
qL

]
. (B.10)

One can check that these Lorenz gauge solutions (B.1) satisfy the matching condi-
tions (2.23a) and (2.23b) [or equivalently (2.38)] discussed in the body of the paper. Note,
however, that they do not satisfy the matching condition (2.39), instead this relation is
satisfied with a sign flip, since from eqs. (B.7) and (B.10) we have

A+– A = −P∗A–
+A
. (B.11)

This is discussed further in section 3.2 above.
By expanding the solution (B.1) to subleading order in 1/r near I + and I − and

reading off the subleading coefficients Â+u, Â+A, Â−v and Â−A, one can verify the limiting
behavior at i− and i+ given by eqs. (2.21a), (2.21b), (2.22a) and (2.22b). Similar analyses
for free massless scalar field solutions establishes (2.21d) and (2.22d).
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B.2 Asymptotic Lorenz gauge

The solutions (B.1) are the most general free solutions that obey the Lorenz gauge condition
everywhere in spacetime. However one can obtain a more general class of solutions in
asymptotic Lorenz gauge, in which one imposes the Lorenz gauge condition only at r ≥ R
for some R. Specifically for r ≥ R one can transform the solutions according to

Aa → Aa +∇aε, Φ→ eiεΦ, ε =
∑
l≥1

DL∂L

(
ul + vl

r

)
, (B.12)

where DL for l ≥ 1 are some constant traceless symmetric tensors. For r < R one can use any
smooth extension of ε. This transformation preserves the asymptotic gauge conditions (2.34),
and the initial and final data transform as A+A → A+A +DAε+, A−A → A−A +DAε−, where
ε+(θ) is a freely specifiable function with only l ≥ 1 components22 and ε− = P∗ε+. The
transformation is of the even form (2.35), and thus is not gauge but instead is a mapping
from solutions to physically distinct solutions, as discussed in section 2.4.

The general asymptotic Lorenz gauge solutions will no longer satisfy the conditions (B.6)
and (B.9) at past and future timelike infinity. However there is a combination of these
conditions which is unaffected by the transformation (B.12), and which is still valid for the
general solutions, namely

Ψe
+
+

= P∗Ψe
–– . (B.13)

B.3 Scattering map for free solutions

The scattering map that relates the initial data on I − to the final data on I + for the free
global Lorenz gauge solutions can be read off from eqs. (B.5) and (B.8) and their analogs
for scalar fields, and is

χ
+
(u,θ) = −P∗ χ

−
(u,θ), (B.14a)

A+A(u,θ) = P∗
[
A−A(u,θ)−A–

+A
(θ)
]
. (B.14b)

This scattering map can be generalized to the class of asymptotic Lorenz gauge solutions
generated by the transformation (B.12) by expressing the gauge transformation function ε+

in terms of the new initial data. Writing the result in terms of the potentials (2.36), making
use of the vanishing magnetic charges condition (2.41) and using P∗εAB = −εAB gives

Ψe
+(u,θ) = P∗

[
Ψe
−(u,θ)−Ψe

–
+
(θ) + Ψe

––(θ)
]
, (B.15a)

Ψm
+ (u,θ) = −P∗Ψm

− (u,θ), (B.15b)
χ

+
(u,θ) = −P∗ χ

−
(u,θ). (B.15c)

C Properties of interacting Lorenz gauge solutions

In this appendix we deduce some properties of nonlinear Lorenz gauge solutions. Consider
first solutions in global Lorenz gauge. We claim that the conditions (B.6) and (B.9) at

22This function is given explicitly in terms of the coefficients DL in eq. (B.12) by ε+ =
∑

l≥1 clDLn
L with

cl = 2
∑l

i=0, i even 2(i− 1)(i− 3) . . . (i− 2l + 1).
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future and past timelike infinity are still satisfied by these solutions. To see this, consider
the version of the theory on the Einstein static universe obtained by making a conformal
transformation. In this version spacetime is compact and all the fields are bounded. Consider
now a small neighborhood V of future timelike infinity i+. At each order in perturbation
theory, one can obtain the fields inside V by specifying the initial conditions on the Cauchy
surface obtained by taking the intersection of ∂V with the image of Minkowski spacetime
on the Einstein static universe cylinder. The fields inside V (and in particular the limit
to i+ of the fields on I +) are given as a sum of a homogeneous solution determined by
the initial data, and an inhomogeneous solution determined by the sources inside V with
zero initial data. However, we know from appendix B that the homogeneous solutions must
satisfy the vanishing condition (B.6) at i+, since they are free Lorenz gauge solutions. The
inhomogeneous solution can give a nonvanishing contribution to the limit, however this can
be made arbitrarily small by taking the size of the neighborhood to zero, since the sources
are bounded. We conclude that the conditions (B.6) and (B.9) are satisfied.

Just as for the free solutions, more general nonlinear solutions in asymptotic Lorenz
gauge obtained from the transformation (B.12) will no longer satisfy the conditions (B.6)
and (B.9), but will satisfy the condition (B.13).

D Presymplectic form is independent of choice of Cauchy surface

In the body of the paper, we showed that the presymplectic form (2.26) is independent
of the choice of Cauchy surface Σ, for the cases Σ = I − and Σ = I +, and for field
perturbations of the special form (2.29) given the condition (2.39). In this appendix we
review and modify slightly the results of Campiglia and Eyheralde (CE) [57], that give
sufficient conditions for extending the independence of Cauchy surface to arbitrary Cauchy
surfaces and to arbitrary field perturbations. A closely related treatment has been given by
Henneaux and Troessaert [66].

