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Abstract

We develop an axiomatic theory of information acquisition that captures the idea
of constant marginal costs in information production: the cost of generating two
independent signals is the sum of their costs, and generating a signal with probability
half costs half its original cost. Together with Blackwell monotonicity and a continuity
condition, these axioms determine the cost of a signal up to a vector of parameters.
These parameters have a clear economic interpretation and determine the difficulty of
distinguishing states.

1 Introduction

Much of contemporary economic theory is built on the idea that information is scarce
and valuable. A proper understanding of information as an economic commodity requires
theories for its value, as well as for its production cost. While the literature on the value
of information (Bohnenblust, Shapley, and Sherman, 1949; Blackwell, 1951) is by now
well established, modeling the cost of producing information has remained an unsolved
problem.! In this paper, we develop an axiomatic theory of costly information acquisition.

We characterize all cost functions over Blackwell experiments that satisfy three main
axioms: First, experiments that are more informative in the sense of Blackwell (1951) are
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more costly. Second, the cost of generating independent experiments equals the sum of
their individual costs. Third, the cost of generating an experiment with probability half
equals half the cost of generating it with probability one.

Our three axioms admit a straightforward economic interpretation. The first one is
a form of monotonicity: more precise information is more costly. The second and third
axioms capture the idea of linear cost. The second axiom implies that the cost of collecting
n independent random samples is linear in n. For example, if the variable is the perceived
quality of a new product, and information is generated by surveying random customers,
the axiom is satisfied if the cost of calling an additional customer is constant: i.e. calling
20 customers is twice as costly as calling 10. More generally, the axiom requires the cost
to be additive with respect to experiments that are independent conditional on the state.
Similarly, the third axiom implies that the cost of producing a sample with probability «
is a fraction « of the cost of acquiring the same sample with probability one. This axiom
is satisfied by all posterior separable costs, which include nearly all models of information
cost in the literature.

We propose these linearity assumptions as a way of studying cost functions over
information structures. In the context of traditional commodities, a standard avenue
for studying cost functions is by categorizing them in terms of decreasing, increasing, or
constant marginal costs, with the latter being arguably the conceptually simplest case. In
this paper we take a similar approach for studying the cost of information acquisition, and
our axioms make an attempt at formalizing the assumption of constant marginal costs for
information. As in the case of traditional commodities, assuming linear costs is restrictive,
and it is easy to conceive of decision problems where our axioms are violated. For example,
if customers are hard to find, surveying 20 customers might cost more than twice as much
as surveying 10. Conversely, economies of scale may result in decreasing marginal costs.
Nevertheless, our axioms have the advantage of admitting a clear economic interpretation,
making it possible to judge for which applications they are appropriate. We thus propose
the study of linear cost functions as a first step towards the wider goal of studying general

information costs in terms of their economic properties.

Representation. The main result of this paper is a characterization theorem for cost
functions over experiments. We are given a finite set © of states of nature. An experiment
w produces a signal realization s € S with probability u;(s) in state i € ©. We show that
for any cost function C' that satisfies the above postulates, together with a continuity
assumption, there exist unique non-negative coefficients (3;;), one for each ordered pair of



states of nature 7 and j, such that?
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Each coefficient 3;; can be interpreted as capturing the difficulty of discriminating between
state ¢ and state j, as the cost can be expressed as a linear combination
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where the Kullback-Leibler divergence
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is the expected log-likelihood ratio between state i and state j when the state equals
i. The term Dy, (pil|1t5) is thus large if the experiment p on average produces evidence
that strongly favors state ¢ over j, conditional on the state being 7. Hence, the larger the
coefficient 3;;, the more costly it is to reject the hypothesis that the state is j when it
truly is ¢. Formally, 3;; is the marginal cost of increasing the expected log-likelihood ratio
of an experiment with respect to states ¢ and j, conditional on ¢ being the true state. We
refer to the cost (1) function as the log-likelihood ratio cost (or LLR cost).

In many common information acquisition problems, states of the world are one-
dimensional quantities. For instance, this is the case when the unknown state is a
physical quantity such as height or weight, or an economic quantity such as the inflation
rate. In these examples, an experiment can be seen as a noisy measurement of the unknown
underlying state ¢ € R. We provide a framework for choosing the coefficients 3;; in these
contexts. Our main hypotheses are that the difficulty of distinguishing between two states
i and j is a function of the distance between them, and that the cost of performing a
measurement with standard Gaussian noise does not depend on the set of states © in the
particular information acquisition problem; this is a feature that is commonly assumed in
models that exogenously restrict attention to normal experiments.

Under these assumptions, we show that there exists a constant x > 0 such that, for

every pair of states i,j € O,
K
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In this functional form, the difficulty of distinguishing between states is a quadratic
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decreasing function of the distance between them. As we show, this choice of parameters

2Throughout the paper we assume that the set of states of nature © is finite. We do not assume a finite
set S of signal realizations and the generalization of (1) to infinitely many signal realizations is given in (3).



offers a simple and tractable framework for analyzing the implications of the LLR cost.

The concept of a Blackwell experiment makes no direct reference to subjective proba-
bilities nor to Bayesian reasoning.® Likewise, our axioms and characterization theorem do
not presuppose the existence of a prior over the states of nature. Nevertheless, given a
prior q over O, an experiment induces a distribution over posteriors p, making p a random
variable. Under this formulation, the LLR cost (1) of an experiment can be represented as
the expected change of the function

Fp)= Y Bij=log (g)
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from the prior g to the posterior p induced by the signal. That is, the cost of an experiment
equals

E[F(p) — F(q)]

where the expectation is taken with the distribution of posterior beliefs induced by the
experiment and the prior. This establishes that LLR. cost is posterior-separable, and makes
it possible to apply techniques and insights derived for posterior-separable costs functions
(Caplin and Dean, 2013; Caplin, Dean, and Leahy, 2018).

Relation to Mutual Information Cost. Following the seminal work of Sims (2003,
2010) on rational inattention, cost functions based on mutual information have been
commonly used in applications; Mackowiak, Matéjka, and Wiederholt (2018) review the
literature on rational inattention. Mutual information costs are defined as the expected
change

E[H(q) — H(p)]

of the Shannon entropy H(p) = — > ;cq pi log p; between the decision maker’s prior belief
q and posterior p. Equivalently, in this formulation, the cost of an experiment is given
by the mutual information between the state of nature and the signal.* One of the main
differences between mutual information and the LLR cost, is that the first is subadditive
rather than additive (see, e.g. Lindley, 1956), so that the cost of n independent copies of an
experiment is a strictly concave function of n. In applications, the LLR cost function leads
to predictions which are qualitatively different from those induced by mutual information
cost. We illustrate the differences in §5 and §6.

3Blackwell experiments have been studied both within and outside the Bayesian framework. See, for
instance, Le Cam (1996) for a review of the literature on Blackwell experiments.

4 Related specifications discussed in the literature include models where the decision maker can acquire,
for free, any experiment whose mutual information is below an upper bound (Sims, 2003), as well as costs
that are increasing transformation of mutual information (Denti, 2022).



Examples and Applications. In §6 we apply the LLR cost function to information
acquisition problems and derive a number of predictions. Our applications include binary
prediction problems, where a decision maker needs to predict whether the state is above or
below a given threshold. An example of this is an analyst trying to predict which party
will obtain the majority of votes in an election. Another example is a perception task
where a subject is asked to observe a number of dots of two different colors on a screen,
and must predict which color is predominant.®

We show that in binary prediction problems the decision maker is strictly more likely
to make the correct choice when the quantity to be predicted is farther from the desired
threshold, under general assumptions on the coefficients (3;;). For example, it is harder
for the agent to predict the winner in a close election than in an election where one of the
candidates has a large lead. Moreover, we show that under the specification 3;; = ﬁ,
the decision maker’s probability of a choosing an action is a sigmoidal function of the
state—a prediction in line with psychometric evidence on perception tasks.

This and other examples illustrate how the LLR cost function leads to optimal choice
probabilities that take into account the difficulty of distinguishing between states. While
intuitive, this property is ruled out by cost functions such as mutual information that treat
states symmetrically.

Scope and Limitations. There are many applications where the our additivity as-
sumption is violated, and so the LLR cost function is inadequate. A stark case, which
we discuss in the next section, is that of experiments that completely rules out a state;
these would have infinite LLR cost. Thus our framework is incompatible with partitional
information structures, which are an important modelling tool. Moreover, the fact that our
representation has a number of parameters that grows with the number of states makes
calculations and identification more difficult.

A natural question is how the LLR cost can be applied in dynamic settings in which
agents decide sequentially what information to acquire. As discussed in depth by Bloedel
and Zhong (2020), it is impossible—under reasonable assumptions—to have a cost function
that satisfies the assumption of constant marginal costs and is independent of the prior of
the decision maker. This is a subtle issue which we explore in more detail in §7.

2 Model

A decision maker acquires information on an unknown state of nature belonging to a
finite set ©. Elements of © will be denoted by 1,7, k, etc. Following Blackwell (1951),
we model the information acquisition process by means of experiments. An experiment

5The two examples have a similar structure but are, of course, quite different in terms of data collection
since perception tasks are usually performed with experimental subjects in controlled environments.



w= (S, (ui)ico) consists of a set S of signal realizations equipped with a sigma-algebra 3,
and for each state i € © a probability measure p; defined on (S, Y). The set S represents
the possible outcomes of the experiment, and each measure u; describes the distribution of
outcomes when the true state is 1.

We assume throughout that the measures (u;) are mutually absolutely continuous,

dp;

so that each derivative (i.e. ratio between densities) a s finite almost everywhere. In

the case of finite signal realizations these derivatives are simply equal to ratio between
Titieg Hils) 6
probabilities oL

Given an experiment p, we denote by

dpi
dpuj

Eij(s) = log (S)
the log-likelihood ratio between states ¢ and j upon observing the realization s. We define
the vector

(4i5(5)); jeo

of log-likelihood ratios among all pairs of states. The distribution of ¢ depends on the true
state generating the data. Given an experiment p, we denote by j1; the distribution of ¢
conditional on state i.”

We restrict our attention to experiments where the induced log-likelihood ratios (¢;;)
have finite moments. That is, experiments such that for every state ¢ and every vector of
integers a € N® the expectation [y | [Tk €3¢ |dp is finite. We denote by & the class of all
such experiments.® The restriction to £ is a technical condition that rules out experiments
whose log-likelihood ratios have very heavy tails, but, to the best of our knowledge, includes
all (not fully revealing) experiments commonly used in applications.

The cost of producing information is described by an information cost function
C:€— R+

assigning to each experiment p € £ its cost C(p). In the next section we introduce and
characterize four basic properties for information cost functions.
2.1 Axioms

Our first axiom postulates that the cost of an experiment should depend only on its

informational content. For instance, it should not be sensitive to the way signal realizations

5This assumption means that no signal can ever rule out any state, and in particular can never completely
reveal the true state.

"The measure ji; is defined as ji;(A) = pi({s : (£:;(s)) € A}) for every measurable A C R®*©.

8We refer to £ as a class, rather than a set, since Blackwell experiments do not form a well-defined set.
In doing so we follow a standard convention in set theory (see, for instance, Jech, 2013, p. 5).



are labelled. In making this idea formal we follow Blackwell (1951, Section 4).

Let ¢ € P(©) be the uniform prior assigning equal probability to each element of ©.°
Let p and v be two experiments, inducing the distributions over posteriors m, and 7, given
the uniform prior g. Then p dominates v in the Blackwell order if

/ f(p)dmu(p) = / f(p)dm,(p)

P(©) P(©)

for every convex function f: P(©) — R. As is well known, dominance with respect to the
Blackwell order is equivalent to the requirement that in any decision problem, a Bayesian
decision maker achieves a (weakly) higher expected utility when basing her action on
rather than v. We say that two experiments are Blackwell equivalent if they dominate
each other.

It is natural to require the cost of information to be increasing in the Blackwell order.
For our main result, it is sufficient to require that any two experiments that are Blackwell
equivalent lead to the same cost. Nevertheless, it will turn out that our axioms imply the
stronger property of Blackwell monotonicity, as shown by Proposition 1 below.

Axiom 1. If p and v are Blackwell equivalent, then C(v) = C(p).

The lower envelope of a cost function assigns to each p the minimum cost of producing
an experiment that is Blackwell equivalent to u. If experiments are optimally chosen by a
decision maker then we can, without loss of generality, identify a cost function with its
lower envelope. This results in a cost function for which Axiom 1 is automatically satisfied.

For the next axiom, we study the cost of performing multiple independent experiments.
Given two experiments p = (.5, (1)) and v = (T, (v;)) we define their product

p@v=(5xT, (1 xv;))

where p; x v; denotes the product of the two measures.'? Under the experiment u ® v,
the realizations of both experiments p and v are observed, and the two observations are
independent conditional on the state. To illustrate, suppose p and v consist of drawing a
random sample from two possible populations. Then p ® v is the experiment where two
independent samples, one for each population, are collected.

Our second axiom states that the cost function is additive with respect to combining

independent experiments:

“Throughout the paper, P(0) denotes the set of probability measures on © identified with their
representation in R®, so that for every g € P(0), ¢; is the probability of the state 3.

"When the set of signal realizations is finite, the measure u; X v; assigns to each realization (s,t) the
probability p;(s)vi(t).



Axiom 2. The cost of performing two independent experiments is the sum of their costs:
Cpev)=C(u)+ C(v) for all p and v.

An immediate implication of Axioms 1 and 2 is that a completely uninformative
experiment has zero cost. This follows from the fact that an uninformative experiment p
is Blackwell equivalent to the product experiment p ® p.

In many settings, an experiment can sometimes fail to produce new evidence. The next
axiom states that the cost of an experiment is linear in the probability that it will generate
information. Given u, we define a new experiment, which we call a dilution of p and
denote by « - . In this new experiment, with probability « the experiment p is produced,
and with probability 1 — a a completely uninformative signal is observed. Formally, given
w= (S, (ui)), fix a new signal realization o ¢ S and a probability « € [0, 1]. We define

- = (SU {O}v (Vi))7

where v;(E) = au;(E) for every measurable E C S, and v;({o}) = 1 — a. The next axiom
specifies the cost of such an experiment:

Axiom 3. The cost of a dilution « - u is linear in the probability «:
Cla-p)=aC(u) for every pn and o € [0,1].

Our final assumption is a continuity condition. We first introduce a (pseudo)-metric
over £. Recall that for every experiment u, 1i; denotes its distribution of log-likelihood
ratios conditional on state i. We denote by dy, the total-variation distance.!' Given a vector
o € N9 let M!'(a) = [q [Tizi €3 1dps be the a-moment of the vector of log-likelihood
ratios (;)xi- Given an upper bound N > 1, we define the distance:

d v) = maxdyy, (i, ;) + max max |M"(a) — MY (a)].
W) = iy (70, 3) + i x| [M(0) = M (a)
According to the metric dy, two experiments u and v are close if, for each state i, the
induced distributions of log-likelihood ratios are close in total-variation and, in addition,
have similar moments, for any moment « lower or equal to (N,..., N).

Axiom 4. For some N > 1 the function C is uniformly continuous with respect to dy .

As is well known, convergence with respect to the total-variation distance is a demanding
requirement, as compared to other topologies such as the weak topology. So, continuity
with respect to dy, is a relatively mild assumption. Continuity with respect to the stronger

UThat is, dey (fis, 7:) = sup |zi(A) — 7;(A)|, where the supremum is over all measurable subsets of R®*©.



metric dy is, therefore, an even milder assumption.'? As we show in Theorem 6 in the
Appendix, our characterization holds for the case of two states and bounded experiments
even if one only imposes Blackwell monotonicity, Axiom 2 and Axiom 3, without requiring

continuity.

2.2 Discussion

We now discuss the interpretation of our axioms as well as some limitations imposed by
our modeling assumptions. Axiom 2 has a simple interpretation. Consider the classical
problem of learning the bias of a coin by flipping it multiple times. This experiment could
correspond to the act of surveying customers, who either like a product or not, in order to
learn whether the product is popular. It could also represent a political party surveying
voters to discover the appeal of a potential candidate.

Suppose the coin either yields heads 80% of the time or tails 80% of the time and that
either bias is equally likely. We compare the cost of observing a single coin flip versus a
long sequence of coin flips. Under the additivity axiom, the cost of observing k coin flips is
linear in k.

