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Abstract

Interpreting gravitational wave observations and understanding the physics of
astrophysical compact objects such as black holes or neutron stars requires
accurate theoretical models. Here, we present a new numerical relativity com-
puter program, called Nmesh, that has the design goal to become a next gener-
ation program for the simulation of challenging relativistic astrophysics prob-
lems such as binary black hole or neutron star mergers. In order to efficiently
run on large supercomputers, Nmesh uses a discontinuous Galerkin method
together with a domain decomposition and mesh refinement that parallelizes
and scales well. In this work, we discuss the various numerical methods we
use. We also present results of test problems such as the evolution of scalar
waves, single black holes and neutron stars, as well as shock tubes. In addition,
we introduce a new positivity limiter that allows us to stably evolve single neut-
ron stars without an additional artificial atmosphere, or other more traditional
limiters.

Keywords: discontinuous Galerkin method, numerical relativity,
neutron stars, positivity limiter, general relativistic hydrodynamics,
black holes

(Some figures may appear in colour only in the online journal)

* Author to whom any correspondence should be addressed.

1361-6382/23/025004+39$33.00 © 2022 |OP Publishing Ltd  Printed in the UK 1



Class. Quantum Grav. 40 (2023) 025004 W Tichy et al

1. Introduction

In August 2017, a binary neutron star merger has been observed by detecting its gravitational
wave signal [1] together with an electromagnetic counterpart (across the whole electromag-
netic spectrum) [2, 3]. This and similar observations [4—6] have started a new era of multi-
messenger astronomy [7] and have opened a new window to the Universe, that allows us to
measure and understand phenomena related to the equation of state (EoS) at supranuclear dens-
ities, the production of heavy elements via rapid neutron capture (r-process) nucleosynthesis,
and cosmological constants [7—12].

Accurate theoretical models are required for creating gravitational wave and electromag-
netic templates to interpret the observations, and to extract all the information contained in
such signals about the properties of the binary. While there are analytical models to describe
compact object coalescence, as long as the objects are well separated [13], the highly non-
linear regime around the moment of merger is only accessible through simulations employing
full numerical relativity (NR). To carry out such simulations, various computer programs have
been developed, e.g. BAM [14—16], Einstein Toolkit [17, 18], NRPy+ [19], SACRA-MPI [20],
and SpEC [21, 22]. Given that current detectors have a relatively high noise level, the numerical
errors in these computer programs are not the main limiting factor when comparing observa-
tions and simulations.

However, the arrival of a new generation of detectors in the near future, like Cosmic
Explorer [23], the DECi-hertz Interferometer Gravitational-wave Observatory (DECIGO)
[24], Einstein Telescope [25], LIGO Voyager [26], the Laser Interferometer Space Antenna
(LISA) [27], NEMO [28], and TianQin [29], will allow for observations with much higher
signal-to-noise ratios. Therefore, in order to not bias the interpretation of the observed data,
future NR computer programs will be required to better model micro-physics and also to
deliver simulations with a higher accuracy. In principle higher accuracy can be achieved by
current computer programs by simply increasing the resolution, while at the same time using
more computational cores. This, however, will likely raise the computational cost to a level
that is no longer affordable, because conventional NR computer programs do not scale well
enough when we want to use hundreds of thousands of computational cores.

Consequently, a new campaign in the NR community is taking place to upgrade and develop
computer programs that scale well and thus have a chance to achieve the accuracy needed
for future observations. Examples of such next generation programs are BAMPS [30, 31],
GRaM-X [32, 33], Dendro-GR [34], ExaHyPE [35] GR-Athena++ [36] GRChombo [37, 38]
SpECTRE [39, 40], and SPHINCS_BSSN [41].

In this work, we present a new computer program, called Nmesh, that aims to be one of
these next generation programs. One of the main features of Nmesh is its use of discontinuous
Galerkin (DG) methods. The DG method for hyperbolic conservation laws has been introduced
in [42—46]. Only in recent years it has been explored by the NR community to evolve the Ein-
stein equations and the equations of general relativistic hydrodynamics [30, 39, 40, 47-52]. It
has two main advantages when compared to more traditional finite difference or finite volume
methods. First, when the evolved fields are smooth, a DG method can be exponentially con-
vergent and thus much more efficient than traditional methods. Second, because of the way
boundary conditions between adjacent domains are imposed within a DG method, there is
less communication overhead when domains are distributed across many computational cores.
This is expected to result in better scalability in a future where many groups will want to use
hundreds of thousands or possibly even millions of computational cores.

The main purpose of this paper is to describe and test Nmesh. As will be discussed below,
the main novelties when compared to other programs such as SpECTRE (as described in [40])
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are a simplified treatment of the normal vectors and induced metric on domain boundaries,
as well as certain positivity limiters that allow us to evolve single neutron stars without any
additional limiters.

In section 2 we describe the DG method and other numerical methods we use. This is fol-
lowed by a discussion of the effectiveness of our parallelization in section 3. In section 4 we test
how well Nmesh can evolve various systems such as scalar waves, black holes, neutron stars,
as well as some shock waves. We summarize and discuss our results in section 5. Throughout
the article, we use geometric units, in which G = ¢ = 1, as well as My = 1. Indices from the
middle of the Latin alphabet, such as i, run from 1 to 3 and denote spatial indices, while indices
from the beginning of the Latin alphabet, like @, and also Greek indices, such as g, run from 0
to 3 and denote spacetime indices.

2. Numerical methods

In this section, we present the various numerical methods we use to perform simulations with
hyperbolic evolution equations.

2.1. The discontinuous Galerkin method

In Nmesh, we use a DG method to discretize evolution equations. Often, these evolution
equations come from general relativistic conservation laws of the form:

VIt =S, (1)

where S is a possible source term. The covariant divergence on the left hand side can be written
in terms of coordinate derivative using V,J* = ﬁau(\/ |g|J*), where g is the determinant

of the 4-metric g,,,,.. In terms of the standard 3+1 decomposition [53], the 4-metric is written
as:

ds® = gudxtdx” = —a’df* +;j(dx' + B'dr)(dx’ + B’dt), )

where +;; is the spatial metric on 7 = const slices, and « and /3 are called lapse and shift. We
can show that /|g| = a,/7, where 7 is the determinant of the 3-metric ~;;. Thus, equation (1)
is equivalent to:

o (yyad") + 0 (vyad"') = /yas. 3)
Usually, we introduce the new variables:

u=al', fi=\~al, s=./7as, 4)
so that equation (3) finally yields:

Ou+0; i =s. (5)

Note that the flux vector f' is usually a function f?(u), that depends on u. For brevity, we omit
this dependence in most equations.

To discretize the spatial derivatives in equation (5), we first integrate against a test function
1) with respect to the coordinate volume @*x over a certain region 2. We obtain:

/(1/}8,u +1p0; fHdPx = /'gZ)sd3x. (6)
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The second term is now integrated by parts using:

[vosds=duosnas- [ fowdx ™
where d?Y is the surface element for integrating over the boundary 9€, and #; is normal to
O9. In the surface integral, the flux fin; at the boundary appears. To incorporate numerical
boundary conditions, f in; in the surface integral over the boundary is replaced by the so-called
numerical flux (f'n;)* (see section 2.3 below). It contains any information we need from the

other side of the boundary (such as incoming characteristic modes). The replacement of f in;
by (f'n;)* in the surface integral yields:

/ V0, fid’x — yﬁ O (fim)*d*y — / o) d’x
= Dol - iz + [vorf'd ®)

where in the last step we have used integration by parts again to eliminate derivatives of .
With this replacement, equation (6) becomes:

[wourvo,frax= [wsdx— G ui(rmy - ruids. ©)
‘We now introduce a coordinate transformation:
X =xi(x’), (10)

such that the volume we integrate over extends from —1 to +1 for all three x' coordinates. In
these coordinates, equation (9) reads:

/1/) (0,u+ gj:&f) Jdx = /1/)st3)?— 7§de;1, (11)

where we have defined:

Fi=(f'm)" = f'n;, (12)
ox'
J = |det —_— 5 13
<ax'>‘ (4
where J is called the Jacobian, and dA is the surface element on one of the six surfaces =41 ,
but now expressed in x’ coordinates. For example on x> = —1,
dA =/ @~dxlan?, (14)

where (27 is the determinant of the 2-metric induced on this coordinate surface by the flat
3-metric §;;. The flat §;; results from our choice to integrate over the coordinate volume d*x in
equation (6), without including /7. Below these x' coordinates will be chosen to be Cartesian-
like, so that they can cover all numerical domains.
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Next, we expand both u and f* in terms of Lagrange’s characteristic polynomials
N -
1,(x) = — (15)
=g
so that, e.g.
N N N - B B
=TS e (31, () (). (16)

r = Oh =0 = =0
The X, are N 4 1 grid points that we choose in the interval [—1, 1]. For the test function v
(17)

we use these same basis polynomials, i.e

= lt]l (xl)léh(xz)llh (x3)'
The final step is to approximate all integrals in equation (11) using Gauflian quadrature

(specifically Lobatto’s Integration formula on p 888 of [54]), which, in one dimension, is given
by:
1
/ dx g(x qug Xg)s (18)
here we use the N + 1 Legendre GauB-Lobatto grid points X, that are defined as the extrema

of the standard Legendre polynomial Py(x) in x € [—1, 1]. The integration weights are then
(19)

given by [54]:
2
W= .
! N(N+1)Py(x,)?

