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The ideal realization of quantum teleportation relies on having access to a maximally entangled state; however,

in practice, such an ideal state is typically not available and one can instead only realize an approximate

teleportation. With this in mind, we present a method to quantify the performance of approximate teleportation

when using an arbitrary resource state. More specifically, after framing the task of approximate teleportation

as an optimization of a simulation error over one-way local operations and classical communication (LOCC)

channels, we establish a semidefinite relaxation of this optimization task by instead optimizing over the larger set

of 2-PPT-extendible channels (where PPT denotes positive partial transpose). The main analytical calculations in

our paper consist of exploiting the unitary covariance symmetry of the identity channel to establish a significant

reduction of the computational cost of this latter optimization. Next, by exploiting known connections between

approximate teleportation and quantum error correction, we also apply these concepts to establish bounds on the

performance of approximate quantum error correction over a given quantum channel. Finally, we evaluate our

bounds for various examples of resource states and channels.
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I. INTRODUCTION

Teleportation is one of the most basic protocols in quantum

information science [1]. By means of two bits of classical

communication and an entangled pair of qubits (a so-called

resource state), it is possible to transmit a qubit from one

location to another. This protocol demonstrates the fasci-

nating possibilities available under the distant laboratories

paradigm of local operations and classical communication

(LOCC), and it prompted the development of the resource

theory of entanglement [2]. Teleportation is so ubiquitous

in quantum information science now, that nearly every sub-

field (fault-tolerant computing, error correction, cryptography,

communication complexity, Shannon theory, etc.) employs

it in some manner. A number of impressive teleporta-

tion experiments have been conducted over the past few

decades [3–10].

The teleportation protocol assumes an ideal resource state;

however, if the resource state shared between the two parties is

imperfect, then the teleportation protocol no longer simulates

an ideal quantum channel, but rather some approximation of

it [11,12]. This problem has been studied considerably in the

literature and is related to the well-known problem of entan-

glement distillation [2,13]. Recently, it has been addressed in a

precise and general operational way, in terms of a meaningful

channel distinguishability measure [14, Definition 19].

In the seminal work [2], a connection was forged between

entanglement distillation and approximate quantum error

correction. There it was shown that certain one-way LOCC

entanglement distillation protocols can be converted to ap-

proximate quantum error correction protocols, and vice versa.

Thus, techniques for analyzing entanglement distillation can

be used to analyze quantum error correction and vice versa.

In this paper, we obtain bounds on the performance of

teleportation when using an imperfect resource state, and by

exploiting the aforementioned connection, we address a re-

lated problem for approximate quantum error correction. We

thus consider our paper to offer two distinct, yet related contri-

butions. The conceptual approach that we take here is linked

to that of [15], which was concerned with a more involved

protocol called bidirectional teleportation; it is also linked to

[16,17], which introduced the set of k-extendible channels

as a semidefinite relaxation of the set of one-way LOCC

channels. Our approach has strong links as well with that

taken in [18], the latter concerned with bounding the perfor-

mance of approximate quantum error correction by means of

k-PPT-extendible channels; these channels were introduced in

[18] as a semidefinite relaxation of the set of one-way LOCC

channels that forms a tighter containment than k-extendible

channels alone. In fact, our method applied to the problem

of approximate quantum error correction can be understood

as exploiting further symmetries available when simulating

the identity channel, in order to reduce the computational

complexity required to calculate the bounds given in [18].

Let us discuss our first contribution in a bit more detail.

Suppose that the goal is to use a bipartite resource state ρAB
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along with one-way LOCC to simulate a perfect quantum

channel of dimension d . It is not always possible to perform

this simulation exactly, and for most resource states, an error

will occur. We can quantify the simulation error either in terms

of the diamond distance [19] or the channel infidelity [20].

However, we prove here that the simulation error is the same,

regardless of whether we use the channel infidelity or the

diamond distance, when quantifying the deviation between

the simulation and an ideal quantum channel (note that a

similar result was found previously in [15] and we exploit

similar techniques to arrive at our conclusion here). Next, in

order to obtain a lower bound on the simulation error, and due

to the fact that it is computationally challenging to optimize

over one-way LOCC channels, we optimize the error over the

larger set of 2-PPT-extendible channels (where PPT denotes

positive partial transpose; defined in Sec. II B 5) and show

that the resulting quantity can be calculated by means of a

semidefinite program. By exploiting the unitary covariance

symmetry of the ideal quantum channel, we reduce the com-

putational complexity of the semidefinite program to depend

only on the dimension of the resource state ρAB being consid-

ered. This constitutes our main contribution to the analysis of

teleportation with an imperfect resource state. We also provide

a general formulation of the simulation problem when trying

to simulate an arbitrary channel using one-way LOCC and a

resource state.

The second contribution of our paper employs a similar line

of reasoning to obtain a lower bound on the simulation error of

approximate quantum error correction. In this setting, instead

of a bipartite state, two parties have at their disposal a quantum

channel NA→B, for which they can prepend an encoding and

append a decoding in order to simulate a perfect quantum

channel of dimension d . This encoding and decoding can be

understood as a superchannel [21] that transforms NA→B into

an approximation of the perfect quantum channel. It is clear

that the simulation error cannot increase by allowing for a su-

perchannel realized by one-way local operations and common

randomness (LOCR), and here, following the approach out-

lined above, we find a lower bound on the simulation error by

optimizing instead over the larger class of 2-PPT-extendible

superchannels with an extra nonsignaling constraint. Criti-

cally, this lower bound can be calculated by means of a

semidefinite program. As indicated above, this problem was

previously considered in [18], but our contribution is that the

semidefinite programming lower bound reported here has a

substantially reduced computational complexity, depending

only on the input and output dimensions of the channel NA→B

of interest.

A. Organization of the paper

Our paper is organized into two major parts, according to

the contributions mentioned above. The first part (Secs. II–

IV) details our contribution to quantifying the performance

of approximate teleportation. The second part (Secs. V–VII)

details our contribution to quantifying the performance of

approximate quantum error correction.