Additivity assumptions in the spirit of Axiom 2 have appeared in multiple parametric
models of information acquisition. A standard assumption in Wald’s classic model of
sequential sampling and its variations is that the cost of acquiring n independent samples is
linear in n (see, e.g., Wald, 1945; Arrow, Blackwell, and Girshick, 1949). A similar condition
appears in the continuous-time formulation of the sequential sampling problem, where
the information structure consists of observing a signal with Brownian noise over a time
period of length ¢, under a cost that is linear in ¢ (Dvoretzky, Kiefer, and Wolfowitz, 1953;
Chan, Lizzeri, Suen, and Yariv, 2017; Morris and Strack, 2018). Likewise, in static models
where information is acquired by means of normally distributed experiments, a standard
specification is that the cost of an experiment is inversely proportional to its variance
(see, e.g. Wilson, 1975). This amounts to an additivity assumption, since the product
of two independent normal experiments is Blackwell equivalent to a normal experiment
whose precision is the sum of the original precisions. Underlying these different models
is the notion that the cost of an additional independent experiment is constant. Axiom
2 captures this idea in a non-parametric context, with no a priori restrictions over the
domain of feasible experiments.

Axiom 3 expresses the idea that the marginal cost of increasing the probability of
success of an experiment is constant. The axiom is implied by posterior separability—the
standard assumption in the literature for cost functions over experiments.'® It is however,

12We discuss this topology in detail in §A. Any information cost function that is continuous with respect
to the metric dy satisfies Axiom 1. For expositional clarity, we maintain the two axioms as separate
throughout the paper.

13 A posterior separable cost function is affine with respect to the distribution of beliefs induced by an



a strictly weaker assumption. We also note that for proving our results it suffices to restrict
this axiom to o = 1/2.14

The domain of our cost function rules out experiments that with positive probability
allow the decision maker to be certain that a state did not happen. Such experiments,
if included in the domain, would have infinite cost under our axioms.'® While this is
not special to our framework—the same issue applies to Wald’s model and others—it is
nevertheless an important limitation, since information structures that rule out states with
certainty are a common modeling tool. An example are partitional information structures,
which are standard in information economics. A disadvantage of the LLR cost function is
that it cannot be applied in such settings.

To gain some intuition for the sort of experiments that are ruled out, consider an urn
containing 100 balls. Suppose there are only two states: either all balls are red, or all
balls are blue. In this case, sampling from the urn perfectly reveals the state, and thus
such an experiment cannot be accommodated by the LLR cost. Indeed, it conflicts with
the constant marginal cost assumption: If the experiment had finite cost, then repeating
it twice would have twice the cost. But repeating the experiment does not provide any
additional information, since one sample is enough to reveal the state. Thus, the constant
marginal cost assumption fails in this example.

Suppose instead the urn contains either 1 blue ball and 99 red balls, or 1 red ball and
99 blue ones. In this case, drawing from the urn is an experiment that does not exclude
states with certainty, and fits with the assumption of additivity. As the number of samples
grows, the decision maker obtains more and more accurate statistical evidence of the true
state, but without ever reaching full certainty.

experiment. The distribution of beliefs induced by the diluted experiment « - p is a convex combination
that puts weight a on the distribution generated by © and weight 1 — « on the prior. Thus, under posterior
separability the cost of « - p is affine in a.

4 This axiom admits an additional interpretation. Suppose the decision maker is allowed to randomize
her choice of experiment. Then, the property

Cla-p) <al(p) (2)

ensures that the cost of the diluted experiment « - p is not greater than the expected cost of performing p
with probability « and collecting no information with probability 1 — «. Hence, if (2) was violated, the
experiment « - p could be replicated at a strictly lower cost through a simple randomization by the decision
maker. Now assume Axiom 2 holds, and the decision maker is allowed to perform independent copies of
the diluted experiment « - p until it succeeds. Then, the converse inequality

Cla-p) =2 al(p)

ensures that the cost C'(u) of an experiment is not greater than the expected cost (1/a)C(c- i) of performing
the experiment « -y until it succeeds.

5For example, if a cost function C is Blackwell monotone, additive, and assigns strictly positive cost to
at least one experiment p that is not perfectly revealing, then it must assign infinite cost to a perfectly
revealing experiment. Indeed, by Blackwell monotonicity, the cost of the n-times repeated experiment p®"
must always be below the cost of a perfectly informative experiment. By additivity, C'(u®") = nC(u), and
thus a perfectly informative experiment must have infinite cost.

10



3 Representation

Theorem 1. An information cost function C satisfies Axzioms 1-4 if and only if there
exists a collection (Bij); ;cq z; in Ry such that for every experiment p = (S, (1)),

dpi
Cp)=>_Bij [ log =—(s)dpui(s). (3)
I J/s duj

Moreover, the collection (B;;) is unique given C.

We refer to a cost function that satisfies Axioms 1-4 as a log-likelihood ratio (LLR) cost.
As shown by the theorem, this class of information cost functions is uniquely determined
up to the parameters (f;;). The expression [qlog(du;/dp;)dp; is the Kullback-Leibler
divergence Dxr,(pil/1;) between the two distributions, a well understood and tractable
measure of informational content (Kullback and Leibler, 1951). The representation (3) can
be rewritten as

Cp) = Bij D (pallpes)-
ij

A higher value of Dgr,(pil|tj) describes an experiment which, conditional on state 4,
produces stronger evidence in favor of state ¢ compared to j, as represented by a higher
expected value of the log-likelihood ratio log dy;/dpu;. The coefficient ;; thus measures
the marginal cost of increasing the expected log-likelihood ratio between states ¢ and 7j,
conditional on 4, while keeping all other expected log-likelihood ratios fixed.'®

The specification of the parameters (8;;) must of course depend on the particular
application at hand. Consider, for instance, a doctor who must choose a treatment for a
patient displaying a set of symptoms, and who faces uncertainty regarding their cause.
In this example, a state of nature i represents a possible pathology affecting the patient.
In order to distinguish between two possible diseases ¢ and j it is necessary to collect
samples and run tests, whose costs will depend on factors that are specific to the two
conditions, such as their similarity, or the prominence of their physical manifestations.
These differences in costs can then be reflected by the coefficients 8;; and 3;;. For example,
suppose that i and ¢ are two types of viral infections, k is a bacterial infection, and 7 and
7" are difficult to tell apart, but telling ¢ and k apart is easier. This can be captured by
setting B; > Bik- In §8 we discuss environments where the coefficients might naturally
be assumed to be asymmetric, in the sense that £;; # 8;;.!7 In environments where no

16 As we formally show in Lemma 2 in the Appendix, this operation of increasing a single expected log-
likelihood ratio while keeping all other expectations fixed is well-defined: for every experiment p and every
e > 0, if Dxr(pillpes) > 0 then there exists a new experiment v such that Dxr(vi||v;) = Dxr(pillps) + €,
and all other divergences are equal. Hence the difference in cost between v and the experiment p is given by
Bi; times the difference € in the expected log-likelihood ratio. The result formally justifies the interpretation
of each coefficient 3;; as a marginal cost.

'7Since we do not impose symmetry axioms, it is in a sense a natural finding that the LLR cost function

11



pair of states is a priori harder to distinguish than another, a simple choice is to set all the

1.1% Finally, in the next section we propose a specific functional

coefficients (f;;) to be equa
form in the more structured case where states represent a one-dimensional quantity.
We end this section by noting that the LLR cost function is monotone with respect to

the Blackwell order:

Proposition 1. Let p and v be experiments such that p Blackwell dominates v. Then
every LLR cost C' satisfies C(u) > C(v).

4 Learning about a One-Dimensional State

Many information acquisition problems involve learning about a one-dimensional character-
istic, so that each state ¢ is a real number. In macroeconomic applications, the state may
represent the inflation rate. In perceptual experiments, the state can correspond to the
number of red/blue dots on a screen. In a polling problem, the state may correspond to
the number of voters voting for a given party. Alternatively, ¢ might represent a physical
quantity to be measured.

In this section we propose a choice of parameters (8;;) for one-dimensional information
acquisition problems. Given a problem where each state i € © C R is a real number, we
propose to set each coefficient 3;; to be equal to ﬁ for some constant k > 0. Each
Bij is therefore inversely proportional to the squared distance between the corresponding
states ¢ and j. Under this specification, two states that are closer to each other are harder
to distinguish.

The main result of this section shows that this choice of parameters captures two main
hypotheses: (a) the difficulty of producing a signal that allows to distinguish between states
i and j is a function only of the distance |i — j| between the two, and (b) the cost of a
noisy measurement of the state with standard normal error is the same across information
acquisition problems. Both assumptions take as a working hypothesis that the cost of
making a measurement depends only on its precision, and not on the other aspects of the
model, such as the set of states ©. For example, the cost of measuring the height of a
person with a given instrument does not depend on whether the person’s height is known
to be in © = {190,...,210} or © = {160,...,180}.

Let W be a nonempty open interval of R; we think of this set as the range of reasonable
values of the state, where our hypotheses apply. We denote by T the collection of finite
subsets of W with at least two elements. Each set © € T represents the set of states of

can capture differences in the costs of learning about different states. It is perhaps more surprising that the
cost function has a relatively small set of n(n — 1) parameters, where n is the number of states.

'8 An example common in the literature (e.g., Christie, 1934) is that of a detective who has to discover
which member of a finite group of people committed a violent crime in some isolated setting, such as a
train.

12



nature in a different, one-dimensional, information acquisition problem. To simplify the
language, we refer to each © as a problem. For each ® € T we are given an LLR cost
function C® with coefficients (ﬁg ). The next two axioms formalize the two hypotheses
described above by imposing restrictions, across problems, on the cost of information.

The first axiom states that Bg)» , the marginal cost of increasing the expected LLR
between two states ¢ and j is a function of the distance between the two, and is unaffected
by changing the values of the other states.

Axiom a. For all ©,Z € T such that |©| = |Z|, and for alli,j € © and k,l € E,
if li—jl=I|k—1| then B§ = B

For each ¢ € W we denote by (; a normal probability measure on the real line with mean
i and variance 1. Given a problem ©, we denote by ¢ the experiment (R, (¢;)ico). This
is the canonical experiment consisting of a noisy measurement of the state plus standard
normal error. Expressed differently, if ¢ € © is the true state, then the outcome of the
experiment (® is distributed as s = i + €, where ¢ is normally distributed with mean zero
and variance 1 independent of the state. The next axiom states that the cost of such a
measurement does not depend on the particular values that the state can take.

Axiom b. For all ©,Z € T, C®(¢®) = C=(¢%).

Axioms a and b lead to a simple parametrization for the coefficients of the LLR cost in

one-dimensional information acquisition problems:

Proposition 2. The collection C®,0 € T, satisfies Azioms a and b if and only if there
exists a constant k > 0 such that for alli,j € © and © € T,

K 1
(n—1) (i—j)?

©
Bij =
where n is the cardinality of ©.

Thus, under Axioms a and b each coefficient Bl-(? is decreasing in the distance between
the states, so that distinguishing states that are closer to each other is more costly. Each
coefficient is also divided by a factor n(n — 1) that normalizes the cost with respect to
the number of states. This is an implication of Axiom b, which states that the cost of
performing a noisy measurement does not depend on the particular values the state can take.
As we show in the proof, the quadratic term (i — 5)? in the expression of the coefficients
is related to the assumption, in the same axiom, of normally distributed noise. In the
Appendix we show how the results can be extended to different families of distributions.

Applied to normal experiments, Proposition 2 implies that for any © € 7, a normal
experiment with mean i and variance o2 has cost ko2 proportional to its precision. Thus,
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this functional form generalizes a specification often found in the literature—where the cost
of a normal experiment is assumed to be proportional to its precision (Wilson, 1975)—to
arbitrary information structures that are not necessarily normal.

As we will see in §6, the specification of Proposition 2 allows to compute numerical
solutions, and thus can be useful for deriving quantitative predictions. At the same time,
this functional form may be too simple to capture certain intuitive comparative statics
with respect to changes of the state space. For example, the precision of a measurement
made using a measuring tape is quite different when measuring a person’s height than
when measuring the length of a field. More generally, any measurement instrument has a
range of reliability, and as one moves toward the extremes it becomes noisier. We partially
address this issue by allowing the state to only take value in some interval W C R.

Axiom a assumes that only the distance between states determines the cost of an
experiment. But in many situations states with a given distance are harder to distinguish
at larger scales. Consider, for instance, a subject in a laboratory experiment who is asked
to guess the number of pennies in a jar. A problem where this state can take the values
either 1 or 2 is easier than a problem where the state can take the values 101 or 102.

Such examples form a well known empirical regularity in psychophysics, known as
Weber’s Law, according to which the change in stimulus intensity that is necessary for
subjects to exhibit a certain response is a constant fraction of the starting intensity of
the stimulus. A way to model such situations is to change the units in which states are
measured by applying a logarithmic transformation to the states. This is equivalent to
changing Axiom a to consider ratios between states instead of differences, and changing
Axiom b to consider log-normal measurement errors instead of normal. The resulting

coefficients are
K 1

(n—1) (logi/j)*
This results in predictions in line with Weber’s Law, making it easier to distinguish 1 from
2 than 101 from 102.

e _
P =

5 Illustrative Examples

5.1 LLR Cost for Normal and Binary Experiments

Closed form solutions for the Kullback-Leibler divergence between standard distributions
such as normal, exponential or binomial, are readily available. This makes it immediate to
compute the cost of common parametric families of experiments.

Normal Experiments. Consider a normal experiment p™“

according to which the
signal s is given by

s=m; +¢
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where the mean m; € R depends on the true state i, and ¢ is state independent and
normally distributed with standard deviation ¢. In this example, each m; is a feature of
the information structure: choosing an experiment where the distances between states
|m; — m;| are higher provides stronger information about the states.

By substituting (3) with the well-known expression for the Kullback-Leibler divergence
between normal distributions, we obtain that the cost of such an experiment is given by

202

m,oy\ _ (m] — mi)2
Cwm) = Y By . @)
Z7-]

The cost is decreasing in the variance o2

, as one may expect. Increasing f3;; increases the
cost of an experiment p"™? by a factor that is proportional to the squared distance between

the means of the two experiments.

Binary Experiments. Another canonical example is the binary-binary setting in which
the set of states is © = {H, L}, and the experiment v? = (S, (1)) is also binary: S = {0,1},
vy = B(p) and v, = B(1 — p) for some p > 1/2, where B(p) is the Bernoulli distribution
on {0, 1} assigning probability p to 1. In this case, the cost increases in p and given by

C(W’) = (Bur + BLu) |plog + (1 —p)log (5)

1—p

5.2 Hypothesis Testing

In this section, we apply the log-likelihood ratio cost to a standard hypothesis testing
problem. We study a decision maker performing an experiment with the goal of learning
about a hypothesis, i.e. whether the state is in a subset H C ©.

We consider an experiment that reveals with some probability whether the hypothesis is
true or not, and study how its cost depends on the structure of H. For a given hypothesis
H and a precision « let u be the symmetric binary experiment with signal realizations
S ={H,H°}, where H® denotes the complement of H:

1i(s) = {a fori e s (©)

l—a forié¢s

Conditional on any state, this experiment yields a correct signal with probability .. Under
LLR cost, the cost of such an experiment is given by

( > B@'j"‘ﬁji) (aloglc_yajt(l—a)logl;a) (7)

i€H,jeHe
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The first term captures the difficulty of discerning between H and H€. The harder the
states in H and H¢ are to distinguish, the larger the sum of the coefficients 3;; and 8j;
will be, and the more costly it will thus be to learn whether the hypothesis H is true. The
second term is monotone in the precision « and is independent of the hypothesis. We
illustrate with an example how this captures the fact that testing two different hypotheses
can lead to very different costs even if they involve the same number of states.

Learning about the GDP. For concreteness, we take a state to be a natural number ¢
in the interval © = {20000, . ..,80000}, representing the current US GDP per capita. We
consider the following two hypotheses:

(H1) The GDP is above 50000.

(H2) The GDP is an even number.

Intuitively, producing enough information to answer with high accuracy whether H1 is
true should be less expensive than producing enough information to answer whether H2
is true, a practically impossible task. Our model captures this intuition: As the state is
one-dimensional, we set 3;; = x/(i — j)? following §4; the same qualitative conclusion will
hold as long as f3;; is strictly decreasing in the distance |i — j|. Then

S B+ Bji~ 22k > Bij+ Bji ~ 148033 k.

i€H1,jeH1° 1€H2,je H2¢

That is, learning whether the GDP is even or odd is by several orders of magnitude more
costly than learning whether the GDP is above or below 50000.

It is useful to compare these observations with the results that would be obtained
under mutual information and a uniform prior on ©. In such a model, the cost of a
symmetric binary experiment with precision « is determined solely by the cardinality of
H. In particular, under mutual information learning whether the GDP is above or below
50000 is equally costly as learning whether it is even or odd. This is a well known property
of cost functions that are invariant with respect to a relabelling of the states.

