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Structure prediction and materials design
with generative neural networks
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" Check for updates

The prediction of stable crystal structures
isanimportant part of designing solid-

state crystalline materials with desired
properties. Recentadvancesinstructural
featurerepresentations and generative neural
networks promise the ability to efficiently
create new stable structures to use for inverse
design and to search for materials with tailored
functionalities.

Solid-state crystalline materials can be accurately modeled using
first-principles quantum mechanical calculations, as long as their
underlying crystal structures are specified. For materials of unknown
structure, however, predicting their properties requires an additional
step of crystal structure prediction (CSP). CSP aims to discover stable
and metastable structures given only the chemical formula (and the
number of atoms in the unit cell), by locating the Gibbs free energy
minima under certain thermodynamic pressure and temperature
conditions. Achieving this task requires accurate computation of
the potential energy surface and a powerful optimization technique.
Efficient optimization methods such as evolutionary algorithms and
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Fig.1|Material property prediction and inverse design. a, Schematic showing
traditional material property prediction from the structure space to the property
space (downward arrow), and inverse material design from the property space
back to the structure space (upward arrow). b, ¢, Two popular generative

models for structure prediction: the variational autoencoder (VAE) (b) and the
generative adversarial network (GAN) (c). The VAE consists of an encoder that
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particle swarm optimization have led to the discovery of various
new materials'?.

A typical CSP task scans through thousands of structures and
performs the corresponding energy calculations. It is computation-
ally expensive, especially for materials with ternary or quaternary
(or higher-order) compositions. For this reason, large-scale materials
discoveryremains challenging. More recently, generative models have
provided promising new opportunities to tackle these challenges,
because once they are trained, they can produce new structures much
faster than traditional CSP techniques can**. However, developing
generative models for CSP is highly non-trivial, given that it requires
aninvertible representationto map athree-dimensional (3D) crystal to
the feature space, and acorresponding reverse mapping. Italsoneeds a
target database that s statistically representative of the system of inter-
est. Despite these non-trivial problems, several recent studies®™° have
demonstrated the feasibility of using generative neural networks for
the efficient and accurate prediction of new stable crystal structures.

Generative models

Machine learning models can generally be categorized into discrimina-
tive models and generative models. Discriminative models focus on
predicting the datalabels and drawing boundariesin the feature space.
On the other hand, generative models focus on explaining how the
datawas generated and trying to model how datais placed throughout
the space. Therefore, although discriminative models can achieve a
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transforms the input sample feature vector to alatent distribution space, and a
decoder that reconstructs the sample given the hidden distribution. The VAE also
models the latent space vector zfrom a normal distribution N(, o) witha mean
pand astandard deviation 0. GAN uses a generator to transform a random noise
variableinto the generated sample, and a discriminator to distinguish whether a
sampleis real or generated.
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direct forward mapping of crystal structure to material property, they
areunable torealize inverse designin the way that generative models
can (Fig. 1a). In essence, a generative model learns the distribution of
the dataitself, and then samples new data instances from the learned
distribution, which enables the exploration of a more diverse output
of crystal structures. In the domain of inverse design, two types of
generative model are popularly used for crystalline materials®*: a vari-
ational autoencoder (VAE) and a generative adversarial network (GAN)
(Fig. 1b,c). A key characteristic of generative models is their ability
to map any data point in the learned latent feature space back to its
corresponding crystal structure in the materials space. Generative
models could provide better compositional and structural diversity
than substitution-based enumeration in high-throughput calcula-
tions, and better structural generation efficiency than conventional
CSP techniques.

AVAE, whichiscomposed of anencoder and adecoder, is trained
to minimize the reconstruction error between the decoded data and
theinputdata. However, instead of encoding aninput as asingle point
inthelatent space, the encoder treats the input as (the parameters of)
adistribution over the latent space. A new data point zfrom the latent
space can then be sampled and decoded. The encoded distributions
aretypically chosen to be normal N(i, o) withamean gz and astandard
deviation 0. Representative VAE structure predictorsinclude iMatGen",
the Fourier-transformed Crystal Properties (FTCP) framework’, and
the Constrained Crystals Deep Convolutional Generative Adversarial
Network (CCDCGAN)®. Specifically, FTCPaddsatarget-learning branch
tomap latent points to target properties (withan additional property-
mapping loss). CCDCGAN employs a VAE to learn a reverse map from
alatent 2D crystal representation back to crystal structures, and then
uses the representation to train a GAN to generate new crystal struc-
tures. VAEs are relatively easy to train, and they provide more diversi-
fied structures that cover the distribution better than other generative
models. However, VAEs have the potential drawback of a low output
validity rate (that is, some results may not be valid). In computer vision
tasks, VAE models may produce unrealistic, blurry samples, partly
owing to the assumption that the embedding feature space follows a
Gaussian distribution.

