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The ideal realization of quantum teleportation relies on having access to a maximally entangled state; however,
in practice, such an ideal state is typically not available and one can instead only realize an approximate
teleportation. With this in mind, we present a method to quantify the performance of approximate teleportation
when using an arbitrary resource state. More specifically, after framing the task of approximate teleportation
as an optimization of a simulation error over one-way local operations and classical communication (LOCC)
channels, we establish a semidefinite relaxation of this optimization task by instead optimizing over the larger set
of 2-PPT-extendible channels (where PPT denotes positive partial transpose). The main analytical calculations in
our paper consist of exploiting the unitary covariance symmetry of the identity channel to establish a significant
reduction of the computational cost of this latter optimization. Next, by exploiting known connections between
approximate teleportation and quantum error correction, we also apply these concepts to establish bounds on the
performance of approximate quantum error correction over a given quantum channel. Finally, we evaluate our

bounds for various examples of resource states and channels.
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I. INTRODUCTION

Teleportation is one of the most basic protocols in quantum
information science [1]. By means of two bits of classical
communication and an entangled pair of qubits (a so-called
resource state), it is possible to transmit a qubit from one
location to another. This protocol demonstrates the fasci-
nating possibilities available under the distant laboratories
paradigm of local operations and classical communication
(LOCC), and it prompted the development of the resource
theory of entanglement [2]. Teleportation is so ubiquitous
in quantum information science now, that nearly every sub-
field (fault-tolerant computing, error correction, cryptography,
communication complexity, Shannon theory, etc.) employs
it in some manner. A number of impressive teleporta-
tion experiments have been conducted over the past few
decades [3-10].

The teleportation protocol assumes an ideal resource state;
however, if the resource state shared between the two parties is
imperfect, then the teleportation protocol no longer simulates
an ideal quantum channel, but rather some approximation of
it [11,12]. This problem has been studied considerably in the
literature and is related to the well-known problem of entan-
glement distillation [2,13]. Recently, it has been addressed in a
precise and general operational way, in terms of a meaningful
channel distinguishability measure [14, Definition 19].

In the seminal work [2], a connection was forged between
entanglement distillation and approximate quantum error
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correction. There it was shown that certain one-way LOCC
entanglement distillation protocols can be converted to ap-
proximate quantum error correction protocols, and vice versa.
Thus, techniques for analyzing entanglement distillation can
be used to analyze quantum error correction and vice versa.
In this paper, we obtain bounds on the performance of
teleportation when using an imperfect resource state, and by
exploiting the aforementioned connection, we address a re-
lated problem for approximate quantum error correction. We
thus consider our paper to offer two distinct, yet related contri-
butions. The conceptual approach that we take here is linked
to that of [15], which was concerned with a more involved
protocol called bidirectional teleportation; it is also linked to
[16,17], which introduced the set of k-extendible channels
as a semidefinite relaxation of the set of one-way LOCC
channels. Our approach has strong links as well with that
taken in [18], the latter concerned with bounding the perfor-
mance of approximate quantum error correction by means of
k-PPT-extendible channels; these channels were introduced in
[18] as a semidefinite relaxation of the set of one-way LOCC
channels that forms a tighter containment than k-extendible
channels alone. In fact, our method applied to the problem
of approximate quantum error correction can be understood
as exploiting further symmetries available when simulating
the identity channel, in order to reduce the computational
complexity required to calculate the bounds given in [18].
Let us discuss our first contribution in a bit more detail.
Suppose that the goal is to use a bipartite resource state pap
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along with one-way LOCC to simulate a perfect quantum
channel of dimension d. It is not always possible to perform
this simulation exactly, and for most resource states, an error
will occur. We can quantify the simulation error either in terms
of the diamond distance [19] or the channel infidelity [20].
However, we prove here that the simulation error is the same,
regardless of whether we use the channel infidelity or the
diamond distance, when quantifying the deviation between
the simulation and an ideal quantum channel (note that a
similar result was found previously in [15] and we exploit
similar techniques to arrive at our conclusion here). Next, in
order to obtain a lower bound on the simulation error, and due
to the fact that it is computationally challenging to optimize
over one-way LOCC channels, we optimize the error over the
larger set of 2-PPT-extendible channels (where PPT denotes
positive partial transpose; defined in Sec. IIB5) and show
that the resulting quantity can be calculated by means of a
semidefinite program. By exploiting the unitary covariance
symmetry of the ideal quantum channel, we reduce the com-
putational complexity of the semidefinite program to depend
only on the dimension of the resource state psp being consid-
ered. This constitutes our main contribution to the analysis of
teleportation with an imperfect resource state. We also provide
a general formulation of the simulation problem when trying
to simulate an arbitrary channel using one-way LOCC and a
resource state.

The second contribution of our paper employs a similar line
of reasoning to obtain a lower bound on the simulation error of
approximate quantum error correction. In this setting, instead
of a bipartite state, two parties have at their disposal a quantum
channel N,_, g, for which they can prepend an encoding and
append a decoding in order to simulate a perfect quantum
channel of dimension d. This encoding and decoding can be
understood as a superchannel [21] that transforms N_, 5 into
an approximation of the perfect quantum channel. It is clear
that the simulation error cannot increase by allowing for a su-
perchannel realized by one-way local operations and common
randomness (LOCR), and here, following the approach out-
lined above, we find a lower bound on the simulation error by
optimizing instead over the larger class of 2-PPT-extendible
superchannels with an extra nonsignaling constraint. Criti-
cally, this lower bound can be calculated by means of a
semidefinite program. As indicated above, this problem was
previously considered in [18], but our contribution is that the
semidefinite programming lower bound reported here has a
substantially reduced computational complexity, depending
only on the input and output dimensions of the channel N_, g
of interest.

A. Organization of the paper

Our paper is organized into two major parts, according to
the contributions mentioned above. The first part (Secs. II-
IV) details our contribution to quantifying the performance
of approximate teleportation. The second part (Secs. V-VII)
details our contribution to quantifying the performance of
approximate quantum error correction.

The first part of our paper is organized as follows: Sec. II
provides some background on quantum states and channels,
with an emphasis on LOCC and LOCR bipartite channels.

Section III establishes a measure for the performance of
quantum channel simulation, namely, in terms of the nor-
malized diamond distance and channel infidelity. We prove
here that these two error measures are equal when the goal
is to simulate the identity channel, following as a conse-
quence of the unitary covariance symmetry of the identity
channel. Section IV presents the major contribution of the
first part, a semidefinite program (SDP) that gives a lower
bound on the simulation error of approximate teleportation
when using an arbitrary bipartite resource state and one-way
LOCC channels. This SDP is further simplified by exploit-
ing the aforementioned symmetry of the identity channel
to reduce the computational cost of the optimization task
significantly.

The second part of our paper is organized as follows:
Sec. V provides background on quantum superchannels to
generalize the concepts of one-way LOCC and LOCR bipar-
tite channels to superchannels. Section VI explores the task of
channel simulation, i.e., simulating a quantum channel from
an arbitrary quantum channel and LOCR superchannels. The
performance of channel simulation is again quantified with the
normalized diamond distance and channel infidelity, and again
the error measures are equal when the goal is to simulate the
identity channel with the assistance of common randomness.
Section VII presents the major contribution of the second patrt,
an SDP that gives a lower bound on the error in simulating a
quantum channel with an arbitrary channel and LOCR super-
channels. We detail a much simplified SDP for the simulation
of an identity channel, the case of interest in approximate
quantum error correction, by leveraging its unitary covariance
symmetry.

Section VIII presents plots that result from numerical cal-
culations of our SDP error bounds. The first example in
Sec. VIII A bounds the error in approximate teleportation us-
ing a certain mixed state as the resource state, demonstrating
that 2-PPT-extendiblity constraints can achieve tighter bounds
when compared to PPT constraints alone. The second exam-
ple in Sec. VIII B considers the bounds when using a lower
dimensional resource state to simulate a higher dimensional
identity channel. The next example in Sec. VIIIC considers
the bounds for qubit and qutrit depolarizing channels. The
penultimate example in Sec. VIIID bounds the error in ap-
proximate teleportation when using two-mode squeezed states
as the resource state. The final example in Section VIIIE
bounds the error in simulating an identity channel when using
the three-level amplitude damping channel [22], and it is thus
an example of our bound applied to approximate quantum
error correction.

Section IX concludes by discussing several open ques-
tions for future work. We note here that Python code for
calculating the SDPs in our paper is available with its arXiv
posting.

II. BACKGROUND ON STATES,
CHANNELS, AND BIPARTITE CHANNELS

We recall some basic facts about quantum information
theory in this section to fix our notation before proceeding;
more detailed background can be found in [23-27].
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A. States and channels

A quantum state or density operator, usually denoted by
04, Oa, €tc., is a positive semidefinite, unit trace operator
acting on a Hilbert space H,4. The Heisenberg-Weyl operators
are unitary transformations of quantum states, defined for all
x,z€{0,1,...,d — 1} as

d—1

Z(2) =y Tk kI, (1)
k=0
d—1

X(x) =Y k@ x)(kl, 2)
k=0

W' = Z(2)X (x), 3)

where @, denotes addition modulo d.

A quantum channel is a completely positive (CP), trace-
preserving (TP) map. Let N;_.p denote a quantum channel
that accepts as input a linear operator acting on a Hilbert space
‘H 4 and outputs a linear operator acting on a Hilbert space Hp.
For short, we say that the channel takes system A to system
B, where systems are identified with Hilbert spaces. Let I'3;
denote the Choi operator of a channel N_, p:

Flje\g = NA%B(FRA% (4)
where
dy—1
Tra = Y i) {jlr ® li}{jla )
i,j=0

is the unnormalized maximally entangled operator and
{|i)R}fi0_l and {|i)A}l‘.li0_l are orthonormal bases.