The integrals in equation (11) then turn into sums over products of /,(X), or products of

(20)

1,(X) and its derivative. If we define

N
)= wu(E)v(E),
r=0

the products we encounter are (I, /) and (I, O%l,). Since
lg(%r) = r,

we find:

(Igs1r) = Wglygr,

and
(lg, Oxly) = wyOkl (Xy) = qu’qC,

qsYx
The differentiation matrix is given by
_Cr 1
Ty Xy — X,

where the Lagrange interpolation weights are

{ i <>}

s=0,57¢

20

(22)

(23)

(24)

(25)
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Putting all this together equation (11) becomes:

ax' N x> N ox N
1 i 2 1 3 1
WaiWaWa3d g1g203 | Orlhgigags + O ZODqlrﬁ’qzqs + Ol ZOqurf;ﬂqa + O X;an"ﬂhqzr
r=| r=! r=

— 2 _
= Wq W, WasJq1q2q3Sq1 0205 — War Was Fgiq2q3 ( )7414243(5%0 + 6q1N)

—WaWasFaia:q5 \/ (z)ﬁqlqz% (5qu + 5qu) —Wa W, Fai4:45 \V (2)7741112613 (5q30 + 5q3N)7

(26)

where the Kronecker deltas on the right hand side come from /,(+1) = dgv and I;(—1) = d,0.
We now divide equation (26) by wgy, Wy, Wg,J4,4.4; and use the fact that:

VB[ = /3T, @7)

holds on the surface x = const. Here A% is a diagonal component of the inverse 3-metric
obtained by transforming the flat 3-metric §;; from x‘-coordinates to x'-coordinates. This results
in:

N _ _ _
ox' - . ox* 5 . o3 = .
1 4 2 1 3
a’uqlqzq3 + ZO Oxi Derf;'qz% + Oxi Dﬂ]zrféhrq,% + Oxi Dl]sr q192r
r=!

~11 ~22
V Ta19205 V Yaia:45
R v N

= Sq1q295 — W 014205 (0g,0 +0g,3) — F 14095 (0,0 + 0go)
q1 q2
/~33
76]1612113
- Fqlqz% (5%0 + 56131\/)7 (28)
W‘]}

which is the version we use in Nmesh’s DG method. Notice that the derivation of this DG
method has mostly followed the one introduced by Teukolsky in [48, 55] and tested extensively
in [40], except for one important difference. Since we integrate over d>x without including
the determinant of the physical metric, we use the flat metric §; when we construct i or
when we normalize the normal vector n;. This same n; also enters the calculation of the fluxes
and eigenvalues discussed in subsection 2.3. Recall that n; arose in equation (7) after using
Gauf}’s theorem. As shown in appendix A, Gaul}’s theorem can be used with any metric, as
long as we normalize n; with this same metric. The advantage of J;; is that it is constant and
thus cannot have any discontinuities. Our approach simplifies the formalism as one does not
have to worry about possible discontinuities in the physical metric or the normal vector across
domain boundaries, which is an issue in the other approach [40]. In appendix B we discuss
the difference between both approaches for the well understood case of an advection equation.
We find that our approach together with the flux of equation (33) yields the correct upwind
result, while the approach in [40] does not, if the physical metric is discontinuous across the
boundary. However, the true physical solution of the Einstein equations is a continuous metric,
even in the presence of shocks in the matter. Thus we expect that both approaches will converge
to the same result, because any discontinuities in the metric should converge to zero. We have
also tried both approaches by evolving a black hole, where the physical metric is far from
flat, and where discontinuities in the physical metric arise due to numerical errors. We find no
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important differences in the numerical solution or its rate of convergence. The discontinuities
in the physical metric for this black hole case are described in section 4.2 and shown in figure 8.

Let us also consider the field # from equation (5) for the case where s =0. Then f ud’x is
exactly conserved. In formulations that directly use equation (3), and do not include /v in
the field definition, the conserved quantity is f U ﬁd3x, where U = aJ'. In fact, for the exact
solution of equation (5) both integrals are identical. However, once u and U are expressed
in terms of basis functions (or equivalently in terms of values at grid points), the numerical
(GauBian quadrature) integrals over u and U will yield answers that differ at the level of the
numerical truncation error. Nevertheless, a correct DG formulation will preserve these numer-
ical integrals. Furthermore, any differences between the two numerical integrals will converge
away with increasing resolution. Thus at any finite resolution the two approaches conserve
different quantities, but in the continuum limit both converge to the same result.

2.2. Evolution equations in non-conservative form

So far, we have only considered evolution equations that can be written in conservative form
as in equation (5), i.e. in terms of a flux vector f*. However, the equations describing general
relativistic gravity are often not available in this form. Rather they take the form:

O+ A" (u)Oju = s. (29)

Note that here the matrix A’(u) depends on u itself. In this case, we can still integrate against
a test function 1), as before. The crucial introduction of a numerical flux in equation (8) now
takes the form:

/ YA Oud’x — y§ V(A u)* d*S — / ud;(Ap)d®x
= yﬁ«p [(mA"u)* — A u)d®S + /wA"al-mﬁx. (30)

Thus, the surface integral has almost the same form, with (n; A’u)* playing the role of the
numerical flux. If we again expand in Lagrange’s characteristic polynomials, and retrace our
previous steps, we find the equivalent of equation (28). We obtain:

N _ _
; ox! 5 ox* 5 ox®
§ : i 1 2 3
aruéhqzq.% + Aq1t]2q3 <ax,' Dqlru”qzlh + Bxi quruqlﬂh + Bxi qu’“‘{l‘{lr
r=0

~11 ~22
V Y245 \V Vdigaas

=Sqiqpqs — W 119203 (010 + Og,v) —

qi W,
/~33
7‘114243
-4 G

W‘]s

G19295 (84,0 + 4,n)

q192953 (61130 + 5‘131\/)’ 3D

where G is defined by:
G:=(mA'u)* —mAu. (32)

When we compare with the surface term F defined in equation (12), appearing in the analog
equation (28), we see that G can be obtained from F if we replace f* by A’ u.
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2.3. The numerical flux

In the interior of the domain, the flux vector f!(u) is simply computed from the field values u in
the interior. However, the numerical flux that is used in the surface integral over the boundary
is computed from the field values on both sides of the boundary. In many cases, we will use
the Rusanov or local Lax-Friedrichs (LLF) flux. It is given by:

. 1. . .
(f'm)* = 3 [F* (uin)i + f'(uagi)ni + [N max (tin — thagi)] , (33)

here n; is the outward pointing normal to the boundary, u;, is the field value at the boundary
using grid points that belong to the domain enclosed by the boundary, u,gq; is the field value
at the boundary using grid points that belong to the adjacent domain on the other side of the
boundary, and |\|m.x is the absolute value of the eigenvalue of the characteristic mode with
the largest eigenvalue magnitude, considering eigenvalues from both sides.

In the case where our system of equations takes the form of equation (29), we often also
use another numerical flux, called the upwind flux. It is constructed from the orthonormalized
eigenvectors and eigenvalues of the matrix A’n; appearing in the surface term (32). Let the
matrix S contain the eigenvectors as its columns. Then we can write:

Aln; = SAS™!, (34)

where A is a diagonal matrix that contains the corresponding eigenvalues. The eigenvectors
with positive eigenvalues correspond to modes going along the direction on 7;, while the ones
with negative eigenvalues correspond to modes going in the opposite direction. This means
positive and negative eigenvalues are associated with modes that are outgoing and incoming
through the boundary of the domain. As is usually the case, we wish to impose conditions only
on the incoming modes. So, we define the upwind numerical flux that appears in equation (32),
as:

(A u)* = (S(AY + A7)S™ ) = S(ATS iy + A7 S gy, (35)

here A = AT 4+ A~ with A" and A~ containing the positive and negative eigenvalues, and ui,
and u,g; are the field values from the current domain and the adjacent domain.

2.4. Patches

To write equation (5) or (29), we use particular coordinates that are chosen to be Cartesian-like,
and we call them x' = (x,y,z) in Nmesh. As already explained before we map these globally
used Cartesian coordinates to local coordinates x' via equation (10). This mapping is usually
carried out in two steps. We first map them into a particular region or patch via:

X =x(X). (36)

For example, we can use standard spherical coordinates X' = (r,0,) with a range r €
[Fmin, Fmax)> 0 € [Omin, Omax)> © € [Pmins Pmax], SO that we cover a certain section of a shell. Next
we use:

ii1 iy
X_E[(Xmax X

ma

in) X'+ X + Xinin] 5 (37)

to map each X’ into an X' that has the standard range X' € [—1,1]. These X' are what have
been denoted by x' in equation (10). Each patch is thus described by the particular transform-
ation (36) and range we use for the X’ coordinates. In some cases, we only need Cartesian

8
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Figure 1. On the left side, we show a mesh which is made up of six cubed sphere patches
that are arranged around one central cube. Five of these seven patches intersect the xy-
plane and are shown in the picture. The right side shows the same patches as on the
left. However, the top root node (that covers the entire top patch) has been h-refined
so that this patch is now covered by eight child nodes, of which we show four in the

xy-plane.

coordinates so that we use the identity transformation in equation (36), but we have also imple-
mented the transformation to the cubed sphere coordinates X' = (\,A, B) described in [56].
We then arrange our various patches such that they touch and cover the region of interest. An
example is shown on the left side of figure 1. Here we have one central cube that is covered
by Cartesian coordinates. This cube is surrounded by six cubed sphere patches. Five of these
seven patches intersect the xy-plane and are shown on the left of figure 1. Note that each of
the six cubed sphere patches shares one face with the central cube. The face on the opposite
side is curved and arises by deforming one side of a larger cube into a spherical surface via a
coordinate transformation of the form in equation (36). It thus comprises one sixth of the spher-
ical outer boundary. The remaining faces of each cubed sphere patch touch four other cubed
sphere patches, along flat surfaces. All patches are touching each other without any overlap, so
that all interior patch faces have their entire face in common with one other patch face. In the
next section we explain how information is exchanged via numerical fluxes between adjacent
patches.