6 Information Acquisition in Decision Problems

In this section we study the implications of the log-likelihood ratio cost function for decision
problems. We consider a decision maker choosing an action a from a finite set A. The

9Beyond the challenge of learning about the state, which is the focus of this paper, it might be
computationally difficult to determine the set that corresponds to a given hypothesis. Consider, for example,
the hypothesis (H1) The number of pages in this manuscript is an even number, vs the hypothesis (H2)
The number of pages in this manuscript is greater than 1/4000. The relative “distance” properties of the
states are in both cases exactly the same as in the GDP example, but the cost of telling states apart
is considerably higher in the high-distance case than in the low distance one. We thank the editor for
suggesting this example.
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payoff from a depends on the state ¢ and is given by u(a,i). The agent is endowed with a
full-support prior g over the set of states. Before making her choice, the agent can acquire
an experiment p € & at cost C(u), where C' is an LLR cost function where the coefficients
(Bij) are assumed to be positive.

As is well known, for a cost function that is monotone with respect to the Blackwell
order, it is without loss of generality to restrict attention to experiments where the set of
realizations S equals the set of actions A, and to assume that upon observing a signal s = a
the decision maker will choose the action recommended by the signal. Throughout this
section, we will therefore identify an experiment u with a vector of probability measures
over actions pu € P(A)" where n = |©|.

An optimal experiment p* = (p)) solves

p* € argmax Y g (z pi(ayu(a. i)) ). ®)

HEP(A)" jco a€A

Hence, the optimal action a is chosen in state ¢ with probability 7 (a). The maximization
problem (8) is well behaved: the maximand is upper-semicontinuous and concave (see
Proposition 10 in the Appendix), and there always exists an optimal solution.?’ Thus, an
optimal experiment can be found by applying standard methods in concave optimization.

It is without loss of generality to restrict attention to choice probabilities where an
action that is chosen with strictly positive probability in one state is chosen with strictly
positive probability in every state, since otherwise the experiment is not in the domain £.

6.1 Implications for Optimal Choice Probabilities

We obtain a characterization of the decision maker’s optimal choice probabilities. The
characterization is based on the study of first-order conditions, and is therefore analogous
to that obtained by Matéjka and McKay (2015) for the case of mutual information cost.

The result is based on a standard economic intuition. For choice probabilities to
be optimal, the marginal benefit of choosing an action a marginally more often then a
different action b must exactly offset its marginal cost. Formally, given a vector u of choice
probabilities, we denote by supp(u) the support of y, i.e. the set of actions which are played
with strictly positive probability under p.?! Given two actions a and b in the support of ,
consider perturbing p by increasing u;(a) while decreasing 1;(b) by the same amount. The

20Ty establish existence of an optimal solution, recall that the Kullback-Leibler divergence Dkr,: P(A) X
P(A) — [0, 00] is a lower-semicontinuous function (Dupuis and Ellis, 2011, Lemma 1.4.3). The maximand
in (8), being a sum of upper-semicontinuous functions, is upper-semicontinuous. Since P(A)" is compact,
the problem admits a solution.

2'That is, supp(p) = {a € A: p;(a) > 0 for some i € O}.
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marginal benefit of this perturbation is denoted by MB;(a, b) and is equal to
MB;(a,b) = g; [u(a,i) — u(b,i)] .

Such a transfer of probabilities has an effect on the information cost of the experiment pu.
This is given by the expression:

b)) — N 10e @) ma(B) ) (1a)  pg(b)
Meied jezeﬁ”ogw(a) lgmb)) jezeﬁ”(m(@ ui<b>>‘ ®)

It measures the change in information acquisition cost necessary to choose action a
marginally more often and action b marginally less often. For the choice probabilities
1 to be chosen optimally, this change in information cost must equal the difference
gi [u(i,a) — u(i, b)] in expected benefits. This is the content of the next proposition.

Proposition 3. Let p = (u;)ico be the vector of choice probabilities that solves the
optimization problem (8). Then, for every state i € © it holds that

MB(a,b) = MC;(a,b)  for all a,b € supp(u). (10)

Figure 1 illustrates this result in a simple decision example with two states and two
actions where the decision maker’s goal is to match the state. Proposition 3 characterizes the
optimal choice probabilities in terms of necessary first-order conditions. These conditions
are in general not sufficient, because they do not verify that the support of p is optimal. In
the case of mutual information, Caplin, Dean, and Leahy (2016) and Denti, Marinacci, and
Montrucchio (2020) give a characterization of the set of actions that are taken with positive
probability, and arrive at first-order conditions that are both sufficient and necessary. We
do not know whether analogous first-order conditions can be obtained for the LLR cost
function.

6.2 Continuity of Choice Probabilities

A feature of the LLR cost is its ability to model the fact that closer states are harder to
distinguish, in the sense that acquiring information that finely discriminates between them
is more costly. This, in turn, suggests that choice probabilities cannot vary abruptly across
nearby states.

To formalize this intuition, we assume that the state space © is endowed with a distance
d: ©® x © — R. We say that nearby states are hard to distinguish if for all 4,5 € ©

o
d(i, j)*

Under this assumption the cost of acquiring information that discriminates between

Bij = (11)
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Figure 1: A decision problem where © = {1,2} and A = {aj, as}, the prior ¢ is uniform,
P12 = B21 = 1, and payoffs are uj(a1) = u2(az) = 3 and uq(az) = uz(ai) = 0. The solid line
is the locus of choice probabilities such that MBj(aj,as) = MCj(aq,az2). The dotted line
is the locus where MBg(ag, a;) = MCsy(az,a1). The optimal vector of choice probabilities
is given by the intersection of the two curves.

states ¢ and j is high for states that are close to each other. Our next result shows that
when nearby states are hard to distinguish, the optimal choice probabilities are Lipschitz
continuous in the state: the agent will choose actions with similar probabilities in similar
states. For this result, we denote by ||u|| = max;, |u(a,?)| the norm of the decision maker’s

utility function.

Proposition 4 (Continuity of Choice). Suppose that nearby states are hard to distinguish.
Then the optimal choice probabilities p* solving (8) are uniformly Lipschitz continuous with

constant +/||ul|, i.e. satisfy

a€A

wi(@) = (@) </l dGi,5)  for alli,j € o. (12)

Lipschitz continuity is a standard notion of continuity in discrete settings, such as
the one of this paper, where the relevant variable i takes finitely many values. A crucial
feature of the bound (12) is that the Lipschitz constant depends only on the norm ||u|| of
the utility function, independently of the exact form of the coefficients (3;;), and of the
number of states.?? In addition, assumption (11) can be generalized to arbitrary ordinal

22Proposition 4 suggests that the analysis of choice probabilities might be extended to the case where
the set of states © is an interval in R, or, more generally, a metric space. Given a (possibly infinite) state
space © endowed with a metric, and a sequence of finite discretizations (©,) converging to ©, the bound
(12) implies that if the corresponding sequence of choice probabilities converges, then it must converge to a
collection of choice probabilities that are continuous, and moreover Lipschitz.
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transformations of the distance d. The proof of Proposition 4 shows that if the coefficients
satisfy 8;; > 1/f(d(i,7))? for a monotone increasing function f, then the conclusion of the
proposition holds with the right hand side of (12) replaced with /|Jul f(d(i,7)).

This result highlights a contrast between the predictions of mutual information cost
and LLR cost. Mutual information predicts behavior that displays a discontinuity with
respect to the state (see §6.5 for an example). Under LLR cost, when nearby states are
harder to distinguish, the change in choice probabilities across states can be bounded by
the distance between them.

This difference has stark implications in coordination games. Morris and Yang (2016)
study information acquisition in coordination problems. In their model, continuity of the
choice probabilities with respect to the state leads to a unique equilibrium; if continuity
fails, then there are multiple equilibria. This suggests that different choices of information

cost can lead to different predictions in coordination games and their economic applications.

6.3 Comparative Statics with Respect to the Coefficients (;;

While so far we have focused on the effect that the coefficients 3;; have on the cost of
a given experiment, we now address the question of their effect on behavior. The next
proposition is a comparative statics result describing how choice probabilities vary with
the parameters f3;;.

Proposition 5. Consider a decision problem, and let . and p' be the optimal choice prob-
abilities obtained under an LLR cost function with coefficients (8i;) and (B};), respectively.
Then

> (Bl = Bij) (Dxe (will i) — D (pillpg)) < 0.

]

All other things equal, an increase of the coefficient 3;; decreases the Kullback-Leibler
divergence D(11]|11;) between the corresponding optimal choice probabilities, and thus
makes the decision maker’s behavior more similar in the two states.

Proposition 5 follows from the same logic underlying the law of supply in standard
microeconomic models of production. Under the LLR cost function, the decision maker
solves an optimization problem that is mathematically equivalent to a profit maximization
problem. Each expected log-likelihood ratio Dxr,(f]/1;) is an intermediate “input” which
accrues to the decision maker’s expected payoff. Each such input is “priced” according
to a linear price §;;. The comparative statics described by the result follows from such a
linearity property, together with a standard revealed-preference argument.

6.4 Identifying the Cost from Observed Choices

Proposition 3 can be applied to the problem of identifying and testing the LLR model
from observed choices. We illustrate this in the context of a simple example. We consider
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a binary choice problem where we are given two a priori equally likely states © = {1,2}.
The agent can take one of two actions, a; and a9, and receives a payoff v > 0 if the action
matches the state and 0 otherwise.

An analyst observes the agent’s choice probabilities (pi(a))ico,aca, and is interested
in testing if such probabilities are consistent with LLR cost. This is true if there exist
coefficients (f12, 821) that satisfy equation (10). The equation simplifies to

v
5 = — [B1z (logly —logl) + fan (I — 1) (13)
13
v
—5 == (P21 (—logly +logla) + Bi2 (1/L — 1/13)] .
where I; = Z?EB and Iy = Z?g; Rearranging the above conditions yields that one can infer

the information cost parameters (f;;) from her choice probabilities ;1 as

v la—l+log Lo 4 log it

v
Prz = 2 (h—1)? log )2 P = 2 (h—15)? log iy2
il ( og g) le ( 0og g)

(14)

For example, if the agent takes the correct action 80% of the time in state 1 and
60% of the time in state 2, we have that (u1(1), ¢1(2), p2(1), p2(2)) = (0.8,0.2,0.4,0.6)
and the above formula yields that (512, 521) ~ (0.37v,—0.07v). As the implied (B2 is
negative these choice probabilities are inconsistent with any LLR cost function and this
type of choice behavior would reject our model. In contrast, if the agent takes the
correct action 80% of the time in state 1 and 70% of the time in state 2, we have that
(1(1), p1(2), p2(1), u2(2)) = (0.8,0.2,0.3,0.7) which implies that (512, 821) ~ (0.18v,0.03v),
and thus that this choice behavior can be explained by an LLR cost. Figure 2 more generally
depicts all probabilities of choosing correctly in state 1 and state 2 that are consistent with
LLR cost.

This example illustrates how an analyst could use choice data to either reject LLR cost
or to identify the information cost parameters (312, f21). In Appendix G we formally show
that choice probabilities are consistent with LLR cost if and only if a solution of the form
(14) exists.

In general, when there are more than two states and actions the analyst might need
data from multiple decision problems to point identify 3. For a general decision problem
the model admits \@|(|@\ - 1) degrees of freedom and (10) imposes |©| x 3| A| x (|4 — 1)
linear equations on [ which suggests that to identify the analyst needs to observe behavior
in

O] -1
314l x (JAl = 1)

decision problems. Given the data, solving numerically from the coefficients § is easy as
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Figure 2: The probabilities of choosing correctly in state 1 and state 2 that are consistent
with LLR cost.

the corresponding system of equations is linear.??

6.5 Perception Tasks

In this section we study the implications of the LLR cost function for perception tasks, a
well known and long studied family of decision problems. In a perception task an agent
is shown an even number of dots, with each dot either red or blue. The agent guesses
whether there are more blue or red dots, and get rewarded if they guess correctly.

First, the total number n of dots is fixed. Then, subjects are told the value of n, and
that the number i of red dots will be drawn uniformly from the set © = {0,...,n/2 —
1,n/2+1,...,n}. The state where the number of blue and red dots is exactly equal to n/2
is ruled out to simplify the exposition. The set of actions is A = {R, B} and the utility
function is

1 ifa=Bandi>n/2
u(a,i) =41 ifa=Randi<n/2

0 otherwise.

Such perception tasks can be used to model many applied learning problems. For
example, each dot could correspond to a voter whose color indicates whether they vote for
the red or blue party and the agent is an analyst trying to predict which party will obtain

the majority of votes in the election.?* In a typical experiment subjects observe 100 dots

ZDue to the linear structure of the implied restrictions, one could also construct finite sample tests for
the LLR model using standard econometric methods, but this is beyond the scope of this paper.
#Polling provides an interesting example of flexible information acquisition. Even if the only basic
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each of which is either red or blue on a screen (see, e.g. Caplin and Dean, 2013; Dean and
Neligh, 2017) and are asked whether there are more red or blue dots.

As in the case of binary decision problems, it is without loss of generality to assume
that p;(B) is strictly between 0 and 1 in every state. For a vector of distributions over
actions (u;), the decision maker guesses correctly in state i with probability

wi(B) ifi>n/2
wi(R) ifi < n/2.

m; =

Intuitively, it should be harder to guess correctly when the difference in the number of dots
of different colors is small, i.e. when i is close to n/2. For example, it should be harder
to predict the winner in a close election than in an election where one of the candidates

26 and

has a large lead. Also, it is a well established fact in the psychology?®, neuroscience
economics®’ literatures that so called psychometric functions—the relation between the
strength of a stimulus offered to a subject and the probability that the subject identifies
this stimulus—are sigmoidal (i.e. S-shaped), so that the probability that a subject chooses
B transitions smoothly from values close to 0 to values close to 1 when the number of blue
dots increases.

As Dean and Neligh (2017) note, under mutual information cost (and a uniform prior,
as in the experimental setup described above), the optimal experiment p* must induce a
probability of guessing correctly that is state-independent.?® As shown by Matéjka and
McKay (2015), conditional on a state 4, the log-likelihood ratio log(u;(B)/ui(R)) between
the two actions must equal the difference in payoffs u(B,i) — u(R, ), up to a constant.
Hence, the probability of a correct choice must be the same for any two states that lead to
the same utility function over actions, such as the state in which there are 51 blue dots
out of 100 and the state in which there are 99 blue dots.

As this is a one-dimensional information acquisition problem, we can apply the specifi-
cation B;; = k/(i — j)? of the LLR cost. As can be seen in Figure 3, this LLR cost predicts
a sigmoidal relation between the state and the choice probability. Thus, the model matches
the qualitative features of choice probabilities commonly observed in practice. Of course,
this could be similarly achieved using other cost functions that take into account the
difficulty of distinguishing between similar states, such as the neighborhood-cost function

experiment available to a pollster is to call a voter and ask for her opinion, practically any experiment can
be constructed as a compound experiment by deciding when to stop polling. I.e., the pollster with prior p
can choose (perhaps at random) thresholds p1 < p < p2 and keep polling until her posterior reaches either
p1 or p2. See Morris and Strack (2018) for a formalization of this idea.

?5See, e.g., Chapter 7 in Green and Swets (1966) or Chapter 4 in Gescheider (1997).

20E.g., Krajbich et al. (2010); Tavares et al. (2017).

?7See, e.g., Mosteller and Nogee (1951).

28Tt is well known that under mutual information costs the physical features of the states (such as
distance or similarity) do not affect the cost of information acquisition (see, e.g., Mackowiak, Matéjka, and
Wiederholt, 2018).
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Figure 3: Predicted probability of guessing that there are more blue dots as a function of
the state, for the LLR cost with £;; = 1/(i — j)? (solid line) and for mutual information
cost (dashed line).

introduced by Hébert and Woodford (2020).

To gain additional insight, we now consider a more basic assumption on the cost
function. Rather than assuming a particular specification, we assume that the coefficients
(Bi;) are strictly decreasing in the distance between states: There exists a positive and
strictly decreasing function f such that 3;; = f(|¢ —j|) for all pairs of states. The condition
captures the idea that states that are closer to each other are harder to distinguish. Even
under this general non-parametric assumption, the LLR. cost function leads to the intuitive
prediction that the decision maker will guess correctly with strictly higher probability
when the difference in the number of dots of different colors is smaller:

Proposition 6. Consider the above perception task. Let C be an LLR cost function
where the parameters (f5;5) are strictly increasing in the distance between states. Then,
the resulting optimal probabilities (m;) of guessing correctly satisfy m; > m; whenever
i— 20> i — 2.