The Choi representation of a channel is isomorphic to the
superoperator representation and provides a convenient means
of characterizing a channel. Namely, a channel Mj,_ p is
completely positive if and only if its Choi operator ['z7 is
positive semidefinite and a channel M_, g is trace preserving
if and only if its Choi operator T'p satisfies Trp[Tpg ] = I

B. Bipartite channels

A bipartite channel AVp_, 45 maps input systems A and B
to output systems A’ and B’. In this model, we assume that
a single party Alice has access to systems A and A’, while
another party Bob has access to systems B and B’. The Choi
operator for a bipartite channel Mg . 4p is as follows:

% s = Nagoaw (Tig ® Tpp). (6)

1. One-way LOCC channels

A bipartite channel L45_.4p is a one-way LOCC (1WL)
channel if it can be written as follows:

Lapsap = Z Ein ®Dy_p, (7

where {&€;_ ,/}» is a set of completely positive maps, such
that the sum map ) . £}, ,, is trace preserving, and {D}_ 5},
is a set of quantum channels. The idea here is that Alice
acts on her system A with a quantum instrument described
by {£31_ 4 }x, transmits the classical outcome x of the mea-
surement over a classical communication channel to Bob,

who subsequently applies the quantum channel Dj__ ,, to his
system B. A key example of a one-way LOCC channel is
in the teleportation protocol: given that Alice and Bob share
a maximally entangled state in systems AB and Alice has
prepared the system A that she would like to teleport, the
one-way LOCC channel consists of Alice performing a Bell
measurement on systems AgA (quantum instrument), sending
the measurement outcome to Bob (classical communication),
who then applies a Heisenberg-Weyl correction operation on
system B conditioned on the classical communication from
Alice. One-way LOCC channels are central in our analysis of
approximate teleportation.

2. LOCR channels

A subset of one-way LOCC channels consists of those that
can be implemented by local operations and common random-
ness (LOCR). These channels have the following form:

Canwr = ) POEN Ly ® Dy p, ®)

where {p(y)}, is a probability distribution and {£} _ , }, and
{DE% g1y are sets of quantum channels. The main difference
between one-way LOCC and LOCR is that, in the latter case,
the channel is simply a probabilistic mixture of local channels.
In order to simulate them, classical communication is not
needed, and only the weaker resource of common randomness

is required. Thus, the following containment holds:
LOCR C 1WL. )

These channels play a role in our analysis of approximate
quantum error correction and channel simulation.

3. 2-extendible channels

A bipartite channel Nyp_p is 2-extendible [16,17], if
there exists an extension channel Mg p, a5 p, satisfying
permutation covariance:

Mg, B, a8 B, © FpB, = Fp B, © Map,p,~amp,  (10)
and the following nonsignaling constraint:
Trp, oMaup,B,a88, = Nap,—as, ® Tra,. (11)

In the above, Fp,p, is the unitary swap channel that permutes
systems B; and B;, and ]—'B/] B, is defined similarly. Also, Tr
denotes the partial trace channel. Note that the two conditions
in (10) and (11) imply that the original channel NVyp_, 45 is
nonsignaling from Bob to Alice,

Trp oNap—ap = Trg oNag_ap o R, (12)
where
R3(:) :==Tr[-]np (13)

is a replacer channel that traces out its input and replaces it
with the maximally mixed state g := é We provide a proof
of (12) in Appendix.

More generally, k-extendible channels were defined in
[16,17], and a resource theory was constructed based on
them. However, we only make use of 2-extendible channels
in this work, and we leave the study of our problem using
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k-extendible channels for future work. See [18] for an alter-
native definition of k-extendible channels that appeared after
the original proposal of [16]. A key insight of [16,17] is that
the set of one-way LOCC channels is contained in the set of
2-extendible channels, and we make use of this observation in
our paper.

A bipartite channel NMyp_, 4p is 2-extendible if and only if
its Choi operator I');, 5 is such that there exists a Hermitian
operator [} . 8 p, Satisfying [16,17]

(T8, ® ‘FBGBE)(F%IBZA’B’IB’Z) = F;\\l/?lleA BB, (14)
Trp, [F/{\g]BzA’B’,Bg] = FABIA/B’I ®Ip,, (15)
Tinmans, = 0, (16)

Tran;p, [FA{\I?IBzA/B’]B/Z] = Ip,B,- W)

The condition in (14) holds if and only if (10) does. The
condition in (15) holds if and only if (11) does. Finally, (16)
holds if and only if Mg, 5,455, is completely positive, and
(17) holds if and only if Mypg, B,—A'B B, is trace preserving.
Related to the above, the conditions in (14) and (15) imply
the following nonsignaling condition on the Choi operator of
A/:AB—>A’B’:

Tro [Mory] =

which is equivalent to (12).

1
d—TI'BBf [F%A/Br] ®IB, (18)
B

4. Completely positive-partial-transpose preserving channels

A bipartite channel ANjp_ap is completely positive-
partial-transpose preserving (C-PPT-P) [28,29] if the map
Ty o Nup—am o Tg is completely positive. Here Ty is the par-
tial transpose map, defined as the following superoperator:

Tp(-) = Z 1) (eI (s (19)
ij
See also [30]. The set of one-way LOCC channels is contained
in the set of C-PPT-P channels [28,29], and we also make use
of this observation in our paper. A bipartite channel Nag_, 4'p
is C-PPT-P if and only if its Choi operator [}, . satisfies

Ty = 0. (20)
Trap [T ABA,B,] = Isp, 1)
TBB/(FABA B) > 07 (22)

where Tpp is the partial transpose acting on systems B and
B’. We note that the C-PPT-P constraint has been used in
prior work on bounding the simulation error in bidirectional
teleportation [15]. See also [31-35] for other contexts.

5. 2-PPT-extendible channels

We can combine the above constraints in a nontrivial
way to define the set of 2-PPT-extendible channels, and we
note that this was considered recently in [18, Remark after
Lemma 4.10], as a generalization of the concept employed
for bipartite states [36,37]. Explicitly, a bipartite channel
Nup_sap is 2-PPT-extendible if there exists an extension
channel Mg, 5, a3 p, satisfying the following conditions of

permutation covariance, nonsignaling, and being completely-
PPT-preserving:

MAB]BZHA’B’IB’Z o Fpp, = -7'-3’13/2 © MABleﬁA’B/IB/zv (23)

Trp, o Map,s,~a8,8, = Nap, a5, ® Trp,, (24)
Tp, o Map,B,—aB,8, © T, € CP, (25)
Ty o Map,,ap, 0 Ta € CP. (26)

It is redundant to demand further that the following constraints
hold:

T, o Map,B,—a8,8, © T, € CP, (27)
Typ, o Map,B, a8, © Tap, € CP, (28)
Ty, © Map,p,~a8,8, © Ta, € CP, (29)

Tp B, © Mg, a8, © Tp,p, € CP, (30)

because they follow as a consequence of (25) and (23), (25),
(27), and (26), respectively. A bipartite channel Nyp_, 4/p is 2-
PPT-extendible if and only if its Choi operator F%A, g 1s such
that there exists a Hermitian operator Ff\\g] B.A'B|B, satisfying

(}-BnBz ® }-B’B’)( AB\B,A'B|B ) = F/ﬁ\ngzA/B;B'Z’ (€29
Trg, [ AB|B,A'B) B’] = F,{x\zfalA'B’l ®1Is,, (32)

Tg,p ( ABleA’B’B’) 20, (33)

T (TAg g, B’B’) 20, (34)
CAsmas s, = 0 (35)

TI'AIB'] B} [FAZ\Z/?IIBzA’B’] sz] = IAB[BZ' (36)

Observe that a bipartite channel NVp_, o5 is C-PPT-P if it
is 2-PPT-extendible. This follows from (24) and (26).

Every one-way LOCC channel of the form in (7) is 2-PPT-
extendible by considering the following extension channel:

Z SX%A’ ® D B, —B| ® DBZ—>B’ (37)
X

which manifestly satisfies the constraints in (23)—(26). We
thus employ 2-PPT-extendible channels as a semidefinite re-
laxation of the set of one-way LOCC channels.

6. 2-PPT-extendible nonsignaling channels

We can add a further constraint to the channels discussed
in the previous section, i.e., a nonsignaling constraint of the
following form:

b
Tra oMap B, a8, = Tra oMap,p,~aB 5, © Ry, (38)

which ensures that the extension channel Mg, 5,45, 15
also nonsignaling from Alice to both Bobs. The constraint on
the Choi operator F/ﬁ\gl BA'BB, is as follows:

1
M M
Tra Do o s, ] = A Traa [CAg pam ] © s (39)

Every LOCR channel of the form in (8) is 2-PPT-
extendible nonsignaling, as is evident by choosing the
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following extension channel:

> PME_L® D} 5 D) g (40)
.

We thus employ 2-PPT-extendible nonsignaling channels as a
semidefinite relaxation of the set of LOCR channels, and we
note here that [18] previously used this approach.

Let us state explicitly here that extensions of one-way
LOCC channels of the form in (7) generally do not satisfy
the nonsignaling constraint in (38), due to the fact that each
map &;_ . in (7) is not necessarily trace preserving.

III. QUANTIFYING THE PERFORMANCE
OF APPROXIMATE TELEPORTATION

In approximate teleportation, Alice and Bob are allowed
to make use of a fixed bipartite state p;3 and an arbitrary
one-way LOCC channel L, 45_, 5, with the goal of simulating
an identity channel of dimension d. To be clear, the one-way
LOCC channel £,;5_, 5 has the following form:

Lagip(@ip) = Y D p(TralAS00550). (A1)

where {A’, .} is a positive operator-valued measure (satisfy-
ing A, >0 forall x and ) A} = L;3) and (D} is
set of quantum channels. We assume that the dimension of the
systems AB is finite, and we write the dimension of A as d 4
and the dimension of B as dj. The approximate teleportation
protocol realizes the following simulation channel Sy p [12,

Eq. (1D]:
Saon(@4) = Loz 5(0r @ pip)- (42)

In the following subsections, we discuss two seemingly dif-
ferent ways of quantifying the simulation error.