2.5. Adaptive mesh refinement

The patches described before can be directly covered with the Legendre Gauf3-Lobatto grid
points introduced above. Yet, to gain more flexibility, we can further refine each patch in
Nmesh. This is achieved by identifying each patch with a so-called root node that can be further
refined. When we refine this root node, we cut the original ranges of all three X’-coordinates
in half so that we end up with eight touching child nodes that now cover the original root node
or patch. Each of these new nodes can then be further refined by again dividing it into eight
child nodes. In this way we can refine each patch as often as we want. This can be done in an
irregular way, where we further refine only the nodes in certain regions of interest. We end up
with a node tree called an octree, where each node has either zero or eight child nodes. The
nodes without children are called leaf nodes. Together, these leaf nodes cover the entire patch

9
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and are thus the nodes in which we perform any calculations. For this reason, the leaf nodes are
often called computational elements or just elements. However, in this paper, we will simply
call them leaf nodes or just nodes. We note that, in the context of finite volume methods, the
word ‘node’ is also sometimes used in the literature to denote a grid point. Yet, in this paper
the word ‘node’ will always refer to a node in our octree.

The X'-range of each leaf node is covered by grid points that correspond to the Legendre
Gaull-Lobatto points discussed above. This means that we have grid points on each node face.
This simplifies any calculations that depend on the values of fields on both sides of a node
boundary. The number of grid points in each node can be freely chosen. When we increase
it, we obtain higher order accuracy if the fields are smooth within the node. This is called
p-refinement because increasing the number of grid points corresponds to an increase in the
number of basis polynomials we use to represent a field within a node. Of course, p-refinement
is most useful for smooth fields. For non-smooth fields it is often better to refine a node by split-
ting it into eight child nodes, which is known as h-refinement as it refines the resolution even
if each child node has still the same number of grid points as the parent node. In Nmesh both
p- and h-refinement can be performed whenever desired. Together we call this adaptive mesh
refinement (AMR).

On the right of figure 1, we show an example where we h-refine the top node from the left
side of figure 1. The resulting child nodes now cover the top patch. As we can see, the grid
points of the h-refined nodes along, e.g. the left patch boundary no longer all coincide with
the grid points of the unrefined node covering the left patch. This is a general phenomenon,
whenever two neighboring nodes differ in their h- or p-refinement, many of the surface grid
points of one node do not coincide with the surface grid points of the touching adjacent node.
Furthermore, the surface of one node may be touching several adjacent nodes, as is the case
for the node covering the left (orange) patch. This complicates the calculation of numerical
fluxes such as equation (33) or (35) in one of our nodes, because we need both the fields u;,
and u,q; at every surface grid point of the current node. We already have u;, at every point of
the current node. However, u,q; only exists at the grid points of the adjacent nodes, which in
general do not coincide with the surface grid points of the current node. To obtain u,q; at one
of the surface grid points of the current node, we interpolate the u,q; data from the adjacent
node onto this point. For this we currently use Lagrange interpolating polynomials constructed
from the 2-dimensional surface data of the adjacent node. To easily find adjacent neighbors
each node has an associated data structure that keeps track of all adjacent neighbor nodes.
When p-refinement is applied to a node this data structure can remain unchanged since the
size of the nodes and therefore the number of neighbors does not change. However, the data
structure has to be updated whenever a node is h-refined. In this case the structure gets updated
on this one node and on all of its neighbors. In this way Nmesh is able to accommodate arbitrary
levels of h-refinement. For example, it is possible to h-refine a node into eight child nodes, and
to then repeat this as often as desired with any of the child nodes, without at the same time
refining any of the original neighbor nodes. In each case the final result is a number of touching
leaf nodes that cover each patch. Since the patches themselves are also touching, the collection
of all leaf nodes from all patches forms the mesh on which we perform our calculations.

The word Adaptive in AMR usually also implies an algorithm that automatically chooses p-
or h-refinement. We currently have implemented only one such algorithm. Within each node,
it expands a chosen quantity, such as the matter density py, in terms of Legendre polynomials.
The coefficients in front of each of the Legendre polynomials can then be used to judge the
smoothness of py. If pg is perfectly smooth, we expect the coefficients to fall off exponentially
with increasing polynomial order. In our algorithm we then fit the logarithm of the coefficient
magnitudes to a linear function. If the slope values b; in all three directions (i = 1,2,3) of this

10
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Figure 2. Leaf nodes near the neutron star surface are most refined. Inside the star (red
region) and outside the star (blue region) less refinement is used.

linear function are not negative enough, we consider pg to be not smooth. We then h-refine
the node. This algorithm is in principle geared toward dealing with the non-smooth behavior
of matter across a neutron star surface. We have, however, not had any real success with this
algorithm yet. We can turn it on and evolve neutron stars with it, but we have not been able to
tune the parameters, that decide when the b; are not negative enough, to values that work well
after some matter leaves the star surface. We mention this particular algorithm here only to
show that Nmesh has AMR capabilities in principle. We note, however, that these capabilities
were not used in the simulations discussed below, where we use uniform h-refinement. Figure 2
shows the mesh for a single neutron star in a plane through its center. The different levels of
h-refinement shown here are obtained from the coefficient drop off based algorithm mentioned
above. It also refines neighbor nodes if their level of refinement is more than one below the
just refined node. The purpose of the latter is to avoid abrupt changes in resolution, but is
technically not required by Nmesh.

2.6. Time integration

Note that equations (28) or (31) still contain time derivatives, since up to this point we have
only discretized spatial derivatives. This means that these equations represent a set of coupled
ordinary differential equations for the fields ug, 4,4, at the grid points. In this paper, we use
standard Runge—Kutta time integrators to find the solution of these ODEs from the ug,4,,, at
the initial time. Such Runge—Kutta methods are only stable when the Courant—Friedrichs—
Lewy (CFL) condition is satisfied, i.e. if the time step At is small enough. In this work we use:

At = Axpin /v, (38)

where Axp, is the distance between the two closest grid points, and v is a number that needs
to be greater than the largest characteristic speed.
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2.7 Filters that can improve stability

Even when the time step satisfies the CFL condition, instabilities can still occur in some cases,
e.g. on non-Cartesian patches. To combat such instabilities, we filter out high frequency modes
in the evolved fields. This is achieved by first computing the coefficients c;,;,;, in the expansion:

N N N

w@JI =33 e, Py (x)PL ()P (), (39)

11=05L=05=0

of each field u, where the P;(x) are Legendre polynomials. The coefficients are then replaced
by:

Cliyl, — clllzhe—af(ll/l\’)"'e—ar(lz/l\’)“'e—af(ls/N)"'7 (40)

and u is recomputed using these new coefficients. Note that we typically use o = 36 and
s =32, so that the coefficients with the highest /= N are practically set to zero, while all others
are mostly unchanged.

3. Parallelization strategy

Modern supercomputers are made of thousands of compute nodes, each with on the order of
100 central processing unit (CPU) cores. Each compute node has its own separate memory
(typically on the order of 100 GB), and cannot directly access data on other compute nodes.
However, all compute nodes are connected by a network that allows data transfers between
them. The by now traditional way to parallelize programs on such supercomputers is to use the
message passing interface (MPI) library. With MPI, we start multiple processes (i.e. programs),
each using its own piece of memory. Typically each process then works on a part of the problem
that we wish to solve. The only way to exchange data is via messages sent between the different
processes, hence the name MPI. Since no direct memory access occurs, MPI works very well
if the processes run on different compute nodes that do not share any memory. Nevertheless,
it is also possible to start multiple MPI processes within one compute node to take advantage
of the presence of multiple CPU cores.

Systems consisting of black holes or neutron stars are governed by partial differential
equations. To discretize them, we use the DG method together with AMR, as described above,
so that the region of interest is covered by a number of leaf nodes (as described in section 2.5).
We typically use several levels of h-refinement so that we end up with a large number of
leaf nodes, possibly hundreds of thousands or even millions. The parallelization strategy of
Nmesh is then to distribute these leaf nodes (referred to simply as nodes below) among the
available MPI processes. To take one time step, we need to evaluate the various terms in
equation (28) or (31). Notice that F and G in these equations depend on field values from
the surface points of adjacent nodes via the numerical flux. Hence, MPI messages need to be
sent to obtain these surface values. All other terms in equations (28) and (31) depend only on
field values local to each node. Thus, we instruct MPI to start the transfer of the surface val-
ues. While this transfer is ongoing, we locally calculate all the terms in equation (28) or (31)
besides F or G. This allows us to overlap communication and calculation, i.e. we avoid waiting
for network transfers to arrive. Also note that the amount of data that needs to be sent via MPI
is quite small, as the only values that need to be exchanged are from points on the surfaces of
adjacent nodes. This is a significant advantage of DG methods compared to more traditional
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Figure 3. Strong scaling tests for the evolution of a neutron star using 262 144 leaf nodes
with 5 X 5 x 5 points. Circles indicate results obtained on the Cartesius supercomputer
for a fixed spacetime metric. Squares show results on the Bridges-2 supercomputer,
where the metric is evolved as well.

finite difference or finite volume methods. The latter two require transfer of data from a layer
several points deep. The depth of this layer even increases when one increases the order of
accuracy of the finite difference or finite volume method. Furthermore, if one uses coordinate
patches, such as the cubed spheres as discussed above, one even needs data from more than
just the six directly adjacent neighbor nodes (see [57]), because if we go several points deep
in a curved coordinate direction, we may end up in yet another node. We thus expect our DG
method to be more efficient.