Consider first spacelike Cauchy surfaces Σ that limit to spatial infinity i0. We denote
by H the unit hyperboloid of the space of directions of approach to the point of spatial
infinity. This hyperboloid acts like a spacetime boundary, and the presymplectic form ΩΣ
can potentially depend on the Cauchy surface Σ through the location of the two-surface
S where Σ intersects H. Under the appropriate assumptions of the asymptotic fall offs of
the fields near H [eq. (4.2) of CE)], one can compute the pullback θ of the presymplectic
potential of the theory to H. This pullback can be decomposed as

θ = −δ`+ dβ + E , (D.1)

the sum of a total variation boundary term −δ`, an exact corner term dβ, and a residual
term E called the flux term. The general theory for obtaining a presymplectic form that is
independent of Cauchy surface [46, 57] consists of (i) Modifying the definition (2.26) of the
presymplectic form to exclude the corner term,

ΩΣ = δ

∫
Σ
θ − δ

∫
S
β; (D.2)
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and (ii) Specializing the decomposition (D.1) and the definition of the field configuration
space to make the flux term vanish.

CE find a nonzero flux term in general, the second term in their eq. (4.5). This
term can be eliminated by specializing the definition of the field configuration space. CE
impose an asymptotic Lorenz gauge condition, their eq. (4.8). However that Lorenz gauge
condition is incompatible with our condition (2.39), and instead yields eq. (2.39) with a
sign flip [cf. eq. (B.11) above]. Therefore we instead impose a modified version of their
eq. (4.8) with the first term omitted. That modified condition can always be enforced by
making an appropriate “gauge transformation” of the form of their eq. (2.38), although as
explained after eq. (2.39) above the transformation should not be thought of as a gauge
specialization, and instead should be thought of as a specialization of the definition of the
field configuration space. Our modified version of their condition (4.8) eliminates the flux
term and also implies eq. (2.39).23

CE also find a nonzero corner term proportional to the pullback to H of εabcdA[cδAd],
their eq. (4.6).24 With the corner term subtraction included, the presymplectic form (D.2)
is independent of the choice of spacelike Cauchy surface Σ that limits to i0. The corner
term on H vanishes when one takes the limit to the boundaries of H, using their eqs. (4.8)
[the modified version], (4.6), (3.9), (B.2), footnote 3, and assuming the specialization given
in their footnote 9. It also vanishes on null infinity, with the gauge specializations (2.34). It
follows that the corner term subtraction does not affect the presymplectic forms ΩI− and
ΩI + , and that ΩI− and ΩI + coincide with the common value of ΩΣ for all the spacelike
Cauchy surfaces Σ.

E Field configuration space in the magnetic sector

In this appendix we discuss a difference between the space of solutions for the electric
potential Ψe

− and the magnetic potential Ψm
− . For the class of Lorenz gauge free solutions

discussed in appendix B these potentials vanish at i−, from eq. (B.9):

Ψe
–– = 0, Ψm

–– = 0, (E.1)

and this generalizes to the solutions of the interacting theory. However, by using the
transformation freedom (2.35a) we can make Ψe–– be nonzero, from eq. (2.37a). Thus in the
full space of solutions with our preferred asymptotic gauge conditions (2.34) and (2.39)
[which do not include Lorenz gauge] we have that both Ψe–– and Ψe–

+
are nonzero in general.

For the magnetic variables the story is somewhat different. Starting from the class
of solutions which satisfy (E.1), one can attempt to obtain a larger class of solutions by
analogy with the procedure for the electric variables, by making a transformation of the
initial data on I − of the form

Ψe
− → Ψe

−, Ψm
− → Ψm

− + ε̃−, (E.2)
23This follows from the fact that, in their notation, the even parity piece of A0

α is of the form Dαλ for
some λ with DαDαλ = 0, and their eq. (3.2).

24Note that they use different terminology and call it a boundary term, and they also work with ω = δθ

rather than θ.
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where ε̃− is a function on I − with no l = 0 component that is independent of v. Although
the transformation (E.2) is not a gauge transformation, it is a kind of magnetic analog of
the gauge transformation given by eqs. (2.37) [56]. By solving the equations of motion one
can determine the effects of this transformation of the initial data on the entire solution,
and in particular the data on I + transforms as [cf. eq. (2.35a) above]

Ψe
+ → Ψe

+, Ψm
+ → Ψm

+ + ε̃+, (E.3)

where ε̃+ = P∗ε̃−. The magnetic charges

Q̃ε̃ = 1
e2

∫
d2Ωε̃+F+–AB = 1

e2

∫
d2Ωε̃−F–

+AB
(E.4)

associated with these transformations [cf. eq. (2.23b) above] can be derived in exact parallel
with the derivation for the electric case discussed in section 2.4 [56]. However, the solutions
generated by the transformations (E.2) are generically singular in the interior of the
spacetime. One example of such a solution is a static magnetic dipole at the origin r = 0.
In this paper we restrict attention to initial data on I− which evolves into smooth solutions
in the interior of the spacetime, which requires that

Ψm
–– = 0, (E.5)

and disallows the transformations (E.2). A similar analysis at I + yields the condition

Ψm
+
+

= 0. (E.6)

The other limits Ψm
+–

and Ψm–
+

of the magnetic potentials at spatial infinity are generally
nonzero (see appendix B). However in this paper we restrict attention to the sector of the
theory in which they vanish, as discussed around eq. (2.41).

F Asymptotic edge modes

F.1 Equivalence of soft degrees of freedom and edge modes

In the literature on soft charges it has been conjectured [1] that soft modes can be alterna-
tively described in the language of edge modes used in refs. [48–51]. In this appendix we
demonstrate the equivalence explicitly by giving an alternative construction of the phase
space and symplectic product of section 2.5 using edge modes. A general treatment of edge
modes in electromagnetism at finite boundaries has been given by Freidel and Pranzetti [52].

We slightly generalize the treatment in the body of the paper by considering a region
R of I − of points with v1 ≤ v ≤ v2. At the end we will specialize to v1 = −∞, v2 =∞,
the case treated in the body of the paper. The presymplectic product evaluated on this
region is not gauge invariant: the derivation that led to eq. (2.31b) gives in this context

ΩR(δAa, δΦ; δεAa, δεΦ) = 1
e2

∫
d2Ω [δF−rvε−]v2

v1
. (F.1)
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Now the field component at the boundary v = v1 is given by, from eq. (2.21a) and an
equation analogous to eq. (2.10a),

F−rv(v1) =
∫ v1

−∞
dv
[
e2J−v −DAF−Av

]
. (F.2)

If we now vary just the fields within the region R, as is relevant for the presymplectic
form (F.1), the result vanishes, since the field F−rv at v1 depends only on fields outside the
region:

δF−rv(v1) = 0. (F.3)

Hence the one of the two terms in (F.1) vanishes. However the second term at v = v2 is
generally nonzero and so the presymplectic form is not gauge invariant.