The first part of our paper is organized as follows: Sec. II

provides some background on quantum states and channels,

with an emphasis on LOCC and LOCR bipartite channels.

Section III establishes a measure for the performance of

quantum channel simulation, namely, in terms of the nor-

malized diamond distance and channel infidelity. We prove

here that these two error measures are equal when the goal

is to simulate the identity channel, following as a conse-

quence of the unitary covariance symmetry of the identity

channel. Section IV presents the major contribution of the

first part, a semidefinite program (SDP) that gives a lower

bound on the simulation error of approximate teleportation

when using an arbitrary bipartite resource state and one-way

LOCC channels. This SDP is further simplified by exploit-

ing the aforementioned symmetry of the identity channel

to reduce the computational cost of the optimization task

significantly.

The second part of our paper is organized as follows:

Sec. V provides background on quantum superchannels to

generalize the concepts of one-way LOCC and LOCR bipar-

tite channels to superchannels. Section VI explores the task of

channel simulation, i.e., simulating a quantum channel from

an arbitrary quantum channel and LOCR superchannels. The

performance of channel simulation is again quantified with the

normalized diamond distance and channel infidelity, and again

the error measures are equal when the goal is to simulate the

identity channel with the assistance of common randomness.

Section VII presents the major contribution of the second part,

an SDP that gives a lower bound on the error in simulating a

quantum channel with an arbitrary channel and LOCR super-

channels. We detail a much simplified SDP for the simulation

of an identity channel, the case of interest in approximate

quantum error correction, by leveraging its unitary covariance

symmetry.

Section VIII presents plots that result from numerical cal-

culations of our SDP error bounds. The first example in

Sec. VIII A bounds the error in approximate teleportation us-

ing a certain mixed state as the resource state, demonstrating

that 2-PPT-extendiblity constraints can achieve tighter bounds

when compared to PPT constraints alone. The second exam-

ple in Sec. VIII B considers the bounds when using a lower

dimensional resource state to simulate a higher dimensional

identity channel. The next example in Sec. VIII C considers

the bounds for qubit and qutrit depolarizing channels. The

penultimate example in Sec. VIII D bounds the error in ap-

proximate teleportation when using two-mode squeezed states

as the resource state. The final example in Section VIII E

bounds the error in simulating an identity channel when using

the three-level amplitude damping channel [22], and it is thus

an example of our bound applied to approximate quantum

error correction.

Section IX concludes by discussing several open ques-

tions for future work. We note here that Python code for

calculating the SDPs in our paper is available with its arXiv

posting.

II. BACKGROUND ON STATES,

CHANNELS, AND BIPARTITE CHANNELS

We recall some basic facts about quantum information

theory in this section to fix our notation before proceeding;

more detailed background can be found in [23–27].
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A. States and channels

A quantum state or density operator, usually denoted by

ρA, σA, etc., is a positive semidefinite, unit trace operator

acting on a Hilbert space HA. The Heisenberg-Weyl operators

are unitary transformations of quantum states, defined for all

x, z ∈ {0, 1, . . . , d − 1} as

Z (z) :=
d−1∑

k=0

e
2π ikz

d |k〉〈k|, (1)

X (x) :=
d−1∑

k=0

|k ⊕d x〉〈k|, (2)

W z,x := Z (z)X (x), (3)

where ⊕d denotes addition modulo d .

A quantum channel is a completely positive (CP), trace-

preserving (TP) map. Let NA→B denote a quantum channel

that accepts as input a linear operator acting on a Hilbert space

HA and outputs a linear operator acting on a Hilbert space HB.

For short, we say that the channel takes system A to system

B, where systems are identified with Hilbert spaces. Let �N
RB

denote the Choi operator of a channel NA→B:

�N
RB := NA→B(�RA), (4)

where

�RA :=
dA−1∑

i, j=0

|i〉〈 j|R ⊗ |i〉〈 j|A (5)

is the unnormalized maximally entangled operator and

{|i〉R}dA−1
i=0 and {|i〉A}dA−1

i=0 are orthonormal bases.

The Choi representation of a channel is isomorphic to the

superoperator representation and provides a convenient means

of characterizing a channel. Namely, a channel MA→B is

completely positive if and only if its Choi operator �M
RB is

positive semidefinite and a channel MA→B is trace preserving

if and only if its Choi operator �M
RB satisfies TrB[�M

RB ] = IR.

B. Bipartite channels

A bipartite channel NAB→A′B′ maps input systems A and B

to output systems A′ and B′. In this model, we assume that

a single party Alice has access to systems A and A′, while

another party Bob has access to systems B and B′. The Choi

operator for a bipartite channel NAB→A′B′ is as follows:

�N

ÃB̃A′B′ = NAB→A′B′ (�ÃA ⊗ �B̃B). (6)

1. One-way LOCC channels

A bipartite channel LAB→A′B′ is a one-way LOCC (1WL)

channel if it can be written as follows:

LAB→A′B′ =
∑

x

E
x
A→A′ ⊗ D

x
B→B′ , (7)

where {Ex
A→A′}x is a set of completely positive maps, such

that the sum map
∑

x E
x
A→A′ is trace preserving, and {Dx

B→B′}x

is a set of quantum channels. The idea here is that Alice

acts on her system A with a quantum instrument described

by {Ex
A→A′}x, transmits the classical outcome x of the mea-

surement over a classical communication channel to Bob,

who subsequently applies the quantum channel Dx
B→B′ to his

system B. A key example of a one-way LOCC channel is

in the teleportation protocol: given that Alice and Bob share

a maximally entangled state in systems ÂB̂ and Alice has

prepared the system A0 that she would like to teleport, the

one-way LOCC channel consists of Alice performing a Bell

measurement on systems A0Â (quantum instrument), sending

the measurement outcome to Bob (classical communication),

who then applies a Heisenberg-Weyl correction operation on

system B conditioned on the classical communication from

Alice. One-way LOCC channels are central in our analysis of

approximate teleportation.