To demonstrate the efficiency of Nmesh we have performed two strong scaling tests. On the
left side of figure 3 we show the run time vs the number of MPI processes used. The circles cor-
respond to the simulation of a single neutron star on a fixed spacetime metric on the Cartesius
supercomputer. The squares are from the simulation of a single neutron star together with
an evolving spacetime metric, that was performed on the Bridges-2 supercomputer. Perfect
scaling corresponds to a linear speedup as this fixed size problem is evolved with more MPI
processes. As we see on the left side of figure 3, our run time measurements almost follow
a straight line, and thus indicate good scaling. To study the scaling further we also show the
parallel efficiency on the right side of figure 3. This efficiency is computed from #.(1)/[nt.(n)],
where ,(n) is the run time measured using n MPI processes. Since a single MPI process cannot
obtain enough memory for the simulations, 7,(1) is estimated from 7,(1) = nyint,(Rmin ), Where
nmin 1S the run with the lowest number of MPI processes performed in each case.

Perfect scaling would correspond to a constant parallel efficiency. However, this is typically
not achieved by real programs. In the case of Nmesh any sort of scaling will definitely stop
once the number of MPI processes becomes comparable to the number of leaf nodes (here
262 144). In fact, we expect it to stop even before this, due to the growing communication
overhead when more parallelization is used. The fact that the run with the evolving spacetime
metric has a higher efficiency might be related to the fact that the evolution of the metric is
time consuming, so that every MPI process does more work before communication is needed

13
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again. On the other hand, Bridges-2 had newer hardware and MPI libraries than Cartesius,
which could also account for part of the difference. The fact that our curves end at 2400 and
6400 MPI processes, is not due to any particular limitation of Nmesh. Rather, we currently
do not have access to a machine that would allow us to use more cores. It thus remains to be
seen up to which number of cores Nmesh will scale well. Nevertheless we consider our results
encouraging. They confirm the expectation that a program based on a DG method should have
good scaling.

4. Evolution system tests and results

In this section, we perform tests with several different evolution systems to validate our new
Nmesh program. We also explain in detail which methods we use for our simulations of general
relativistic hydrodynamics, and then show our results.

4.1. Scalar wave equation

One of the simplest systems one can evolve is a scalar wave. Here we consider a single scalar
field obeying the wave equation:

0P¢ = 610,04, (41)

The DG method described earlier cannot be applied directly to systems with second order
derivatives. We therefore introduce the extra variables:

I := 0,0, (42)
and

Xi = 0. (43)

This results in the following system of first order equations:

oxi +0,f, =0,

O =1I. (44)
Here we have defined the flux vectors:

f{;[ ==X

= ~1167,
£, =0, (45)

As we can see, the system in equation (44), consists of two coupled partial differential
equations and one ordinary differential equation.

To evolve this system with our DG method, we also need to provide initial values and
boundary conditions. Since,

¢ = sin(k;x' — wt), (46)

is a solution for any k; and w = /d%k; k ;, we initialize the system according to this equation
at t = 0. We also use equation (46) at the outer boundary so that this sine wave is continuously
entering through the outer boundary.
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Figure 4. The plot shows the scalar field ¢ in terms of a colormap together with the
mesh (in black) at evolution time ¢ =4.5. The mesh is made up of seven leaf nodes, five
of which intersect the xy-plane shown here.

The DG method requires numerical fluxes. We have successfully used both the LLF flux
of equation (33) as well as the upwind flux of equation (35). To impose equation (46) at the
outer boundary, we use the same numerical flux as in the interior, but we set u,gj to the value
coming from equation (46).

The wave vector k; in equation (46) is arbitrary. For the test results presented here, we
choose k; = (0.7,—2,4.3), so that it represents the general case where k; is not aligned with
any coordinate direction. As we can see in figure 4, we get a sinusoidal wave that propagates
through our numerical domain, with this k; vector. In this case we have used seven patches
and the figure shows the scalar field ¢ in the xy-plane after evolving up to time t =4.5. For
the test case depicted in figure 4, we have used an equal number of grid points (19 x 19 x 19)
in all directions, without any h-refinement applied to the root nodes. However, we have also
performed tests with an unequal number of grid points and with the root nodes h-refined. We
have obtained stable evolution for the system for all these cases with both the LLF and upwind
numerical fluxes. The choice of numerical flux did not have any significant effect in any of the
scalar wave evolution tests, as both cases yield results that have errors of the same order.

To demonstrate the convergence of our new Nmesh program in this scalar wave evolution
test, we have applied p-refinement and h-refinement separately. In figure 5 we plot the L2-
norm of the error in ¢ for both. For the case of p-refinement (top) we increase the number
of points 7 in all directions, setting them to n = 10,12, 14,16, 18,20, with no h-refinement
applied to the root nodes. We observe an exponential drop in the L2-norm error, as expected in
this case. For the case of h-refinement (bottom), we apply [ =0, 1,2, 3,4, 5 levels of refinement
to the root nodes, and have n = 10 points in each direction in each node. Again, we observe
convergent behavior for the L2-norm of the error, when increasing the number of h-refinement
levels. Figure 5 only shows the results for the LLF numerical flux, since the results for the
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Figure 5. This plot shows the change in the L2-norm of the error in the scalar field ¢ for
two different cases when using the LLF numerical flux. First, p-refinement is applied
(without any h-refinement) and we plot the error vs time (top left) and then the error vs
number of points n along each axis in a node at time ¢ = 3 (top right). Next, h-refinement
is applied, and we plot the error vs time (bottom left) and then the error vs levels of
refinement / applied to the root node at time r = 3 (bottom right). In this case, we keep
the number of points in each direction in each node fixed at n = 10.

upwind flux are very similar. For all the runs shown in figures 4 and 5, the time step was set
to At = Axpin/3 in accordance with equation (38).

Even though all the convergence results stated above have been obtained for a mesh using
six cubed sphere patches that surround one central cube, we also obtain convergence for a
mesh covered by a single cubic Cartesian patch. The key difference between these is that we
need the filters of equation (40) to stabilize the evolution on meshes that contain both Cartesian
and cubed sphere patches, while this is not necessary on a purely Cartesian patch, even if it is
h-refined. For the runs of figures 4 and 5 we set the filter parameters of equation (40) to the
values oy = 36 and s = 32.
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4.2. Convergence tests with the GHG system for a single excised black hole

For the gravitational part, we have implemented the first-order reduction of generalized har-
monic gauge (GHG) formulation [31, 58]:

Ngab — (1 +71) B*O0gab = —Tlup — 71 B* ®pap, 47

Oy — B0 + a0 @iay — 1728 g
N 1
=208 (V' ®ica® jap — Meallap — 8/ TaceTbar) — 20V (oHy) — Eancndncdnab
— anTLiy" /@ jup + a0 [26° (anpy — 8avn”] (He +Te) — 11728 @ran

1
— 167 (Tab — zgabgchcd) : (48)

O Pigp — B*OPiap + a0y — a4 ¥20i8ap

1 .
= Eancn"fbiazﬂab + ay*n®; e Prap — a2 Pian, (49)

here g, is the spacetime metric, n,, is the unit normal to the hypersurface of constant coordin-
ate time t,and I', = g’”l"abc is the contracted Christoffel symbol. The equations are written in
terms of the extra variables Il ;, := —n°0.g4 and P,y := 0;gap, that have been introduced to
make the original second-order GHG system first-order in both time and space. Gauge con-
ditions in the GHG system are specified by prescribing the gauge source function H,. The
lapse a, shift 37 and spatial metric ~v;j come from the 3 + 1 decomposition in equation (2). The
GHG evolution equations also contain extra terms that are multiplied with the parameters o,
71, and 7. In this paper we set v; = —1, and choose v, = 79 = 1 for the constraint damping
parameters.

To test the gravitational part of Nmesh, we evolve a black hole spacetime. As initial data,
we choose the metric of a single Schwarzschild black hole in Kerr-Schild coordinates [59],

2M
8ab = Mab + Tlalba (50)
where 1,5, is the Minkowski metric, and M is the mass of the black hole. In the Cartesian
coordinates, r = (x> +y? 4+22)"/2, and I, = (1,x/r,y/r,z/r). The gauge source function is ini-
tialized based on the above metric (50), and is left constant during the simulation [60],

Hy(t=0)=-T,(t=0), 8H,=0. (51)

With this initial condition, the analytic solution of the evolution equations is simply the
static Schwarzschild metric, so that all evolved fields should be constant. Of course evolution
will lead to some amount of numerical errors. Thus we test here if Nmesh can stably evolve
this setup and whether the numerical evolution will settle down to a stable state.