A. Quantifying simulation error with normalized
diamond distance

The standard metric for quantifying the distance between
quantum channels is the normalized diamond distance [19].
See the related paper [15] for discussions of the operational
significance of the diamond distance (see also [27]). For chan-
nels Nc_p and N¢_ p, the diamond distance is defined as

INc—p — Newplle = sup INc— p(pre) — Neo p(pre)lli,
PRC
43)

where the optimization is over every bipartite state prc with
the reference system R arbitrarily large. The following equal-
ity is well known (see, e.g., [27]):

INeosp — Neoplle = SWUP INe—p(Wre) — Neop(Wre)lli,
(44)

where the optimization is over every pure bipartite state {gc
with the reference system R isomorphic to the channel input
system C. The normalized diamond distance is then given by

YNeop = Newplle, (45)

so that the resulting error takes a value between zero and
one. The reduction in (44) implies that it is a computationally

tractable problem to calculate the diamond distance, and in
fact, one can do so by means of the following semidefinite
program [38]:

A )LIR > TrD[ZRD]’
i { - } (46)
»Zrp 20

Zrp = T3, — TR

where T4 and T} are the Choi operators of N, and
Nc_ p, respectively.

The simulation error when using a bipartite state p;5 and a
one-way LOCC channel to simulate an identity channel id4__ ,
of dimension d is given by

(47)

ewL(04p, Lagp—p) = %” idz—u; _‘5~‘A—>B o
where the simulation channel gA_> g is defined in (42). Em-
ploying (44), we find that

erwL(Pig» Laipop) = 3/up%||1m — Lazis(Wra ® pip)l1,
RA
(48)

with g4 a pure bipartite state such that system R is isomor-
phic to system A. We are interested in the minimum possible
simulation error, and so we define

etwL(p4p) = ,CeirllfVLeIWL(pAB’ Laip—p)s (49)

where we recall that IWL denotes the set of one-way LOCC
channels. The error e;wi (0,43) is one kind of simulation error
on which we are interested in obtaining computationally effi-
cient lower bounds. Indeed, it is a computationally difficult
problem to calculate e;wr.(p4p3) directly, and so we instead
resort to calculating lower bounds.

B. Quantifying simulation error with channel infidelity

Another measure of the simulation error is by means of the
channel infidelity. Let us recall that the fidelity of states w and
7 is defined as [39]

F(o,7) = [[VovT|i, (50)

where || X ||, := Tr[+/X"X]. From this measure, we can define
a channel fidelity measure for channels N¢_,p and M¢_p as
follows:

FN,N) = inf FINC-p(prc). Newnlpre)l,  (51)

where the optimization is over every bipartite state pgc with
the reference system R arbitrarily large. Similar to the di-
amond distance, it suffices to optimize the channel fidelity
over every pure bipartite state Ygc with reference system R
isomorphic to the channel input system C (see, e.g., [27]):

FN,N) = inf FING-p(Wrc), NewopWre)l.  (52)

The square root of the channel fidelity can be calculated by
means of the following semidefinite program [40,41]:

VEFWN,N)= sup (53)

%20,0rp
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subject to
Mg < Re[Trp[QOrpll, (54)
Fl% Q;D > 0. (55)
Orp T,

An alternative method for quantifying the simulation error
is to employ the channel infidelity, defined as 1 — F (N, N ).
Indeed, we can measure the simulation error as follows, when
using a bipartite state p;; and a one-way LOCC channel

Lip— 5
e (Pass Lagiop) =1 — F(idd_ 5 Sisp), (56)

where the simulation channel gA%B is defined in (42). By
employing (52), we find that

etwr (Pans Laigop) = SUpll — F(Wra, Lyis—s(Wra ® 015))],

VYra

(57)

where the optimization is over every pure bipartite state Y¥rga
with system R isomorphic to the channel input system A.
Since we are interested in the minimum possible simulation
error, we define

etwL(pap) = LglvaL etwL (ass Laisp)- (58)

This is the other kind of simulation error on which we are
interested in obtaining lower bounds.

C. One-way LOCC simulation of general
point-to-point channels

Beyond the case of simulating an ideal channel, more gen-
erally we can consider using a resource state p;; along with a
one-way LOCC channel £, ;3_, 5 in order to simulate a general
channel NV,_, 5. In this case, the simulation channel has the
following form:

Nasp(@a) = Lags 5(@a ® pig)- (59)

The simulation error when employing a specific one-way
LOCC channel £,;3_, 5 is

erwt WNas s, 04 Lagsop) = SIN = Nlo,  (60)

and the simulation error minimized over all possible one-way
LOCC channels is
etwLWNasg, pip) = inf etwL (Nas, Pip> Ladpp)-
Le1IWL
(61)
We note here that this is a special case of the simulation
problem considered in [42, Sec. II].

Alternatively, we can employ the infidelity to quantify the
simulation error as follows:

oL Nassss pags Lagpop) =1—FWN,N), (62
efWL(/\/AeB’ Pag) = Lgll\va efWL (Na— s, Pig> Lais—p)-

(63)

D. Equality of simulation errors when simulating
the identity channel

Proposition 1 below states that the following equality holds
for every bipartite state 04p:

erwL(pig) = eiwi(04z)- (64)

We provide an explicit proof in Appendix B of the Supple-
mental Material [43]. This equality follows as a consequence
of the unitary covariance symmetry of the identity channel
being simulated and the fact that an optimal simulating chan-
nel should respect the same symmetries. Indeed, consider that
the identity channel ide g possesses the following unitary
covariance symmetry:

idd_ poldy =Ugoids_ g, (65)
which holds for every unitary channel 24(-) = U(-)U", with U
a unitary operator. As a consequence, the theory simplifies in
the sense that we need only focus on bounding the simulation
error with respect to a single measure. We note here that a
similar result was found in [15] for the case of simulating the
bipartite swap channel by means of LOCC.

Proposition 1. The optimization problems in (49) and
(58), for the error in simulating the identity channel id4__ ,,

simplify as follows:

erwL(piz) = efwi(Paz) (66)
=1— sup Tr[K;z043], (67)
Kjp:Lip=0

subject to Kj;z+ Lss =1I;3 and the following channel
L4145 p being a one-way LOCC channel:

Lazpp(@pip) =id5_ p(TrzalKipw,450)
+ Dap(Tripllipwaigl),  (68)

where Dy, p is the following channel:

Y WEeWEH, (69)
(z,x)7#(0,0)

Dy ploa) = P
and W** is defined in (3). The constraint that £,45_,  is a one-
way LOCC channel is equivalent to the existence of a positive
operator-valued measure (POVM) {A)l; i }» and a set {D;E;_) B}X
of channels such that

Z TrB TB

where FE; is the Choi operator of the channel Dj
Proof. See Appendix B of the Supplemental Material
[43]. ]

OT 5 (70)

IV. SDP LOWER BOUNDS ON THE PERFORMANCE
OF APPROXIMATE TELEPORTATION BASED ON
2-PPT-EXTENDIBILITY

A. SDP lower bound on the error in one-way LOCC
simulation of a channel

It is difficult to compute the simulation error
erwr. Nas g, p4p) defined in (61) because it is challenging
to optimize over the set of one-way LOCC channels [44,45].
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Here we enlarge the set of one-way LOCC channels to the
set of 2-PPT-extendible bipartite channels, with the goal
of simplifying the calculation of the simulation error. The
result is that we provide a lower bound on the one-way
LOCC simulation error in terms of a semidefinite program,
which follows because the set of 2-PPT-extendible channels
is specified by semidefinite constraints, as indicated in
(31)—(36).

In more detail, recall that a bipartite channel is 2-PPT-
extendible if the conditions in (23)—(26) hold. As indicated
previously at the end of Sec. IIBS5, every one-way LOCC
channel is a 2-extendible channel, and the containment is
strict. Thus,

IWL C 2PE, (71)

where 2PE denotes the set of 2-PPT-extendible channels, as
defined in Sec. II B 5.

We can then define the simulation error under 2-PPT-
extendible channels, as a semidefinite relaxation of (61), as
follows:

eweNaep, pap) = inf SIN =N, (72)
where

Nasp(@a) = Kyip, p(0a ® piz) (73)

and K,4p_,p is a 2-PPT-extendible channel, meaning that
there exists an extension channel M43 5, p, 5, satisfying the
following conditions:

Trp, o MAA§]§2—>B|BZ = ’CAAE|—>31 ® Trp,, (74)
Muis,br—p8, © Fig, = T8, © Muin p—ps (75
Tg, o Myip,p—n8, © Ip, € CP, (76)
Muis,grspn, © Tai € CP. (77)

As a consequence of the containment in (71), the following
bound holds:

ewe(Nasp, Pip) < etwLNass, P43)- (78)

We now show that the simulation error in (72) can be
calculated by means of a semidefinite program.