2. LOCR channels

A subset of one-way LOCC channels consists of those that

can be implemented by local operations and common random-

ness (LOCR). These channels have the following form:

CAB→A′B′ =
∑

y

p(y)E
y

A→A′ ⊗ D
y

B→B′ , (8)

where {p(y)}y is a probability distribution and {Ey

A→A′}y and

{Dy

B→B′}y are sets of quantum channels. The main difference

between one-way LOCC and LOCR is that, in the latter case,

the channel is simply a probabilistic mixture of local channels.

In order to simulate them, classical communication is not

needed, and only the weaker resource of common randomness

is required. Thus, the following containment holds:

LOCR ⊂ 1WL. (9)

These channels play a role in our analysis of approximate

quantum error correction and channel simulation.

3. 2-extendible channels

A bipartite channel NAB→A′B′ is 2-extendible [16,17], if

there exists an extension channel MAB1B2→A′B′
1B′

2
satisfying

permutation covariance:

MAB1B2→A′B′
1B′

2
◦ FB1B2

= FB′
1B′

2
◦ MAB1B2→A′B′

1B′
2

(10)

and the following nonsignaling constraint:

TrB2′ ◦MAB1B2→A′B′
1B′

2
= NAB1→A′B′

1
⊗ TrB2

. (11)

In the above, FB1B2
is the unitary swap channel that permutes

systems B1 and B2, and FB′
1B′

2
is defined similarly. Also, Tr

denotes the partial trace channel. Note that the two conditions

in (10) and (11) imply that the original channel NAB→A′B′ is

nonsignaling from Bob to Alice,

TrB′ ◦NAB→A′B′ = TrB′ ◦NAB→A′B′ ◦ R
π
B , (12)

where

R
π
B (·) := Tr[·]πB (13)

is a replacer channel that traces out its input and replaces it

with the maximally mixed state πB := I
dB

. We provide a proof

of (12) in Appendix.

More generally, k-extendible channels were defined in

[16,17], and a resource theory was constructed based on

them. However, we only make use of 2-extendible channels

in this work, and we leave the study of our problem using
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k-extendible channels for future work. See [18] for an alter-

native definition of k-extendible channels that appeared after

the original proposal of [16]. A key insight of [16,17] is that

the set of one-way LOCC channels is contained in the set of

2-extendible channels, and we make use of this observation in

our paper.

A bipartite channel NAB→A′B′ is 2-extendible if and only if

its Choi operator �N
ABA′B′ is such that there exists a Hermitian

operator �M
AB1B2A′B′

1B′
2

satisfying [16,17]

(
FB1B2

⊗ FB′
1B′

2

)(
�M

AB1B2A′B′
1B′

2

)
= �M

AB1B2A′B′
1B′

2
, (14)

TrB′
2

[
�M

AB1B2A′B′
1B′

2

]
= �N

AB1A′B′
1
⊗ IB2

, (15)

�M
AB1B2A′B′

1B′
2
� 0, (16)

TrA′B′
1B′

2

[
�M

AB1B2A′B′
1B′

2

]
= IAB1B2

. (17)

The condition in (14) holds if and only if (10) does. The

condition in (15) holds if and only if (11) does. Finally, (16)

holds if and only if MAB1B2→A′B′
1B′

2
is completely positive, and

(17) holds if and only if MAB1B2→A′B′
1B′

2
is trace preserving.

Related to the above, the conditions in (14) and (15) imply

the following nonsignaling condition on the Choi operator of

NAB→A′B′ :

TrB′
[
�N

ABA′B′

]
=

1

dB

TrBB′
[
�N

ABA′B′

]
⊗ IB, (18)

which is equivalent to (12).

4. Completely positive-partial-transpose preserving channels

A bipartite channel NAB→A′B′ is completely positive-

partial-transpose preserving (C-PPT-P) [28,29] if the map

TB′ ◦ NAB→A′B′ ◦ TB is completely positive. Here TB is the par-

tial transpose map, defined as the following superoperator:

TB(·) :=
∑

i, j

|i〉〈 j|B(·)|i〉〈 j|B. (19)

See also [30]. The set of one-way LOCC channels is contained

in the set of C-PPT-P channels [28,29], and we also make use

of this observation in our paper. A bipartite channel NAB→A′B′

is C-PPT-P if and only if its Choi operator �N
ABA′B′ satisfies

�N
ABA′B′ � 0, (20)

TrA′B′
[
�N

ABA′B′

]
= IAB, (21)

TBB′
(
�N

ABA′B′

)
� 0, (22)

where TBB′ is the partial transpose acting on systems B and

B′. We note that the C-PPT-P constraint has been used in

prior work on bounding the simulation error in bidirectional

teleportation [15]. See also [31–35] for other contexts.

5. 2-PPT-extendible channels

We can combine the above constraints in a nontrivial

way to define the set of 2-PPT-extendible channels, and we

note that this was considered recently in [18, Remark after

Lemma 4.10], as a generalization of the concept employed

for bipartite states [36,37]. Explicitly, a bipartite channel

NAB→A′B′ is 2-PPT-extendible if there exists an extension

channel MAB1B2→A′B′
1B′

2
satisfying the following conditions of

permutation covariance, nonsignaling, and being completely-

PPT-preserving:

MAB1B2→A′B′
1B′

2
◦ FB1B2

= FB′
1B′

2
◦ MAB1B2→A′B′

1B′
2
, (23)

TrB2′ ◦ MAB1B2→A′B′
1B′

2
= NAB1→A′B′

1
⊗ TrB2

, (24)

TB′
2
◦ MAB1B2→A′B′

1B′
2
◦ TB2

∈ CP, (25)

TA′ ◦ MAB1B2→A′B′
1B′

2
◦ TA ∈ CP . (26)

It is redundant to demand further that the following constraints

hold:

TB′
1
◦ MAB1B2→A′B′

1B′
2
◦ TB1

∈ CP, (27)