6.6 The Effect of Greater Incentives

We now apply the characterization of Proposition 3 to study in more detail the classic
problem of predicting the probability of choosing between two options as a function of
their relative values. In its simplest implementation, it consists of a task where there are
two equally likely states, a subject must choose between two actions a; and ag, and each
action yields a reward with payoff v € R when chosen in the corresponding state, and 0
otherwise. Compared to §6.4, we focus here on the question of how the decision maker’s
behavior varies as a function of v.

In order to interpret changes in the parameter v it is necessary to fix a cardinal
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representation of payoffs and to define an interval of possible values for v. If the decision
maker is risk neutral and rewards are monetary, then v can represent the amount paid to
the subject. If the decision maker is risk averse or her risk attitudes are unknown, then
subjects can be paid using probabilistic prizes.?’

The next result derives the optimal choice probabilities in a binary choice problem
under a symmetric LLR cost function. Without loss of generality we restrict our attention
to choice probabilities where both actions are chosen with strictly positive probability in

every state. The result follows by rearranging the optimality conditions of Proposition 3.

Proposition 7. In a binary choice problem, let u;[v] denote the optimal choice probability
of choosing action a;, in state i, as a function of the reward v, under an LLR cost function.
Assume the cost function satisfies P12 = a1 = B. Then p1[v] = pzl[v] = m[v], where

e
e 1+e”(%)

and n: R — R is the inverse of the function x — 2x + e* — e™".

As shown in Figure 4, and as can be easily proved analytically, the optimal choice
probabilities pf[v] are a sigmoidal function of the payoff v. The prediction is in line
with other standard models that involve noise or unobserved heterogeneity, including
mutual information cost. Indeed, as shown by Matéjka and McKay (2015), under mutual
information the optimal choice probabilities follow a logistic relation, where the probability
of matching the state, as a function of v, is given by

e2x
1+e2x’
and A > 0 is the parameter controlling the cost of information acquisition. The two

functional forms are similar, with the only difference being the transformation 7. The

function is strictly increasing and S-shaped, onto, and satisfies n(x) = n(—=z) (and hence
1(0) = 0).%

2970 illustrate, let = and y be two monetary prizes, with > 3. We continue to assume that the decision
maker’s preferences are consistent with expected utility, and normalize, without loss of generality, their
utility function to assign utility 1 to = and utility —1 to y. A lottery that delivers x with probability p
and y with probability 1 — p has expected utility 2p — 1. We define each payoff v in the interval [—1,1]
as the expected utility of such a lottery. This approach is well known in the implementation of scoring
rules, where it allows to reward a decision maker using a linear payoff, and circumvents the need of eliciting
the decision maker’s degree of risk aversion (see, for example, Lambert, 2018; Sandroni and Shmaya, 2013,
and the references therein). The same approach has been more recently applied in rational inattention by
Caplin, Csaba, Leahy, and Nov (2020).

39For the two models to be distinguished empirically, it is necessary to isolate the nonlinearity described
by n from other confounding effects. This can be difficult when v represents dollar amounts, as the same
choice probabilities obtained under LLR and risk neutrality would obtain under mutual information and a
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Figure 4: On the left: The optimal choice probabilities in a binary decision problem for
an LLR cost function. On the right: The implied probabilities of choosing incorrectly at
different levels of incentives v if the agent chooses correctly with 80% probability for v = 1
for the LLR cost (solid line) and mutual information cost (dashed line) on a log-scale.

While both the LLR and the mutual information models lead to choice probabilities
that are sigmoidal, the two theories lead to different predictions on how the probabilities
of errors scale with the payoff v. Figure 4 displays the implied probabilities with which a
decision maker takes a correct choice as a function of v, under the two theories. To make
the comparison meaningful, the parameters 8 and A are chosen so that in both models the
agent chooses incorrectly with probability 20% when the payoff is v = 1.

As one can see in the figure, the probability of choosing correctly reacts more strongly
to incentives under mutual information cost. For example, suppose that the payoff v is
measured in dollars. A simple calculation shows that under mutual information cost, if
the decision maker chooses incorrectly with probability 20% when v = $1, then she must
choose incorrectly with probability less than one in million if v = $10. LLR costs imply
that this probability is about 1/60.3! These are starkly different predictions about behavior
which can be tested experimentally.

The finding is not special to this example. Under logistic choice (e.g., as in Matéjka
and McKay (2015)), the probability of making a mistake decays quickly, as v grows, at the

utility function 17 over money. This is however not an issue if payoffs are defined using probabilistic prizes
and preferences are consistent with expected utility. Allowing for more general preferences can lead to new
difficulties. For example, the same choice probabilities we obtain with LLR cost can be obtained under
mutual information when the decision maker has non-trivial attitudes towards how lotteries resolve over
time, captured by the curvature of 7. For preferences beyond expected utility, Caradonna (2021) provides a
methodology for obtaining quasi-linear representations which could be used to extend our approach.

31For an alternative interpretation, suppose the decision maker is paid in chance rather than money,
so that the payoff v denotes the probability of receiving a prize conditional on making a correct choice.
Suppose that when v is 0.05%, the decision maker makes a mistake with probability 20%. Then, if the
probability v is increased to 0.5%, the prediction under mutual information is that the decision maker must
make a mistake with a probability that is less than one in a million. Under LLR the probability is about
1/60.

26



exponential rate e™¥. Under the LLR cost function the same probability decreases at the
much slower rate 1/v. This follows from Proposition 7, together with the fact that as v
increases, the transformation 7 approximates the logarithm.

7 Bayesian LLR Cost

Given a prior ¢ and an LLR cost function C', one can express the cost of an experiment
in terms of the distribution 7, of the posterior belief p € A(©) that it induces, via

/ F(p) — F(g)dm,(p) (15)

where
i 4 bj

This follows from the definition of the LLR cost, together with Bayes’ law, which states
that given a prior ¢ and a signal s, the posterior p is given by log log +log 3 d“’ ( ).

This reformulation shows that the LLR cost is posterior separable (Caphn and Dean, 2013).
A stronger property studied in the literature is uniform posterior separability, where the
function F' is independent of the prior ¢. In addition to being standard, this assumption
ensures, for instance, that in a dynamic environment an agent is indifferent between
performing two experiments—with the choice of the second one perhaps depending on the
outcome of the first—and carrying out the Blackwell equivalent one-shot experiment.

As we now show, this assumption can be accommodated in our framework by allowing
the cost C'(u,q) of an experiment p to be a function the prior, where for each prior the
cost function C(-,q) belongs to the LLR family, and the resulting coefficients (8;;(q))
depend on the prior. While any functional relation between the prior and the coefficients
is consistent with LLR cost, there is a unique choice that makes the Bayesian LLR cost
function uniformly posterior-separable, as the next proposition shows. An analogous result
was derived independently by Bloedel and Zhong (2020).

Proposition 8. A Bayesian LLR cost function C given by

Zﬁzy DKL Mzuﬂj)
is uniform posterior separable if and only if there exist positive constants (bij); jeo,ij such
that for all priors g € P(©) with full support, Bi;(q) = bijq;.

Both prior independence and constant marginal costs are reasonable assumptions when
modeling common actions of information acquisitions, such as performing a measurement
or drawing samples. A first implication of Proposition 8 is that the two assumptions are
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incompatible with uniform posterior separability, a desirable property in a dynamic setting.
This is discussed in depth by Bloedel and Zhong (2020).

Proposition 8 also shows that uniform posterior separability is possible if the coefficients
Bij are allowed to change with the prior. Letting

F(p) = _bijpilog (}}jz) ;

i?j ]

and substituting this into (15), we see that Bayesian LLR cost of an experiment can be
represented as the expected change of F' from the prior ¢ to the posterior p induced by the
signal, for a fixed choice of (b;;). That is, the cost of the experiment equals

Clug) = [ IF(p) - Fla) dn(p). (16)

and in particular it is uniformly posterior-separable. For a given prior, this cost is the LLR
cost with f;; = bj;q;, so that, in terms of the distributions (;), this cost is

C,q) = Y bijqi Dxr.(pillj)- (17)
/L"j
Proposition 8 implies that the only uniformly posterior separable LLR cost potentially
assigns different cost to the same experiment at different prior beliefs. Nevertheless, some
experiments may be assigned a cost that does not depend on the prior. In §I of the
Appendix we explore which experiments have prior dependent cost and which do not.

8 Verification and Falsification

All the specifications of the LLR cost we have discussed in the previous sections have the
property that the coefficients are symmetric across states, so that §;; = 3;;. In this section
we explain why some information costs are best modeled by specifications that break this
Symimetry.

It is well understood that verification and falsification are fundamentally different forms
of empirical research. This can be seen most clearly through Karl Popper’s famous example
of the statement “all swans are white.” Regardless of how many white swans are observed,
no amount of evidence can imply that the next one will be white. However, observing a
single black swan is enough to prove the statement false. Popper’s argument highlights
a crucial asymmetry between verification and falsification. A given experiment, such as
the observation of swans, can make it feasible to reject a hypothesis, yet have no power to
prove that the same hypothesis is true.

This principle extends from science to everyday life. In a legal case, the type of evidence
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necessary to prove that a person is guilty can be quite different from the type of evidence
necessary to demonstrate that a person is innocent. In a similar way, corroborating the
claim “Ann has a sibling” might require empirical evidence (such as the outcome of a DNA
test) that is distinct from the sort of evidence necessary to prove that she has no siblings.

In this section we show that the asymmetry between verification and falsification can
be captured by the LLR cost. As an example, we consider a state space © = {a, e} that
consists of two hypotheses. For simplicity, let {a} corresponds to the hypothesis “all
swans are white” and {e} the complementary hypothesis “there exists a nonwhite swan.”
Imagine a decision maker who attaches equal probability to the each state, and consider
the experiments described in Table 1:32

e In experiment I, regardless of the state, an uninformative signal realization s; occurs
with probability greater than 1 — e, where € is positive and small. If a nonwhite
swan exists, then one is observed with probability €. Formally, this corresponds to
observing the signal realization ss. If all swans are white, then signal s; is observed,
up to a minuscule probability of error £2. Hence, conditional on observing so, the
decision maker’s belief in state a approaches zero, while conditional on observing s;
the decision maker’s belief remains close to the prior. So, the experiment can reject
the hypothesis that the state is a, but cannot verify it. We set the probability of
observing a nonwhite swan in state a equal to 2 rather than zero, to ensure that
log-likelihood ratios are finite for each observation, and hence that the experiment
has finite cost.

e In experiment II the roles of the two states are reversed: if all swans are white, then
this fact is revealed to the decision maker with probability . If there is a non-white
swan, then the uninformative signal s; is observed (up to the small probability of error
£?). Conditional on observing s, the decision maker’s belief in state a approaches one,
and conditional on observing s; the decision maker’s belief is essentially unchanged.
Thus, the experiment can verify the hypothesis that the state is a, but cannot reject
it.

As shown by the example, permuting the state-dependent distributions of an experiment
may affect its power to verify or falsify an hypothesis. However, permuting the role of the
states may, in reality, correspond to a completely different type of empirical investigation.
For instance, experiment I can be easily implemented in practice: as an extreme example,

the decision maker may look up in the sky. There is a small chance a nonwhite swan will

32Popper (1959) intended verification and falsifications as deterministic procedures, which exclude even
small probabilities of error. In our informal discussion we do not distinguish between events that are
deemed extremely unlikely (such as thinking of having observed a black swan in world where all swans are
white) and events that have zero probability. In their work on falsifiability, Olszewski and Sandroni (2011)
ascribe to Cournot (1843) the idea that unlikely events must be treated as impossible.
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e| 1l—¢ | ¢ e|1—g2|¢&?
(a) Experiment I (b) Experiment II

Table 1: The set of states is © = {a,e}. In both experiments S = {si,s2}. Under
experiment I, observing the signal realization so rejects the hypothesis that the state is a
(up to a small probability of error £2). Under experiment II, observing s verifies the same
hypothesis.

be observed; if not, the decision maker’s belief will not change by much. It is not obvious
exactly what tests or samples would be necessary to implement experiment II, which must
be able to reveal that all swans are white, let alone to conclude that the two experiments
should be equally costly.

We conclude that in order for a model of information acquisition to capture the difference
between verification and falsification, the cost of an experiment should not necessarily be
invariant with respect to a permutation of the states. In our model, this can be captured
by assuming that the coefficients (3;;) are non-symmetric, i.e. that 3;; and f3;; are are
not necessarily equal. For instance, the cost of experiments I and II in Table 1 will differ
whenever the coefficients of the LLR cost satisfy Sqe # Beq. For example, set S, = k and
Bea = 0, and consider small €. Then, to first order in ¢, the cost of experiment I is ke,
while the cost of experiment II is a factor of log(1/¢) higher. Hence the ratio between the
costs of these experiments is arbitrarily high for small ¢.

9 Related Literature

The question of how to quantify the amount of information provided by an experiment is
the subject of a long-standing and interdisciplinary literature. Kullback and Leibler (1951)
introduced the notion of Kullback-Leibler divergence as a measure of distance between
statistical populations. Kelly (1956), Lindley (1956), Marschak (1959) and Arrow (1971)
apply mutual information to the problem of ordering information structures.

More recently, Hansen and Sargent (2001) and Strzalecki (2011) adopted KL-divergence
as a tool to model robust decision criteria under uncertainty. Cabrales, Gossner, and
Serrano (2013) derive Shannon entropy as an index of informativeness for experiments in
the context of portfolio choice problems (see also Cabrales, Gossner, and Serrano, 2017).
Frankel and Kamenica (2018) put forward an axiomatic framework for quantifying the
value and the amount of information in an experiment.
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Rational Inattention. As discussed in the introduction, our work is also motivated by
the recent literature on rational inattention. A complete survey of this area is beyond the
scope of this paper; we instead refer the interested reader to Caplin (2016) and Mackowiak,
Matéjka, and Wiederholt (2018) for perspectives on this growing literature.

Decision Theory. Our axiomatic approach differs both in terms of motivation and
techniques from other results in the literature. Caplin and Dean (2015) study the revealed
preference implications of rational inattention models, taking as a primitive state-dependent
random choice data. Within the same framework, Caplin, Dean, and Leahy (2018)
characterize mutual information cost, Chambers, Liu, and Rehbeck (2017) study non-
separable models of costly information acquisition, and Denti (2022) provides a revealed
preference of posterior separability. Decision theoretic foundations for models of information
acquisition have been studied by de Oliveira (2014), De Oliveira, Denti, Mihm, and Ozbek
(2017), and Ellis (2018). Mensch (2018) provides an axiomatic characterization of posterior-

separable cost functions.

The Wald Model of Sequential Sampling. The notion of constant marginal costs
over independent experiments goes back to Wald’s (1945) classic sequential sampling model;
our axioms extend some of Wald’s ideas to a model of flexible information acquisition. In
its most general form, Wald’s model considers a decision maker who acquires information
by collecting multiple independent copies of a fixed experiment, and incurs a cost equal
to the number of repetitions. In this model, every stopping strategy corresponds to an
experiment, and so every such model defines a cost over some family of experiments. It is
easy to see that such a cost satisfies our axioms.

Morris and Strack (2018) consider a continuous-time version where the decision maker
observes a one-dimensional diffusion process whose drift depends on the state, and incurs
a cost proportional to the expected time spent observing. This cost is again easily seen
to satisfy our axioms, and indeed, for the experiments that can be generated using this
sampling process, they show that the expected cost of a given distribution over posteriors
is of the form obtained in Proposition 2. One may view the result in Morris and Strack
as complementary evidence that the cost function obtained in Proposition 2 is a natural

choice for one-dimensional information acquisition problems.

Dynamic Information Acquisition Models. Hébert and Woodford (2019, 2020),
Zhong (2017, 2019), Morris and Strack (2018), and Bloedel and Zhong (2020) relate cost
functions over experiments and sequential models of costly information acquisition. In
these papers, the cost C'(u) is the minimum expected cost of generating the experiment
by means of a dynamic sequential sampling strategy.
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Hébert and Woodford (2020) propose and characterize a family of “neighborhood-based”
cost functions that generalize mutual information, and allow for the cost of learning about
states to be affected by their distance. In a perception task, these costs are flexible enough
to accommodate optimal response probabilities that are S-shaped, similarly to our analysis
in §6. The LLR cost does not generalize mutual information, but has a structure similar to
a neighborhood-based cost where the neighboring structure consists of all pairs of states.

Zhong (2017) and Bloedel and Zhong (2020) provide general conditions for a cost
function over experiments to be induced by some dynamic model of information acquisition.
Zhong (2019) studies a dynamic model of non-parametric information acquisition, where a
decision maker can choose any dynamic signal process as an information source, and pays
a flow cost that is a function of the informativeness of the process. A key assumption is
discounting of delayed payoffs. The paper shows that the optimal strategy corresponds to

a Poisson experiment.