The key idea of edge modes is to use the Stueckelberg trick25 to restore gauge invariance
by introducing new degrees of freedom [48–50]. We introduce a U(1) field eie

2λ on the
boundary at v = v2, which transforms under gauge transformations as λ→ λ+ ε−/e

2. We
add to the presymplectic form ΩR a term∫

d2Ω [δ1λδ2F−vr(v2)− δ2λδ1F−vr(v2)] , (F.4)

so that the total presymplectic form is now gauge invariant.
We next specialize the gauge by using the gauge function ε− to set A−v to zero, using

the analog of eq. (2.12a). There is a residual gauge freedom given by

ε− = ε−(θ). (F.5)

We now follow the derivation given in the body of the paper that leads to the form (2.50)
of the presymplectic form, but keeping the extra term (F.4). The final result is

ΩR = − 1
e2

∫
dv

∫
d2Ω

[
∂vΨ̃e

1 −D
2Ψ̃e

2 − + ∂vΨm
1 −D

2Ψm
2 − − (1↔ 2)

]
− 1
e2

∫
d2Ω

{
D2∆Ψe

1 −

[
Ψ̄e

2 − − λ2 + 2
∫
dvg′Ψ̃e

2−

]
− (1↔ 2)

}
+
∫
dv

∫
d2Ω [∂vδ1χ

∗
−δ2χ− + ∂vδ1χ−δ2χ

∗
− − (1↔ 2)] . (F.6)

We may now use the residual gauge freedom (F.5) (which was not a gauge freedom
in the body of the paper) to set to zero the variable Ψ̄e

2−. Then the phase space and
presymplectic form (F.6) coincide exactly with the version (2.50) from the body of the
paper (when we specialize to v1 = −∞, v2 = ∞), except that the variable Ψ̄e

− has been
replaced by −λ. Thus we see that of the two canonically conjugate variables ∆Ψe

− and
Ψ̄e
− that comprise the soft modes, one can be interpreted as an edge mode at the future

boundary at v = v2 =∞ of I −.
25A nice review of this technique and its applications in gauge theory as well as gravitational theories can

be found in ref. [67].
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F.2 Necessity of including edge modes

As discussed in the introduction and in section 2.5, there is some disagreement in the
literature on the necessity of including asymptotic edge modes. Ashtekar [39, 40] elimi-
nates these modes by imposing Ψe

+–
= Ψe–

+
= 0 in the definition of the field configuration

space. Bousso and collaborators argue in the gravitational case that the edge modes are
unobservable [33, 53]. The issue arises in a different guise in the algebraic approach to the
scattering problem, where one focuses on constructing the algebra of observables. The recent
analysis of infrared scattering by Prabhu, Satishchandran and Wald [42] is based on an
algebra obtained by excluding the edge modes. However that algebra could be modified to
incorporate them.26 Finally, the edge modes are included in the treatments by Strominger
and collaborators [1, 47].

One argument for including edge modes is that they are required in order for there to
be an action on the phase space of the large gauge transformations (2.35a) associated with
the new conserved charges (2.40) [1, 47].

Another argument is that it is not possible to eliminate edge modes using a gauge
transformation (since the corresponding transformations are not degeneracy directions of
the presymplectic form and are thus not true gauge transformations). However, they can
be instead eliminated by specializing the definition of the field configuration space.

The strongest argument for including edge modes is as follows. We will give the
argument for the gravitational case. The edge modes (or soft hair) in that case are
observable only relative to a choice of convention, a BMS frame, equivalent to the choice
of zero readings on a set of clocks on an asymptotic two sphere. This is the reason that
the edge modes are sometimes argued to be unobservable [33, 53]. However, the same
non-observability argument would also apply to the direction in space of the angular
momentum of a stationary gravitational source, which is observable only relative to a
choice of convention. One could make a diffeomorphism to fix the direction of angular
momentum to be in the z direction. However, quantum fluctuations in the direction of
angular momentum have physical consequences, and cannot be correctly described in a
phase space where angular momentum always points in the z direction. By analogy, one
expects quantum fluctuations in gravitational edge modes to have physical consequences,
and they would not be correctly described in a phase space in which the edge modes
are fixed.

Finally we note that the results of this paper are unchanged if the edge modes are
excluded. This can be seen as follows. The general form of the scattering map (3.34)
transforms appropriately under the transformation freedom (3.27) and (3.28). Eliminating
the edge modes Ψ̄e

− and Ψ̄e
+ fixes this transformation freedom and also eliminates eq. (3.34b).

However the soft-hard coupling discussed in section 6 is still be present in the second term
on the right hand side of eq. (3.34a), specifically in the difference between its u → ±∞
limits. As in section 6 this soft-hard coupling cannot be eliminated.

26Specifically the algebra of observables constructed in their section 4.2 could be extended by including the
additional quantity (2.51) (suitably smeared over angles), which satisfies the requirement of their eq. (2.5).
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G Derivation of generating functional representation of scattering map

In this appendix we derive some properties of the generating functional G for the scattering
map which were discussed in section 3.6.

First, in order for the scattering map S to be of the specific form (3.34) derived in
section 3.5, the generating functional G must be of the form

G
[
Ψ̃e

+,Ψm
+ , χ+,∆Ψe

+, Ψ̂e
+

]
= G

[
Ψ̆e

+,Ψm
+ , e

−iΨ̄e
+ei∆Ψe

+χ+

]
(G.1)

for some functional G, where Ψ̆e
+ and Ψ̄e

+ are defined in terms of the fields on the left hand
side by eqs. (2.51) and (3.29). In deriving the representation (G.1) we used the decomposi-
tion (3.39) of the scattering map, the generating functional parameterization (3.41), the
Poisson brackets (2.52), and the linear order scattering map (3.23).