Proposition 2. The simulation error in (72) can be calcu-
lated by means of the following semidefinite program:

ewE(Nass s, pip) = inf My (79)

120,Z,520,
MAA}?]RIEZBZ =0

subject to
wly = Zy, (80)

M. s
Zap > Ty — Trap, [T/&f;l (PAél)M} (81)

dg
Trp, 8, [Maan,p,8,8,] = Tai o (82)
(‘FB]BZ ® ‘FBIBZ)(MAAB|Blész) = MAAB]B]Bsz’ (83)
M. s
Trp, [Muig,5,8,8,] = % ®1I, (84)
B

0, (85)
0. (86)

TAA(MAABIBIBZBZ) >
T3,8,(Maag, 5, 5,8,) =

The objective function in (79) and the first two con-
straints in (80) and (81) follow from the semidefinite program
in (46) for the normalized diamond distance. The quantity
Trz, [Tz, (Pas,) A’Z‘B‘] in (81) is the Choi operator corre-
sponding to the composition of the appending channel and

. . . . M,ip, 8
the simulation channel Ky 43, g, » with Choi operator — =,

where K45, p, is the marginal channel of M4z 5, .5 5,
defined as
Kais, -, (@aiz,) = T, [Maig, 5, 5,8, (@niz, ® 75,)]-

(87)

The constraint in (82) forces M4z 3,.5,5, to be trace pre-

serving, that in (83) forces M43 3, .55, t0 be permutation

covariant with respect to the B systems [see (75)], and that in

(84) forces My4p 5, p,p, to be the extension of a marginal

channel K443, _, p,- The final two PPT constraints are equiva-
lent to the C-PPT-P constraints in (76) and (77), respectively.

B. SDP lower bound on the simulation error
of approximate teleportation

The semidefinite program in Proposition 2 can be eval-
uated for an important case of interest, i.e., when Ny_p =
id4 ;. Recall from Sec. II that this special case corresponds
to approximate teleportation. The semidefinite program in
Proposition 2 is efficiently computable with respect to the
dimensions of the systems A, A, B, and B. Howeyver, it is in
our interest to reduce the computational complexity of these
optimization tasks even further for this important case, and
we can do so by exploiting the unitary covariance symmetry
of the identity channel, as stated in (65).

In this section, we provide a semidefinite program for eval-
uating the simulation error

exve(pip) = e (idi_ . pig). (88)
with reduced complexity, i.e., only polynomial in the
dimensions dj; and dj of the resource state p;3. We provide
a proof of Proposition 3 in Appendix C of the Supplemental
Material [43].

Proposition 3. The semidefinite program in Proposition 2,
for the special case of simulating the identity channel id4
simplifies as follows for d > 3:

—B>

ewe(Pip) = €ape(Pap) (39)

Pis s

=1- sup Tr |:TAB. (PABI) A;Bz},
M+ M~ ,M°>0, B
M',M?,M3€eLinOp
(90)
subject to
M +M> M —iM? - o
M'+iM* MO —MP T
— gt - 0

Lig, = Mpp g, + Mip p, + Mipp,» ©2)
MA\EIEZ - félél (Mké]l’%) Vl S {+, ) O, 1}, (93)
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J _ . J
Mg 5, = —Fa.5, (M

) Yi€l23h 94
1

Pigp, = N Trg, [Pis,s,] ® Ip,» 95)
B

1
Pig g, = g[dMo +M'+d>— 1M, (96)

Mz h, 1
T\ w2 T Miss, Miss | 20 ©O7)
M,
ABB 1 0
TA( 75 Mg, _MAZ}I)_@Z) >0, (98)
G"+G G -iG 0 ©9)
Gl + le GO _ G3 = Y,
M° —dM!
Giap, = Ti <M+ +M" + T) (100)
1 . + _ ]‘41 - dMO
Gigp, = Ta\M" =M™+ ——— . (101)
2 . 3(d2 - 1) 2
Gipg, = 5 Li(Mjz,5,): (102)
s @ -n_
Gipg, =5 Li(Mis ) (103)

am+ aM® —M"' — /d* — 1 M?
Tig | ——=+M + 20,
"\d+2 2
(104)
dM~  dM° —M' — /d* — 1 M?
T Mt + - 2 0,
! d—2 2
(105)
E°+E? E'—iE?
E! + iE2 EC _FE3 >0, (106)
Tip (dMT — M)+ &)
0 .__ “AB 2
Efy 5 = — o : (107
Top,(—M*+M~ + &
Ef%éll;’z = ABI( d2—1 : )’ (108)
Tos, M+ — M~ + &)
2 .__ AB 2
Efyp = —— , (109)
3 . 3
E3s 5 = Tis, M3z 5.): (110)
L0 = (d*—2)M° +dM' +dVd> —1M>,  (111)
L' =dM®+Qd* =3)M' -V — 1M, (112)
L2 =M —dM® — Jd?> — 1 M. (113)

For the case of d = 2, the SDP is the same, with the exception
that we set MA_El 8= 0 and the constraints in (98) and (105)
are not used.

Proof. See Appendix C of the Supplemental Material
[43]. [ |

Remark 4. The SDP in the statement of Proposition 3 is
rather lengthy, and so we provide some explanation here. The
constraint in (91) and the constraints M, M~, M° > 0in (90)
correspond to the constraint of complete positivity in (79)
(i.e., My43,3,8,8, = 0)- The constraint in (92) corresponds to
the constraint of trace preservation in (82). The constraints in
(93)—(94) correspond to the permutation covariance constraint
in (83). The constraint in (95) corresponds to the nonsignaling
constraint in (84). The constraints in (97)-(99) correspond to
the PPT constraint in (85), and the constraints in (104)—(106)
correspond to the PPT constraint in (86).

Remark 5. Even though the number of constraints in the
SDP above appears to increase when compared with the SDP
from Proposition 2, we note that the runtime of the SDP
above is significantly reduced because the size of the matrices
involved in each of the constraints is much smaller. This is the
main advantage conferred by incorporating unitary covariance
symmetry of the identity channel.

If we only optimized over the larger set of 2-extendible
channels instead of the set of 2-PPT-extendible channels, the
SDP would be much simpler, given by (90)-(96). However,
optimizing over the smaller set of 2-PPT-extendible channels
gives tighter bounds at a marginal increase in computational
cost, and thus we also include the PPT constraints in (97)—(99)
and (104)—(106).

V. BACKGROUND ON SUPERCHANNELS

This section constitutes the beginning of the second con-
tribution of our paper, regarding lower bounds on the error
in channel simulation and approximate quantum error correc-
tion. We begin by reviewing the theory of superchannels, as
well as particular examples of them relevant to the aforemen-
tioned applications.

A. Basics of superchannels

A superchannel ® = ©_, p)— (- p) 18 a physical transfor-
mation of a channel N,_ p that accepts as input the channel
Na_p and outputs a channel with input system C and out-
put system D. Mathematically, a superchannel is a linear
map that preserves the set of quantum channels, even when
the quantum channel is an arbitrary bipartite channel with
external input and output systems that are arbitrarily large.
Superchannels are thus completely CPTP preserving in this
sense. A general theory of superchannels was introduced in
[21] and developed further in [46—48].

In more detail, let us denote the output of a superchannel ®
by K¢ p, so that

OuB)—c—>0)Nasp) = Keop. (114)

The superchannel ®_, gy (c—p) is completely CPTP pre-
serving in the sense that the following output map

(115)

is a quantum channel for every input quantum chan-
nel Mga_rp, Where denotes the identity
superchannel [21].

The fundamental theorem of superchannels from [21] is
that ® 4, p)—(c—p) has a physical realization in terms of a
preprocessing channel £, 4o and a postprocessing channel

(1d®r)—>®) @ Owu—B)—cc—D))(Mpra—rp)

idg)—r)
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Dpo-p as follows:

Ou—p)—c—0)Nasp) = Dpop o Nasp 0 Ec—ag,
(116)

where Q is a quantum memory system. Furthermore, every
superchannel © -, py—, (c—p) 18 in one-to-one correspondence
with a bipartite channel of the following form:

Pep—ap = Dpo—p 0 Ecag- (117)

Note that Pcp_.ap is completely positive, trace preserving,
and obeys the following nonsignaling constraint:

Trp o Peg—ap = Trp oPcp—ap © R, (118)

where the replacer channel R, is defined in (13). Related to
this, FgB 4p 15 the Choi operator of a superchannel if and only
if it satisfies the following constraints:

rlp =0, (119)

Trap [Cigan] = Ics. (120)
1

Trp [T lpap) = — Ttep [[lpap) ® 5. (121)

dp

The first two constraints correspond to complete positivity and
trace preservation, respectively, and the last constraint is a
nonsignaling constraint corresponding to Pcp_, 4p having the
factorization in (117), so that Pcp_.4p is in correspondence
with a superchannel. To determine the Choi operator for the
output channel Kc_,p in (114), we can use the following
propagation rule [21,48]:

TXp = Tras [Tas(T4%) Tman ) (122)

where I'[,,, is the Choi operator of Pcp_4p and T}y is the
Choi operator of N, _ p.

B. One-way LOCC superchannels

A superchannel A = A p)——p) 1S implementable by
one-way LOCC if it can be written in the following form:

AWNasp) =Y Dy poNanpo &y (123)

where {£}_, 4} is a set of completely positive maps such that
the sum map ) &L , is trace preserving and {D}_, ,}, is a
set of quantum channels. This is equivalent to the quantum
memory system Q in (116) being a classical system X, with

Econx(pc) =) EE Alpc) ® X (xlx,  (124)

Dpx—plwpx) = Z Dy_, p({x]xwpx [X)x),

X

(125)

so that
ANa—p) = Dpx—p o Nasp 0 Ecax- (126)

In this case, the bipartite channel in (117), but corresponding
to A in (123), becomes the following one-way LOCC channel:

Leponp =Y E,®Di . (127)
X

Thus, the set of one-way LOCC superchannels is in di-
rect correspondence with the set of one-way LOCC bipartite
channels.