Information Theory. This paper is also related to the axiomatic literature in informa-
tion theory characterizing different notions of entropy and information measures. Ebanks,
Sahoo, and Sander (1998) and Csiszar (2008) survey and summarize the literature in the
field. In the special case where |©] = 2 and the coefficients (3;;) are set to 1, the function
(1) is also known as J-divergence. Kannappan and Rathie (1988) provide an axiomatization
of J-divergence, under axioms very different from the ones in this paper. A more general
representation appears in Zanardo (2017).

Ebanks, Sahoo, and Sander (1998) characterize functions over tuples of measures with
finite support. They show that a condition equivalent to our additivity axiom leads to a
functional form similar to (1). Their analysis is however quite different from ours: their
starting point is an assumption which, in the notation of this paper, states the existence of
a map F: R® — R such that the cost of an experiment (S, (;1;)) with finite support takes
the form C(u) = 3,5 F((1i(s))ico). This assumption of additive separability does not
seem to have an obvious economic interpretation, nor to be related to our motivation of

capturing constant marginal costs in information production.

Probability Theory. The results in Mattner (1999, 2004) have, perhaps, the closest
connection with this paper. Mattner studies functionals over the space probability measures
over R that are additive with respect to convolution. As we explain in the next section,
additivity with respect to convolution is a property that is closely related to Axiom 2. We
draw inspiration from Mattner (1999) in applying the study of cumulants to the proof of
Theorem 1. However, the difference in domain makes the techniques in Mattner (1999,
2004) not applicable to this paper.
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10 Proof Sketch

In this section we informally describe some of the ideas involved in the proof of Theorem 1.
We consider the binary case where © = {0, 1} and so there is only one relevant log-likelihood
ratio £ = £19. The proof of the general case is more involved, but conceptually similar.

Step 1. Let C satisfy Axioms 1-4. Conditional on each state i, an experiment y induces a
distribution o; for £. Two experiments that induce the same pair of distributions (o, o)
are equivalent in the Blackwell order. Thus, by Axiom 1, C' can be identified with a map
¢(0p,01) defined over all pairs of distributions induced by some experiment .

Step 2. Axioms 2 and 3 translate into the following properties of ¢. The product p ® v
of two experiments induces, conditional on 4, a distribution for ¢ that is the convolution
of the distributions induced by the two experiments.?? Axiom 2 is equivalent to ¢ being
additive with respect to convolution, i.e.

c(og * 19,01 % 11) = ¢(00,01) + ¢(10,71)
Axiom 3 is equivalent to ¢ satisfying for all a € [0, 1],
c(aog + (1 — )b, o1 + (1 — a)dp) = ac(op, 01)

where §g is the degenerate measure at 0. Axiom 4 translates into continuity of ¢ with
respect to total variation and the first N moments of o¢ and o.

Step 3. As is well known, many properties of a probability distribution can be analyzed by
studying its moments. We apply this idea to the study of experiments, and show that under
our axioms the cost ¢(og, 1) is a function of the first N moments of the two measures, for
some (arbitrarily large) N. Given an experiment u, we consider the experiment

1
o (u 1)

in which with probability (n — 1)/n no information is produced, and with the remaining
probability the experiment p is carried out n times. By Axioms 2 and 3, the cost of this
experiment is equal to the cost of .3* We show that these properties, together with the
continuity axiom, imply that the cost of an experiment is a function G of the moments of

33Recall that given two distributions o and v over R, their convolution is the distribution of the random
variable X + Y, where X is a random variable distributed according to o, Y according to v, and the two
random variables are independent. When two experiments are independent (in the sense described in §2),
their log-likelihood ratios are independent random variables conditional on the state. The crucial observation
is that the log-likelihood ratio of the product experiment is the sum of the individual log-likelihood ratios,
and thus its distribution conditional on the state is the convolution of theirs.

34For n large, this experiment has a very simple structure: With high probability it is uninformative,
and with probability 1/n is highly revealing about the states.
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(00,01):
c(00,01) = G Mgy (1), ...y Moo (N), Mgy (1), ..., mg, (V)] (18)

where mg, (n) is the n-th moment of o;. Each m,,(n) is affine in o;, hence Step 2 implies
that G is affine with respect to mixtures with the zero vector.

Step 4. It will be useful to analyze a distribution not only through its moments but
also through its cumulants. The n-th cumulant k,(n) of a probability measure o is the
n-th derivative at 0 of the logarithm of its characteristic function. By a combinatorial
characterization due to Leonov and Shiryaev (1959), k,(n) is a polynomial function of
the first » moments m,(1),...,my(n). For example, the first cumulant is the expectation
ke (1) = my(1), the second is the variance, and the third is k4 (3) = ms(3) —2ms(2)me(1) +
2m4(1)3. Step 3 and the result by Leonov and Shiryaev (1959) imply that the cost of an
experiment is a function H of the cumulants of (o9, 01):

c(00,01) = H (Koo (1), .-y Koo (N), Koy (1), .o, Koy (V)] (19)

where kg, (n) is the n-th cumulant of o;.

Step 5. Cumulants satisfy a crucial property: the cumulant of a sum of two independent
random variables is the sum of their cumulants. So, they are additive with respect to
convolution. By Step 2, this implies that H is additive. We show that H is in fact a
linear function. This step is reminiscent of the classic Cauchy equation problem. That
is, understanding under what conditions a function ¢: R — R that satisfies ¢(x +y) =
¢(x) + ¢(y) must be linear. In Theorem 4 we show, very generally, that any additive
function from a subset K C R? to Ry is linear, provided K is closed under addition and has
a non-empty interior. We then proceed to show that both of these conditions are satisfied
if IC is taken to be the domain of H, and thus deduce that H is linear.

Step 6. In the last step we study the implications of (18) and (19). We apply the
characterization by Leonov and Shiryaev (1959) and show that the affinity with respect
to the origin of the map G, and the linearity of H, imply that H must be a function
solely of the first cumulants k(1) and ks, (1). That is, C' must be a weighted sum of the
expectations of the log-likelihood ratio £ conditional on each state.

11 Conclusions

We put forward an axiomatic approach to modeling the cost of information acquisition,
characterizing a family of cost functions that capture a notion of constant marginal costs
in the production of information. We propose a number of possible avenues for future
research, all of which would require the solution of some non-trivial technical challenges:
The first is an extension of our framework beyond the setting of a finite set of states to a
continuum of states. This is natural in the context of one-dimensional problems. Second,
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one could consider multidimensional problems in which © is a finite subset of R, and
study a generalization of the one-dimensional functional form we obtain in §4. Third, there
are a number of settings which have been modeled using mutual information cost, where it
may be of interest to understand the sensitivity of the conclusions to this assumption (see,
e.g., Van Nieuwerburgh and Veldkamp, 2010). Finally, a possible definition for convex cost
functions over experiments is given by the supremum over a family of LLR costs. It may
be interesting to understand if such costs are characterized by simple axioms.
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Appendix A Discussion of the Continuity Axiom

Our continuity axiom may seem technical, and in a sense it is. However, there are some
interesting technical subtleties involved with its choice. Indeed, it seems that a more
natural choice of topology would be the topology of weak convergence of likelihood ratios.
Under that topology, two experiments would be close if they had close expected utilities
for decision problems with continuous bounded utilities. The disadvantage of this topology
is that no cost that satisfies the rest of the axioms is continuous in this topology. To see
this, consider the sequence of experiments in which a coin (whose bias depends on the
state) is tossed n times with probability 1/n, and otherwise is not tossed at all. Under
our axioms these experiments all have the same cost—the cost of tossing the coin once.
However, in the weak topology these experiments converge to the trivial experiment that
yields no information and therefore has zero cost.

In fact, even the stronger total variation topology suffers from the same problem, which
is demonstrated using the same sequence of experiments. Therefore, one must consider a
finer topology (which makes for a weaker continuity assumption), which we do by also
requiring the first N moments to converge. Note that increasing N makes for a finer
topology and therefore a weaker continuity assumption, and that our results hold for all
N > 0. An even stronger topology (which requires the convergence of all moments) is used
by Mattner (1999, 2004) to characterize all continuous additive linear functionals on the
space of all random variables on R.

Nevertheless, the continuity axiom is technical. As we show in Theorem 5 it is not

required when there are only two states, and we conjecture that it is not required in general.

Appendix B Preliminaries

To simplify the notation, throughout the appendix we set © = {0,1,...,n}.

B.1 Properties of the Kullback-Leibler Divergence

In this section we summarize some well known properties of the Kullback-Leibler divergence,
and derive from them straightforward properties of the LLR cost.

Given a measurable space (X,Y) we denote by P(X,Y) the space of probability
measures on (X,¥). If X = R? for some d € N then ¥ is implicitly assumed to be the
corresponding Borel o-algebra and we simply write P(R?).

For the next result, given two measurable spaces (2, %) and (€', Y’), a measurable map
F: Q — Q) and a measure ) € P(£2,X), we define the push-forward measure Fyn € P(Y,Y)
by [Fun](A) = n(F~1(A)) for all A € X'
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Proposition 9. Let vi,v9,m1,m2 be measures in P(§2, %), and let py, p2 be probability
measures in P(Y,%). Assume that Dy, (v1||v2), DkL(mln2) and Dxy(u1llpe) are all
finite. Let F: Q@ — Q' be measurable. Then:

1. Dk (v1]jve) > 0 with equality if and only if vy = vs.
2. Dgp(v1 x prllve x p2) = Dxr(viv2) + Dk (p1 | p2)-

3. For all o € (0,1),

Dxr(avi + (1 — a)mllave + (1 — a)nz) < aDxky(vi|v2) + (1 — a) Dkr(mln2).-

4. Dxr(Fsv||Fepr) < Dxr(vrl|p)-

It is well known that KL-divergence satisfies the first three properties in the statement
of the proposition. We refer the reader to (Austin, 2006, Proposition 2.4) for a proof of
the last property.

Lemma 1. Two experiments u = (S, (u;)) and v = (T, (v;)) that satisfy fi; = v; for every
1 € © are equivalent in the Blackwell order.

Proof. The result is standard, but we include a proof for completeness. Suppose f; = ; for
every ¢ € ©. Given the experiment p and a uniform prior on ©, the posterior probability
of state 7 conditional on s is given almost surely by

d,u,i 1 1

= =—(5) = — = . (20)
d>jeo Hj 2jeo %(8) Y jee 1)

pi(s)

and the corresponding expression applies to experiment v. By assumption, conditional on
each state the two experiments induce the same distribution of log-likelihood ratios (¢;;).
Hence, by (20) they must induce the same distribution over posteriors, hence be equivalent
in the Blackwell order. O

A consequence of Proposition 9 is that the LLR cost is monotone with respect to the
Blackwell order:

Proof of Proposition 1. Let C be an LLR cost. It is immediate that if p; = v; for every ¢
then C(u) = C(v). We can assume without loss of generality that S =T = P(0), endowed
with the Borel o-algebra. This follows from the fact that we can define a new experiment
p = (P(©),(pi)) such that f; = p; for every i (see, e.g. Le Cam (1996)), and apply the
same result to v . By Blackwell’s Theorem there exists a probability space (R, \) and
a “garbling” map G: S x R — T such that for each ¢ € © it holds that v; = G, (u; X A).
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Hence, by the first, second and fourth statements in Proposition 9,

i X Ml < A)
= Dkur(pillpg) + Dxr(AN)
Mi”ﬂj)-

Therefore, by Theorem 1, we have

Clv) =) BiDxuvillvy) <3 BijDxu(millpg) = C (n). O
12 i,J
We note that a similar argument shows that if all the coefficients 3;; are positive then
C(p) > C(v) whenever p Blackwell dominates v but v does not dominate p.
An additional direct consequence of Proposition 9 is that the LLR cost is convex:

Proposition 10. Let p = (S, (1)) and v = (S, (v;)) be experiments in . Given a € (0,1),
define the experiment n = (S, (v;)) as n; = av; + (1 — a)p; for each i. Then any LLR cost
C satisfies
C(n) < aC(v)+ (1 —a)C(u).
The result follows immediately from the third statement in Proposition 9. We now
study the set

D= {(DKL(MiHMj))i?gj T U E (C/’} C Rgl-i-l)n

of all possible pairs of expected log-likelihood ratios induced by some experiment u. The
next result shows that D contains the strictly positive orthant.

Lemma 2. RS:TD" cD

Proof. The set D is convex. To see this, let u = (S5, (u;)) and v = (T, (v;)) be two
experiments. Without loss of generality, we can suppose that S =T, and S = 51 U S,
where Sp, S are disjoint, and u;(S1) = 14(S2) = 1 for every i.

Fix a € (0,1) and define the new experiment 7 = (5, (7;)) where 7; = au; + (1 — a)y;

for every i. It can be verified that 7;-almost surely, SZ_ satisfies 7% (s) = gz; (s)if s €5y

dr;
and 9 (s) = 2115; (s) if s € So. It then follows that

dr; i

Dy (7il|75) = aDxr(pillps) + (1 — o) Dxr (vil|vj).

Hence D is convex. We now show D is a convex cone. First notice that the zero vector
belongs to D, since it corresponds to the totally uninformative experiment. In addition

(see §B.1),
Dxr((p @ p)ill(p @ p)j) = Dxu(p: X pillpg % pg) = 2Dk (pal| 115)
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Hence D is closed under addition. Because D is also convex and contains the zero vector,
it is a convex cone.
Suppose, by way of contradiction, that the inclusion R(ffl)n C D does not hold. This

)™ that does not belong to the closure of D. Therefore,

implies we can find a vector z € ]RS:LH
there exists a nonzero vector w € R and ¢ € R such that w -z > ¢t > w - y for all
y € D. Because D is a cone, then t > 0 and 0 > w - y for all y € D. Hence, there must
exist a coordinate i,j, such that w; ;, > 0. We now show this leads to a contradiction.

Consider the following three cumulative distribution functions on [2, 00):

2

log? 2
Pofz) =1~ logQ:L'

log 2
Fy(r) =1~ logx’

and denote by 71, T, T3 the corresponding measures. A simple calculation shows that
Dy, (ms||m1) = 0o, whereas Dk, (mq||7p) < oo for any other choice of a,b € {1,2,3}.

Let 75 = (1 — ) 02 + em, for every a € {1,2,3}, where d2 is the point mass at 2. Then
still Dxp,(7§||7§) = oo, but, for any other choice of a and b in {1,2,3}, the divergence
D(7%||75) vanishes as ¢ goes to zero. Let 75 be the measure 7 conditioned on the
interval [2, M]. Then Dxp(75™M ||7TZ’M) tends to Dk, (7 ||7;) as M tends to infinity, for
any a,b. It follows that for every N € N there exist € small enough and M large enough
such that Dy, (75 [|75) > N and, for any other choice of a, b, Dy (5™ ||x5™) < 1/N.

Consider the experiment p = (R, (u;)) where p;, = 7r§’M, Wiy = ﬁ’M and pp = W;’M for
all k ¢ {ig, jo} and with € and M so that the inequalities above hold for N large enough.
Then 4 € € since all measures have bounded support. It satisfies Dxr, (1, ||14,) > N and
Dy, (pill15) < 1/N for every other pair ij.

Now let y € D be the vector defined by p. Then w -y > 0 for N large enough. A

contradiction. O

B.2 Experiments and Log-likelihood Ratios

It will be convenient to consider, for each experiment, the distribution over log-likelihood
ratios with respect to the state ¢ = 0 conditional on a state j. Given an experiment, we
define ¢; = ;o for every i € ©. We say that a vector o = (09,01, ...,0,) € P(R?)"*! of

measures is derived from the experiment (S, (u;)) if for every i = 0,1,...,n,

oi(E) = pi ({s: (¢1(s),...,4n(s)) € E}) for all measurable £ C R".
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That is, o; is the distribution of the vector (¢1,...,¥,) of log-likelihood ratios (with respect
to state 0) conditional on state 7. There is a one-to-one relation between the vector o and
the collection (j1;) of distributions defined in the main text: notice that ¢;; = ;o — ;o almost
surely, hence knowing the distribution of ({y;);co is enough to recover the distribution
of (¢i)i,jee. Nevertheless, working directly with o (rather than (f;)) will simplify the
notation considerably.

We call a vector o € P(R™)"*! admissible if it is derived from some experiment. The
next result provides a straightforward characterization of admissible vectors of measures.

Lemma 3. A vector of measures o = (00,01, ...,0,) € P(R")"* is admissible if and only

if the measures are mutually absolutely continuous and, for every i, satisfy ggé (€) = €S for
oi-almost every & € R™.