We next define variational derivatives of the functional G[Ψ̆e,Ψm, χ]. These are defined
by

δG =
∫
du

∫
d2Ω δG

δΨm(u,θ)δΨ
m(u,θ) +

∫
du

∫
d2Ω

[
δG

δχ(u,θ)δχ(u,θ) + c.c.
]

+
∫
du

∫
d2Ω δG

δΨ̆e(u,θ)
δΨ̆e(u,θ) +

∫
d2Ω δG

δ∆Ψe(θ)δ∆Ψe(θ). (G.2)

The only nontrivial point here is that the field variation

Ψ̆e → Ψ̆e + δΨ̆e = Ψ̆e + δΨ̃e + g(u)δ∆Ψe, (G.3)

generates two terms in the variation δG of the functional, a bulk term [first term on the
second line of eq. (G.2)], and a boundary term (second term on the second line), since the
variation δΨ̆e is generally nonzero at the boundaries u = ±∞, with

δΨ̆e(±∞) = ±δ∆Ψe/2. (G.4)

Also, the integral of δG/δΨ̆e(u,θ) against any test function f(u,θ) is only defined when
f(∞,θ) = −f(−∞,θ).

One might worry that there is some inconsistency in the definition (G.2) since the
variables Ψ̆e and ∆Ψe are not independent, by eq. (G.4). However there is no inconsistency,
as can be seen by formulating the definitions in terms of the independent variables Ψ̃e and
∆Ψe and then translating using eq. (G.3), which yields

δG
δΨ̆e(u,θ)

=
(

δG
δΨ̃e(u,θ)

)
∆Ψe

, (G.5a)

δG
δ∆Ψe(θ) =

(
δG

δ∆Ψe(θ)

)
Ψ̃e
−
∫
dug(u)

(
δG

δΨ̃e(u,θ)

)
∆Ψe

. (G.5b)

We use the variational derivatives on the left hand side rather than those on the right hand
side, since they are independent of the choice of function g(u).

We can now compute the various functionals Hm, K, He and He
∞ that appear in the

scattering map (3.34) in terms of the generating functional G. By using the generating
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functional parameterization (3.41) with ya taken to be Ψm, χ, Ψ̃e and ∆Ψe, respectively, the
Poisson brackets (2.52), the variational derivative definitions (G.2), the decomposition (3.39)
of the scattering map, the linear order scattering map (3.23), and comparing with the
definitions (3.34c), (3.34d), (3.37a) and (3.35), we can read off the following expressions:

Hm[u,θ; Ψ̆e,Ψm, χ] = 1
2e

2D−2
∫
du′K(u− u′) δG

δΨm(u′,θ)
[
Ψ̆e,−Ψm,−χ

]
, (G.6a)

K[u,θ; Ψ̆e,Ψm, χ] = −1
2

∫
du′K(u− u′) δG

δχ(u′,θ)
[
Ψ̆e,−Ψm,−χ

]∗
, (G.6b)

He[u,θ; Ψ̆e,Ψm, χ] = 1
2e

2D−2
∫
du′K(u− u′) δG

δΨ̆e(u′,θ)

[
Ψ̆e,−Ψm,−χ

]
, (G.6c)

He
∞[θ; Ψ̆e,Ψm, χ] = i

2e
2D−2

∫
duχ(u,θ) δG

δχ(u,θ)
[
Ψ̆e,−Ψm,−χ

]
+ c.c., (G.6d)

where K(u) = Θ(u)− 1/2. These expressions are accurate up to corrections of order O(G2)
or equivalently O(α6).

The generating functional G must obey two additional constraints. First, by imposing
consistency of the formulae (G.6c) and (G.6d) with the definition (3.33), and making the
substitutions Ψm → −Ψm and χ→ −χ, we obtain∫

du
δG

δΨ̆e(u,θ)
[Ψ̆e,Ψm, χ] = −2i

∫
du

{
χ(u,θ) δG

δχ(u,θ) [Ψ̆e,Ψm, χ]
}

+c.c.+O(G2). (G.7)

Second, using the generating functional parameterization (3.41) of the scattering map
with ya = Ψ̂e, making use of the Poisson bracket (2.52c) and the variational derivative
definitions (G.2), and comparing with the scattering map (3.37b) and making use of the
formulae (G.6c) and (G.6d) for the functionals He and He

∞, we obtain the constraint
δG

δ∆Ψe(θ) [Ψ̆e,Ψm, χ] = − i2

∫
du

{
χ(u,θ) δG

δχ(u,θ) [Ψ̆e,Ψm, χ]
}

+ c.c..+O(G2). (G.8)

By direct substitution one can show that the general solution of this equation is

G
[
Ψ̆e,Ψm, χ

]
= G

[
Ψ̆e,Ψm, e−

i
2 ∆Ψe

χ
]

+O(α6), (G.9)

for some functional G , with the restriction that the boundary variational derivative defined
in eq. (G.2) associated with the first argument of G vanishes:(

δG

δ∆Ψe

)
first argument

= 0. (G.10)

Substituting the expression (G.9) into the definition (G.1) of G gives that the original
generating functional G can be written as

G
[
Ψ̃e

+,Ψm
+ , χ+,∆Ψe

+, Ψ̂e
+

]
= G

[
Ψ̆e

+,Ψm
+ , e

−iΨ̄e
+ei∆Ψe

+/2χ+

]
+O(α6). (G.11)

The form of the generating functional given by eqs. (G.10) and (G.11) is actually valid to all
orders in α [cf. eq. (3.42) above], even though we have derived it here only to O(α5). This is
because (i) it guarantees that the quantity Ψe

+–
= Ψ̂e

+−2
∫
dug′Ψ̃e

+−∆Ψe
+/2 is preserved under

the transformation (3.40), from the Poisson brackets (2.52) and eqs. (3.39) and (3.23), thus
ensuring the matching condition (2.39); and (ii) it similarly guarantees that the conservation
law (3.36) is satisfied.
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H Sufficient conditions for decoupling in finite dimensions

In this appendix we prove the theorem in symplectic geometry given in section 4.2, which
gives sufficient conditions for two sets of degrees of freedom to decouple in a finite dimen-
sional system.