C. LOCR superchannels

A superchannel T = Y4 p)—(—p) is implementable by
local operations and common randomness (LOCR) if it can
be written in the following form:

YWNasp) =Y p0Dy_poNaspo &y,
y

(128)

where {p(y)}, is a probability distribution and {&}_ ,}, and
{D}_ ply are sets of quantum channels. In more detail, the
superchannel Y (4- ) (c—p) can be realized as

Y(Na=p) = Dpy,—p 0 Nassp 0 Ecy, >4 © Py,

where Py,y, is a preparation channel that prepares the com-
mon randomness state

(129)

D POl ® ¥ (¥l (130)
y
and the channels Ecy,_, 4 and Dpy,_, p are defined as
Ecvy—a(pcy,) = Zgé_m((ﬂmﬂ)cn Y)y,)s (131)
y

Dgy,—p(wsy,) = ZD{a_)D((leBwBYB 19)1,)- (132)
y

In this case, the bipartite channel in (117), but corresponding
to Y in (128), becomes the following LOCR bipartite channel:

Cepoap =Y pOIEL, ® Dy p.
y

(133)

Thus, the set of LOCR superchannels is in direct correspon-
dence with the set of LOCR bipartite channels.

D. 2-extendible superchannels

A superchannel ©u_,py—(—p) is defined to be 2-
extendible if there exists an extension channel Mcg,5,—4D,D,
of its corresponding bipartite channel Pcg_, 4p that obeys the
conditions in (10) and (11). Furthermore, due to the fact that
(10) and (11) imply (12), there is no need to explicitly indicate
that (118) holds. 2-extendible superchannels were considered
in [18], but this terminology was not employed there.

The specific constraints on the Choi operator of
Mcp,B,—AD,D, are precisely the same as those in (14)—(17),
with the identifications C <> A,B <> B,A < A’,and D < B'.
Explicitly, a superchannel ® -, p)-—p) 18 2-extendible if
the Choi operator I'Zy,, of its corresponding bipartite chan-
nel Pep_.ap satisfies the following conditions: there exists a
Hermitian operator Fé\gl B,AD, D, Such that

(‘FBIBZ ® ]:DlDz)(Fé\g]BZAD]DZ) = Fé\l/illeADlDz’ (134)

Trp, [F%IBZADIDZ] = FCPBIADI ® Ip,, (135)
(136)
(137)

M
FCB]BzAD]Dz 2 0’

M _
Trap,p, [FCBIBZADIDZ] = Icpp,-

Every one-way LOCC superchannel is 2-extendible.
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E. Completely PPT preserving superchannels

A superchannel ® -, p)—«c—p) is C-PPT-P if its corre-
sponding bipartite channel Pcg_.ap in (117) is C-PPT-P and
obeys the nonsignaling constraint in (118) [31]. This implies
the following for its Choi operator I'Zy, p:

Tlpp =0, (138)

Trap [Tipap] = Ics. (139)
1

Trp [T pap] = Z Trep [Tpan] © Is. (140)

Tsp(Tipap) = 0. (141)

F. 2-PPT-extendible superchannels

A superchannel ® -, p)—»«c—p) is 2-PPT-extendible if its
corresponding bipartite channel Pcg_ap in (117) is 2-PPT-
extendible. Again, there is no need to explicitly indicate that
(118) holds. The following conditions hold for the Choi oper-
ator "%, ) of a 2-PPT-extendible superchannel: there exists a
Hermitian operator ['% o 4, 1, such that (134)=(137) hold, as
well as

M

TBzDz (FCBleADlDz) 2 0’
M

TCA(FCBleADIDz) 20

Similar to what was already discussed in Sec. II B 5, the fol-
lowing constraints are redundant:

TBIDI( CBIBZADIDZ) 20, (142)
Tcas,p, (FCBIBZAD1D2) 20, (143)
TCABIDI( CBleADlDz) =0, (144)

T3,p,8,0, (FCBIBZADIDQ) = 0. (145)

Note that every one-way LOCC superchannel is 2-PPT-
extendible.

G. 2-PPT-extendible nonsignaling superchannels

Finally, we can impose an additional nonsignaling con-
straint on 2-PPT-extendible superchannels, such that the
extension of its corresponding bipartite channel is nonsignal-
ing from Alice to both Bobs. The additional constraint
on the Choi operator Fé\gl B,ap,p, Of the extension channel
McB,B,—AD, D, 18 as follows:

1
Try [rgngzADlDz] = % Trac [FgngzADlDz] ®Ic. (146)

Every LOCR superchannel is nonsignaling and 2-PPT-
extendible, which follows from definitions and the form of the
corresponding bipartite channel in (133). This fact plays an
important role in our analysis of approximate quantum error
correction. In more detail, we obtain our tightest lower bound
on the simulation error of approximate quantum error correc-
tion by relaxing the set of LOCR superchannels to the set of
nonsignaling and 2-PPT-extendible superchannels. We note
here that this approach was already considered in [18], and

our main contribution here is to employ unitary covariance
symmetry of the identity channel to reduce the complexity of
the SDPs from that work.

VI. QUANTIFYING THE PERFORMANCE OF
APPROXIMATE QUANTUM ERROR CORRECTION

A. Quantifying simulation error with normalized diamond
distance and channel infidelity

In approximate quantum error correction [49] or quantum
communication [2], the resource available is a quantum chan-
nel NV;_  and the goal is to use it, along with an encoding
channel &, _, ; and a decoding channel Dj_, 5, to simulate a
d-dimensional identity channel id%_ ,. We can use the nor-
malized diamond distance to quantify the error for a fixed
encoding and decoding, as follows:

e(/\/:&—ﬂ??’ (gA—>A s DB—>B))

(147)

By minimizing over all encodings and decodings, we arrive at
the error in using the channel N;_ 5 to simulate the identity
channel:

eNjLp) =

=345 — Dy poNiLpo&ail,-

(g%) eWi_ g (Eai» Dpp)) (148)

We can alternatively employ channel infidelity to quantify the
error:

e’ ('A/:&—ﬂ@’ (5A—>A > DE—)B))

=1-F(id}_ 5 DppoNjz0E4), (149)

e (Nip) = nf " (N (Esmps Dpop))- (150)
Note that the transformation of the channel given by

Dé—)B ONA—)E OgA—»A (151)

is a superchannel, as discussed in Sec. V, with corresponding
bipartite channel

Pas—is = €a-i ® Dp_p. (152)

As this bipartite channel is a product channel, it is contained
within the set of LOCR superchannels, which in turn is con-
tained in the set of one-way LOCC superchannels.

By supplementing the encoding and decoding with com-
mon randomness, the resulting error correction scheme Y =
Y (i B)—@a—p) realizes the following simulation channel:

YWNisg) =) p0D}_,0

y

(153)

B0 &4
where {p(y)}, is a probability distribution and {&£ "’ A}) and
{D B}y are sets of quantum channels. Recall from Sec. VC
that Y'is an LOCR superchannel, and let LOCR denote the set
of all LOCR superchannels. Then we can quantify the simu-
lation error under LOCR in a manner similar to Sec. IIl A: we

can use the normalized diamond distance to quantify the error
for a fixed LOCR superchannel Y, as follows:

eLockWNinp: Yoo iy a—B))

= %” idj—>B _T(A%B)%(A%B)(NA%B)”O' (154)

012428-10



QUANTIFYING THE PERFORMANCE OF APPROXIMATE ...

PHYSICAL REVIEW A 107, 012428 (2023)

By minimizing over all such superchannels, we arrive at the
error in using the channel Nj;_ ; to simulate the identity
channel:

inf e(Ni 5 Yisgowuon) (155)

e Nigp) =
rocr(Ni-.p) TeLOCR

As before, we can alternatively employ channel infidelity to
quantify the error:

F
eLOCR(NAHB’ T(A»B)%(A»B))

=1- F(idg»Bﬂ T(A—>é)—>(A—>B)(-/vA—>1§))a (156)

F ) . F
€LOCR WNiLp) = TGIEgCR eLOCR(A/,AeB’ T(AﬁB)H(A%B))'
(157)

However, we have the following:

Proposition 6. For a channel \;_, 5, the LOCR simulation
errors defined from normalized diamond distance and channel
infidelity are equal to each other:

eLocr (N p) = ef ocr N p)- (158)

Proof. The proof of this equality is similar to the proof of
Proposition 1, following again from the symmetry of the target
channel, which is an identity channel having the symmetry in
(65), and the fact that a channel twirl can be implemented by
means of LOCR. Note that a channel twirl of a channel M,_
has the following form:

/dU U o Ma_p olUa, (159)
where U is a unitary channel. ]

By exploiting the fact that a superchannel of the form in
(151) is contained in the set of LOCR superchannels, the
following inequality holds:

erocR NV 3) < min{e(N_, ), " (Vi )}

It is unclear if e(Nj;_ 3) is equal to e/ (N;_ ;) in general:
a critical aspect of the proof of Proposition 6 is the fact
that LOCR superchannels are allowed for free, so that the
symmetrizing twirling superchannel can be used. In the unas-
sisted setting, we cannot use twirling because it is an LOCR
superchannel and thus not allowed for free.

Recall again that the identity channel idg_> p possesses the
unitary covariance symmetry in (65). Considering this leads
to the following proposition:

Proposition 7. The optimization problems in (155) and
(157), for the error in simulating the identity channel id%__ ,,
simplify as follows:

(160)

(161)
(162)

etocRWNViL ) = € ocr Vi)
=1 —supEr(Nj_ 3 7P),
P

where the optimization in (162) is over every LOCR protocol
P, defined as

and Er (N, 4, P) € [0, 1] is the entanglement fidelity:
Er = Er(Njp:P) (164)

= Z PO Tr [@445(D} o Ni_z0 & ) (P4s)].
y

(165)

An optimal LOCR simulation channel for both e ocr (N_, 5)
and ef g (N, 5) has the following form:

Eridj_;+(1 — EF)Dasp, (166)

where D,_, p is the channel defined in (69). Thus, the LOCR
simulation channel applies the identity channel idfi_> g with
probability Er and the randomizing channel D4, g with prob-
ability 1 — Ep.