Proof. 1f (09,01, ...,0,) is admissible then there exists an experiment p = (S, (1;)) such
that for any measurable £ C R"

/ e dog (&) = / 15 ((61(5), .- £n(5))) €4 dpao(s)
FE
= [ 150 lals)) da(s)

where 1 is the indicator function of E. So, [ €% dog(§) = 0;(E) for every E C R"™. Hence
d(ri

€% is a version of

Conversely, assume g‘” (€) = €% for almost every & € R™. Define an experiment
(R"1 (1)) where pu; = o; for every i. The experiment (R™! (u;)) is such that ¢; (€) = &
for every ¢ > 0. Hence, for i > 0, u; ({£: (¢1(§),...,n(&)) € E}) is equal to

[ 1860, £a(©)) 5 don(€) = [ 16(€)e" doo(©) = oi(E)

and similarly po ({£: (€1 (€),..., 0, (€)) € E}) = 0o (E). So (09, 01,...,0y) is admissible.
O

B.3 Properties of Cumulants

The purpose of this section is to formally describe cumulants and their relation to moments.
We follow Leonov and Shiryaev (1959) and Shiryaev (1996, p. 289). Given a vector
¢ € R™ and an integral vector a € N™ we write {& = £]1¢5?% - - - €9 and use the notational
conventions o! = aglag! -, ! and |a| = a1 + -+ + ap,.

Let A={0,...,N}"\{0,...,0}, for some constant N € N greater or equal than 1. For
every probability measure o1 € P(R") and & € R, let ¢y, () = [zn €5€) doy(2) denote
the characteristic function of o; evaluated at £&. We denote by P4 C P(R™) the subset of
measures o such that [p. [£¥| doi(§) < oo for every o € A. Every o1 € P4 is such that
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in a neighborhood of 0 € R™ the cumulant generating function log ¢, is well defined and

the partial derivatives
Hlel
log ¢
8{?1 852(12 RN 8£%n 08 Poy (@

exist and are continuous for every a € A.

For every o1 € P4 and « € A let Ky, () be defined as

Hlel
log vo
85?13532 e 8£%n 08 Yoy (0)

Koy (a) =1

With slight abuse of terminology, we refer to ks, € R4 as the vector of cumulants of o7.
In addition, for every o1 € P4 and a € A we denote by my, () = [gn ¥ do1(£) the mixed
moment of o; of order o and refer to my, € R4 as the vector of moments of oy.

Given two measures 01,09 € P(R™) we denote by o1 * 09 € P(R™) the corresponding
convolution.

Lemma 4. For every 01,02 € Pa, and & € A, Koysoy () = Koy () + Koy (1)

Proof. The result follows from the well known fact that @y, 40, (§) = @oy (§) @0, (§) for every
e R™ O

The next result, due to Leonov and Shiryaev (1959) (see also Shiryaev, 1996, p. 290)
establishes a one-to-one relation between the vector of moments m,, and vector of cumulants
kg, of a probability measure o1 € P4. Given a € A, let A(a) be the set of all ordered
collections (A!,..., A7) of non-zero vectors in N” such that ZZ:1 AN =q.

Theorem 2. For every o1 € P4 and o € A,

1. mg, (@) = 201, aa)er(a) %%‘Aq. [[i=1 Koy (AP)

_1)2—1 o
2. by (@) = S anerta) —r— xra Ty Mo, (W)

The result yields the following implication. Let Mg = {my,, : 01 € Pa} C R4 and
Kao = {ko, 1 01 € Pa} C RA. Statement 2 in Theorem 2 shows the existence of a
continuous function h: My — K4 such that k., = h(m,,) for every o1 € P4. Moreover,
statement 1 implies h is one-to-one.

B.4 Cumulants and Admissible Measures

We denote by A the set of vectors of measures o = (0¢,01,...,0,) that are admissible and
such that o; € P4 for every i. To each o € A we associate the vector

Mo = (Moy, Moy -+ -y Mg, ) € R?
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of dimension d = (n + 1) |A|. Similarly, we define
— d
Ko = (Kogy Koyy - -+ Ko, ) € R

In this section we study properties of the sets M = {m, : 0 € A} and K = {k, : 0 € A}.

Lemma 5. Let I and J be disjoint finite sets and let (¢r)kerus be a collection of real
valued functions defined on R™. Assume {¢p : k € IUJ}U{1lgn} are linearly independent
and the unit vector (1,...,1) € R” belongs to the interior of {(¢r (£))yey : € € R™}. Then

C = {</ o d01> : 01 € P(R™) has finite support and / érdoy =1 for all k € J}
R™ kel Rn

is a convex subset of RT with nonempty interior.

Proof. To ease the notation, let Y = R"™ and denote by P, be the set of probability measures
on Y with finite support. Consider F' = {¢y : k € I U J} U {1pa} as a subset of the vector
space RY | where the latter is endowed with the topology of pointwise convergence. The
topological dual of RY is the vector space of signed measures on Y with finite support. Let

D:{</ gbkdo—l) :alePo}g]RIUJ.
R™ keluJ

Fix k € I U J. Since ¢ does not belong to the linear space V' generated by F\{¢x},
then a standard application of the hyperplane separation theorem implies the existence of
a signed measure

p = o1 — fos

where a, > 0, a + 5 > 0 and 01,02 € P,, such that p satisfies [ ¢pdp > 0> [¢dp for
every ¢ € V. This implies [¢dp = 0 for every ¢ € V. By taking ¢ = 1gn, we obtain
p(R™) = 0. Hence, a = . Therefore, [ ¢pdoy > [¢rdos and [ ¢;doy = [ ¢;dog for
every [ # k. To summarize, we have shown that for every k € I U J there exist vectors
w”, 2F € D such that wf > zF and wf = 2 for | # k.

Now let aff(D) be the affine hull of D. As is well known, for every d € D we have the
identity aff(D) = d + span(D — d), where span(D — d) is the vector space generated by
D — d. Moreover, span(D — d) is independent of the choice of d € D (see, for example,
Borwein and Vanderwerff, 2010, Lemma 2.4.5).

Let k € TU J and let 1, € R'Y/ be the corresponding unit vector. By taking d = z*
we obtain that w® — z¥ € span(D — 2¥). Thus, 1; € span(D — d) for every k. Hence
span(D — d) = R!Y/. Therefore aff(D) = R!Y/. Since D is convex, it has nonempty
relative interior as a subset of aff(D). We conclude that D has nonempty interior.
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Now consider the hyperplane
H={zeR"Y .z =1forall k€ J}

Let D be the interior of D. It remains to show that the hyperplane H satisfies H N D° # ().
This will imply that the projection of H N D on R!, which equals C, has nonempty interior.
Let w € D°. By assumption, (1,...,1) € R” is in the interior of {(¢x(£))res: € €Y}

Hence, there exists o € (0,1) small enough and £ € Y such that ¢ (§) = 2= — 12wy, for
every k € J. Define z = aw + (1 — a)(¢r(€))kerus € D. Then 2z =1 for every k € J. In
addition, because w € D° then z € D? as well. Hence z € H N D°. ]

Lemma 6. The set M = {m, : 0 € A} has nonempty interior.

Proof. For every a € A define the functions (¢; «)ico on R" as
Po.0 (§) = £ and ¢y 4 (§) = £%% for all i > 0.
Define 1)p = 1gn and ¢;(€) = €% for all i > 0. It is immediate to verify that
{¢ia:i€O,a€ A U{t;:icO}

is a linearly independent set of functions. In addition, (1,...,1) € R™ is in the interior of
{(ef1,...,ef) : £ € R"}. Lemma 5 implies that the set

C= {(/ b dUO) o 00 € P(R™) has finite support and / % dog(€) = 1 for all z}
Rn e

i€
a€cA

has nonempty interior. Given og as in the definition of C, construct a vector o =
(00,01, . ..,0,) where for each i > 0 the measure o; is defined so that (do;/dog) (&) = e,
op-almost surely. Then, Lemma 3 implies ¢ is admissible. Because each o; has finite
support then o € A. In addition,

me = (/]R” ¢i,o¢ dUO) ico

a€A

hence C C M. Thus, M has nonempty interior. O
Theorem 3. The set K = {k, : 0 € A} has nonempty interior.

Proof. Let h: Mg — K 4 be the function defined in the discussion following Theorem 2,
mapping vectors of moments to vectors of cumulants. Define H : M — K as

H(ma) = (h(mﬂo)a h(m01)7 .- '7h(m0n)) = Ko
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for every o = (09,01,...,0,) € A. Since h is continuous and one-to-one then so is H.
Lemma 6 shows there exists an open set U C R4 included in M. Let Hj; be the restriction
of H on U. Then Hy satisfies all the assumptions of Brouwer’s Invariance of Domain
Theorem,* which implies that H(U) is an open subset of RY. Since H(M) C K, it follows
that I has nonempty interior. O

Appendix C Automatic Continuity in the Cauchy Problem for Subsemi-
groups of R?,

A subsemigroup of R? is a subset S C R? that is closed under addition, so that z +y € S
for all z,y € S. We say that a map F': S — Ry is additive if F(x +vy) = F(z) + F(y)
for all z,y,z +y € S. We say that F is linear if there exists (ay,...,aq) € R? such that
F(z) = F(x1,...,2q) =a1x1+ -+ aqzq for all z € S.

We can now state the main result of this section:

Theorem 4. Let S be a subsemigroup of R® with a nonempty interior. Then every additive
function F: S — Ry is linear.

Before proving the theorem we will establish a number of claims.

Claim 1. Let S be a subsemigroup of R? with a nonempty interior. Then there exists an
open ball B ¢ R? such that aB C S for all real a > 1.

Proof. Let By be an open ball contained in §, with center ¢ and radius r. Given a positive
integer k, note that kBj is the ball of radius kr centered at krg, and that it is contained in
S, since § is a semigroup. Choose a positive integer M > 4 such that %M r > ||lxo||, and
let B be the open ball with center at Mz and radius r (see Figure 5). Fix any a > 1, and
write a = 4-(n +7) for some integer n > M and ~ € [0,1). Then +-B is the ball of radius
177 centered at nxg, which is contained in nBy, since nBy also has center nxzg, but has
a larger radius nr. So ;B C nBy. We claim that furthermore ”WHB is also contained
in nBy. To see this, observe that the center of ”W‘HB is (n 4+ 1)xo and its radius is "W‘Hr.
Hence the center of 1 B is at distance ||zo|| from the center of nBy, and so the furthest
point in % B is at distance ||zo[| + %7 from the center of nBy. But the radius of nBy is
nr = %nr + énr > %Mr + %nr > ||zol| + HTHT,
where the first inequality follows since n > M, and the second since %M r > ||zo|| and
M > 4. So nBy indeed contains both 7B and "WHB . Thus it also contains aB, and so S
contains aB. O

35Brouwer (1911). See also Theorem 2 in Tao (2011).

48



Figure 5: Illustration of the proof of Claim 1. The dark ball B is contained in the light
ones, and it is apparent from this image that so is any multiple of B by a > 1.

Claim 2. Let S be a subsemigroup of R? with a nonempty interior. Let F: S — Ry be
additive and satisfy F'(ay) = aF'(y) for every y € S and a € Ry such that ay € S. Then
F' is linear.

Proof. If S does not include zero, then without loss of generality we add zero to it and set
F(0) = 0. Let B be an open ball such that aB C S for all a > 1; the existence of such a
ball is guaranteed by Claim 1. Choose a basis {b!,...,b%} of R? that is a subset of B, and
let & = B1b' 4 - - + Bgb? be an arbitrary element of S. Let b = max {1/|3;] : 8; # 0}, and
let @ = max {1,b}. Then

F(az) = F(aBib' + - + aBab?).

Assume without loss of generality that for some 0 < k < d it holds that the first k coefficients
B; are non-negative, and the rest are negative. Then for i < k it holds that a3;b' € S and
for i > k it holds that —a3;b' € S; this follows from the defining property of the ball B,
since each b’ is in B, and since |a3;| > 1. Hence we can add F(—afBy 10" — -+ — afzb?)

to both sides of the above displayed equation, and then by additivity,

F(az) + F(—aBp b — oo — aBab?)
= F(apid' + -+ afab®) + F(=af 10" — - — apgh?)
= F(aBib* + - - - + afib").
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Using additivity again yields
Flax) + F(=afpab"™) + - + F(=afab?) = F(apib) + - + F(aBid®).
Applying now the claim hypothesis that F(ay) = aF'(y) whenever y,ay € S yields
aF () + (—afer) FOF) + - + (=aBg) F(bY) = ap1 F(b') + -+ + aBe F(0Y).
Rearranging and dividing by a, we arrive at
F(z) = Bi1F (") + -+ BaF (b%),

We can therefore extend F to a function that satisfies this on all of R¢, which is then
clearly linear. O

Claim 3. Let B be an open ball in R%, and let B be the semigroup given by U,>1aB. Then
every additive F': B — R is linear.

Proof. Fix any x € B, and assume ax € B for some a € R;. Since B is open, by Claim
2 it suffices to show that F'(ax) = aF'(z). The defining property of B implies that the
intersection of B and the ray {bx : b > 0} is of the form {bx : b > ag} for some ayg > 0.
By the additive property of F', we have that F(qx) = ¢F(z) for every rational ¢ > ay.
Furthermore, if b > V' > ag then n(b—b')z € S for n large enough. Hence

Flba) = %F(nbx)

= lF (nb'z + (n(b—b")x))

= %F (nb'z) + %F (n(b—V)x)

1
=F@'z)+ —F (n(b—1V")x)
n
> F(Vz).
Thus the map f: (ag,o0) — R given by f(b) = F(bz) is monotone increasing, and its
restriction to the rationals is linear. So f must be linear, and hence F'(ax) = aF(z). O

Given these claims, we are ready to prove our theorem.

Proof of Theorem 4. Fix any x € S, and assume ax € S for some a € Ry. By Claim 2 it
suffices to show that F'(axz) = aF(z). Let B be a ball with the property described in Claim
1, and denote its center by xg and its radius by r. As in Claim 3, let B be the semigroup
given by Us>1aB; note that B C S. Then there is some y such that x4y, a(z+y),y, ay € B;
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in fact, we can take y = bxg for b = max {a, 1/a, |z|/r} (see Figure 6). Then, on the one
hand, by additivity,
F(az + ay) = F(ax) + F(ay).

On the other hand, since z + y, a(x + ), y, ay € B,and since, by Claim 3, the restriction of
F to B is linear, we have that

Flaz +ay) = Fla(z +y)) = aF(z +y) = aF (z) + aF(y) = aF (z) + F(ay),

thus
F(az) + F(ay) = aF(x) + F(ay)

and so F(ax) = aF(z). O

axr

Figure 6: An illustration of the proof of Theorem 4.

Appendix D Proof of Theorem 1

Throughout this section, we maintain the notation and terminology introduced in §B. It
follows from the results in §B.1 that an LLR cost satisfies Axioms 1-4. For the rest of this
section, we denote by C' a cost function that satisfies the axioms. Let N be such that C is
uniformly continuous with respect to the distance dy. We use the same N to define the
set A={0,...,N}"\{0,...,0} introduced in §B.3.
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Lemma 7. Let u and v be two experiments that induce the same vector o € A. Then

C(n) = Cw).

Proof. Conditional on each k € ©, the two experiments induce the same distribution for
(4i0);co- Because £;; = ljo — £;o almost surely, it follows that, conditional on each state,
the two experiments induce the same distribution over the vector of all log-likelihood ratios
(4i5) i jco" Hence, i1; = v; for every i. Therefore, by Lemma 1 the two experiments are

equivalent in the Blackwell order. The result now follows directly from Axiom 1. O

Lemma 7 implies that we can define a function ¢ : A — Ry as ¢(o) = C(u) where p is
an experiment inducing o.

Lemma 8. Consider two experiments p = (S, (u;)) and v = (T, (v;)) that induce o and T
in A, respectively. Then

1. The experiment @ v induces the vector (og * To,...,0n % Ty) € A;
2. The experiment « - v induces the measure ao + (1 — a)dg.

Proof. (1) For every EC R™ and every state 1,

(i x vi) ({(s,1) : (€a(s,2), ... £n(s, 1)) € E})
H1 diy duy, dy ) })
= i X Uj 1 log t),...,log — log — (¢ E
(<) ({00 (1o 2209 + 108 G201, .. o 229 10 21
= (0;%7)(F)
where the last equality follows from the definition of o; and 7;. This concludes the proof of

the claim.
(2) Immediate from the definition of « - p. O]

Lemma 9. The function ¢ : A — R satisfies, for all o,7 € A and « € [0,1]:
1. c(og* 70y 0n xTy) = c(0) + ¢(T);
2. c(lao + (1 —a)dp) = ac(o).