The derivation is essentially an application of Frobenius’ theorem for vector fields [68].
We define the symmetry generator (Hamiltonian) vector fields ~v(A) associated with the
conserved quantities sA by

v(A)a = −Ωab∇bsA (H.1)

for 1 ≤ A ≤ t. In order for Frobenius’ theorem to be applicable, the Lie brackets of these
vector fields with each other must be expressible as linear combinations of the vector fields.
However, the Lie bracket

[
~v(A), ~v(B)

]
is just the Hamiltonian vector field associated with the

Poisson bracket (4.5), which vanishes since ωAB are assumed to be constants, ∇aωAB = 0.
Thus we obtain

[
~v(A), ~v(B)

]
= 0.

From Frobenius’ theorem it now follows that the subbundle of the tangent bundle over
M defined by the span of the vector fields ~v(A) is integrable. That is, locally there exist
coordinates (xA, hΓ) for 1 ≤ A ≤ t and 1 ≤ Γ ≤ n− t for which the vector fields ~v(A) are
tangent to the surfaces of constant hΓ:

~v(A) = χAB(x, h) ∂

∂xB
(H.2)

for some invertible χAB. However this implies that ωAB = ~v(A)(sB) = χAC∂sB/∂xC , and
since ωAB and χAC are both invertible it follows from the inverse function theorem that at
fixed h we can we can express xA as a function of sA. Hence without loss of generality we
can take xA = sA.

It now follows that in these coordinates (sA, hΓ) we have ΩAB = ωAB and ΩAΓ ={
sA, hΓ

}
= −v(A)Γ = 0 from eq. (H.2). Thus the symplectic form can be expressed as

Ω = ωABds
A ∧ dsB + ΩΓΣ(s, h)dhΓ ∧ dhΣ, (H.3)

where ωABωBC = δAC . From dΩ = 0 it follows that ΩΓΣ is independent of s, and demanding
that the symplectic form (H.3) be preserved under the pull back S2∗ now shows that the
symplectomorphism S2 must have the form (4.6).

I Computation of Lorenz gauge scattering map to second order

In this appendix we derive the second order Lorenz gauge scattering map (5.3).
Our starting point is the set of free Lorenz gauge solutions with soft charges described

in appendix B. Rather than using the symmetric trace-free tensor expansion used there, it
will be convenient to represent those solutions as conventional plane wave expansions, with
the soft degrees of freedom encoded in distributional components of the mode coefficients
at zero frequency. We write the first order scalar field as

Φ(1)(t,x) =
∑
η=±

∫
d3k e−iηkteik·xfη(k), (I.1)
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where k = |k| and the functions f+(k) and f−(k) are independent. These functions are
related to the initial data χ(1)

−
(v,n) = limr→∞ rΦ(1)(v − r, rn) on I −, with n = x/r, by

[cf. eq. (9.0.29) of ref. [1]]
fη(k) = − iη

2πk χ̃
(1)
−

(ηk,−ηk̂). (I.2)

Here η = ±1, k̂ = k/k and χ̃(1)
−

is the Fourier transform

χ̃(1)
−

(ω,n) = 1
2π

∫
dveiωvχ(1)

−
(v,n). (I.3)

Similarly the first order vector potential is given by A(1)t = 0 and

A(1)(t,x) =
∑
γ=±

∫
d3p e−iγpteip·xaγ(p), (I.4)

with p = |p|,
p · aγ(p) = 0 (I.5)

and aγ(−p)∗ = a−γ(p). The mode coefficients aγ(p) are related to the initial data A(1)
−A(v,n)

defined in section 2.1 by
aiγ(p) = − iγ

2πpÃ
(1)i
− (γp,−γp̂). (I.6)

Here γ = ±1, p̂ = p/p, Ã(1)i
− (ω,n) = Ã(1)

−A(ω,n)hABeiB, θA = (θ, ϕ) are coordinates on
the two-sphere, hAB is the metric given by hABdθAdθB = dθ2 + sin2 θdϕ2, hABhBC = δAC ,
eiA = ∂ni/∂θA and

Ã(1)
−A(ω,n) = 1

2π

∫
dveiωvA(1)

−A(v,n). (I.7)

We next discuss how the soft charges are encoded in the mode coefficients. For the
incoming scalar field, we have excluded by assumption any soft degrees of freedom, and the
fall off assumption (2.18) implies that the function χ̃(1)

−
(ω,n) is bounded. For the incoming

vector potential, on the other hand, using the fall-off assumption (2.17), the definitions (2.47)
and (2.36b), and the vanishing magnetic charges condition (2.41) we obtain for the Fourier
transform

Ã(1)i
− (ω,n) = i

2π∆A(1)i
− (n) P.V. 1

ω
+A(1)i

− (n)δ(ω) + Ã(1)i rest
− (ω,n), (I.8)

where P.V. means “principal value”,

∆A(1)i
− (n) = eiAh

ABDB∆Ψe (1)
− (n), A(1)i

− (n) = eiAh
ABDBΨ̄e (1)

− (n), (I.9)

and
Ã(1)i rest
− (ω,n) = O(ω−1+ε) (I.10)

as ω → 0 with ε > 0. We will see that the second and third terms in eq. (I.8) give a
vanishing contribution to the second order scattering while the first term gives a nonvanishing
contribution.
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We next write the equation of motion (3.18a) for the second order scalar field as
�Φ(2) = s, where the source s is s = 2iA(1) a∇aΦ(1). Defining the final data on I + as
χ(2)

+
(u,n) = limr→∞ rΦ(2)(u+ r, rn), we make use of the general identity derived in section

2.2 of ref. [69]
χ̃(2)

