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Structure prediction and materials design 
with generative neural networks

Da Yan, Adam D. Smith & Cheng-Chien Chen

The prediction of stable crystal structures 
is an important part of designing solid-
state crystalline materials with desired 
properties. Recent advances in structural 
feature representations and generative neural 
networks promise the ability to efficiently 
create new stable structures to use for inverse 
design and to search for materials with tailored 
functionalities.

Solid-state crystalline materials can be accurately modeled using 
first-principles quantum mechanical calculations, as long as their 
underlying crystal structures are specified. For materials of unknown 
structure, however, predicting their properties requires an additional 
step of crystal structure prediction (CSP). CSP aims to discover stable 
and metastable structures given only the chemical formula (and the 
number of atoms in the unit cell), by locating the Gibbs free energy 
minima under certain thermodynamic pressure and temperature 
conditions. Achieving this task requires accurate computation of 
the potential energy surface and a powerful optimization technique. 
Efficient optimization methods such as evolutionary algorithms and 

particle swarm optimization have led to the discovery of various  
new materials1,2.

A typical CSP task scans through thousands of structures and 
performs the corresponding energy calculations. It is computation-
ally expensive, especially for materials with ternary or quaternary 
(or higher-order) compositions. For this reason, large-scale materials 
discovery remains challenging. More recently, generative models have 
provided promising new opportunities to tackle these challenges, 
because once they are trained, they can produce new structures much 
faster than traditional CSP techniques can3,4. However, developing 
generative models for CSP is highly non-trivial, given that it requires 
an invertible representation to map a three-dimensional (3D) crystal to 
the feature space, and a corresponding reverse mapping. It also needs a 
target database that is statistically representative of the system of inter-
est. Despite these non-trivial problems, several recent studies5–10 have 
demonstrated the feasibility of using generative neural networks for 
the efficient and accurate prediction of new stable crystal structures.

Generative models
Machine learning models can generally be categorized into discrimina-
tive models and generative models. Discriminative models focus on 
predicting the data labels and drawing boundaries in the feature space. 
On the other hand, generative models focus on explaining how the 
data was generated and trying to model how data is placed throughout 
the space. Therefore, although discriminative models can achieve a 
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Fig. 1 | Material property prediction and inverse design. a, Schematic showing 
traditional material property prediction from the structure space to the property 
space (downward arrow), and inverse material design from the property space 
back to the structure space (upward arrow). b, c, Two popular generative 
models for structure prediction: the variational autoencoder (VAE) (b) and the 
generative adversarial network (GAN) (c). The VAE consists of an encoder that 

transforms the input sample feature vector to a latent distribution space, and a 
decoder that reconstructs the sample given the hidden distribution. The VAE also 
models the latent space vector z from a normal distribution N(µ, σ) with a mean 
µ and a standard deviation σ. GAN uses a generator to transform a random noise 
variable into the generated sample, and a discriminator to distinguish whether a 
sample is real or generated.
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(where the discriminator is so successful that the generator gradient 
vanishes and learns nothing). Thus, overall, balancing the generator 
and discriminator in a GAN is essential to prevent overfitting.

Feature representation
Typically, the structures in materials databases are stored in the Crystal-
lographic Information File (CIF) format, which often serves as the input 
for feature representation. Representing a discrete crystal structure in 
the continuous latent feature space is the first important step towards 
structure prediction using generative models. There are currently 
two main approaches: continuous 3D voxel representation, in which 
encoders and decoders respectively prepare 2D crystal graphs and 
reconstruct 3D voxel images, and matrix representation, wherein crys-
tal structure features such as lattice parameters, atomic occupation 
coordinates, and elemental properties are separated into different 
matrix rows and columns.

In iMatGen11, for example, an encoder is first trained to compress 
images of 3D voxels (for lattice parameters and atomic positions) into 
a single image, from which a decoder then reconstructs the crystal 
structure. CCDCGAN13 considers a 3D voxel representation using a lat-
tice autoencoder, which first converts the atomic positions onto a voxel 
grid with smearing; the voxel grids are further transformed into 1D 
vectors, which are encoded into a 2D crystal graph. In the Composition-
Conditioned Crystal GAN5, a point cloud representation is utilized to 
decrease the memory requirements substantially, by constructing a 
2D matrix representation of unit cell parameters and atomic fractional 
coordinates. The FTCP framework12 revisits the point cloud representa-
tion by considering both real-space and reciprocal-space features, with 
a Fourier transformed elemental property matrix and Miller indices, all 
in 2D matrix form. In the above representations, a reversible mapping 
from the latent space back to the materials space is necessary.