As computational domain, we choose a spherical shell that extends from r= 1.8M to
11.8 M, and is covered by six cubed sphere patches. The inner boundary is thus inside the
black hole horizon of r = 2M. The speeds of all characteristic modes at the inner boundary are
such that every mode is moving toward the black hole center and thus leaving the computa-
tional domain. We therefore do not impose any boundary conditions at the inner boundary. The
situation at the outer boundary is different as we have both incoming and outgoing modes. We
impose no condition on the outgoing modes, but we keep the incoming modes constant at their
initial values (consistent with the static analytic solution). This is done using equation (35),
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Figure 6. Time evolution of the time derivative of 11, for a black hole in Kerr—Schild
coordinates. Here, we use n grid points in each direction in each leaf node, and have
h-refined each of the root nodes three times. We use the upwind flux.

where u,4; is set to the analytic Schwarzschild solution, u;, are the evolved fields at the bound-
ary, and S, A*, and A~ come from the characteristic modes and their eigenvalues [58], calcu-
lated from normals that are normalized with respect to the flat metric. To improve the accuracy
we use either 2 or 3 levels of h-refinement in each patch. We choose the time step according to
equation (38), with v =4. We find that, with this setup, no filters are necessary to stabilize our
runs. As in the scalar field test cases discussed above, filters only become necessary when both
Cartesian and cubed sphere patches are present. In the latter case, the filter of equation (40)
is again sufficient for obtaining stable runs. We have evolved this setup using both the LLF
and upwind fluxes of equations (33) and (35) at inter domain boundaries. As described below,
both fluxes work about equally well.

In order to demonstrate stability of our runs at high resolution, we have evolved the black
hole with three levels of h-refinement for three different numbers of grid points. We find that
the system of equations reaches a state where the time derivatives 0,g4p, 9,114, and 9,P;y, all
approach zero (up to machine precision), as expected for a static black hole. As an example,
we show O,I1,, in figure 6 when evolved with 4 x4 x 4,5 x 5 x 5, and 6 x 6 x 6 grid points
in each node. As we can see, this time derivative falls exponentially until it settles down to
below 10~'2. Beyond this point, the terms that determine the time derivatives in the GHG
evolution equations (47)—(49) add up to almost zero, and deviate from zero only because of
roundoff errors due to the use of floating point numbers. As expected, at higher resolution this
steady state is reached earlier, because our numerical method then has smaller discretization
eITOrS.
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Figure 7. The infinity norm of the Hamiltonian constraint, when evolving a black hole
in Kerr-Schild coordinates. On the left, the constraint evolution is shown, when using
the LLF flux. On the right are the corresponding results for the upwind flux. All the
simulations on both sides use grids with 6 patches, and each patch is refined uniformly
twice. The different lines correspond to different numbers of grid points » in each dir-
ection in each leaf node. The Hamiltonian constraint converges to zero exponentially as
we increase n.

The Hamiltonian and momentum constraints of general relativity read as:

H=R—K;;K” + K> — 167 papM, (52)

M' =D;(K"7 —~4"K) — 8~ j, (53)
where R and D; are the Ricci scalar and derivative operator associated with the 3-metric ;;,
K= —%£n7ij, papm = Tpnn®, and ji = —T,n%" (see e.g. [61]). General relativity dic-
tates H=M" = 0 for all time. In figure 7, we show the infinity norm of H over the grid when
we evolve the black hole with 2 levels of h-refinement for various numbers of grid points
per node. As we can see, H stabilizes after a short time and then stays practically constant,
which again indicates stability. As expected H converges to zero exponentially as we increase
the number of grid points. We also see that the results for the LLF flux (on the left) and the
upwind flux (on the right) are almost the same. In our simulations the momentum constraint M’
behaves just like H and also converges to zero exponentially as we increase the number of grid
points.

Since the initial data is given by the Kerr-Schild metric, the analytic solution is a static black
hole. The numerical solution, however, evolves for a while until it settles down into a stable
configuration (see figure 6). This happens because the analytic solution does not exactly satisfy
the discretized GHG equations. As already mentioned in section 2 we use domain normals
that are normalized with respect to the flat metric for our black hole evolutions. In figure 8
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Figure 8. The plot shows the metric component g, at different times, along a portion
of the x-axis near a domain boundary located at x = 3.05 M. The initial data at t = 0M
are continuous (dotted line). By t = 10 M a discontinuity (dashed line) has developed.
The metric still rapidly evolves for another 100 M and then stabilizes around t = 200 M,
while keeping the size of the discontinuity roughly constant. Any further metric changes
after r = 200 M are so small that they are practically indistinguishable from the solid line.

we plot the metric component g,, at different times (for the n =4 case of figure 6). We have
zoomed in onto a region close to a domain boundary that is in the strong field region close
to the horizon at x = 2M. We find that the metric rapidly evolves away from the continuous
Kerr—Schild initial data. During this rapid evolution discontinuities develop across domain
boundaries due to numerical errors. These discontinuities persist throughout the evolution,
but do not negatively affect its stability or convergence, even though dynamic evolution takes
place. This indicates that such discontinuities in the physical metric are not a problem for a DG
method that uses numerical fluxes and eigenvalues, which are computed from normals that are
normalized with respect to the flat metric.

4.3. General relativistic hydrodynamics

To treat neutron star matter we use the Valencia formulation [62]. Matter is thus described as
a perfect fluid, where the stress-energy tensor is given by:

™ = (p+ P)u*u” + Pg", (54)

here p is the energy density, P is the pressure, and u* is the four-velocity. The total energy
density is written as:

P:PO(1+5)a (55)
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where py is the rest-mass energy density, and ¢ is the specific internal energy. We express the
four-velocity u* in terms of the three-velocity given by:

v =ut /W —nt, (56)
and also introduce the Lorentz factor:
W=—n,u" = au®. (57)

Together (po, e, Wv', P) are known as the primitive variables.

The matter equations follow from the conservation law for the energy-momentum tensor
and the conservation law for the baryon number. In order to obtain flux conservative evolution
equations of the form (5), one introduces the conserved variables:

D = pyW, (58)
T = pohW* — P — poW, (59)
S,’ = pohWZV,’, (60)

here D is rest-mass density, 7 the internal energy density, S; the momentum density as seen by
Eulerian observers. The last two equations also contain the specific enthalpy given by:

h=1+e+P/po. 6D
The conserved variables are then:
D
u=\~y| v |. (62)
S
They satisfy equation (5), with the flux vectors and sources given by:
_ (av — B)D
f'=v (av_’ — B_’)T +apv (63)
(o' = B")S1+ aP9;
and
0
S| B BIK, - B o) + TIRBK - 00) + TR | (6a)

ﬂ

Too(ﬂ’fjal’)’ij — a@;a) + TOiﬁjal’%'j + Tio 8[5i + %”6,%,-

The components of the stress-energy tensor appearing here can be expressed in terms of the
primitive variables as:

T = (W?hpy — P) /a?, (65)
T% = Whpou' /o + PB' /o, (66)
T = hpou' u? + P(v"7 — B'7 /a?), (67)
T = hpoW?v;/a, (68)

where
i

W =w —w=. (69)
(61
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To close the evolution system, we have to specify an EoS for the fluid, i.e. an equation of
the form:

P=P(po,e), (70)

that allows us to obtain the pressure for a given rest-mass energy density and the specific
internal energy, as well as the sound speed squared 2. If ¢2 < 0 or ¢ > 1, we set it to zero.
We also set it to zero if pg =0 or h=0.

As numerical flux we use the LLF flux of equation (33). For this, we need the eigenvalues
of the characteristic modes given by [62]:

Vvi(1—c2)+ V(2 3

n
—g—_ s/ = ' 1
M=o e 8", (71)
(1 —c2)—
oo lUma)-ve g, (72)
1 —v2c?
)\3:)\4:)\5204\/"—6”, (73)

where C? = c2(1—v?)[y"(1 —v*¢2) —vW*(1 — c2)], v* =v'n;, and n; is the normal to the
interface, normalized with respect to the flat metric. At points where 1 —v?c2 =0 or C* < 0,
we simply set A; = A\, =0.

4.3.1. Converting conserved to primitive variables. ~ As already mentioned, we formulate the
matter equations in the flux conservative form of equation (5) in terms of the conserved vari-
ables in equation (62). However, the flux vectors and sources in equations (63) and (64) also
depend on the primitive variables po, €, Wy, P. Thus we need a way to compute the primit-
ive variables form the conserved variables. This is done with the help of a root finder that we
will describe next. Note that we use Wv' as our primitive velocity variable instead of v'. The
advantage is that Wy’ is allowed to take any real value, while v is bounded by the speed of
light. The latter is inconvenient in numerical calculations as numerical inaccuracies can often
violate the light speed bound.

The method we use closely follows the approach in appendix C of [63], i.e. we will try to
find:

Wy := / Wvi Wy, (74)

with the help of a root finder. This root is given by the zero of the function:

VS; St

Wy) =Wy — . 75

f( V) v Dh(WV) ( )
Here, in order to find A/(Wv), we first need to compute the following:
W=1/1+ (W), (76)
D
po(Wv) = W’ (77)
T VSiST o (Wv)?

— W _— 78

e(Wv) WD Wy o T W (78)

P(Wv) = P(po(Wv),e(Wv)) (79)
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_ P(Wv)
)= L)+ pa (W) o
h(Wv) = [1 4 e(Wv)][1 + a(Wv)]. (81)

Note that our implementation of the EoS P(py, ) gracefully handles cases where ¢ is slightly
negative. Nevertheless if ¢(Wv) < 0 we set it to zero when calculating a(Wv) and h(Wv).

After we have obtained the primitive variables, we calculate Z' =S'/(Whpo) and
Z = \/Z'Z;. According to equation (60), we should have Z' = Wv'. However, due to numerical
errors, the latter equality will only hold up to the accuracy goal specified for the root finder
(typically, the root finder has a relative error of 10~'%). If Z < Wv, we accept this small dis-
crepancy, but if Z > Wv, we scale both S; and Wv' by a factor of Wv/Z.