A GAN, which uses the idea of aminimax game in game theory, uses
two networks: the generator, G, which transforms a random variable
zinthe latent space into the generated sample G(z), and the discrimi-
nator, D, which distinguishes whether a sample is real or generated. A
GAN s trained so that Gmaximizes the probability that D misclassifies
agenerated sample as areal one (thatis, Gwants to ‘fool’ Das much as
possible), and that D makes the best possible distinction between real
and generated samples. This allows G to learn the distribution of the
real data.Inaddition, conditional GANs allow the extension of the latent
variable zwith desired conditions, such as user-desired composition,
as in the Composition-Conditioned Crystal GAN®. Another network
branch is often added to predict the property of G(z) and to include
this predictionin theloss to produce crystal structures with the desired
property, as in CCDCGANP. This idea is similar to the target-learning
branch of the FTCP framework™. Crystal GAN® further utilizes a cross-
domain GAN to generate complex ternary palladium-hydrogen-nickel
structures starting from simpler binary Pd-H and Ni-H structures. In
computer vision tasks, GANs generally produce better photo-realistic
images. However, compared to a VAE, a GAN is more difficult to train,
as it can exhibit issues such as non-convergence (where the model
parameters oscillate and fail to converge), mode collapse (where the
generator produces limited sample varieties), and diminished gradient

(where the discriminator is so successful that the generator gradient
vanishes and learns nothing). Thus, overall, balancing the generator
and discriminator in a GAN is essential to prevent overfitting.

Featurerepresentation

Typically, the structuresin materials databases are stored in the Crystal-
lographicInformation File (CIF) format, which often serves as the input
for feature representation. Representing adiscrete crystal structurein
the continuouslatent feature space s the firstimportant step towards
structure prediction using generative models. There are currently
two main approaches: continuous 3D voxel representation, in which
encoders and decoders respectively prepare 2D crystal graphs and
reconstruct 3D voxelimages, and matrix representation, wherein crys-
tal structure features such as lattice parameters, atomic occupation
coordinates, and elemental properties are separated into different
matrix rows and columns.

IniMatGen", for example, an encoder is first trained to compress
images of 3D voxels (for lattice parameters and atomic positions) into
asingle image, from which a decoder then reconstructs the crystal
structure. CCDCGAN® considers a 3D voxel representation using alat-
tice autoencoder, which first converts the atomic positions onto a voxel
grid with smearing; the voxel grids are further transformed into 1D
vectors, which areencoded intoa 2D crystal graph. Inthe Composition-
Conditioned Crystal GAN?, a point cloud representation is utilized to
decrease the memory requirements substantially, by constructing a
2D matrix representation of unit cell parameters and atomic fractional
coordinates. The FTCP framework' revisits the point cloud representa-
tion by considering both real-space and reciprocal-space features, with
aFourier transformed elemental property matrix and Miller indices, all
in2D matrix form. Inthe above representations, areversible mapping
fromthelatent space back to the materials space is necessary.

Inaddition toreversibility between the latent space and the mate-
rials space, structure feature representation in principle needs the
property of invariance. Because of the underlying crystal symmetry
groups, arepresentation undergoing translation, rotation, or permu-
tation of the crystal axes (for example) should be invariant, meaning
that it still represents the same latent space data point. In practice,
however, afully reversible and invariant schemeisstill absentin the lit-
erature”. Other crystal feature presentation ideas should be explored,
such as E(3)-equivariant graph neural networks’, which can preserve
known system properties under equivariant transformations. Another
potentialissue with feature representation concerns the loss of fidelity
during a reverse mapping. In other words, when a latent space point
is reversely mapped back to the materials space, the resulting crystal
structure is not identical to the original one. To what extent a given
input structure can be fully reconstructed and how significant is the
error caused by the fidelity loss in the reconstruction needs tobe more
carefully determined, for instance, via uncertainty quantification.

Training data
Current generative models employ mainly experimental databases
suchas thelnorganic Crystal Structures Database®, and computational
databases such as the Materials Project’. To ensure sufficient structural
and elemental diversity, additional high-throughput calculations with
element substitutionsinknown crystal structures or dataaugmentation
techniques are often performed to achieve a statistically representa-
tive data distribution.