TA′B′
1
◦ MAB1B2→A′B′

1B′
2
◦ TAB1

∈ CP, (28)

TA′B′
2
◦ MAB1B2→A′B′

1B′
2
◦ TAB2

∈ CP, (29)

TB′
1B′

2
◦ MAB1B2→A′B′

1B′
2
◦ TB1B2

∈ CP, (30)

because they follow as a consequence of (25) and (23), (25),

(27), and (26), respectively. A bipartite channel NAB→A′B′ is 2-

PPT-extendible if and only if its Choi operator �N
ABA′B′ is such

that there exists a Hermitian operator �M
AB1B2A′B′

1B′
2

satisfying

(
FB1B2

⊗ FB′
1B′

2

)(
�M

AB1B2A′B′
1B′

2

)
= �M

AB1B2A′B′
1B′

2
, (31)

TrB′
2

[
�M

AB1B2A′B′
1B′

2

]
= �N

AB1A′B′
1
⊗ IB2

, (32)

TB2B′
2

(
�M

AB1B2A′B′
1B′

2

)
� 0, (33)

TAA′
(
�M

AB1B2A′B′
1B′

2

)
� 0, (34)

�M
AB1B2A′B′

1B′
2
� 0, (35)

TrA′B′
1B′

2

[
�M

AB1B2A′B′
1B′

2

]
= IAB1B2

. (36)

Observe that a bipartite channel NAB→A′B′ is C-PPT-P if it

is 2-PPT-extendible. This follows from (24) and (26).

Every one-way LOCC channel of the form in (7) is 2-PPT-

extendible by considering the following extension channel:

∑

x

E
x
A→A′ ⊗ D

x
B1→B′

1
⊗ D

x
B2→B′

2
, (37)

which manifestly satisfies the constraints in (23)–(26). We

thus employ 2-PPT-extendible channels as a semidefinite re-

laxation of the set of one-way LOCC channels.

6. 2-PPT-extendible nonsignaling channels

We can add a further constraint to the channels discussed

in the previous section, i.e., a nonsignaling constraint of the

following form:

TrA′ ◦MAB1B2→A′B′
1B′

2
= TrA′ ◦MAB1B2→A′B′

1B′
2
◦ R

π
A , (38)

which ensures that the extension channel MAB1B2→A′B′
1B′

2
is

also nonsignaling from Alice to both Bobs. The constraint on

the Choi operator �M
AB1B2A′B′

1B′
2

is as follows:

TrA′
[
�M

AB1B2A′B′
1B′

2

]
=

1

dA

TrA′A

[
�M

AB1B2A′B′
1B′

2

]
⊗ IA. (39)

Every LOCR channel of the form in (8) is 2-PPT-

extendible nonsignaling, as is evident by choosing the
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following extension channel:
∑

y

p(y)E
y

A→A′ ⊗ D
y

B1→B′
1
⊗ D

y

B2→B′
2
. (40)

We thus employ 2-PPT-extendible nonsignaling channels as a

semidefinite relaxation of the set of LOCR channels, and we

note here that [18] previously used this approach.

Let us state explicitly here that extensions of one-way

LOCC channels of the form in (7) generally do not satisfy

the nonsignaling constraint in (38), due to the fact that each

map Ex
A→A′ in (7) is not necessarily trace preserving.

III. QUANTIFYING THE PERFORMANCE

OF APPROXIMATE TELEPORTATION

In approximate teleportation, Alice and Bob are allowed

to make use of a fixed bipartite state ρÂB̂ and an arbitrary

one-way LOCC channel LAÂB̂→B, with the goal of simulating

an identity channel of dimension d . To be clear, the one-way

LOCC channel LAÂB̂→B has the following form:

LAÂB̂→B(ωAÂB̂) =
∑

x

D
x

B̂→B
(TrAÂ[�x

AÂ
ωAÂB̂]), (41)

where {�x

AÂ
}x is a positive operator-valued measure (satisfy-

ing �x

AÂ
� 0 for all x and

∑
x �x

AÂ
= IAÂ) and {Dx

B̂→B
}x is a

set of quantum channels. We assume that the dimension of the

systems ÂB̂ is finite, and we write the dimension of Â as dÂ

and the dimension of B̂ as dB̂. The approximate teleportation

protocol realizes the following simulation channel S̃A→B [12,

Eq. (11)]:

S̃A→B(ωA) := LAÂB̂→B(ωA ⊗ ρÂB̂). (42)

In the following subsections, we discuss two seemingly dif-

ferent ways of quantifying the simulation error.

A. Quantifying simulation error with normalized

diamond distance

The standard metric for quantifying the distance between

quantum channels is the normalized diamond distance [19].

See the related paper [15] for discussions of the operational

significance of the diamond distance (see also [27]). For chan-

nels NC→D and ÑC→D, the diamond distance is defined as

‖NC→D − ÑC→D‖� := sup
ρRC

‖NC→D(ρRC ) − ÑC→D(ρRC )‖1,

(43)

where the optimization is over every bipartite state ρRC with

the reference system R arbitrarily large. The following equal-

ity is well known (see, e.g., [27]):

‖NC→D − ÑC→D‖� = sup
ψRC

‖NC→D(ψRC ) − ÑC→D(ψRC )‖1,

(44)

where the optimization is over every pure bipartite state ψRC

with the reference system R isomorphic to the channel input

system C. The normalized diamond distance is then given by

1
2
‖NC→D − ÑC→D‖�, (45)

so that the resulting error takes a value between zero and

one. The reduction in (44) implies that it is a computationally

tractable problem to calculate the diamond distance, and in

fact, one can do so by means of the following semidefinite

program [38]:

inf
λ,ZRD�0

{
λ : λIR � TrD[ZRD],

ZRD � �N
RD − �Ñ

RD

}
, (46)

where �N
RD and �Ñ

RD are the Choi operators of NC→D and

ÑC→D, respectively.