Proof. See Appendix D of the Supplemental Material
[43]. ]

B. LOCR simulation of general point-to-point channels

We can use a point-to-point channel Aj;_ 5, along with
LOCR, to simulate another general point-to-point channel
Ou_ p. In this case, the simulation channel O4_, 5 has the form

Onsp = T8y Nisp)s (167)

where Yz, 3\, a_ p 1S an LOCR superchannel, as discussed
in Sec. V C. The simulation error when employing a specific
LOCR superchannel Y4, 5, , 4 p) IS

eLocr(Oa-8. Ni g i byson)
(168)

and the simulation error minimized over all possible LOCR
superchannels is

1 %}
= 5110a=5 — Oa=sllo,

eLocr(Oasp, Ni_3)

= YeIEgCR eLocr (Qassp: N . Yiisbys@asn)-
(169)

Again we can alternatively consider quantifying simulation
error in terms of the channel infidelity:

F
etocr (Oa—p, Ni_ 5, Y (imsB)—(a—B))

=1 —F(Oa5 Os_p), (170)

F
etocr(Oa-n Ni_p)

. F
= Tg{gCR €1 ocr (Oa— 5, Nip Y Ao by asB))-
(171)

VII. SDP LOWER BOUNDS ON THE PERFORMANCE OF
APPROXIMATE QUANTUM ERROR CORRECTION BASED
ON 2-PPT EXTENDIBILITY AND NONSIGNALING
CONSTRAINTS

A. SDP lower bound on the error in LOCR
simulation of a channel

Using (169) to calculate the simulation error, we again
encounter an intractable optimization task. Employing the
same idea from Sec. IV A, we enlarge the set of LOCR su-
perchannels to 2-PPT-extendible, nonsignaling superchannels
(abbreviated henceforth as 2PENS). As noted in Sec. V G, the
2PENS set strictly contains the set of LOCR superchannels.
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Thus, we can obtain a lower bound on the simulation error
by optimizing over all 2PENS superchannels. We define the
simulation error under 2PENS superchannels as

e2pens(Oamsp, N p) = e 2PENS 3 1O~ p — Os_pllo,
(172)
where O,_, 5 is defined in (167).
As a result of the strict containment
LOCR C 2PENS, (173)

we have the relation

ewens (Oamp NiLp) < eLocr(Oasp, NjLp).  (174)

We now state that the simulation error in (172) can be
calculated by means of a semidefinite program.

Proposition 8. The simulation error in (172) can be calcu-
lated by means of the following semidefinite program:

eapens (Oam, Nj_ ) = M>0irzlf <0 Mo (175)

=z, LAB =Y,

M i 53y, 20
subject to
wly 2 Zy, (176)
Zag = F/?B — Trzp, [TAB. (F%])MAAB]BI /dé], A77)
Tris, 5, [Maisisim) = Lasiso (178)
(fB]Bo & ]:Ble)( AAB]B]Bsz) MAAB[BJ?ZBz? (]79)
LY
Trs, [Muspp..] = = @ Ip,, (180)
B
Tyi(Myip,5,5,8,) = 0. (181)
Tész (MAAélBlész) 2 05 (182)
1

TI'A [MAAélBIEZBZ] = IA ® a TrA:A [MAAl}]Bll}sz]' (183)

The objective function and the first two constraints follow
from the semidefinite program in (46) for the normalized
diamond distance. The quantity

Trzp, [Taa, (T35, )Mais,s, /)

in (177) is the Choi operator of the serial composition of

the available channel N;_ 5 and the superchannel with cor-

responding bipartite channel K3 . 45 , with Choi operator

My, /dg, Where Kyp  zp is the marginal channel of
AB,By—AB, B,» defined as

(184)

K, s, (@a5,) = Trp, [Myg,p, . ip,5, (@43, ® 7p,)]-

(185)
The constraint in (178) forces Myp 3, . 4p 5, t0 be trace pre-
serving, that in (179) forces M, 3, . 4,5, t0 be permutation
covariant with respect to the B systems [see (75)], and that in
(180) forces Myp 5, . 4p, , to be the extension of the marginal
channel K3 _, 4,- The final two PPT constraints are equiva-
lent to the C-PPT-P constraints in (76) and (77), respectively.

B. SDP lower bound on the error of approximate
quantum error correction

The semidefinite program in Proposition 8 can be sim-
plified for the special case N5 = id%_ , by exploiting the
unitary covariance symmetry of the identity channel, as stated
in (65).

Proposition 9. The semidefinite program in Proposition 8,
for the special case of simulating the identity channel idj_) B
simplifies as follows for d > 3:

expens (N ) = eopens (N ) (186)
Pia s
=1- sup Tr |:TABI (Ffi\lgl)%}
M+ .M~ ,M°>0, B
M',M? ,M?€eLinOp
(187)
subject to
M+ M3 M —iM? 0 (188)
Ml + le MO _M3 = U,
- 0
Ipg, = Trg [Mfy o + Mg o + Mgz . (189)
qué ‘7:3132( AB,B, ) Vi e {+’ ) 0, 1}, (190)
Mng]B ]:Ble( ABB, ) V] € {2s 3}, (191)
1
Pigp, = & Trp, [Pis,s,] ® Ip,» (192)
1
OQipp, = 4 Trp, [Qis,z] ® Is, (193)
1
Pisp, = g[dM0 + M +Var — 1M, (194)
BB, = X , ,
2d _MAAEI v MAB B
MY,
AB,B 0 1
TA( d+22 + My +Mmléz> >0, (196)
2M~,
AB,B 1 0
TA( d— 22 + Mjp.5, MA&&) 20, (197)
G'+G G -G 0 (198)
G+iG2 G-c|7"
M° — dMm!
0 T + _
Gigp, = Ti (M +M + T) (199)
M' —dM°
1 + _
Gigg = Ti (M -M"+ #> (200)
, 3@ )
Ging, = 5 LilMiz5,)- 01)
3d2—1)
3 . 3
TN A e I (M355.); (202)
dm+ dAM® — MY — JdZ = 1 M2
Tig\ 7——+M + >0,
'"\d+2 2

(203)
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dM~  dM° —M' — Jd? — 1 M?
Tz Mt + - =0,
! d—2 2
(204)
E°+E3 E'—iE? >0 (205)
E'4+iE* E°-E3 |77
_ 0
ABB, T 42 — 1 ’ (2006)
_ L!
AB]BZ ._ d2 _ 1 ’
Tos, M+ — M~ + &)
2 .__ _ABy 2
Efs 5 = —— , (208)
3 . 3
E3g 5, = Tis, M3z 5,)- (209)
L%:= (> -2)M° +aM' +dVd> - 1M?, (210
L' :=dM° + (2d* = 3)M"' — Jd?> — 1 M?, (211)
L2 =M —dM° — Jd> — 1 M?, 212)
Tra2M*]  Trz2M* + M° + M'] (213)
d+2)d—1) dd+1) ’
Tra2M~]  Tez2M~ +M° — M'] 214)
d—2)d+1) dd—1) ’
1 dly 5 +TriM™ — Mt —M!
~ Tr;[M°] = —2E2 il - I (215)
2 dd?—1)
1 —Iy 5 +dTrg[MT — M~ +M!
S TrglM'] = —2= A[2 I e
2 dd?—1)
Tr;[M?*] = Tr;[M°] = 0. (217)

For the case of d = 2, the SDP is the same, with the exception
that we set M 1, » = 0 and the constraints in (197), (204), and
(214) are not used.

Proof. See Appendix E of the Supplemental Material
[43]. |

We now provide expository remarks similar to Remarks
4 and 5, as well as an additional remark about approximate
quantum error correction assisted by one-way LOCC.

Remark 10. The SDP in the statement of Proposition 9
is rather lengthy, and so we provide some explanation here.
The constraint in (188) and the constraints M+t, M—, M° > 0
in (187) correspond to the constraint of complete positiv-
ity in (175) (i.e., My4p,p 5,5, = 0). The constraint in (189)
corresponds to the constraint of trace preservation in (178).
The constraints in (190)-(191) correspond to the constraint
of permutation covariance in (179). The constraints in (192)—
(193) correspond to the nonsignaling constraint in (180). The
constraints in (196)—(198) correspond to the PPT constraint
in (181), and the constraints in (203)—(205) correspond to the
PPT constraint in (182). Finally, the constraints in (213)-(217)
correspond to the nonsignaling constraint in (183).

Remark 11. Even though the number of constraints in the
SDP above appears to increase when compared with the SDP
from Proposition 8, we note that the runtime of the SDP

above is significantly reduced because the size of the matrices
involved in each of the constraints is much smaller. This
is the main advantage that we get by incorporating unitary
covariance symmetry of the identity channel.

If we only optimized over the larger set of 2-extendible
channels instead of the set of 2-PPT-extendible nonsignal-
ing channels, the SDP would be much simpler, given by
(187)—(193). However, optimizing over the smaller set of 2-
PPT-extendible nonsignaling channels gives tighter bounds at
a marginal increase in computational cost, and thus we also
include the PPT constraints in (196)-(198) and (203)—(205)
and the nonsignaling constraints in (213)—(217).

Remark 12. By excluding the nonsignaling constraints in
(213)—(217), the resulting SDP gives a lower bound on the
simulation error of approximate quantum error correction as-
sisted by a one-way LOCC channel. That is, the resulting SDP
gives a lower bound on

ewWisp) = inf eNisg Ayspmog),  (218)
where
elWL(/\/A»B’ A(AHE)%(A»B))
1| iqd
= E” id}_p _A(A—>1§)—>(A—>B)(NA—>§) o (219)

with A a one-way LOCC superchannel, as defined in (123).
By the same reasoning given for Proposition 6, this error is no
different if we use infidelity instead of normalized diamond
distance.

VIII. EXAMPLES

In this section we present some numerical results from our
semidefinite programs. To perform these numerical calcula-
tions, we employed CVXPY [50,51] with the interior point
optimizer MOSEK. All of our Python source code is available
with the arXiv posting of our paper.