Forexample, the training datainiMatGen" was created by taking 25
unique vanadium-oxygen compositions from the Materials Project and
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substituting these compositions into 10,981 binary metal structures,
also in the Materials Project. This led to the rediscovery of 26 out of
3lexisting V,0, structures in the Materials Project, and 40 previously
unidentified new structures with energies of around 80 meV per atom
above the convex hull. CCDCGAN" studied Bi-Se systems, whereas the
Materials Project database contains only 17 known Bi-Se materials.
The training data were generated similarly, where 10,981 prototype
structures were substituted with Bi-Se, by limiting the maximum
number of atoms per unit cell to 20 and the maximum lattice constant
to10A; 9,810 structures were converged in subsequent first-principles
calculations. The Composition-Conditioned Crystal GAN’ studied
Mg-Mn-0 systems. The training data were also generated by element
substitution of ternary compounds in the Materials Project, with an
initial dataset of 1,240 structures with 112 compositions. The training
data were further augmented by adding rotated and translated unit
cells, as well as supercell structures. This data augmentation yielded
1,000 structures for each composition, leading to 112,000 Mg-Mn-0O
structures. After the training, the GAN model was utilized to create
9,300 unique structures for high-throughput calculations, where 23
new Mg-Mn-O crystals were discovered. These studies indicate that
current generative models are capable of generating the structures
of real materials and also of producing new stable ones. However, for
a given material system, each generative model needs to be trained
individually with data augmentation, since existing databases remain
too small to develop a comprehensive and generic generative model
that works for all materials.

Naturally, the quality of the training data has a crucial rolein deter-
mining the performance of the resulting generative neural networks.
Sufficient data (meaning, 10° to 10°) with high structural diversity
(meaning, 10° to 10*) are needed, otherwise the model may be biased
duringthetraining. Inaddition to element substitution of known struc-
tures in open materials databases, data augmentation (for example,
utilizing invariance of the unit cell?) and active transfer learning
could be helpful. Conventional CSP optimization techniques could
also help to alleviate the problem by searching both stable and meta-
stable structures for the training of generative models. The resulting
structures produced from generative models canin turn be supplied
asseed structures in CSP searches. Finally, achieving the inverse design
of properties beyond the formation energy requires a corresponding
database (for instance, for mechanical, electronic, and thermal trans-
port properties). For example, the FTCP* framework has attempted
to target properties such as the bandgap and thermoelectric power
factor. The lack of a relevant property database can potentially be
mitigated by high-throughput density functional theory or force-field
molecular dynamics calculations, or by machine learning simulations
such as the Crystal Graph Convolutional Neural Network (CGCNN)™,
which can provide rapid property prediction once the underlying
crystal structures are known.

Conclusion and perspectives

Since existing materials feature representations are based mainly on
images or encoded latent feature vectors, ConvNets, or multi-layer
perceptrons, dominate the neural network models under study. Even
thougharchitectures such as CGCNN' have emerged for forward map-
ping from materials to their latent features for property prediction,
anexplicit formulation converting them back to 3D crystal structures
ininverse design remains an open problem. Although there are chal-
lengesindeveloping future generative models for large-scale structure

prediction and materials design, once trained, these models could
expedite materials discovery by orders of magnitude when compared
to conventional optimization techniques. Ideally, generative models
should be able to tackle the inverse design of small problems where
datais limited in quantity, as well as large problems with many crys-
tallographic degrees of freedom. Therefore, more demonstrations of
generative models with less training data or broader scopein training
compositions and structures are important areas of future study.

Meanwhile, many studies have applied graph convolutional net-
works to generate organic molecules”, where physics-inspired models
such as flow and diffusion models have been employed alongside VAEs
and GANs. It would be interesting to test whether these models are also
adaptable forinverse design of crystal structures. Besides generative
models, reinforcementlearning, such asin the Monte Carlo tree search,
hasbeen utilized to discover material structures with desired proper-
ties'®, by performing guided structural growth (one atomat a time, for
example) along promising directions. Finally, itisimportant toaddress
whether the machine learning models can provide a measure of the
synthesizability of the discovered hypothetical materials for practical
applications. For example, FTCP" has addressed the synthesizabil-
ity issue by examining whether the generated structures exist in the
experimental Inorganic Crystal Structures Database. More research
along these linesis needed.
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