The simulation error when using a bipartite state ρÂB̂ and a

one-way LOCC channel to simulate an identity channel idd
A→B

of dimension d is given by

e1WL(ρÂB̂,LAÂB̂→B) := 1
2

∥∥ idd
A→B −S̃A→B

∥∥
�, (47)

where the simulation channel S̃A→B is defined in (42). Em-

ploying (44), we find that

e1WL(ρÂB̂,LAÂB̂→B) = sup
ψRA

1
2
‖ψRA − LAÂB̂→B(ψRA ⊗ ρÂB̂)‖1,

(48)

with ψRA a pure bipartite state such that system R is isomor-

phic to system A. We are interested in the minimum possible

simulation error, and so we define

e1WL(ρÂB̂) := inf
L∈ 1WL

e1WL(ρÂB̂,LAÂB̂→B), (49)

where we recall that 1WL denotes the set of one-way LOCC

channels. The error e1WL(ρÂB̂) is one kind of simulation error

on which we are interested in obtaining computationally effi-

cient lower bounds. Indeed, it is a computationally difficult

problem to calculate e1WL(ρÂB̂) directly, and so we instead

resort to calculating lower bounds.

B. Quantifying simulation error with channel infidelity

Another measure of the simulation error is by means of the

channel infidelity. Let us recall that the fidelity of states ω and

τ is defined as [39]

F (ω, τ ) := ‖
√

ω
√

τ‖2
1, (50)

where ‖X‖1 := Tr[
√

X †X ]. From this measure, we can define

a channel fidelity measure for channels NC→D and ÑC→D as

follows:

F (N , Ñ ) := inf
ρRC

F [NC→D(ρRC ), ÑC→D(ρRC )], (51)

where the optimization is over every bipartite state ρRC with

the reference system R arbitrarily large. Similar to the di-

amond distance, it suffices to optimize the channel fidelity

over every pure bipartite state ψRC with reference system R

isomorphic to the channel input system C (see, e.g., [27]):

F (N , Ñ ) := inf
ψRC

F [NC→D(ψRC ), ÑC→D(ψRC )]. (52)

The square root of the channel fidelity can be calculated by

means of the following semidefinite program [40,41]:

√
F (N , Ñ ) = sup

λ�0,QRD

λ (53)
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subject to

λIR � Re[TrD[QRD]], (54)
[
�Ñ

RD Q
†
RD

QRD �N
RD

]
� 0. (55)

An alternative method for quantifying the simulation error

is to employ the channel infidelity, defined as 1 − F (N , Ñ ).

Indeed, we can measure the simulation error as follows, when

using a bipartite state ρÂB̂ and a one-way LOCC channel

LAÂB̂→B:

eF
1WL(ρÂB̂,LAÂB̂→B) := 1 − F

(
idd

A→B, S̃A→B

)
, (56)

where the simulation channel S̃A→B is defined in (42). By

employing (52), we find that

eF
1WL(ρÂB̂,LAÂB̂→B) = sup

ψRA

[1 − F (ψRA,LAÂB̂→B(ψRA ⊗ ρÂB̂))],

(57)

where the optimization is over every pure bipartite state ψRA

with system R isomorphic to the channel input system A.

Since we are interested in the minimum possible simulation

error, we define

eF
1WL(ρÂB̂) := inf

L∈1WL
eF

1WL(ρÂB̂,LAÂB̂→B). (58)

This is the other kind of simulation error on which we are

interested in obtaining lower bounds.

C. One-way LOCC simulation of general

point-to-point channels

Beyond the case of simulating an ideal channel, more gen-

erally we can consider using a resource state ρÂB̂ along with a

one-way LOCC channel LAÂB̂→B in order to simulate a general

channel NA→B. In this case, the simulation channel has the

following form:

ÑA→B(ωA) := LAÂB̂→B(ωA ⊗ ρÂB̂). (59)

The simulation error when employing a specific one-way

LOCC channel LAÂB̂→B is

e1WL(NA→B, ρÂB̂,LAÂB̂→B) := 1
2
‖N − Ñ‖�, (60)

and the simulation error minimized over all possible one-way

LOCC channels is

e1WL(NA→B, ρÂB̂) := inf
L∈1WL

e1WL (NA→B, ρÂB̂,LAÂB̂→B).

(61)

We note here that this is a special case of the simulation

problem considered in [42, Sec. II].

Alternatively, we can employ the infidelity to quantify the

simulation error as follows:

eF
1WL(NA→B, ρÂB̂,LAÂB̂→B) := 1 − F (N , Ñ ), (62)

eF
1WL(NA→B, ρÂB̂) := inf

L∈1WL
eF

1WL (NA→B, ρÂB̂,LAÂB̂→B).

(63)

D. Equality of simulation errors when simulating

the identity channel

Proposition 1 below states that the following equality holds

for every bipartite state ρÂB̂:

e1WL(ρÂB̂) = eF
1WL(ρÂB̂). (64)

We provide an explicit proof in Appendix B of the Supple-

mental Material [43]. This equality follows as a consequence

of the unitary covariance symmetry of the identity channel

being simulated and the fact that an optimal simulating chan-

nel should respect the same symmetries. Indeed, consider that

the identity channel idd
A→B possesses the following unitary

covariance symmetry:

idd
A→B ◦UA = UB ◦ idd

A→B, (65)

which holds for every unitary channel U (·) = U (·)U †, with U

a unitary operator. As a consequence, the theory simplifies in

the sense that we need only focus on bounding the simulation

error with respect to a single measure. We note here that a

similar result was found in [15] for the case of simulating the

bipartite swap channel by means of LOCC.