Proof. (1) Let p € & induce o and let v € £ induce 7. Then C(u) = ¢(0),C(v) = (1)
and, by Axiom 2 and Lemma 8, ¢(0g * 70, ...,00 % Ty) = C(p®@v) = ¢(0) + ¢(7). Claim (2)

O

follows directly from Axiom 3 and Lemma 8.
Lemma 10. If 0,7 € A satisfy my = m, then c(o) = c(7).

Proof. Let p be and v be two experiments inducing o and 7, respectively. Let u®" =
1 ...® u be the experiment obtained as the r-th fold independent product of u. Axioms
2 and 3 imply

C((1/r) - p®") = C(n) and C((1/r)-v*") =C(v)
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In order to show that C'(u) = C'(v) we now prove that C'((1/r) - u®") —C((1/r) - v®") = 0
as 7 — oo. To simplify the notation let, for every r € N,

plr] = (1/r) - " and vlr] = (1/r) - v®"

Let o[r] = (o[r]o, ..., 0[r]n) and 7[r] = (7[rlo, ..., T[r]n) in A be the vectors of measures
induced by p[r] and v[r].

We claim that dy(p[r],v[r]) — 0 as r — oco. First, notice that p[r], and v[r]; assign
probability (r — 1) /r to the zero vector 0 € R™+D* Hence

- 1 — 1
i (B[], VIT],) = sup = [W#7,(B) = veri(B)| < .
E T r
For every a € A we have
uPa) = [ 655 dulrls = /R g dolr(©) = mop, (@) (21)

We claim that mg[,) = m,]. Theorem 2 shows the existence of a bijection H : M —
K such that H(m,) = k, for every v € A. The experiment yu®" induces the vector

(o§",...,00") € A, where o;" denotes the r-th fold convolution of o; with itself. Denote

r¥n
such a vector as *". Let 7*" € A be the corresponding vector induced by v®". Thus we

have k, = H(my) = H(m;) = k;, and

H(mysr) = kger = (Kgzry s Kozr) = (Thags -+« 3 Tha, ) = Tg = Tip = Kper = H(mper)

Hence mgy«r = m +r. It now follows from

1 r—1

mgmi(a) = ;mgzﬁ" (a) + 0

r

that m,(,) = m,[;), concluding the proof of the claim.
Equation (21) therefore implies that M} I () =M, g/[r}(a). Thus

(2

Al /1)) = ma dos (a7, ) <

Hence dy(ulr],v[r]) converges to 0. Since C is uniformly continuous, then C'(u[r]) —
C(v[r]) = 0 must converge to 0 as well. This implies C'(u) = C(v).
O

Lemma 11. There exists an additive function F': K — R such that ¢(o) = F(kq).

Proof. 1t follows from Lemma 10 that we can define a map G: M — R such that c¢(o) =
G(myg) for every o € A. We can use Theorem 2 to define a bijection H : M — K such that
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H(my) = ky. Hence F = G o H™! satisfies ¢(0) = F(k,) for every o. For every o,7 € A,
Lemmas 8 and 9 imply

F(ko)+ F(kr) =c(o)+c(T) = c(00%70, .-, 0n % Tn) = FKogrrgs - - - s Bonsrn) = F (Ko + Kr)

where the last equality follows from the additivity of cumulants with respect to convolution.
O

Lemma 12. There exist (Nia);cq qea ™ R such that

c(o) = Z Z Niako, (@) for every o € A.

€O aeA

Proof. As implied by Theorem 3, the set  C R% has nonempty interior. It is closed under
addition, i.e. a subsemigroup. We can therefore apply Theorem 4 and conclude that the

function F' in Lemma 11 is linear. O

Lemma 13. Let (Aia);cq 4ca be as in Lemma 12. Then

c(o) = Z Z XiaMe, ()  for every o€ A

1€EO@ acA

Proof. Fix 0 € A. Given t € (0,1), Lemma 12 and Theorem 2 imply

| q

(-t o
clto+(1-1)%) = Y > Nia 3 SRSV Hlmtw(l_t)(so (A”)
e

i€0 acA A=Al a)er(a) I

-t o »
= 53 Na > T ot [T me: (O7)

€O acA A=(AL,A)eA(a) I : ©op=l
q
= > > Aa > p (Nt ] mo, ()\p))
€O acA A=A, ) EA(a) p=1

where for every tuple A = (A},...,\9) € A(a) we let

()= ATl

Lemma 9 implies ¢(0) = $c(to + (1 —t) §o) for every t. Hence

clo) = Z Z i ( Z p(N)ta 1 H mai()\p)> for all t € (0,1).
A p=1

€0 acA =(AL,..., A0 EA(a)

o4
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By considering the limit ¢ | 0, we have t9~! — 0 whenever ¢ # 1. Therefore

= Z Z XiaMe, (o) for all o € A.

€O acA

O

Lemma 14. Let (X o);co qea b€ as in Lemmas 12 and 15. Then, for every i, if o] > 1
then A\ o = 0.

Proof. Let v = max {|a| : A o # 0 for some i} . Assume, as a way of contradiction, that
v > 1. Fix 0 € A. Theorem 2 implies

clo) = Z Z)\wmgi(a)

€O aeA
1

Tl T o)

€O acA (AL, A €EA(w

For all r € N, let o*" = (03", ...,04"), where each o) is the r-th fold convolution of o;
with itself. Hence, using the fact that Kg¥r = I'kg,, We obtain

’">=22Am(( y o

q!
€0 acA A EA () 4

T e H Koy (AP) ) (22)

By the additivity of ¢, ¢(6*") = rc(o). Hence, because v > 1, ¢(6*")/r7 — 0 as r — 0.
Therefore, diving (22) by 7 implies

1 !
ZZ)\Z"O‘ ( Z *'ﬁrq ’YHK/U )\p ) — 0 asr— oc. (23)
i€O acA ALA)er(a) T p=1

We now show that (23) leads to a contradiction. By construction, if (A!,..., A7) € A(a)
then ¢ < |a|. Hence ¢ <~ whenever \; , # 0. So, in equation (23) we have 7977 — 0 as
r — oo whenever ¢ < 7. Hence in order for (23) to hold it must be that

1 ol 4
> Y A ( D sumsvl | L (Ap)) ~0.
(AL 4= p=1

1€0 acA:|a|=y

If g = v and \; o # 0 then v = |a|. In this case, in order for A = (A\!,..., \9) to satisfy
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p 1 AP = @, it must be that each AP is a unit vector. Every such \ satisfies®®

H"la (AP) (/ §1do; (€ )al"'</Rn§nd0i(f)>an

1 ol ol
DN S u s AN SRR 7 el

(AL A EN (@) ,q=|a (AL A e () q=(al

and

where L(a) is the cardinality of the set of (Al,... A7) € A(a) such that ¢ = |a]. We obtain
that a a
S Y maa ([ 6d0©) ([ Gdn©) =0 ey

1€0 acA:|al=y

By replicating the argument in the proof of Lemma 6 we obtain that the set

{ </Rn & dai(§)>i7j€@7j>0 o€ A} C R(+H1n

contains an open set U. Consider now the function f : R®t)" — R defined as

= Z Z L(a))\@azfj .. 'zz‘g, 2 ¢ R(vH)n
1€0 acA:|a|=y

Then (24) implies that f equals 0 on U. Hence, for every z € U,i € © and o € A such that

laf =~

o

aal Zi,l .o aan Zi,n

L(a)Nio = f(z)=0

hence \; o = 0. This contradicts the assumption that v > 1 and concludes the proof. [

For every j € {1,...,n} let 1; € A be the corresponding unit vector. We write A;;
for A; j. Lemma 14 implies that for every distribution o € A induced by an experiment

(S, (1i)), the function c satisfies

clo) = Z Z /\Z]/ &jdoi(€

1€0 je{l,..,n
= > > Aw/logd s) dpi(s)
€0 je{l,..n
dpo dpo
= > > Aw/IOgd lgdﬂ}(S)—log dﬂ,(S)dui(S)
16@]6{1, N /’L’L /’LZ
361t follows from the definition of cumulant that for every unit vector 1; € R™, ki, ( fRn &5 doi(§).
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dpj dpo _ dpy

Hence, using the fact that T dpy = A We obtain

Mo ()

(o) = > > Am/log L dpy( HZ(— > M)

i€0 je{l,...,n 1€0 je{l,...,n

= Bz]/log Mz () dui(s)

1,j€EO

where in the last step, for every i, we set 3;; = —A;; if j # 0 and Bio = 3240 Aij-

It remains to show that the coefficients (3;;) are positive and unique. Because C' takes
positive values, Lemma 2 immediately implies 3;; > 0 for all 7, j. The same Lemma easily
implies that the coefficients are unique given C.

Appendix E Proofs of the Results of Section 6

Proof of Proposition 3. Let u* € P(A)" be an optimal experiment. Let A* = supp(u*) be

the set of actions played in p*. It solves

R‘G"X‘A* {Z i (Z pila ) Z Bij Z pi(a) log 0 EZ% (25)

acA 1,JEO acA*

subject to Z wi(a) =1 for all i € ©. (26)
acA*

Reasoning as in Cover and Thomas (2012, Theorem 2.7.2) the Log-sum inequality implies
that the function Dgp, is convex when its domain is extended from pairs of probability

distributions to pairs of vectors in ]R‘f*l. Moreover, expected utility is linear in the choice

probabilities. It then follows that the objective function in (25) is concave over R'flx‘m‘.
As (25) equals —oo whenever p;(a) = 0 for some ¢ and pj(a) > 0 for some j # i we

have that pf(a) > 0 for all i € ©,a € A*. For every \ € RI®l we define the Lagrangian
Li(p) as

= [Z g (Z Mz‘(a)U(avi)> — > Bij > wila)log Z =2 i) pila

1€0 acA 1,J€EO acA €O acA

As p* is an interior solution to (25), it follows from the Karush-Kuhn-Tucker theorem that
there exists Lagrange multipliers A € RI®! such that p* maximizes Ly(-) over ]R'_?MA | As
w* is interior it satisfies the first order condition

VL (n*)=0.
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We thus have that for every state i € © and every action a € A*

0= qiui(a) — X — > {/Bz'j [bg (ZzEZD - 1] — Bji

i J

i (a)
uz<a>} ' 27)

Subtracting (27) evaluated at @’ from (27) evaluated at a yields the desired necessary
conditions for the optimality of p*. O

Proof of Proposition 4. We prove a slightly more general result. Assume the coefficients
satisfy 8;; > 1/f(d(i,7))?, where f is a strictly positive and increasing function f.

The cost of the optimal experiment p* must satisfy ||u| > C(u*), otherwise the decision
maker would be better off acquiring no information. Pinsker’s inequality (see Borwein and
Vanderwerff, 2010, p. 13) implies

C(p*) > min{ By, Bji } (Du (w1l 5) + Dxu (i1 17)) > min{ B, BjiHlwr — w517

where || — 15[l = Y4ea |17 (a) — w5 (a)| denotes the total-variation norm between the
two distributions. We then obtain

1
[ — 5l < \/’uulnin{,@ijﬁji} </l f(d(i, 7)) -

In particular, if f is the identity function then |pf — pf < /|lulld(i, 7). O

Proof of Proposition 6. Given a vector u € P({B, R})®, we use the shorthand ; to denote
the probability u;(B) of guessing B in state i. For every p, let

U(N):H<Z(1—Hi)+ >, Mi)—C(M) (28)

i<n/2 i>n/2

be the net expected payoff provided by u, where C' is an LLR cost function such that
Bij = f(|i — j|) for some positive and strictly decreasing function f.

Let P4 be the set of probabilities p such that each u; has support {B, R}. Let pu* be
a solution to the problem max,cp, U(). Such a solution exists and is unique. In fact,
the problem max, cp((p rye U(u) has a solution. Now, if p* is optimal and p* ¢ Py, then
either pf = 0 for every i or pf =1 for every i. In either case U(p*) = U(u), where p € Py
is defined as p; = 1/2 for every i. It follows that the problem max,cp, U(n) admits a

37

solution p*. Over Py the function C is strictly convex,”’ and thus U is strictly concave.

Thus, the solution is unique.

37See Corollary 1.55 in Liese and Vajda (1987)
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We claim that p* satisfies ) Jotr = 1— oy for every r. To see this, define u € P4
as flpjppr = 1 — “2/24 for every r. Because U(u*) = U(u) and U is strictly concave on
P, we conclude that u = p*.

Let I C P({B, R})® be the set of vectors y that are increasing, that is, satisfy p; < pis1
for every 7 < n, and consider the optimization problem

L1, T
The set [ is closed and U is upper semi-continuous. Thus, the problem max,cr U(u) has a
solution. The same argument applied in the previous paragraph implies max,cr~p, U(p)
admits a solution as well, and that such a solution is unique. We denote it by f.

As we show in the next paragraph, the vector ji is strictly increasing: it satisfies
fii < fii+1 for every i. This implies pu* = fi. Indeed, we have U(u*) > U(f1), since p* is
obtained by maximizing U over a larger domain. If U(u*) > U(ji) the concavity of U
implies U(ap* + (1 — a)i) > U(i) for all a € [0,1]. Because fi is strictly increasing, then
for « small enough the vector ap* + (1 — a)ft belongs to I, contradicting the optimality of
fu. It follows that U(u*) = U(f1), and hence pu* = fi, since the problem max,cp, U(u) has
a unique solution.

We now show i is strictly increasing. Given v, p € (0,1) we denote by D;(v||p) and
Dy (v||p) the partial derivatives of the Kullback-Leibler divergence Dk, with respect to its

the first and second arguments:

P 1—p
D =logt —1
1(pllv) = log = —log —
p 1—p
D =_r .
2plv) =2+ 17—

Both derivatives are equal to zero if and only if v = p.

As a way of contradiction, suppose fi is not strictly increasing. Let [i, k] be a maximal
interval of states over which i is constant. Let u® be the vector obtained from [ by
increasing fix, by € > 0 and decreasing [i; by € (since i € P4, both operations are feasible
for £ small enough). The function € — U(u°) is differentiable. Its derivative at £ = 0 is
equal to
sgn(k —n/2

) S B (Dl )+ D1 (i 15))
©] o

sgn(i —n/2 o o

(\@\/)+2 Bij (D2 (fij | i)+ D1 (fire]| ) -
J#

(29)

Since /i is constant in the interval [i, k], then D1 (;|fim) = D2(f|ftn,) whenever i < j <
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m < k. We can therefore rewrite (29) as

k _
W = > Bir(D2(fillix) + D1l 2g)) =D Bie(D2 (sl fir) + D1l i)
>k j<i
S S (D) + D)) + 32 B (Dalis )+ Da(lg)
>k j<i

(30)

The derivative (30) is strictly positive. Indeed, because k > ¢ then sgn(k — n/2) — sgn(i —
n/2) > 0. Whenever j > k, since fi; > i, = fi; and D is strictly convex over Py, we have

Do(fj|lfu) = Da(f||fui) < 0 and Dy (fu||fi;) = D1(fuillfrj) < 0

Moreover 3, > f3j; since |j — k| < |i — k[. It follows that

=D Bik(D2(fi;ll i) + Dr(inllisg) + D Bij (D2l ) + D (fuill i)
i>k >k

is strictly positive if k < n, and equal to 0 if K = n. An analogous argument shows that

= Bie(Da(pjllan) + Dr(illizg) + D Bis(D2(fijll i) + Da(fallfty)

1<t 1<t

is strictly positive if i > 0, and equal to 0 if i = 0. Because [i € P4, then either k < n/2+r,
i >mn/2 —r, or both. This implies that (30) is strictly positive. Hence, for small enough e,
the vector u® satisfies U(u®) > U(f1), contradicting the hypothesis that /i is optimal. We
therefore conclude that f is strictly increasing, and thus p* is strictly increasing as well.
Because p* satisfies p1 Jotr = 0 oy for every r, and p* is strictly increasing, it follows
that m; > m,; for every pair of states such that |i —n/2| > |j —n/2|. O

Proof of Proposition 7. Denote by P, be the set of probabilities 1 € P({a1,az})? such
that supp(p) = {a1,a2}. Let p € P, be an optimal experiment. We first show that u
satisfies p1(a1) = pa(az). To see this, define y' as p)(a1) = pe(az) and ph(az) = pa(aq).
Let " = %u + % i'. By the symmetry of the payoffs functions and of the prior, we have

Z%’ <Z Mz’(a)u(a,i)> = Z i (Z ué(a)u(a,i)) = Z % <Z u%’(a)u(a,i)) )

€O acA €O acA 1€0 acA

Moreover, C(p") < 3C(pu) + 3C(p') if p # 1, as C is strictly convex on Py. Since p is
optimal, it must be that u = p'.
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The optimality equation MBj (a1, as) = MCj(a1,az2) can now be rewritten as

=06 Cos () ¢ (o ()]

with {(z) = x + €. Simple calculations show the expression is in turn equal to

33 =€ (e (5 ‘_‘[ZW & (1on (5 f[fc]m)) = (1ex (5 fﬂv]))

where ((z) = 2z 4 e* — e~*. The result now follows by defining n = ¢~

O

Proof of Proposition 5. Consider a decision problem described by a payoff function u and

a prior ¢. let u and y' be the optimal choice probabilities obtained under the co
(Bij) and (B};). The optimality of 1 and p' implies

Zqz u(i, a)pi(a Zﬁu (uillg) =D qiuli, a)pi(a Zﬂu (i 145

1a

qu za,ul Zﬁm Mz”ﬂg >Z¢]@ u(i,a)pi(a Zﬁz] (il pe5)

1(1

Rearranging the two inequalities leads to

Zﬁlj ILL’LHIu’] (:u74||)u] > qu u(t a)(#z > Z/B’Lj Mz”:uj
,a

The result now follows.