+
(ω,n) = −2π2s̃(ω, ωn), (I.11)

where s̃ is the spacetime Fourier transform

s̃(ω,k) = 1
(2π)4

∫
dt

∫
d3xeiωte−ik·xs(t,x) (I.12)

and the Fourier transform χ̃(2)
+

is defined as in eq. (I.3) but with v replaced by u. We now
evaluate the source s(t,x) using the mode expansions (I.1) and (I.4), and multiply by a
regulator factor exp[−t2/(2T 2)], where we will eventually take the limit T →∞. We then
evaluate the spacetime Fourier transform, make use of the identity (I.11), and eliminate the
mode functions in favor of the initial data on I − using eqs. (I.2) and (I.6). This gives

χ̃(2)
+

(ω,n) = − lim
T→∞

∑
η,γ=±

∫
d3p

ηγ

lp
δT (νk − ηl − γp)

× χ̃(1)
−

[
ηl,−η (k− p)

l

]
k · Ã(1)

− (γp,−γp̂), (I.13)

where we have defined

k = ωn, k = |ω|, ν = sgn(ω), l = |k− p|, (I.14)

and δT is the approximate δ-function

δT (ω) = T√
2π

exp
[
−1

2ω
2T 2

]
. (I.15)

To evaluate the momentum space integral (I.13) it is convenient to switch to prolate
spheroidal coordinates. We pick Cartesian coordinates for which k = (0, 0, k), and define
coordinates (σ, τ, ϕ) with 1 ≤ σ <∞, −1 ≤ τ ≤ 1, 0 ≤ ϕ ≤ 2π by

p = 1
2k
(√

σ2 − 1
√

1− τ2 cosϕ,
√
σ2 − 1

√
1− τ2 sinϕ, 1 + στ

)
. (I.16)

It follows that d3p = (k3/8)(σ2 − τ2)dσdτdϕ and that

l = |k− p| = 1
2k(σ − τ), p = 1

2k(σ + τ). (I.17)

This gives

χ̃(2)
+

(ω,n) = −1
2 lim
T→∞

∑
η,γ=±

∫ ∞
1

dσ

∫ 1

−1
dτ

∫ 2π

0
dϕ ηγ δkT

[
1− η(σ − τ)

2 − γ(σ + τ)
2

]

× χ̃(1)
−

[
νηl,−νηk− p

l

]
k · Ã(1)

− (νγp,−νγp̂), (I.18)

where we have redefined η → νη and γ → νγ.
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We now discuss in turn the four different terms in the expression (I.18). Two of these
give vanishing contributions, and the contributions from the remaining two are equal. For
the first term with η = γ = −1, the approximate delta function reduces in the limit T →∞
to δ(σ + 1), which gives a vanishing contribution since the range of σ is σ ≥ 1. For the
second term with η = −1, γ = 1, the approximate delta function reduces instead to δ(τ − 1),
and the expression reduces to an integral over the half line p = (0, 0, k + (σ − 1)k/2) for
1 ≤ σ <∞. It follows that the frequency argument νγp of Ã(1)

− is bounded away from zero,
and therefore the second line of the integrand is bounded, from eq. (I.8); the soft degrees of
freedom or distributional components do not contribute. The Lorenz gauge condition (I.5)
now makes the result vanish; this is the essentially the Feynman diagram argument given
in the last paragraph of section 5.

The third term with η = γ = 1 is a little more involved. Inserting the decomposition (I.8)
of the initial data for the vector potential, this term can be written as

− 1
2 lim
T→∞

∫ ∞
1

dσ

∫ 1

−1
dτ

∫ 2π

0
dϕ δkT (1− σ) χ̃(1)

−

[
νl,−νk− p

l

]
× k ·

[
iν

2π∆A(1)
− (−νp̂) P.V.1

p
+A(1)

− (−νp̂)δ(p) + Ã(1) rest
− (νp,−νp̂)

]
. (I.19)

Now the limiting T → ∞ delta function δ(σ − 1) would enforce an integral over the line
segment

p = (0, 0, k(1 + τ)/2) (I.20)
for −1 ≤ τ ≤ 1 that extends from p = 0 to p = k and that overlaps with the location
p = 0 of the distributional contributions to the integrand. Thus we will need to take
the T → ∞ limit carefully. For the second and third terms in the large square brackets
on the second line we can just use the limiting delta function δ(σ − 1). The third term
scales as ∼ p−(1−ε) ∼ (1 + τ)−(1−ε) with ε > 0, from eq. (I.10). This yields a diverging
integrand but the integral over τ converges, and thus the result vanishes by the Lorenz
gauge condition (I.5), since it is evaluated at p̂ = k̂ by eq. (I.20). Similarly, for the second
term, the δ(σ − 1) factor enforces evaluation at p̂ = k̂, and then the δ(p) factor evaluates
at τ = −1 at which the integrand is finite, giving again a vanishing result by eq. (I.5).

Thus we are left with the first term in the large square brackets in the expression (I.19).
We simplify this in several stages:

• First, we argue that we can evaluate the factor χ̃(1)
−

at p = 0 and pull it outside the
integral. To see this we define the variable

µ = k̂ · p̂ = 1 + στ

σ + τ
(I.21)

from eq. (I.16), and we note that by the Lorenz gauge condition (I.5) that k ·
∆A(1)

− (−νp̂) must vanish at µ = 1 and at µ = −1. Hence it must be expressible as
1− µ2 times a bounded function, and including the factor of 1/p and using eqs. (I.17)
and (I.21) we find that the second line in the expression (I.19) can be written as a
bounded function times the factor

(σ2 − 1)(1− τ2)
(σ + τ)3 . (I.22)
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Now the approximate delta function δkT (1− σ) will restrict the value of σ to σ − 1 =
O(ε0) where ε0 = 1/(kT ) and we are taking the limit ε0 → 0, from eq. (I.15). Thus
when τ + 1 = O(1) the factor (I.22) scales like ∼ ε0 and the integrand is suppressed,
whereas when τ + 1 = O(ε0) the factor (I.22) scales like ∼ ε−1

0 . Hence for small ε0 we
can evaluate the factor χ̃(1)

−
in the expression (I.19) at τ = −1 and pull it outside the

integral, where it can be written as χ̃(1)
−

(ω,−n) by eq. (I.14).