4.3.2. A positivity limiter for low density regions. ~ 'We use a strong stability preserving third
order Runge—Kutta scheme [64] to evolve the conserved variables. It is possible that the con-
served variables become unphysical after a Runge—Kutta substep due to numerical errors.
By unphysical, we mean points where the mass density D or the energy density 7 is neg-
ative, or where S > D+ 7, with S = /S; S%. If this happens, it also becomes impossible to
then find the primitive variables needed for the next Runge—Kutta substep. To combat this
problem we use so-called positivity limiters after each substep. The idea of these limiters
is to scale each conserved variable u, that we desire to limit, towards its node average u
using:

u—u—+0,-(u—1u), (82)

here 0 < 6, < 1, and u can be D, 7 or S;. For each we try to find the maximum 6,,, such that u
satisfies certain criteria. For D, the criterion is D > 10~'? £0,max» Where pg max is the maximum
mass density. For 7, we simply demand 7 > 0, while the §; criterion is S < D + 7. All three
criteria have to hold at each point of the node. Of course even with the lowest allowed value of
0, = 0, it is possible that some of the three criteria are still not met at some points. This occurs
if D < 10_12p0,max or 7 < 0. In this case we replace D or 7 in equation (82) by these limits.
If S > D + 7 we reduce the magnitude of the vector S; by a factor of (D +7)/S to meet this
criterion. Notice that we do not use an artificial atmosphere as, e.g. in [15, 40, 63, 65-70].
Rather the positivity limiters described above ensure that D > 10~!2 Po,max> T = 0, and
S < D+ 7. In some sense that gives us an atmosphere as well, as D can never drop below
this minimum. Yet, since in most cases scaling towards the average suffices to satisfy all three
criteria, we do not violate mass, energy or momentum conservation in most cases. And even
in cases where we reset D, T or S; in some node, and thus violate conservation, we usually
need to modify only one of these conserved variables, while the usual artificial atmosphere
treatment would set D to an atmosphere value and also zero both 7 and S;, thus removing any
velocity that the atmosphere naturally might have had. As shown in [71], resetting as little as
possible can be an advantage in simulations with orbiting stars when we wish to accurately
track lower density mass ejecta.

4.3.3. Star surfaces. Since the matter fields are not smooth across neutron star surfaces, we
observe Gibbs phenomena (i.e. high frequency noise) in the nodes that contain a piece of the
star surface. Here, we use a simple solution to this problem and apply the filter of equation (40)
to damp this noise after each full time step. This filter changes the fields at every point by a
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Figure 9. The plot shows the total baryonic mass in our computational domain versus
time for /=15 and [ =6 levels of h-refinement. As one can see, mass conservation is
quite good at the highest resolution. Here dV = \ﬁd3x.

typically small amount. Nevertheless this can still cause trouble in low density regions by,
e.g. making D or 7 slightly negative or by violating S < D + 7. Thus after filtering we reapply
the positivity limiters discussed above. For the neutron star tests described below, we use the
filter parameters av¢ = 36 and s =32.

4.3.4. Tests with single neutron stars.  To test our general relativistic hydrodynamics imple-
mentation, we have performed simulations of a single neutron star for a fixed spacetime metric.
As already mentioned, we use units where G = ¢ = M, = 1. To convert to SI units, a dimen-
sionless length has to be multiplied by Ly = 1476.6250 m, a time by T = 4.9254909 x 10~ ¢,
a mass by Mg, = 1.9884099 x 10°° kg, and a mass density by 6.1758285 x 10%° kgm'3.

The first test starts with initial data for a static Tolman—Oppenheimer—Volkoff (TOV) star
with a central density of py = 0.00128. To setup the initial data, we use a polytropic EoS, where
pressure and specific internal energy are given by P = /-cp(l)+l/ "and e = m{p(l)/ " with k=100
and n = 1. This results in star with a baryonic mass (i.e. rest-mass) of mg = 1.5061762M, and
an ADM mass of m = 1.4001597M,. For the subsequent evolution we adopt a gamma-law
EoS of the form P = pye/n with n= 1.

We evolve this star on a single cubic patch with side length 32. The patch is centered on the
star and covered by Cartesian coordinates. To better resolve the star surface, where the matter
fields are not smooth, we use either 4, 5, or 6 levels of h-refinement, so that we end up with
4096, 32768, or 262 144 leaf nodes. In each node, we use 5 x 5 x 5 grid points. The star is
then evolved for more than 5000M,, with a time step of 0.1, 0.05, or 0.025. As we can see
in figure 9, baryonic mass conservation improves with increasing resolution. The reason why
mass is not exactly conserved is twofold. First, as already mentioned, our positivity limiters
are conservative only if the node average is above the limits we impose. Yet this is not always
the case, so that the limiter can cause conservation violations. Second, the outer boundary is
relatively close, so that mass can escape from our numerical domain. Nevertheless baryonic
mass conservation improves with increasing resolution.
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Figure 10. The plot shows the total internal energy versus time for /=4, /=35,and [=6
levels of h-refinement. Since 7 is not strictly conserved in general relativity, we can see
oscillations in it. For /=5 and [ = 6, the oscillation period of 75M(; is easily visible and
agrees with the fundamental oscillation frequency of the star.

In figure 10 we show the integral over the internal energy density 7. This quantity is con-
served in special relativity, but has a source term in general relativity. Thus, it is not expected
to be strictly conserved during an evolution. In fact, for the two higher resolutions, one can
clearly see oscillations in it that are slowly damped out. The period of these oscillations is
about 75M, which corresponds to a frequency of 2.7 kHz, which is in agreement with the
known fundamental oscillation frequency of this star [72, 73]. These oscillations are also vis-
ible for the highest resolution in figure 11, which shows the maximum of D versus time. For
the lower two resolutions, however, these oscillations are swamped by noise that is caused by
Gibbs phenomena at the star surface. The reason why oscillations due to Gibbs phenomena are
more prominent in figure 11 than in figures 9 and 10 is that the maximum of D is determined
at a single point, while the integrals over D and 7 represent an average over the entire domain
that is less sensitive to Gibbs phenomena. It is clear from figure 11 that if we are interested
in values at particular points, we need high resolution to get results where the expected phys-
ical oscillations dominate over the oscillations due to Gibbs phenomena. Nevertheless, our
approach, that only uses positivity limiters together with filters, is capable of stabilizing the
evolution of the star for all three resolutions.

The oscillations described so far originate purely from numerical errors. To test the robust-
ness of our approach, we have also evolved perturbed stars. In this case, we use the same
analytic TOV solution as above, but we add a perturbation of the form:

OP = X\- (P + po+ poe) sin(m r/rsm.f)Yg(G, ®), (83)

to the pressure. Here (r,0, ) are the standard spherical coordinates, rg,t = 8.1251439 is the
radius of the unperturbed star in isotropic coordinates, and Yg (0, ) is the =2, m =0 spherical
harmonic. We use the above polytropic EoS to then recalculate the initial py and € from the
perturbed pressure P + dP. All metric variables are kept at their unperturbed TOV values. For
the simulations in this paper, we have used a fairly strong perturbation with A =0.05.
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Figure 11. The plot shows the maximum of D versus time for/ =4,/ =15, and [ = 6 levels
of h-refinement. Gibbs phenomena emanating from the star surface lead to noisy oscilla-
tions. Only for the highest resolution, these oscillations clearly exhibit the fundamental
oscillation frequency of this star.
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Figure 12. The total baryonic mass for the perturbed star versus time for /=5 and [ =6
levels of h-refinement. Strong star pulsations cause material to leave through the outer
boundary and are thus responsible for the initial drop in the mass.

In figures 12—14, we show the total mass, the total internal energy, and the maximum of the

density D for the perturbed star. Since the perturbation is relatively strong, the star oscillations
are now much bigger, so that the oscillations in the total internal energy are now much larger.

26



Class. Quantum Grav. 40 (2023) 025004 W Tichy et al

0.0914 /=4, 4096 nodes
—— 1=5, 32768 nodes
0.090 £ —— /=6, 262144 nodes
>
E 0.089 AAAANAN AAA
—
>
2 0.088
[J]
c
()]
= 0.0871 ::
c "
(7] -
€ 0.0861 "
ki
S 0.085
0.084 =
0.083 e
0 1000 2000 3000 4000 5000
t/Mo
Figure 13. The total internal energy for the perturbed star. Due to the strength of the
perturbation the oscillation amplitude is much larger than for the unperturbed star in
figure 10.
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Figure 14. The maximum D for the perturbed star is qualitatively similar to the unper-
turbed case, but the oscillation amplitudes are larger.

This is clearly visible for the two higher resolutions (/ =35, /=6) in figure 13. In fact, the
star pulsations are now so strong that much more material leaves through the outer boundary.
This leads to the initial drop in the mass seen in figure 12. The maximum of D also oscillates
stronger, but as for the unperturbed case, the expected oscillation frequency is only readily
discernible at the highest resolution (I = 6) in figure 14.
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When comparing the oscillations in the internal energies in figures 10 and 13, for both
perturbed and unperturbed stars, we can see that in both cases the star oscillations are more
strongly damped for low resolutions.

The main takeaway is thus that our approach is robust since it still works for strongly
perturbed stars. We have also seen that, at the lowest resolution, oscillations due to Gibbs
phenomena can easily dominate the expected physical oscillations. Such Gibbs phenomena
will become only worse once we have to deal with true shocks, e.g. if two stars collide. We
thus expect to need additional limiters once we have to deal with shocks.