Proposition 1. The optimization problems in (49) and

(58), for the error in simulating the identity channel idd
A→B,

simplify as follows:

e1WL(ρÂB̂) = eF
1WL(ρÂB̂) (66)

= 1 − sup
KÂB̂,LÂB̂�0

Tr[KÂB̂ρÂB̂], (67)

subject to KÂB̂ + LÂB̂ = IÂB̂ and the following channel

LAÂB̂→B being a one-way LOCC channel:

LAÂB̂→B(ωAÂB̂) = idd
A→B(TrÂB̂[KÂB̂ωAÂB̂])

+ DA→B(TrÂB̂[LÂB̂ωAÂB̂]), (68)

where DA→B is the following channel:

DA→B(σA) :=
1

d2 − 1

∑

(z,x)�=(0,0)

W z,xσ (W z,x )†, (69)

and W z,x is defined in (3). The constraint that LAÂB̂→B is a one-

way LOCC channel is equivalent to the existence of a positive

operator-valued measure (POVM) {�x

BÂ
}x and a set {Dx

B̂→B
}x

of channels such that

KÂB̂ =
1

d2

∑

x

TrB

[
TB

(
�x

BÂ

)
�Dx

B̂B

]
, (70)

where �Dx

B̂B
is the Choi operator of the channel Dx

B̂→B
.

Proof. See Appendix B of the Supplemental Material

[43]. �

IV. SDP LOWER BOUNDS ON THE PERFORMANCE

OF APPROXIMATE TELEPORTATION BASED ON

2-PPT-EXTENDIBILITY

A. SDP lower bound on the error in one-way LOCC

simulation of a channel

It is difficult to compute the simulation error

e1WL(NA→B, ρÂB̂) defined in (61) because it is challenging

to optimize over the set of one-way LOCC channels [44,45].
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Here we enlarge the set of one-way LOCC channels to the

set of 2-PPT-extendible bipartite channels, with the goal

of simplifying the calculation of the simulation error. The

result is that we provide a lower bound on the one-way

LOCC simulation error in terms of a semidefinite program,

which follows because the set of 2-PPT-extendible channels

is specified by semidefinite constraints, as indicated in

(31)–(36).

In more detail, recall that a bipartite channel is 2-PPT-

extendible if the conditions in (23)–(26) hold. As indicated

previously at the end of Sec. II B 5, every one-way LOCC

channel is a 2-extendible channel, and the containment is

strict. Thus,

1WL ⊂ 2PE, (71)

where 2PE denotes the set of 2-PPT-extendible channels, as

defined in Sec. II B 5.

We can then define the simulation error under 2-PPT-

extendible channels, as a semidefinite relaxation of (61), as

follows:

e2PE(NA→B, ρÂB̂) := inf
K∈2PE

1
2
‖N − Ñ‖�, (72)

where

ÑA→B(ωA) := KAÂB̂→B(ωA ⊗ ρÂB̂) (73)

and KAÂB̂→B is a 2-PPT-extendible channel, meaning that

there exists an extension channel MAÂB̂1B̂2→B1B2
satisfying the

following conditions:

TrB2
◦MAÂB̂1B̂2→B1B2

= KAÂB̂1→B1
⊗ TrB̂2

, (74)

MAÂB̂1B̂2→B1B2
◦ FB̂1B̂2

= FB1B2
◦ MAÂB̂1B̂2→B1B2

, (75)

TB2
◦ MAÂB̂1B̂2→B1B2

◦ TB̂2
∈ CP, (76)

MAÂB̂1B̂2→B1B2
◦ TAÂ ∈ CP. (77)

As a consequence of the containment in (71), the following

bound holds:

e2PE(NA→B, ρÂB̂) � e1WL(NA→B, ρÂB̂). (78)

We now show that the simulation error in (72) can be

calculated by means of a semidefinite program.

Proposition 2. The simulation error in (72) can be calcu-

lated by means of the following semidefinite program:

e2PE(NA→B, ρÂB̂) = inf
μ�0,ZAB�0,

MAÂB̂1B1 B̂2B2
�0

μ, (79)

subject to

μIA � ZA, (80)

ZAB � �N
AB − TrÂB̂1

[
TÂB̂1

(
ρÂB̂1

)MAÂB̂1B1

dB̂

]
, (81)

TrB1B2

[
MAÂB̂1B1B̂2B2

]
= IAÂB̂1B̂2

, (82)
(
FB̂1B̂2

⊗ FB1B2

)(
MAÂB̂1B1B̂2B2

)
= MAÂB̂1B1B̂2B2

, (83)

TrB2

[
MAÂB̂1B1B̂2B2

]
=

MAÂB̂1B1

dB̂

⊗ IB̂2
, (84)

TAÂ

(
MAÂB̂1B1B̂2B2

)
� 0, (85)

TB̂2B2

(
MAÂB̂1B1B̂2B2

)
� 0. (86)

The objective function in (79) and the first two con-

straints in (80) and (81) follow from the semidefinite program

in (46) for the normalized diamond distance. The quantity

TrÂB̂1
[TÂB̂1

(ρÂB̂1
)

MAÂB̂1B1

dB̂
] in (81) is the Choi operator corre-

sponding to the composition of the appending channel and

the simulation channel KAÂB̂1→B1
, with Choi operator

MAÂB̂1B1

dB̂
,

where KAÂB̂1→B1
is the marginal channel of MAÂB̂1B̂2→B1B2

,

defined as

KAÂB̂1→B1

(
ωAÂB̂1

)
:= TrB2

[
MAÂB̂1B̂2→B1B2

(
ωAÂB̂1

⊗ πB̂2

)]
.

(87)

The constraint in (82) forces MAÂB̂1B̂2→B1B2
to be trace pre-

serving, that in (83) forces MAÂB̂1B̂2→B1B2
to be permutation

covariant with respect to the B systems [see (75)], and that in

(84) forces MAÂB̂1B̂2→B1B2
to be the extension of a marginal

channel KAÂB̂1→B1
. The final two PPT constraints are equiva-

lent to the C-PPT-P constraints in (76) and (77), respectively.