A. Approximate teleportation and quantum error correction
using special mixed states and channels

First, we provide bounds on the performance of approxi-
mate teleportation (i.e., on the error in simulating an identity
channel), when using a particular set of imperfect resource
states. In the past, PPT constraints alone (i.e., without 2-
extendibility) have been used to obtain bounds on objective
functions involving an optimization over the set of LOCC
channels (see, e.g., [15,31-35]). We can also use them to
obtain a lower bound on the simulation error of approximate
teleportation. By following techniques similar to those in
[15,31], we find the following SDP gives a lower bound on
the simulation error of approximate teleportation:

Tr(Kigpapl :

Kip < Lips
—lip < d Tp(Kip) < Lip
See Appendix F of the Supplemental Material [43] for a proof.
We note here that PPT constraints are implied by the 2-PPT-
extendibility constraints given in Proposition 3, so that the
optimal value in (220) is not smaller than the optimal value

in (187). We also note that an SDP bearing some similarities
to that in (220) was presented in [52], but that SDP calculates

1 — sup (220)

Kip=0
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FIG. 1. Comparison between 2-PPT-extendiblity and PPT con-
straints for bounding the simulation error in approximate teleporta-
tion, when using the resource state p®4; + (1 — p)m; ® o, where
p € [0, 1]. The plot shows that 2-PPT-extendibility gives slightly
better bounds for p < 0.5. For higher values of p, the two curves
become indistinguishable.

a bound on one-shot distillable entanglement, whereas the
SDP in (220) calculates a bound on the error of approximate
teleportation.

In the following example, we show that 2-PPT-
extendibility gives strictly stronger bounds than PPT con-
straints alone, when optimizing over one-way LOCC chan-
nels. Consider the following mixed state:

(221)

where p € [0, 1], @45 is the maximally entangled state of
Schmidt rank three, w4 is the maximally mixed state of di-
mension three, and o is a randomly selected 3 x 3 density
matrix. Using the state in (221) as the resource for approxi-
mate teleportation, lower bounds on the simulation error, as
given by 2-PPT-extendibility, are stronger than those given
by PPT constraints alone, for small values of p. Figure 1
compares the lower bounds obtained for different values of
p and randomly generated 0. The state o that was used to
generate data for Fig. 1 is as follows:

p®ip+ (I — p)my @ o,

0.140 0.043+0.024i  —0.143 + 0.028i
0.043 — 0.024i 0.222 —0.257+0.006i
—0.143—0.028; —0.257 — 0.006i 0.638

(222)

We note here that the SDP calculations depend on the
choice of op. For certain choices of o, the difference in
the errors disappears for all values of p, e.g., when oy is
a maximally mixed state. It still remains open to determine
the full set of resource states for which 2-PPT-extendibility
gives stronger bounds on the simulation error. Regardless,
this example demonstrates that including 2-PPT-extendibility
constraints can improve the bounds obtained using PPT con-
straints alone.

One can consider the same comparison for approximate
quantum error correction. Using similar techniques, we derive
the following SDP lower bound on the simulation error of
approximate quantum error correction for a channel Nj_, 4,

0.80
0.751
S 0.70
—_
(0]
c 0.65
o
© 0.60
=]
£ 0.551
[7p]
0.50

0.45 A

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
p

FIG. 2. Comparison between 2-PPT-extendiblity and PPT con-
straints for bounding the simulation error in approximate quantum
error correction when using the resource channel with Choi state
pP4is + (1 — p)m; ® o, where p € [0, 1] and o is defined in (222).
PPTNS and 2PENS are the curves obtained using the SDPs in (223)
and Proposition 9, respectively, giving lower bounds on the error
in approximate quantum error correction. There is no significant
difference in the numerical values obtained from these two condi-
tions. PPT and 2PE are the curves obtained using the same SDPs but
without the nonsignaling constraints, hence, giving lower bounds on
the error in one-way LOCC-assisted approximate error correction.

when using PPT and nonsignaling constraints only:

Tr [KgT] -
Kip < 05 ® 1,
1 — sup d? Trg[Ksipl = Ip, (223)
KquUA>O

0; @Iy £d Tp(Kyp) = 0,
Trloz] = 1.

See Appendix G of the Supplemental Material [43] for a
proof. We note here that essentially the same SDP was given
in [31] (up to a transpose in the objective function). The SDP
in [31] resulted from taking the error criterion to be in terms
of entanglement fidelity when transmitting the maximally
entangled state. Our proof here clarifies that essentially the
same SDP results when using normalized diamond distance or
channel infidelity as the error criterion. The second constraint
in the SDP (d? Tr4[K;3] = I;) corresponds to the nonsignal-
ing condition. Following the same reasoning as in Remark 10,
removing this constraint leads to an SDP that provides a lower
bound on the simulation error of approximate quantum error
correction assisted by one-way LOCC.

The example state in (221) can also serve as the Choi state
of a channel, due to the fact that the reduced state of system
A is maximally mixed. In Fig. 2 we plot the lower bound in
(223) and the lower bound from Proposition 9 for the corre-
sponding channel. Additionally, we also plot the simulation
errors that result from excluding the nonsignaling constraints
from both SDPs. The resulting SDPs provide lower bounds
on the errors in approximate quantum error correction as-
sisted by one-way LOCC using PPT and 2-PPT-extendibility,
respectively. Figure 2 demonstrates that the lower bound in
Proposition 9 improves upon (223) for one-way LOCC sim-
ulation but provides no advantage for LOCR simulation. The
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FIG. 3. Comparison between bounds on the simulation error for
approximate teleportation when using a two-dimensional special
mixed state and a three-dimensional special mixed state as a resource
to teleport a two dimensional state. The resource state is of the
form p® 3 + (1 — p)m; ® o, where p € [0, 1] and o is chosen to
be (225) when di = 2 and (226) when dg = 3. The bounds on the
simulation error are calculated using both the 2PE constraints given
in Proposition 3 and the PPT constraints given in (220). There is
no significant difference in the numerical values obtained from both
constraints for dy = 2.

difference between all four curves becomes very small (less
than 10~3) for higher values of p.

B. Three-dimensional approximate teleportation using
two-dimensional special mixed states

In this example, we investigate the simulation error in ap-
proximate teleportation when a lower dimensional imperfect
resource state is used to teleport a higher dimensional state.
We use a similar resource state as in (221):

oap = pPip + (1 — p)ms ® o, (224)
but the maximally entangled and maximally mixed states are

two-dimensional. Additionally, o, was generated randomly

and is taken as
|: 0.287 —0.347 4+ 0.132i

0.713

>~

o

L@
—0.347 — 0.132i } (223)

In Fig. 3 we plot the bounds on the simulation error versus the
parameter p in (224), when using the 2PE constraints given in
Proposition 3 and the PPT constraints given in (220). We also
compare this to the bounds on the simulation error when using
a three-dimensional special mixed state instead. The resource
state used is the same as the state in (221), but o is chosen as
follows:

0.287 —0.347 +0.132i 0
—0.347 — 0.132i 0.713 0, (226
0 0 0

in order to provide a closer comparison with the two-
dimensional case in (224).

We see from Fig. 3 that a two-dimensional resource state
with a small amount of imperfection can outperform a three-
dimensional resource with higher amounts of imperfection for

0.5
5 0.4
=
9]
5 0.3
S
)
>
_U% 0.2 —e— dg = 3 with 2PE constraints
dg = 3 with PPT constraints
0.1 —<— d = 2 with 2PE constraints
) --p- dg = 2 with PPT constraints

0.1 0.2 03 04 015 0.6 0.7 08 0.9
p

FIG. 4. Lower bounds on the simulation error of approximate
quantum error correction for depolarizing channels when simulating
a two-dimensional identity channel. The bounds are calculated using
the SDP in Proposition 9 with 2-PPT-extendibility constraints, and
the SDP in (223) with PPT constraints only, for different dimensions
of the depolarizing channel (dz =2 and dj = 3). There is no sig-
nificant difference in the numerical values obtained from PPT and
2-PPT-extendibility constraints for dz = 2. The bounds are obtained
without the nonsignaling constraints, hence, corresponding to one-
way LOCC simulation.

the task of three-dimensional approximate teleportation. We
also notice that the 2PE constraints and the PPT constraints
give the same error values when dg = 2, but give different
values when dp = 3, as seen in Fig. 1 as well.

C. Approximate quantum error correction
for depolarizing channels

In this example, we investigate the simulation error in
approximate error correction for qubit and qutrit depolarizing
channels, with the goal of simulating a qubit identity channel.
The Choi state of the depolarizing channel Dj_, 5 is given by

T, = pas + (1 — p)ip, (227)

where p € [0, 1], ®4; is the maximally entangled state, and
74 1s the maximally mixed state. For a qubit depolarizing
channel, d; = dp = 2, and for a qutrit depolarizing channel,
diy =dp=2.

In Fig. 4 we plot the lower bounds on the simulation
error of approximate error correction for a depolarizing chan-
nel, when simulating a qubit identity channel. The bounds
are obtained using the 2-PPT-extendibility conditions from
Proposition 9 and using the PPT conditions from (223).
The bounds are calculated for the case of one-way LOCC
assistance, i.e., by ignoring the nonsignaling constraints in
(213)—(217) and the constraint d? Trz[K4p] = I in (223), re-
spectively. We notice from Fig. 4 that the 2-PPT-extendibility
constraints give better bounds compared to the PPT con-
straints when using a three-dimensional depolarizing channel
to simulate a two-dimensional identity channel. However,
both sets of constraints give the same bounds when a
two-dimensional depolarizing channel is used to simulate a
two-dimensional identity channel. This was also observed in
the numerical calculations of [18].
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FIG. 5. Lower bounds on the simulation error of unideal tele-
portation when using the two-mode squeezed vacuum state as the
resource state. The parameter A = tanh(r), where r is the squeezing
parameter. Larger values of A correspond to larger values of entan-
glement, which leads to a smaller error in simulating the identity
channel.