We also wish to comment on the work in [40] where single neutron stars are simulated using
a DG method together with various limiters (such as e.g. WENO, HWENO, or Krivodonova),
and also using a hybrid scheme, that switches to finite differences (FD) in non-smooth regions
(e.g. near the star surfaces). The main result of [40] is that their hybrid DG-FD scheme
works better than any of the many limiters tested, and that in fact the evolution of a single
neutron star failed with many of the limiters tested. Since our new positivity limiter is not
expected to be sufficient to deal with true shocks, using such a hybrid DG-FD scheme may
very well be the best way forward. However, it is possible we are at least able to obtain
stable evolutions with our limiter if we combine it with an additional limiter that deals with
shocks. In the next section we will therefore test several limiters that are designed to treat
shocks.

4.3.5. Limiters for the treatment of shocks.  Since general relativistic hydrodynamics allows
for the development of shocks in the fluid, we need to be prepared to deal with them. A general
way to handle spurious oscillations due to Gibbs phenomena, occurring in these situations, is
to apply limiters to the hydrodynamic fields. We try out two types of limiters in this paper.
The first is the so-called total variation bounded minmod or minmodB slope limiter, which
has been developed, demonstrated and utilized in multiple articles, such as [43, 46, 74, 75],
including methods compatible with the DG evolution scheme. We follow closely the formal-
ism in [75] and apply the minmodB limiter to the conserved variables. The other one is the
limiter proposed by Moe et al [76], dubbed henceforth as the MRS limiter. In this work, we
apply the MRS limiter to either the conserved variables (MRS(cons.)) or the primitive variables
(MRS(prim.)). The case of MRS(cons.) is straightforward, as we can directly apply the limiter
to the variables we actually evolve. However, in case of MRS(prim.), a problem arises since
we first have to recover the primitive variables from the evolved conserved variables, which
can fail if, e.g. the momentum density is too high. To address this, we perform a procedure of
prelimiting similar to what is described in [55], to a copy of the conserved variables. Through
this prelimiting, we ensure that the strong condition S; S’ < 7(7 + 2D) holds for this copy of
conserved variables. Once we have calculated the primitive variables from the prelimited copy
of conserved variables, we compute the rescaling factor 6; for the MRS limiter, as described
in [76], using the primitive variables py, Wi, and P. However, after we have obtained this 6,
we apply it to rescale the original non-prelimited conserved variables that we are evolving,
which is then our actual limiting procedure.

To test how well Nmesh handles shocks, we implement test cases in both 1D and 2D, where
we have an initial discontinuity in density and pressure, as in a Riemann problem. We then
evolve this initial discontinuity using the full general relativistic hydrodynamic evolution sys-
tem of equations on a fixed Minkowski metric. The mesh is composed of adjacent Cartesian
domains. For these tests, the time step was set to be At = Axyn /4.

1D Test: We use the special relativistic blast wave test from [77], and also use the analytic
solution code from the same article to compare with the numerical result from Nmesh. The
initial data in this case is such that we have two different values on the left and right halves of
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Table 1. Initial data for 1D special relativistic blast wave for primitive variables

(pOaPa VX)'
Left,x < 0.5 (10.00, 13.33, 0.00)
Right, x>0.5 (1.00, 0.00, 0.00)

— Analytic
+ minmodB
o MRS(cons.)
4 MRS(prim.) | g -

=

10 X v,

0.0 . . . . 1.00.70 0.75 0.80 0.85 0.90
z x

Figure 15. The plots show blast wave profiles for pressure P, rest-mass density py and
speed v, (times 10) at r = 0.4 after evolving the initial shocks in P and py. There are 200
domains, with 4 points per domain. We show results for minmodB, MRS(cons.), and
MRS(prim.) limiters. The left plot shows the whole domain, while the right one focuses
on the contact discontinuity and shock fronts. The legend on the left plot also holds for
the right plot.

the mesh, for the primitive variables pg and P. The values of the primitive variables pg, P, and
v, are as stated in table 1.

In figure 15 we show the profiles for the primitive variables over the entire mesh (left plot),
as well as the contact discontinuity and the shock front (right plot), after evolving the initial
data to time ¢t = 0.4. The plots contain the numerical results obtained from Nmesh as well as
the analytic solution from [77]. For the numerical results, we have used 200 adjacent Cartesian
domains along the x-axis, with 4 points in each domain. For minmodB, referring to the form-
alism in [75], we set 8 =0.6 and ayj, := M = 5. For MRS(cons.) and MRS(prim.), we set the
«a from [76] to a = anmL3/ 2 with agim = 25, where L is the size of the node. While the exact
meaning of oy, is different in minmodB and MRS, in both cases lower ai,, makes the limiter
more aggressive. From the plots, it appears that the result with MRS(prim.) adheres closest to
the analytic result, whereas the one with minmodB seems to deviate the most from it. This is
true for the plot on the left, that shows the behavior across the entire mesh, but is clearer from
the plot on the right, that focuses on the problematic region of the contact discontinuity and
the shock front.

2D Test: The 2D test we perform is an extension of the 1D test Riemann problem, that can
be found in [78]. The initial data in the primitive variables (pg, P, vy,vy) for the 2D test over
the mesh is as stated in table 2.
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Table 2. Initial data for 2D special relativistic blast wave for primitive variables

(vaP)va_V)'
x<0 x>0
y>0 (0.1,1,0.7,0) (0.03515, 0.163, 0, 0)
y<O0 (0.5,1,0,0) (0.1,1,0,0.7)
minmodB MRS(cons.) MRS (prim.) Po
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xr T T

Figure 16. Plots showing rest-mass density profile of 2D blast wave at t=0.4 after
evolving the initial discontinuity with minmodB, MRS(cons.) and MRS(prim.) limiters
in colormap and 30 contour lines spaced evenly between 0.01 and 0.695.

The numerical results obtained from the three different limiter choices from Nmesh are
shown in figure 16 at time ¢t = 0.4, after evolving the initial data. We have only plotted the
results for py, as it is arguably the most problematic case. We compare our results with those
of Zhao and Tang in [78] and Bugner in [57], while noting that Zhao and Tang have used
a finite element DG method with WENO and a special relativistic hydrodynamic system of
evolution equations and Bugner used a DG method with WENO and fully general relativistic
hydrodynamic system of equations, while Nmesh uses DG with the minmodB and MRS lim-
iters and the fully general relativistic hydrodynamic system of equations. In our runs here, the
mesh is composed of 100 x 100 Cartesian domains, with 4 points, i.e., we have 4 x 4 points
in each domain along each direction. Again, for minmodB, we use 5 =0.6 and ay;,, = 5. For
MRS(cons.) and MRS(prim.), we set the parameter oy, = 25. Also, we use our new positivity
limiter to control S; according to equation (82).

Once again, we see that both MRS(cons.) and MRS(prim.) fare better than minmodB. How-
ever, in this case, we cannot draw a clear conclusion as to which one out of MRS(cons.) and
MRS(prim.) yields a better result. MRS(cons.) seems to provide overall better results than
MRS(prim.), except for the left bottom region, where MRS(prim.) seems to be better at hand-
ling the high density region and the so-called ‘mushroom cloud’ structure around position
(0,0). However, overall, the MRS limiter cases are in reasonably good agreement with the
results found in [57, 78].

4.3.6. Single TOV star with MRS limiter.  Since limiting the conserved variables with the
MRS scheme was successful in our shock tube tests, we wanted to know how this limiter
would influence the neutron star simulations presented above. As a test we have repeated the
runs for the unperturbed TOV star, but this time with the MRS(cons.) limiter turned on with
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Figure 17. The plot shows the maximum of D versus time for six levels of h-refinement
with (thin black line) and without (thick green line) the MRS limiter turned on.

Qjim = 25. Note that the positivity limiters are still needed to deal with low density regions.
Thus we use both the MRS limiter and the positivity limiters described above, with the MRS
limiter running immediately before the positivity limiters. We find that the total baryonic mass
and internal energy are almost the same with and without the MRS limiter in the sense that the
corresponding plots look almost the same as in figures 9 and 10, even when the MRS limiter
is turned on. The biggest difference occurs when we plot the maximum of D. In figure 17 we
show the oscillations in the maximum of D for the high resolution with and without the MRS
limiter. In both cases we see the expected star oscillations, but there are also longer term drifts
in the maximum of D. With the MRS limiter this drift is a bit different and arguably slightly
more pronounced. Nevertheless, the MRS limiter does not lead to big changes, which is not
too surprising, since the fluid in a single star does not contain any shock fronts. Yet, this run
demonstrates that the MRS limiter does not cause any stability problems when added to our
previous method.

5. Discussion

In this article, we have presented all the numerical and computational methods used in our new
Nmesh program to evolve systems of hyperbolic equations. The principal scheme we use for
spatial discretization is a DG method. This is then coupled with a Runge—Kutta time integrator
to be able to evolve in time. The DG method can easily deal with many domains. We use this
to introduce many patches, which can be adaptively refined by splitting them into eight child
domains (see e.g. figures 1 and 2), as often as desired. This AMR scheme is then parallelized
by distributing the resulting many domains among all available compute cores. For the neutron
star test cases shown in figure 3 this approach achieves good strong scaling. As explained in
section 3, an advantage of DG methods is that they result in less communication overhead than
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traditional finite difference or finite volume methods. In [40], a similar DG method is used,
albeit with one crucial difference. To derive our DG method we integrate using coordinate
volume elements, and thus do not include the physical metric. This leads to a simplification
of the method where one does not have to worry about possible discontinuities in the physical
metric or the normal vector across domain boundaries.