• Second, we can drop the integral over σ and the approximate delta function, evaluate
the remaining integral at σ = 1 + ε0, take the limit ε0 → 0, and then multiply by a
correction factor of 1/2. This is because we can pull the approximate delta function
outside the integral over τ and ϕ, and that integral becomes independent of σ in
the limit σ → 1 from above (see below). Then for small ε0 the integral over σ of
the approximate delta function gives an overall factor of 1/2, since the range of σ is
restricted to σ ≥ 1.

• Third, the remaining integral at a fixed value of σ is an integral over a prolate spheroid
that limits as σ → 1 to the line segment (I.20). We parameterize this integral as
an integral over solid angles centered at p = 0 by changing one of the variables of
integration from τ to µ, using

1
τ + σ

dτ = 1
σ − µ

dµ

from eq. (I.21).

The result of all these simplifications is the expression

− i

4π χ̃
(1)
−

(ω,−n) lim
σ→1

∫ 1

−1
dµ

∫ 2π

0
dϕ

1
σ − µ

νk̂ ·∆A(1)
− (−νp̂) (I.23)

for the η = γ = 1 piece of eq. (I.18). Defining the unit vectors m̂ = −νp̂ and m̂0 = −νk̂ =
−n from the definitions (I.14), and taking the limit σ → 1, we can rewrite this as

i

4π χ̃
(1)
−

(ω,−n)
∫
d2Ωm̂

m̂0 ·∆A(1)
− (m̂)

1− µ . (I.24)

Next we define the Green’s function

G(m̂, m̂0) = 1
4π log(1− m̂ · m̂0) (I.25)

which satisfies DADAG = δ2(m̂, m̂0)− 1/(4π). Using eq. (I.9) we can rewrite the expres-
sion (I.24) as

− iχ̃(1)
−

(ω,−n)
∫
d2Ωm̂DAG(m̂, m̂0)DA∆Ψe(1)

− (m̂), (I.26)

where we have used DAm
i = eiA. Finally integrating by parts and using the fact that ∆Ψe(1)

−

has no l = 0 component [cf. eq. (2.36b) above] gives that the contribution to χ̃(2)
+

(ω,n) is

iχ̃(1)
−

(ω,−n)∆Ψe(1)
− (−n). (I.27)
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We now turn to the fourth and final term η = 1, γ = −1 in eq. (I.18). This can be
evaluated using the same methods as for the γ = η = 1 term just described. One ends
up integrating over a hyperboloid of revolution of the form τ = −1 +O(ε0) which limits
to the half line p = (0, 0, (1 − σ)k/2) for 1 ≤ σ < ∞. The final result is the same as the
result (I.27), and adding the two contributions gives

χ̃(2)
+

(ω,n) = 2iχ̃(1)
−

(ω,−n)∆Ψe(1)
− (−n), (I.28)

which is equivalent to eq. (5.4).
The remaining relations in eqs. (5.3) can be evaluated using similar methods; all the

second order contributions vanish since they are quadratic in the incoming first order scalar
field by eq. (3.18b), and that scalar field has no soft piece.

J Leading order change in electromagnetic memory

In this appendix we compute explicitly the leading order electromagnetic memory produced
when there is an incoming scalar field but no incoming vector potential. From the conserva-
tion law (3.36) this quantity is directly related to the change ∆Qhard(n) between the total
hard outgoing charge per solid angle at I + and that at I −. This quantity is the lowest
order coupling of soft and hard degrees of freedom that cannot be removed by modifying
the definitions of the hard and soft sectors, as demonstrated in section 6. We shall show
that it is non-zero in general.

The quantity ∆Qhard(n) is quartic in the incoming Lorenz gauge field χ(1)
−

(v,n). For
any function ε = ε(n) we define ∆Qhard

ε =
∫
d2Ω ε(n)∆Qhard(n), and the leading order

expression for this quantity in terms of the initial data is (see below for the derivation)

∆Qhard
ε = 2ie2 ∑

γ,η,ν,σ=±

∫
d3p

γp

∫
d3q

ηq

∫
d3k

νk

∫
d3l

σl
δ(4)(~p− ~q + ~k −~l)ε(νk̂)

× χ̃(1)
−

(γp,−γp̂)∗ χ̃(1)
−

(ηq,−ηq̂) χ̃(1)
−

(νk,−νk̂)∗ χ̃(1)
−

(σl,−σl̂)

× (~p+ ~q) ·~l
(~p− ~q)2 + c.c. (J.1)

Here on the right hand side we integrate over four spatial momenta p, q, k, and l and sum
over four corresponding signs γ, η, ν and σ, and we define p = |p|, p̂ = p/p and ~p = (γp,p),
with similar formulae for the other three momenta.

We next discuss some properties of the formula (J.1). First, the divergent factor
(~p − ~q)−2 on the third line is made integrable by the fact that when ~p = ~q, the second
line is explicitly real, and thus vanishes by virtue of the factor of i and the +c.c.. Second,
the l = 0 component of the expression (J.1) vanishes, which is necessary for consistency
with the conservation law (3.24) since the memory variables ∆Ψe

+ and ∆Ψe
− have no l = 0

pieces. This follows from the fact that when ε(n) = 1, taking the complex conjugate of the
integrand is equivalent to making the change of variables ~p↔ ~q and ~k ↔ ~l. Third, of the
sixteen combinations of signs on the right hand side, ten are identically vanishing. Squaring
the 4-momentum conservation equation ~p+ ~k = ~q +~l yields that γν = ησ, which eliminates
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eight combinations. Also when both sides of this equation are timelike, requiring that they
both be either future directed or past directed eliminates the cases (γ, ν, η, σ) = (+,+,−,−)
and (−,−,+,+).