We also note that a three-dimensional depolarizing channel
provides little advantage over a two-dimensional depolarizing
channel for simulating a two-dimensional identity channel.
Therefore, a two-dimensional depolarizing channel with a
slightly higher value of the parameter p can outperform a
three-dimensional depolarizing channel with a lower value of
p, for the purpose of approximating a qubit identity channel.

D. Approximate teleportation using the two-mode
squeezed vacuum state

Two-mode squeezed vacuum states are easily prepared in
laboratories and have entanglement content that can be param-
eterized by A > 0. They are defined as [53]

VI=223 "3 [n)ln).
n=0

They are used as a resource state in continuous-variable quan-
tum teleportation [54] and have also been used as a resource in
experiments on teleportation of photonic qubits [4,55]. Here
we investigate bounds on the performance of qudit teleporta-
tion with the two-mode squeezed vacuum state as the resource
state.

The parameter A denotes the strength of squeezing applied
(A = tanh(r), where r is the squeezing parameter). For low
squeezing strength, we can ignore higher order terms in A
without inducing much error. We use the following state in
our calculations for qudit teleportation:

ZA”M |n).

However, for higher values of the squeezing strength (i.e., A
near to one), we do not expect this approximation to be good.

Figure 5 demonstrates that the simulation error increases
with d for fixed values of A, where d is the dimension of
the target identity channel that the protocol is simulating.
The simulation error does not go to zero for d > 3, even for
maximally entangled qutrit resource states. Therefore, pro-

(228)

(229)
1+V+M

2)
Y21
Y20

1)
Y10
‘0> Y Y

FIG. 6. Action of an amplitude damping channel on a three-level
quantum system. The parameters yio, Y20, and y»; represent decay
rates between the respective levels.

jecting this trend further, we conclude that simulation of a
higher-dimensional identity channel with a lower-dimensional
resource state incurs larger errors in the simulation. We note
here that we observed no difference in the values calculated
by the SDPs in (223) and Proposition 9.

E. Approximate quantum error correction for a three-level
amplitude damping channel

Here we present an example of our bound for the simu-
lation error in approximate error correction. We consider a
three-level amplitude damping channel, as defined in [22], to
demonstrate our SDP in Proposition 9.

The channel can be defined using three decay parameters,
labeled by the states involved: (y19, 21, ¥20)- See Fig. 6 for a
depiction. The Kraus operators for the three-level amplitude
damping channel are as follows:

1 0 0

Ko=|0 VT=o 0 . (230)
K 0 VI—=v1—yo0
[0 /yio O]

K=o o ol 231)
_0 0 O_
[0 0 0 ]

K=|0 0 il (232)
0 0 0
[0 0 v |

Ks=1]0 0 0 , (233)
0 0 0

so that its action on an input state p is given by Z?:o K; pKf.
For the map to be completely positive and trace preserving,
the decay parameters must obey

{O<Vi<1
Y21+ v <1

Vi e {10, 21, 20}
. (234)

Figure 7 plots the lower bound on the simulation error as a
function of the decay parameter y, for various values of the
other decay parameters. We notice in Fig. 7 that the simulation
error monotonically increases with the decay parameters. As
all three decay parameters approach zero, the channel be-
comes close to an identity channel. This is reflected in the
plot as the simulation error also approaches zero. We note here
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FIG. 7. Lower bounds on the simulation error of approximate
quantum error correction when using a three-level amplitude damp-
ing channel. The parameters yy¢, y21, and y»o are decay parameters
for the labeled states. The dimension d of the target identity channel
is set equal to the input and output dimensions (equal to three) of the
amplitude-damping channel.

that we observed no difference in the values calculated by the
SDPs in (223) and Proposition 9.

F. Comparison of computational runtimes

In this section we present the average runtime to exe-
cute various SDPs listed in this work. The calculations were
performed on a computer with 16 GB RAM and an Intel
17-9750H processor.

All calculations that generated the entries in Table I em-
ployed the two-dimensional maximally entangled state. For
approximate teleportation, the input is the maximally entan-
gled state of Schmidt rank two, and for approximate error
correction, the input is the qubit identity channel. The sim-
ulated channel is also the qubit identity channel in all cases.
The runtimes were calculated using time.time() function in
Python. They are only presented for the purpose of compari-
son and can vary moderately.

All runtimes are listed in Table I, where we see that the
unsimplified SDP for approximate teleportation with 2-PPT-

TABLE I. Comparing the runtime of different SDPs presented
in this work. 2PE refers to 2-PPT-extendibility constraints and NS
indicates that nonsignaling conditions were used. All calculations
were done for a two-dimensional resource state and simulating the
two-dimensional identity channel.

SDP Runtime (s)
Teleportation unsimplified 2PE 253.03
Teleportation 2PE 10.34

Teleportation PPT 0.19

Error correction unsimplified 147.75
Error correction unsimplified 2PENS 158.22
Error correction 2PENS 5.65
Error correction 2PE 5.38
Error correction PPTNS 0.20
Error correction PPT 0.16

extendibility, given in Proposition 2, is around 25 times slower
than the simplified SDP for the same in Proposition 3. The
SDP for the simulation error in approximate teleportation us-
ing PPT constraints that is given in (220) is several times faster
than when 2-PPT-extendibility constraints are employed, but
we have seen in the examples that 2-PPT-extendibility con-
straints can give tighter lower bounds on the simulation error.
Similarly, we see that the unsimplified SDP for ap-
proximate error correction when using 2-PPT-extendibility
constraints (Proposition 8) is several times slower than the
simplified SDP given in Proposition 9. Again, the SDP with
PPT constraints given in (223) is much faster than the SDP
with 2-PPT-extendibility constraints, but we have demon-
strated examples for which 2-PPT-extendibility constraints
provide a tighter lower bound on the simulation error.

IX. CONCLUSION

In this work, we developed a technique for quantifying the
performance of approximate teleportation using an arbitrary
resource state, by establishing a lower bound on the error in
simulating a teleportation protocol that uses an imperfect re-
source state and one-way LOCC channels. We accomplished
this by combining the notions of C-PPT-P channels and 2-
extendible channels to give a relaxation of the set of one-way
LOCC channels, as was done previously in [18] but for ap-
proximate quantum error correction. We significantly reduced
the complexity of our semidefinite program by exploiting the
unitary covariance symmetry of the simulated identity chan-
nel. This symmetry is useful in semidefinite programs and
can have much wider applications with respect to dynamical
resource theories. As an example, we evaluated our lower
bound when using a two-mode squeezed vacuum state as the
resource state for approximate teleportation.

We used related techniques to quantify the performance of
approximate quantum error correction. Incorporating 2-PPT-
extendibility constraints again led to computationally feasible
semidefinite optimizations for evaluating lower bounds on the
error in approximate quantum error correction. We further
exploited the unitary covariance symmetry of the identity
channel to give a less computationally taxing semidefinite
program to calculate the error. Finally, we demonstrated some
calculations for amplitude damping channels as the resource
channels.

The SDPs in this work provide computational support to
ongoing experimental research in quantum information by
providing tools to analyze available resources and identify
valuable states and channels.

Several directions for future work remain open:

(1) We have only considered 2-extendible channels; in-
corporation of k-extendible channels for k > 2 into our
semidefinite optimization could offer tighter bounds on the
measures we have described. The recent work of [56] might
be helpful for addressing this problem. The notion of 2-
PPT-extendible channels is interesting in its own right via its
connection with one-way LOCC channels.

(2) It would also be interesting to find semidefinite con-
straints on one-way LOCC and LOCR channels, beyond
those presented here, which include k-extendibility, PPT, and
nonsignaling.
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(3) One could also try to find semidefinite tightenings
of one-way LOCC and LOCR, which would lead to upper
bounds on the simulation errors.

(4) The paper [15] shows that PPT constraints are suffi-
cient to determine the exact simulation error in bidirectional
teleportation for certain special states. Future work can iden-
tify a class of resource states that saturate the error bound
using 2-PPT-extendibility constraints, e.g., states that are PPT
but 2-unextendible. Such a class of states can offer insight
not only in the study of teleportation protocols, but also to
entanglement of states and channels.
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APPENDIX: PROOF OF EQ. (12)
We provide a proof of (12) here. Consider that

Trg, o Nag, a8,

= TI‘B/]B2 o (NA31—>A’B/| ® sz) (A1)

= TTB’, B, © MAB.BzeAfB; B, © sz (A2)
= Trp g, 0 Fp,8, © Map,B,aB,8, © Fp,B, © Py, (A3)
= TYB’,B’2 o MABIBZHA’B/IB’Z o P{; o idp, -3, (A4)
= Trg, o Nag, a8, © Pg, o Trp, o idp, .3, (A5)
= TI'B'] ONABIHA’B’I o Rg] . (A6)

The first equality follows because Py is a preparation channel
that prepares the maximally mixed state 7z, on system B5, and
then we trace it out. The second equality follows by using the
nonsignaling property in (11). The third equality follows from
permutation covariance of the channel Mg p, a5 5, [i-€.,
the assumption that (10) holds]. The fourth equality follows
because .7-"3/1 B, is a unitary channel, so that

TrB/lB/Z [¢] ‘/_'.3/13/2 = T‘I'B/]B’2 . (A7)
Additionally, we used the fact that
]:BIBZ [e] sz = gl (] idB[—)Bp (AS)

where idp, .5, is an identity channel that transforms system
By to B,. The fifth equality again invokes the nonsignaling
property in (11). The last equality follows because

Pg] e} TI'32 e} idBlﬁBZ = gl . (A9)

That is, Trp, oidp, .5, is equivalent to Trp,, so that this action
combined with Py realizes a replacer channel.
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