We have also carried out simulations of scalar fields and black holes to test the convergence
of our new program. Since in this case all evolved fields are smooth, we expect exponential
convergence when the number of grid points is increased. Our simulation results conform to
this expectation. We find that both, the upwind and LLF fluxes perform equally well, in all
cases tested.

A much more complicated case is the evolution of neutron stars, since in this case, the
matter fields are not smooth across the star surface. An additional problem arises from the fact
that at each Runge—Kutta substep we have to calculate the primitive variables from the evolved
conserved variables. The latter can easily fail in low density regions (such as the vacuum out-
side the star), where numerical errors can cause the conserved variables to become unphysical
in the sense that the mass or internal energy densities can become negative, or the momentum
density can be become too high. To address this problem, we have developed a new positivity
limiter that attempts to reset these variables by scaling toward their node averages in case of
trouble. If we use our positivity limiter together with the exponential filters described before,
we can stably evolve single neutron stars. These stable evolutions are possible without any
extra ingredients, such as an artificial low density atmosphere or additional limiters (like the
minmodB or MRS limiters described above), that have been used in other works. We believe
that our positivity limiter is an important step, because the more general limiters like minmodB
or MRS are really designed to deal with shocks and thus do not help in low density regions
near star surfaces. Nevertheless, something like these general limiters is still needed to deal
with shocks. As we have shown above, the general limiters can be used in combination with
the positivity limiter.

We thus have all necessary ingredients to perform simulations of binary neutron stars and
black holes, which is what we plan to do in the future with the Nmesh program.
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Appendix A. About the flat metric in GauB’s theorem
In equation (7) we have used Gaul}’s theorem in the form:
/ O fldx = yf finidA, (A.1)
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where n; was normalized with respect to the flat metric, expressed as J; in the global
Cartesian-like coordinates x’ that cover all our domains. For example, on x> = 1 we have:

1 3
py— 9% (A2)
NEEE
and
o 0503
~33 — 7.*.(5”. A3
oxt OxJ (A3)
Thus we find:
N = R T Y S, B
mdA = —— T dA = T dA = T Jd'd, (A4)
533 ox Ox 1/(2)7 ox

where in the last two steps we have used equations (27) and (14). We see that the flat metric
pieces all cancel, and thus do not influence the surface integral.
The analog of equation (27) for the physical metric (denoted by y;; without overbar) is:

VO

J=——=. (A.5)
VIV
If we insert the latter into the right hand side of equation (A.4) we find:
T .5 1
nidA = D@ d® = ——N;dA, (A.6)

V7 /4 O Vi
where N; is normalized with the physical metric and dA is the physical surface element. Let
us now define:

Fl = I ) (A7)
Nal

Then the right hand side of equation (A.1) can be written as:

?gf"n,-dix = ygF"N,-dA, (A.8)
while the left hand side is:
. 1 . .
/ Oifidx= / — 0 (VAF)\/yd’x = / D;F'\/ydx, (A.9)
Vi
where D; is the covariant derivative operator. Together this yields:

/DiFiﬁd3x: yfF"N,-dA, (A.10)

which is the well-known coordinate independent form of Gaul3’s theorem.

This shows that we can use other metrics besides the physical one in Gauf3’s theorem,
because all pieces of any metric cancel. Yet, whatever metric we choose to use, must also
be used to normalize our normal vector.
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Appendix B. On the influence of different normalizations

We now discuss the differences between using the physical metric v;; (as in [40, 48]) and the
flat metric ¢;; to normalize the vectors n; normal to a domain boundary.

To obtain a simple example we start with a 2-dimensional spacetime metric ds*> = —a?df* +
~Yuedx?. If we retrace the steps that lead from equations (1) to (5), we find:

O+ Oy f =s. (B.1)

The main step in the DG method consists of integrating the 0, f term, which in one spatial
dimension becomes:

b b b
/ depd,f = [ L - / dxfou — [ F1 - / dxf o0

b
(- Pl / dxp o f, (B.2)

where again we have introduced a numerical flux f*. The term [¢) ( f* — £)]% corresponds to
the surface integral in equation (8), and can be written as:

W (f = HE=v(f = nlp +9 (= Fnla, (B.3)

where the outward pointing normals are n|, = | and n|, = —1. So far the physical metric 7,
has not appeared. Following Teukolsky [48] we now define a normal vector N := n/+/7** that
is normalized with respect to the physical metric. We then obtain:

V(f = Hin=v(f = INVY™ (B.4)

This means we can replace the n that was normalized with respect to the flat metric with an
N that is normalized with respect to the physical metric +,,, provided we include other metric
factors. Notice that the factor /7™ in equation (B.4) is equivalent to the 7/ under the root in
equation (35) of [40], and that in the case discussed here £  x, so that the J and ¢ i / Ox/ terms
in equation (35) of [40] drop out. The fact that the N and /7 terms in equation (B.4) cancel
each other, agrees with the discussion in appendix A of [48] that calls the appearance of the
physical metric illusory, and also with our appendix A.

The situation becomes less trivial when one considers how the numerical flux f* is actually
computed, which is related to the point about metric discontinuities being tricky, that is raised
in [40]. As an example, let us consider the LLF flux of equation (33). It depends on the field
value u;, in the current domain and the u,q; from the adjacent domain. For n; equation (33)
makes no such distinction because n;, normalized with the flat metric, is the same on both
sides. The analog to equation (33) found in equation (36) of [40] is:

(PN = 5 [F i INE + F agNET+ A (0 — )] ®5)
where NI and N;’ldJ are the normals in the different domains that differ if the physical metric
is discontinuous across the domain boundary. Also note that | A|;,.x denotes the absolute max-
imum eigenvalue magnitude, when we consider eigenvalues from both sides. L.e. the numerical
flux in [40] differs from our approach if the physical metric is discontinuous across the domain
boundary. Note, however, that the physical metric of the true continuum solution will always
be continuous, so that such discontinuities will converge to zero with increasing resolution.
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Finally, we will compute the numerical flux with both equations (33) and (B.5) for a simple
example. Consider the case where we have a single field # with f =u and s=0, so that
equation (B.1) becomes:

O+ O =0, (B.6)

which is a simple advection equation for u. We wish to solve this equation in a 1-dimensional
domain x € [a,b]. If we use n as normal, the eigenvalue A = 1 on the right boundary (at x = b).
At x = b equation (33) then yields:

(fn)" =upn = fn. (B.7)

If we use N as normal, the eigenvalue A = N on the right boundary (at x = b).
Thus equation (B.5) results in:

(fN)* =3 [Min]\lin +uadj1\rddj + ‘A|max (uin - uadj)]

[N Al i+ (V9 A i) ®8

N ==

where |A]nax = max(|JN™|,[N2|). Unless N = N4, ( £N)* is not equal to fN, and thus the
result really differs from ( fn)* = fn. Ananalogous difference also occurs on the left boundary
atx=a.

The question now arises which approach we should use. The analytic solution of the advec-
tion equation (B.6) is u = h(x — 1), where h(x) is an arbitrary function. I.e. we obtain a profile
that moves to the right over time. Thus no boundary condition is needed on the right, because
nothing is entering the domain from there. The corresponding numerical flux should thus be
computed solely from quantities inside our domain, and hence be given by the upwind flux
f* = f = uip. The latter is exactly what we have obtained from the LLF flux of equation (33),
when using the flat metric to normalize our normals. This is expected, as the LLF flux for a
single field obeying equation (B.6) is known to be equivalent to the upwind flux. Also notice
that the boundary term at x = b in equation (B.3) entirely vanishes for this upwind flux, which
is equivalent to not imposing any boundary condition on the right. Yet, we do not obtain these
same results if we follow [40] and normalize with the physical metric (unless the physical
metric is continuous across the boundary). Nevertheless, we believe that both normalization
approaches can work, because the physical metric of the true continuum solution will always
be continuous. We thus expect both approaches to converge to the same physical solution.
However, we prefer our approach to the one in [40], because it is simpler, and also because it
reproduces the correct upwind result for a single advection equation.

We should also note, that in the first paper about the SpECTRE code [39] it is claimed (in
the footnote on page 7) that the ‘unit normal’ is the same on the two sides of the boundary.
From the context of this footnote it seems as if the authors mean N; (normalized with respect
to the physical metric), when they write ‘unit normal’. This, however, cannot be true because
it is precisely n; (normalized with respect to flat metric), that is the same on both sides of
the boundary. This is because n; denotes the normal expressed in the global Cartesian-like
x coordinates, which cover all domains (see remark after equation (14)). Thus by definition
n; cannot have any discontinuities, while N; (obtained by renormalizing n; with the physical
metric) can be discontinuous, if the physical metric is.

Another way of seeing that N; can be discontinuous, is by recalling that it is normalized
with the physical metric and thus:

o o
NN = | = NRINS (B.9)
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Therefore, if 'yl'é and 'y;ﬂj differ, Nj-“ and Nl-aClJ can differ as well. Also notice, that
equation (3.16) of [39] has a term with eigenvalues, which is identical to the one in
equation (B.5), and also contains an N; that is different on both sides of the boundary. Hence
it seems the authors of [39] agree with us, that N; can be discontinuous.

In section 4.2 we have tested the evolution of a single black hole using the DG method,
where domain normals are normalized with respect to the flat metric. As we have seen, the
discontinuities in the physical metric are not a problem for our approach, even though the
numerical solution goes through an initial rapid evolution phase.
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