When the momentum transfer ~p − ~q is spacelike, the factor on the third line in
eq. (J.1) is proportional to the t-channel27 scattering amplitude for 2 particle to 2 particle
scattering in scalar QED [64]. This occurs for the four sign combinations (γ, ν, η, σ) =
(+,+,+,+), (−,−,−,−), (+,−,+,−) and (−,+,−,+). Summing over these sign combina-
tions gives the t-channel and u-channel contributions to the change in memory

∆Qhard,tu−channels
ε = 2ie2

∫
d3p

p

∫
d3q

q

∫
d3k

k

∫
d3l

l
δ(4)(~p− ~q + ~k −~l)Ξ(~p, ~q,~k,~l)

× (~p+ ~q) ·~l
(~p− ~q)2 + c.c.. (J.2)

Here on the right hand side we have ~p = (p,p) etc., and

Ξ(~p, ~q,~k,~l) = χ̃(1)
−

(p,−p̂)∗ χ̃(1)
−

(q,−q̂) χ̃(1)
−

(k,−k̂)∗ χ̃(1)
−

(l,−l̂) ε(k̂)

+ χ̃(1)
−

(−p, p̂)∗ χ̃(1)
−

(−q, q̂) χ̃(1)
−

(−k, k̂)∗ χ̃(1)
−

(−l, l̂) ε(−k̂)

− χ̃(1)
−

(p,−p̂)∗ χ̃(1)
−

(q,−q̂) χ̃(1)
−

(−l,−l̂)∗ χ̃(1)
−

(−k,−k̂) ε(̂l)

− χ̃(1)
−

(−p, p̂)∗ χ̃(1)
−

(−q, q̂) χ̃(1)
−

(l, l̂)∗ χ̃(1)
−

(k, k̂) ε(−l̂), (J.3)

where to obtain the third and fourth lines we have made the change of variables in the
integral ~k ↔ −~l.

To eliminate the δ-function in eq. (J.2) it is convenient to parameterize the integral in
terms of a spatial momentum P and spatial momentum transfer ∆ for which the momenta
in the center of momentum frame are ~p′ = (P,P + ∆), ~q′ = (P,P), ~k′ = (P,−P−∆) and
~l′ = (P,−P), and in terms of the boost with rapidity parameter ψ in the direction of the
unit vector β that takes the center of momentum frame to the frame of eq. (J.2). We also
parameterize ∆ in terms of the unit vector w via ∆ = Pw−P. The result is

∆Qhard,tu−channels
ε = ie2

2

∫ ∞
−∞

dψ

∫
d3P

∫
d2Ωβ

∫
d2Ωw Ξ(~p, ~q,~k,~l)P g(Θ, ψ)

coshψ + cos Θ̄ sinhψ

×
[

∆2 − 8P 2

∆2

]
+ c.c., (J.4)

where we have defined

g(Θ, ψ) = sin Θ sinhψ tanhψ {6 + 2 cos(2Θ) + 2 [1− cos(2Θ)] cosh(2ψ)}
cosh2 ψ − cos2 Θ sinh2 ψ

(J.5)

and cos Θ = β ·w and cos Θ̄ = β · P̂. This form of the integral eliminates all the divergences
in the integrand of eq. (J.2) except for the divergence at ∆ = 0 which was discussed after
eq. (J.1) above.

27This could also be called u-channel, depending on the identifications chosen of the ingoing and outgo-
ing momenta.
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The remaining two sign combinations in eq. (J.1) yield a timelike momentum transfer
~p− ~q and the s-channel contribution to the change in memory. These sign combinations
are (γ, ν, η, σ) = (+,−,−,+) and (−,+,+,−). In this case we parameterize the integral in
terms of a spatial momentum P and a momentum transfer ∆ in the frame where ~p−~q has no
spatial component, for which ~p′ = (P,P), ~q′ = (−P,P), ~k′ = (−P,P + ∆), ~l′ = (P,P + ∆).
The result for the s-channel contribution to the change in memory is

∆Qhard,s−channel
ε = ie2

2

∫ ∞
−∞

dψ

∫
d3P

∫
d2Ωβ

∫
d2Ωw Ξ̃(~p, ~q,~k,~l)P g(Θ, ψ)

coshψ + cos Θ̄ sinhψ

×
[

∆2 − 2P 2

2P 2

]
+ c.c., (J.6)

where

Ξ̃(~p, ~q,~k,~l) = χ̃(1)
−

(p,−p̂)∗ χ̃(1)
−

(−q, q̂) χ̃(1)
−

(−k, k̂)∗ χ̃(1)
−

(l,−l̂) ε(−k̂)

+ χ̃(1)
−

(−p, p̂)∗ χ̃(1)
−

(q,−q̂) χ̃(1)
−

(k,−k̂)∗ χ̃(1)
−

(−l, l̂) ε(k̂). (J.7)

The contributions (J.4) and (J.6) to the change in memory are generically nonzero, as
can be shown for example by numerical integrations with specific choices of initial data
χ̃(1)(ω,n).

Finally we turn to the derivation of the formula (J.1). We are assuming that A−A = 0,
and it follows from the equations of motion (3.16) that χ

+
will be non-zero at orders O(α),

O(α3) and at higher orders, while A+A will be non-zero at O(α4) and at higher orders (its
O(α2) piece vanishes as argued in section 5). Combining the definitions (6.1) and (3.26) of
∆Qhard(n), the expansion (2.9a) of the asymptotic current J+u and a similar expansion for
J−v, the expansion (3.15a) of the scalar field χ

+
, the definition (I.3) of the Fourier transform

and the free field scattering map (3.23c) yields

∆Qhard(n) = −4π
∫ ∞
−∞

dωω
[
χ̃(3)

+
(ω,n)χ̃(1)

−
(ω,−n)∗ + c.c.

]
+O(α5). (J.8)

To evaluate the third order scattered field χ̃(3)
+

in this expression we use the same tech-
niques as in appendix I. We solve the equation of motion (3.18b) for A(2) using the mode
expansion (I.1) to expand the source and using the momentum space retarded Green’s
function. We then insert the result into the equation of motion (3.19a) for Φ(3), extract
the asymptotic form of the solution χ(3)

+
near I + using the general identity (I.11), and

eliminate the mode functions in favor of the initial data using eq. (I.2). Finally inserting
the resulting expression for χ̃(3)

+
into the expression (J.8) yields the result (J.1).
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