B. SDP lower bound on the simulation error

of approximate teleportation

The semidefinite program in Proposition 2 can be eval-

uated for an important case of interest, i.e., when NA→B =
idd

A→B. Recall from Sec. III that this special case corresponds

to approximate teleportation. The semidefinite program in

Proposition 2 is efficiently computable with respect to the

dimensions of the systems A, Â, B̂, and B. However, it is in

our interest to reduce the computational complexity of these

optimization tasks even further for this important case, and

we can do so by exploiting the unitary covariance symmetry

of the identity channel, as stated in (65).

In this section, we provide a semidefinite program for eval-

uating the simulation error

e2PE(ρÂB̂) ≡ e2PE

(
idd

A→B, ρÂB̂

)
, (88)

with reduced complexity, i.e., only polynomial in the

dimensions dÂ and dB̂ of the resource state ρÂB̂. We provide

a proof of Proposition 3 in Appendix C of the Supplemental

Material [43].

Proposition 3. The semidefinite program in Proposition 2,

for the special case of simulating the identity channel idd
A→B,

simplifies as follows for d � 3:

e2PE(ρÂB̂) = eF
2PE(ρÂB̂) (89)

= 1 − sup
M+,M−,M0�0,

M1,M2,M3∈LinOp

Tr

[
TÂB̂1

(
ρÂB̂1

)PÂB̂1B̂2

dB̂

]
,

(90)

subject to
[

M0 + M3 M1 − iM2

M1 + iM2 M0 − M3

]
� 0, (91)

IÂB̂1B̂2
= M+

ÂB̂1B̂2
+ M−

ÂB̂1B̂2
+ M0

ÂB̂1B̂2
, (92)

M i

ÂB̂1B̂2
= FB̂1B̂2

(
M i

ÂB̂1B̂2

)
∀i ∈ {+,−, 0, 1}, (93)
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M
j

ÂB̂1B̂2
= −FB̂1B̂2

(
M

j

ÂB̂1B̂2

)
∀ j ∈ {2, 3}, (94)

PÂB̂1B̂2
=

1

dB̂

TrB̂2

[
PÂB̂1B̂2

]
⊗ IB̂2

, (95)

PÂB̂1B̂2
:=

1

2d
[dM0 + M1 +

√
d2 − 1 M2], (96)

TÂ

(
2M+

ÂB̂1B̂2

d + 2
+ M0

ÂB̂1B̂2
+ M1

ÂB̂1B̂2

)
� 0, (97)

TÂ

(
2M−

ÂB̂1B̂2

d − 2
+ M1

ÂB̂1B̂2
− M0

ÂB̂1B̂2

)
� 0, (98)

[
G0 + G3 G1 − iG2

G1 + iG2 G0 − G3

]
� 0, (99)

G0
ÂB̂1B̂2

:= TÂ

(
M+ + M− +

M0 − dM1

2

)
, (100)

G1
ÂB̂1B̂2

:= TÂ

(
M+ − M− +

M1 − dM0

2

)
, (101)

G2
ÂB̂1B̂2

:=
√

3(d2 − 1)

2
TÂ

(
M2

ÂB̂1B̂2

)
, (102)

G3
ÂB̂1B̂2

:=
√

3(d2 − 1)

2
TÂ

(
M3

ÂB̂1B̂2

)
. (103)

TÂB̂1

(
dM+

d + 2
+ M− +

dM0 − M1 −
√

d2 − 1 M2

2

)
� 0,

(104)

TÂB̂1

(
M+ +

dM−

d − 2
−

dM0 − M1 −
√

d2 − 1 M2

2

)
� 0,

(105)
[

E0 + E3 E1 − iE2

E1 + iE2 E0 − E3

]
� 0, (106)

E0
ÂB̂1B̂2

:=
TÂB̂1

(
d (M+ − M−) + L0

2

)

d2 − 1
, (107)

E1
ÂB̂1B̂2

:=
TÂB̂1

(
− M+ + M− + L1

2

)

d2 − 1
, (108)

E2
ÂB̂1B̂2

:=
TÂB̂1

(
M+ − M− + L2

2

)
√

d2 − 1
, (109)

E3
ÂB̂1B̂2

:= TÂB̂1

(
M3

ÂB̂1B̂2

)
, (110)

L0 := (d2 − 2)M0 + dM1 + d
√

d2 − 1 M2, (111)

L1 := dM0 + (2d2 − 3)M1 −
√

d2 − 1 M2, (112)

L2 := M1 − dM0 −
√

d2 − 1 M2. (113)

For the case of d = 2, the SDP is the same, with the exception

that we set M−
ÂB̂1B̂2

= 0 and the constraints in (98) and (105)

are not used.

Proof. See Appendix C of the Supplemental Material

[43]. �

Remark 4. The SDP in the statement of Proposition 3 is

rather lengthy, and so we provide some explanation here. The

constraint in (91) and the constraints M+, M−, M0 � 0 in (90)

correspond to the constraint of complete positivity in (79)

(i.e., MAÂB̂1B1B̂2B2
� 0). The constraint in (92) corresponds to

the constraint of trace preservation in (82). The constraints in

(93)–(94) correspond to the permutation covariance constraint

in (83). The constraint in (95) corresponds to the nonsignaling

constraint in (84). The constraints in (97)–(99) correspond to

the PPT constraint in (85), and the constraints in (104)–(106)

correspond to the PPT constraint in (86).

Remark 5. Even though the number of constraints in the

SDP above appears to increase when compared with the SDP

from Proposition 2, we note that the runtime of the SDP

above is significantly reduced because the size of the matrices

involved in each of the constraints is much smaller. This is the

main advantage conferred by incorporating unitary covariance

symmetry of the identity channel.

If we only optimized over the larger set of 2-extendible

channels instead of the set of 2-PPT-extendible channels, the

SDP would be much simpler, given by (90)–(96). However,

optimizing over the smaller set of 2-PPT-extendible channels

gives tighter bounds at a marginal increase in computational

cost, and thus we also include the PPT constraints in (97)–(99)

and (104)–(106).