In addition to reversibility between the latent space and the mate-
rials space, structure feature representation in principle needs the 
property of invariance. Because of the underlying crystal symmetry 
groups, a representation undergoing translation, rotation, or permu-
tation of the crystal axes (for example) should be invariant, meaning 
that it still represents the same latent space data point. In practice, 
however, a fully reversible and invariant scheme is still absent in the lit-
erature12. Other crystal feature presentation ideas should be explored, 
such as E(3)-equivariant graph neural networks7, which can preserve 
known system properties under equivariant transformations. Another 
potential issue with feature representation concerns the loss of fidelity 
during a reverse mapping. In other words, when a latent space point 
is reversely mapped back to the materials space, the resulting crystal 
structure is not identical to the original one. To what extent a given 
input structure can be fully reconstructed and how significant is the 
error caused by the fidelity loss in the reconstruction needs to be more 
carefully determined, for instance, via uncertainty quantification.

Training data
Current generative models employ mainly experimental databases 
such as the Inorganic Crystal Structures Database8, and computational 
databases such as the Materials Project9. To ensure sufficient structural 
and elemental diversity, additional high-throughput calculations with 
element substitutions in known crystal structures or data augmentation 
techniques are often performed to achieve a statistically representa-
tive data distribution.

For example, the training data in iMatGen11 was created by taking 25 
unique vanadium–oxygen compositions from the Materials Project and 

direct forward mapping of crystal structure to material property, they 
are unable to realize inverse design in the way that generative models 
can (Fig. 1a). In essence, a generative model learns the distribution of 
the data itself, and then samples new data instances from the learned 
distribution, which enables the exploration of a more diverse output 
of crystal structures. In the domain of inverse design, two types of 
generative model are popularly used for crystalline materials3,4: a vari-
ational autoencoder (VAE) and a generative adversarial network (GAN) 
(Fig. 1b,c). A key characteristic of generative models is their ability 
to map any data point in the learned latent feature space back to its 
corresponding crystal structure in the materials space. Generative 
models could provide better compositional and structural diversity 
than substitution-based enumeration in high-throughput calcula-
tions, and better structural generation efficiency than conventional 
CSP techniques.

A VAE, which is composed of an encoder and a decoder, is trained 
to minimize the reconstruction error between the decoded data and 
the input data. However, instead of encoding an input as a single point 
in the latent space, the encoder treats the input as (the parameters of) 
a distribution over the latent space. A new data point z from the latent 
space can then be sampled and decoded. The encoded distributions 
are typically chosen to be normal N(µ, σ) with a mean µ and a standard 
deviation σ. Representative VAE structure predictors include iMatGen11, 
the Fourier-transformed Crystal Properties (FTCP) framework12, and 
the Constrained Crystals Deep Convolutional Generative Adversarial 
Network (CCDCGAN)13. Specifically, FTCP adds a target-learning branch 
to map latent points to target properties (with an additional property-
mapping loss). CCDCGAN employs a VAE to learn a reverse map from 
a latent 2D crystal representation back to crystal structures, and then 
uses the representation to train a GAN to generate new crystal struc-
tures. VAEs are relatively easy to train, and they provide more diversi-
fied structures that cover the distribution better than other generative 
models. However, VAEs have the potential drawback of a low output 
validity rate (that is, some results may not be valid). In computer vision 
tasks, VAE models may produce unrealistic, blurry samples, partly 
owing to the assumption that the embedding feature space follows a 
Gaussian distribution.