Appendix F Proof of Proposition 2 and Extensions

efficients

D(pil|p))-

O

Proof of Proposition 2. Denote by w > 0 the length of W. Let |©] = n. By Axiom a there

exists a function f: (0, w) — Ry such that ﬁg = f(|i — j]) for i # j. Hence, if we

translate

W then BS remains unchanged. We can therefore assume without loss of generality that

W = (=d,w — ), for any ¢ € (0, w).

Let g: (0,w) — Ry be given by g(t) = 1f(t)t>. The Kullback-Leibler divergence
between two normal distributions with unit variance and expectations i and j is (i — 7)?/2.

Hence, by Axiom b there exists a constant x > 0, independent of n, so that

- Z ﬁw = Z g(li —j|) forany © € T

1#jEO 1#jEO
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We show that (31) implies that

so that

1 K 1
B9 =29(i — i) 5 = —
e AT O VI
which will complete the proof. The case n = 2 is immediate, since then © = {i,j} and so
(31) reduces to

1
5 =2g(Ji = jI).

We now consider the case n > 2. Let © = {i1,i2,...,ip—1,2} with i] < iy < --- <
in—1 <z and x € (0,w — ¢). Then (31) implies

n—1 n—1k—1
k=2 gle—i)+2) > g(ir — i)
/=1 k=1 /(=1

Taking the difference between this equation and the analogous one corresponding to
© = {iy,i2,...,in—1,y} with y € (z,w — J) yields

n—1
0= glx—ip) —gly — i)
(=1
Denoting i; = —e, for some ¢ € (4,0), we can write this as
n—1
O0=g(z+e)—gly+e)+ > glz—in) —gly —ir).
(=2

Again taking a difference, this time of this equation with the analogous one obtained by
setting 71 = 0, we get

g9(x) —g(y) = g(x +¢) — g(y +&).
Rearranging yields
gy+e)—gly) =g(x+e)—g(x) for all x,y € (0,w —¢) and € € (0,9). (32)
Accordingly, for € € (0,9) denote

h(e) = g(z +¢) — g(), (33)
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where by (32) the right hand side does not depend on the choice of z € (0,w —d —¢). It
follows that

h(e1 +e2) = [g(x +e1+¢e2) —g(z +e1)] + [9(x + 1) — g(z)] = h(e1) + h(e2)  (34)

for all €1,e2 € (0,9/2). That is, h satisfies the Cauchy functional equation on (0,6/2).
Since g is non-negative, it follows from (31) that g is bounded by k. Hence the absolute

value of h is bounded by &, by (33). It follows that lim._,o h(¢) = 0. Otherwise, there is

some n such that |h(e)| > k/n for arbitrarily small e, and then, by repeated application of

(34),
h(ne) = nh(e) > &,

where we choose ¢ small enough so that ne < /2.

From lim._,oh(¢) = 0 and (34) it follows that h is continuous on (0,6/2). As the
Cauchy equation easily implies that h is linear when restricted to the rationals, continuity
implies that A is linear on (0,d/2). Thus, by (32) g is affine on (0,w — ¢), and of the form
g(t) = at+0b for some a,b € R. We claim that it must be that a = 0. Otherwise, for a given
© = {i1,...,in-1,7}, D izjco 9(|i — j|) changes with z, in violation of (31). It follows that
g is constant on (0,w — ¢). And since we can take ¢ arbitrarily small, g is constant on its

domain (0,w). Finally, for (31) to be satisfied, this constant must be T 7’;71). O

Axiom b calibrates the parameters (ﬁg ) using an experiment consisting of a measure-
ment with Normally distributed noise. Different distributions for the noise would lead to
different representations for the coefficients. For example, a natural alternative would be
an experiment (R, (&;);co) where each &; is Laplace distribution with variance 1 and mean
equal to the state i (the corresponding probability density function is f(x) = %e‘x_i‘). The
divergence D(&;]|€;) between any two such distribution is

e =il i —jl -1

As in the Normal case, this is a decreasing function of the distance between states. Even
if the distribution used in axiom b is different, the proof of Proposition 2 can be applied
with almost no modifications, and leads to a representation with parameters

K 1
(n—1) e~ li—il + li — 7] — 1

o _
ﬁij—n
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Appendix G Identification

Consider the setup of §6.4, and given a pair of choice probabilities (p1, p2) define the

quantities
X Iy =l +log &t v Bgh4logh
127 012 lf 2 and P = 2 (11—112)22 ?1 2
Iils (log E) Lily (log E)

Proposition 11. The choice probabilities (u1, u2) are the optimal solution with respect
to an LLR cost function if and only if 312 and Bgl are non-negative and at least one is
positive.

Proof. As shown by Proposition 10, C'is a convex function. We note that the condition (14)
is equivalent to (13) which equals the first order condition for the optimization problem,
which is sufficient because of the concavity of the optimization problem. If at least one of
31,2, 32,1 is positive, then the solution of the optimization problem is internal and the first
order condition applies. Conversely, if both are zero then the optimization problem has no
solution within its domain. O

Appendix H The cost of bounded experiments with binary state

In this section we restrict ourselves to the case of a binary state space © = {0,1}, and the
class of bounded experiments B: an experiment is said to be bounded if the beliefs that it
induces are bounded away from 0 and 1. In terms of log-likelihood ratios, it is bounded
if there is some M such that £p1(s) is po- and pi-almost surely in [—M, M]. The class of
bounded experiments is contained in the class £ of experiments considered in the rest of
the paper. The bounded experiments contain all the experiments that have a finite set of
possible realizations, and in which not state is ever conclusively excluded.

As we discuss above, a strengthening of Axiom 1 is Blackwell monotonicity: C is said
to be Blackwell monotone if C(u) > C(v) whenever If p Blackwell dominates v.

For the class of bounded experiments, we show that 2 and 3 are sufficient for proving
that a Blackwell monotone cost is an LLR cost: the continuity axiom 4 is not needed.
This proof heavily relies on a recent result of Mu, Pomatto, Strack, and Tamuz (2020),
which characterizes the monotone and additive functions on the class of bounded Blackwell
experiments with binary state. An extension of this result to large state spaces is currently
out of reach, and so we do not have a more general proof. Nevertheless, we conjecture that
the continuity axiom is generally redundant.

Theorem 5. Let © = {0,1}. A Blackwell monotone information cost function C: B — Ry
satisfies Azxioms 2 and 3 if and only if there exist Bo1, B10 > 0 such that for every experiment
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p € B,
C(p) = BorDxr(pollpe1) + BroDkr(pe || o)

Before proving Theorem 5, we will introduce some definitions and results from Mu
et al. (2020).

For t € (0, 00|, we denote by Ry(uo|li1) the Rényi t-divergence between two probability
1o, p1 defined on the same measurable space S. For t # 1, t # oo,

B 1 dMO t—1
Ri(pollin) = 1= 1og | (dul<s>) dios).

Fort=1 d
Ry (poll) = / tog S22 (5) duo(s) = Dict. (o).
S M1

For t = 00, Roo(ft0||pe1) is the essential maximum of the log-likelihood ratio log g%. Note
that Ry(uol/p1) is always non-negative, and positive whenever pg # 1. Note also that if
log g% is almost surely in [—M, M] (as is always the case for bounded experiments, for
some M) then R < M.

The following result is a reformulation of Theorem 2 in Mu et al. (2020) (see also

Lemmas 5 and 6).38

Theorem 6 (Mu et al. 2020). An information cost function C: B — Ry satisfies Axioms 1
and 2 if and only if there exist two finite Borel measures mgy, my on [1/2,00] such that for
every bounded experiment u = (S, o, n1) it holds that

Cu = [ Rulpollp) dmo(®)+ [ Rilynluo) dm ()
[1/2,00] [1/2,00]

Using this result, we can now prove Theorem 5.

Proof of Theorem 5. The argument that this representation satisfies the axioms is identical
to the same argument in the proof of Theorem 1. It thus remains to be shown that the
representation is implied by the axioms.

By Theorem 6,

C(p) = Bor Dxw(pollp1) + BroDxr(pa || o)

[ Rl dmo®) + [ Riulluo) dmi ()
[1/2,1) (1/2,1)

+/(1,oo] Rt(uollm)dmo(t)+/(1 Ry ||peo) dma (2). (35)

,O0

38The data processing inequality in that paper is monotonicity with respect to deterministic garblings,
which is implied by Blackwell monotonicity. The additivity there translates immediately to additivity in
the sense of Axiom 2.
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for some (o1, f10 > 0 and mg, m; finite Borel measures on [1/2, co] that assign measure 0
to the singleton {1}. To prove the claim, we show that my and my are the zero measures.

Let u = (S, po, i11) be a non-trivial bounded experiment, and let v = (1/r) - u®" for
some 7. It follows from the definition of Rényi t-divergences that for ¢ £ 1, ¢t # oo

r— t—1 r
Rt@ouul):tfllog( fﬁ(/s(jﬁf(s)) duo(3)> )

Now, for = > 1,

-1 1
lim log (T + :):”) = 00,
r

r—00 r

and for z < 1 this same limit is 0. It thus follows that for ¢ > 1 (including, trivially, t = c0)
i Ri(vollv) = oo, (30)

since R; is positive for non-trivial experiments, and so the integral in the expression for R,
is strictly greater than 1. For ¢ < 0

Jim Ry(voll) =0, (37)

since, again by the positivity of R;, the integral in the expression for R; is strictly less
than 1.

It follows from (36) that both mg and m; must assign no mass to (1, ool, i.e. mo((1, 00]) =
my((1, 00]) = 0, since otherwise the integral [, . Re(pollp1) dmo(t) or [ o) Re(piol|p1) dma(t)
would diverge and by (35) the cost of the experiment (1/r) - u®" would diverge

Tim C((1/r) - 147 = o0

This would contradict the axioms which imply that C((1/r) - u®") = C(u). It then follows
from (37) that mo((1/2,1)) = m1((1/2,1)) = 0, since otherwise

lim C((1/r) - pu®") < C(p). O

T—00

Appendix I Uniform Separable Bayesian LLR Cost

Proof of Proposition 8. 1t is straightforward to verify that if the parameters satisfy 3;;(q) =
7ij4i, then C' is uniformly posterior separable. We now prove the opposite implication.
Fix a prior ¢ with full support, and consider an experiment u where the set of signal
realizations is a product Sy x So, with S a finite set, and each pu; satisfies p;({s} x Sz) > 0
for every s € S;. We denote by p) the marginal of p; on Sy, and by p;(+|s) the measure on
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S9 obtained by conditioning u; on s € Sy.
The chain rule for the KL-divergence implies that the cost of such an experiment can

be written as

Zﬁm Dxr(pille) + Y pi(s1)Dxe(pa-s) g Cls)) |- (38)

S1€51

Now assume C' is uniformly posterior separable with respect to a function G. The
cost of the experiment p can then be written as follows. It will be convenient to denote
posterior beliefs as random variables defined over the probability space (O x S; x Sa,P)
where P is obtained from ¢ and p in the obvious way. Let p? be the posterior belief over
O obtained by conditioning g on a realization (sq,s3), and let p' be the posterior belief
obtained by conditioning ¢ on a realization s;. Then

C(p.q) =E |G(r*) — GO + G') — G(a)]
E[G(p') - Gla)| + > Ps1)E[GE*) - GoMIp' = a(-|s1)] -

51€851

Now consider the experiment ((u}),S) which consists of observing the first realization s;
but not the second. By uniform posterior separability, its cost, at the prior g, is given by

E{G(p ] 2/81] ) Dxr( M@HM])

Given a realization s; € S, consider the experiment ((u;(+|s1)),S2). By considering now

p' = q(:|s1) as a prior, uniform separability implies that the cost of the experiment

((ui(-|s1)), S2) is equal to

E {G’(pQ) ~G(Hp' = } Zﬁm (*ls1)) Dxr (pa (-1s1) 125 (-|51))-

The last two equations imply that the cost C'(u, q) can be rewritten as
Zﬁm VD (i ll5) + D Ps1) (Z Bij(q(-[s1)) D (pa(-|s1) |5 (- |81))) . (39)
51€51

This equation can be interpreted as saying that the cost of running the experiment p
is equal to the cost of running the first experiment ((u}),S1) plus the expected cost of
running the second experiment ((u;(+|s1)), S2), conditional on the signal realization s; from
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the first experiment. By equating (38) and (39) we obtain that
> 3 [Bu@nd (s1) = P(s1)Bij(a([51))] Drr(pa(-ls1)llp (1)) = 0. (40)
$1€S1 ij

Given a particular realization s; € S1, we are free to choose p such that all the conditional
experiments ((u;(+[s})), S2), s} # s1, are completely uninformative, and hence have cost 0.
Thus, it must hold that for every s; € Sy,

> [Bi@nd (s1) = B(s1)By(a(-1s1))] Dice.(aCls) s (Js1)) = 0.

ij
By Lemma 2, the latter can hold only if
Bij(@)ui (s1) = P(s1)Bij(q(-]51))-

By dividing and multiplying the left-hand side by ¢; and then applying Bayes’ rule we

obtain that
Bij(a) _ 5@'((]('\81))'
qi q(+[s1)
Given any ¢’ € P(©) with full support, we can choose p such that ¢(-|s1) = ¢ for some s;.

The conclusion now follows by defining ~v;; = 5i;(q)/¢:- O

Prior Dependence of Bayesian LLR Cost. As we prove in Proposition 8, the only
uniformly posterior separable LLR cost potentially assigns different cost to the same
experiment at different prior beliefs. We next explore which experiments have prior
dependent cost, through a simple example of binary experiments. Consider the standard
setting of a binary state space © = {1,2}, and an experiment y with a binary signal which
equals the state with some probability 1/2 < r < 1. For concreteness, imagine a coin whose
probability of heads depends on the state and is either r or 1 — r, and the experiment p
consists of tossing the coin. Consider a Bayesian LLR cost, with b1o = by = b. In this
case, even though the effective (/3;;)’s depend on the prior, a simple calculation shows that
the cost of the experiment does not, and equals

C(u, q) = b(2r —1)log d

for every prior ¢.%
Consider now the experiment v in which the coin is tossed until a “heads” outcome.

39This contrasts with mutual information, where the prior affects the cost of this experiment: the cost is
highest for the uniform prior, and vanishes as the prior tends towards certainty.
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Under Bayesian LLR costs, the cost can be calculated to be

C(v,q) = (qu + 1(1_274) Clu, q).

This cost does depend on the prior: as the above display shows, it is equal to the cost
of one toss of the coin, times the expected number of times that it is to be tossed. The
latter quantity depends on the prior, in the obvious way. This cost is thus consistent with
our additivity axiom, in the sense that this one-shot experiment v—which is equivalent to
a dynamic experiment in which p is carried out a random number of times—has a cost
that equals the expected number of repetition of u, times the cost of each independent
realization of p.

We generalize the example of a biased coin toss to any experiment p for which
Dy (p||pe2) = Dir(p2]|p1). As the next proposition shows, this condition exactly captures
prior independence of Bayesian LLR costs, in the symmetric case in which b5 = bo7.

Proposition 12. Let © = {1,2}. Let C be a uniformly posterior separable Bayesian LLR
cost specified by bio = bag = b > 0. Let p be a Blackwell experiment. Then the following
are equivalent.

(i) Dxr(pallp2) = Drr(pellp)-
(i) C(u,q) is independent of the prior q.

Proof. Under the assumption that bjg = by; = b > 0, the cost of an experiment p at prior
qis
C(u,q) = bl Dxe(pllp2) + g2 Dk (pallp)] -

Clearly, this quantity depends on ¢ if and only if Dxy,(p1||p2) # Dxr(pe||p1)- O
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