A GAN, which uses the idea of a minimax game in game theory, uses 
two networks: the generator, G, which transforms a random variable 
z in the latent space into the generated sample G(z), and the discrimi-
nator, D, which distinguishes whether a sample is real or generated. A 
GAN is trained so that G maximizes the probability that D misclassifies 
a generated sample as a real one (that is, G wants to ‘fool’ D as much as 
possible), and that D makes the best possible distinction between real 
and generated samples. This allows G to learn the distribution of the 
real data. In addition, conditional GANs allow the extension of the latent 
variable z with desired conditions, such as user-desired composition, 
as in the Composition-Conditioned Crystal GAN5. Another network 
branch is often added to predict the property of G(z) and to include 
this prediction in the loss to produce crystal structures with the desired 
property, as in CCDCGAN13. This idea is similar to the target-learning 
branch of the FTCP framework12. CrystalGAN6 further utilizes a cross-
domain GAN to generate complex ternary palladium–hydrogen–nickel 
structures starting from simpler binary Pd–H and Ni–H structures. In 
computer vision tasks, GANs generally produce better photo-realistic 
images. However, compared to a VAE, a GAN is more difficult to train, 
as it can exhibit issues such as non-convergence (where the model 
parameters oscillate and fail to converge), mode collapse (where the 
generator produces limited sample varieties), and diminished gradient 
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substituting these compositions into 10,981 binary metal structures, 
also in the Materials Project. This led to the rediscovery of 26 out of 
31 existing VxOy structures in the Materials Project, and 40 previously 
unidentified new structures with energies of around 80 meV per atom 
above the convex hull. CCDCGAN13 studied Bi–Se systems, whereas the 
Materials Project database contains only 17 known Bi–Se materials. 
The training data were generated similarly, where 10,981 prototype 
structures were substituted with Bi–Se, by limiting the maximum 
number of atoms per unit cell to 20 and the maximum lattice constant 
to 10 Å; 9,810 structures were converged in subsequent first-principles 
calculations. The Composition-Conditioned Crystal GAN5 studied 
Mg–Mn–O systems. The training data were also generated by element 
substitution of ternary compounds in the Materials Project, with an 
initial dataset of 1,240 structures with 112 compositions. The training 
data were further augmented by adding rotated and translated unit 
cells, as well as supercell structures. This data augmentation yielded 
1,000 structures for each composition, leading to 112,000 Mg–Mn–O 
structures. After the training, the GAN model was utilized to create 
9,300 unique structures for high-throughput calculations, where 23 
new Mg–Mn–O crystals were discovered. These studies indicate that 
current generative models are capable of generating the structures 
of real materials and also of producing new stable ones. However, for 
a given material system, each generative model needs to be trained 
individually with data augmentation, since existing databases remain 
too small to develop a comprehensive and generic generative model 
that works for all materials.

Naturally, the quality of the training data has a crucial role in deter-
mining the performance of the resulting generative neural networks. 
Sufficient data (meaning, 105 to 106) with high structural diversity 
(meaning, 103 to 104) are needed, otherwise the model may be biased 
during the training. In addition to element substitution of known struc-
tures in open materials databases, data augmentation (for example, 
utilizing invariance of the unit cell12) and active transfer learning10 
could be helpful. Conventional CSP optimization techniques could 
also help to alleviate the problem by searching both stable and meta-
stable structures for the training of generative models. The resulting 
structures produced from generative models can in turn be supplied 
as seed structures in CSP searches. Finally, achieving the inverse design 
of properties beyond the formation energy requires a corresponding 
database (for instance, for mechanical, electronic, and thermal trans-
port properties). For example, the FTCP12 framework has attempted 
to target properties such as the bandgap and thermoelectric power 
factor. The lack of a relevant property database can potentially be 
mitigated by high-throughput density functional theory or force-field 
molecular dynamics calculations, or by machine learning simulations 
such as the Crystal Graph Convolutional Neural Network (CGCNN)14, 
which can provide rapid property prediction once the underlying 
crystal structures are known.

Conclusion and perspectives
Since existing materials feature representations are based mainly on 
images or encoded latent feature vectors, ConvNets, or multi-layer 
perceptrons, dominate the neural network models under study. Even 
though architectures such as CGCNN14 have emerged for forward map-
ping from materials to their latent features for property prediction, 
an explicit formulation converting them back to 3D crystal structures 
in inverse design remains an open problem. Although there are chal-
lenges in developing future generative models for large-scale structure 

prediction and materials design, once trained, these models could 
expedite materials discovery by orders of magnitude when compared 
to conventional optimization techniques. Ideally, generative models 
should be able to tackle the inverse design of small problems where 
data is limited in quantity, as well as large problems with many crys-
tallographic degrees of freedom. Therefore, more demonstrations of 
generative models with less training data or broader scope in training 
compositions and structures are important areas of future study.

Meanwhile, many studies have applied graph convolutional net-
works to generate organic molecules15, where physics-inspired models 
such as flow and diffusion models have been employed alongside VAEs 
and GANs. It would be interesting to test whether these models are also 
adaptable for inverse design of crystal structures. Besides generative 
models, reinforcement learning, such as in the Monte Carlo tree search, 
has been utilized to discover material structures with desired proper-
ties16, by performing guided structural growth (one atom at a time, for 
example) along promising directions. Finally, it is important to address 
whether the machine learning models can provide a measure of the 
synthesizability of the discovered hypothetical materials for practical 
applications. For example, FTCP12 has addressed the synthesizabil-
ity issue by examining whether the generated structures exist in the 
experimental Inorganic Crystal Structures Database. More research 
along these lines is needed.
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