V. BACKGROUND ON SUPERCHANNELS

This section constitutes the beginning of the second con-

tribution of our paper, regarding lower bounds on the error

in channel simulation and approximate quantum error correc-

tion. We begin by reviewing the theory of superchannels, as

well as particular examples of them relevant to the aforemen-

tioned applications.

A. Basics of superchannels

A superchannel � ≡ �(A→B)→(C→D) is a physical transfor-

mation of a channel NA→B that accepts as input the channel

NA→B and outputs a channel with input system C and out-

put system D. Mathematically, a superchannel is a linear

map that preserves the set of quantum channels, even when

the quantum channel is an arbitrary bipartite channel with

external input and output systems that are arbitrarily large.

Superchannels are thus completely CPTP preserving in this

sense. A general theory of superchannels was introduced in

[21] and developed further in [46–48].

In more detail, let us denote the output of a superchannel �

by KC→D, so that

�(A→B)→(C→D)(NA→B) = KC→D. (114)

The superchannel �(A→B)→(C→D) is completely CPTP pre-

serving in the sense that the following output map

(id(R)→(R) ⊗ �(A→B)→(C→D))(MRA→RB) (115)

is a quantum channel for every input quantum chan-

nel MRA→RB, where id(R)→(R) denotes the identity

superchannel [21].

The fundamental theorem of superchannels from [21] is

that �(A→B)→(C→D) has a physical realization in terms of a

preprocessing channel EC→AQ and a postprocessing channel
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DBQ→D as follows:

�(A→B)→(C→D)(NA→B) = DBQ→D ◦ NA→B ◦ EC→AQ,

(116)

where Q is a quantum memory system. Furthermore, every

superchannel �(A→B)→(C→D) is in one-to-one correspondence

with a bipartite channel of the following form:

PCB→AD := DBQ→D ◦ EC→AQ. (117)

Note that PCB→AD is completely positive, trace preserving,

and obeys the following nonsignaling constraint:

TrD ◦PCB→AD = TrD ◦PCB→AD ◦ R
π
B , (118)

where the replacer channel Rπ
B is defined in (13). Related to

this, �P
CBAD is the Choi operator of a superchannel if and only

if it satisfies the following constraints:

�P
CBAD � 0, (119)

TrAD

[
�P

CBAD

]
= ICB, (120)

TrD

[
�P

CBAD

]
=

1

dB

TrBD

[
�P

CBAD

]
⊗ IB. (121)

The first two constraints correspond to complete positivity and

trace preservation, respectively, and the last constraint is a

nonsignaling constraint corresponding to PCB→AD having the

factorization in (117), so that PCB→AD is in correspondence

with a superchannel. To determine the Choi operator for the

output channel KC→D in (114), we can use the following

propagation rule [21,48]:

�K
CD = TrAB

[
TAB

(
�N

AB

)
�P

CBAD

]
, (122)

where �P
CBAD is the Choi operator of PCB→AD and �N

AB is the

Choi operator of NA→B.

B. One-way LOCC superchannels

A superchannel � ≡ �(A→B)→(C→D) is implementable by

one-way LOCC if it can be written in the following form:

�(NA→B) :=
∑

x

D
x
B→D ◦ NA→B ◦ E

x
C→A, (123)

where {Ex
C→A}x is a set of completely positive maps such that

the sum map
∑

x E
x
C→A is trace preserving and {Dx

B→D}x is a

set of quantum channels. This is equivalent to the quantum

memory system Q in (116) being a classical system X , with

EC→AX (ρC ) :=
∑

x

E
x
C→A(ρC ) ⊗ |x〉〈x|X , (124)

DBX→D(ωBX ) :=
∑

x

D
x
B→D(〈x|X ωBX |x〉X ), (125)

so that

�(NA→B) = DBX→D ◦ NA→B ◦ EC→AX . (126)

In this case, the bipartite channel in (117), but corresponding

to � in (123), becomes the following one-way LOCC channel:

LCB→AD :=
∑

x

E
x
C→A ⊗ D

x
B→D. (127)

Thus, the set of one-way LOCC superchannels is in di-

rect correspondence with the set of one-way LOCC bipartite

channels.

C. LOCR superchannels

A superchannel ϒ ≡ ϒ(A→B)→(C→D) is implementable by

local operations and common randomness (LOCR) if it can

be written in the following form:

ϒ(NA→B) :=
∑

y

p(y)D
y

B→D ◦ NA→B ◦ E
y

C→A, (128)

where {p(y)}y is a probability distribution and {Ey

C→A}y and

{Dy

B→D}y are sets of quantum channels. In more detail, the

superchannel ϒ(A→B)→(C→D) can be realized as

ϒ(NA→B) = DBYB→D ◦ NA→B ◦ ECYA→A ◦ PYAYB
, (129)

where PYAYB
is a preparation channel that prepares the com-

mon randomness state
∑

y

p(y)|y〉〈y|YA
⊗ |y〉〈y|YB

, (130)

and the channels ECYA→A and DBYB→D are defined as

ECYA→A

(
ρCYA

)
:=
∑

y

E
y

C→A

(
〈y|YA

ρCYA
|y〉YA

)
, (131)

DBYB→D

(
ωBYB

)
:=
∑

y

D
y

B→D

(
〈y|YB

ωBYB
|y〉YB

)
. (132)

In this case, the bipartite channel in (117), but corresponding

to ϒ in (128), becomes the following LOCR bipartite channel:

CCB→AD :=
∑

y

p(y)E
y

C→A ⊗ D
y

B→D. (133)

Thus, the set of LOCR superchannels is in direct correspon-

dence with the set of LOCR bipartite channels.

D. 2-extendible superchannels

A superchannel �(A→B)→(C→D) is defined to be 2-

extendible if there exists an extension channel MCB1B2→AD1D2

of its corresponding bipartite channel PCB→AD that obeys the

conditions in (10) and (11). Furthermore, due to the fact that

(10) and (11) imply (12), there is no need to explicitly indicate

that (118) holds. 2-extendible superchannels were considered

in [18], but this terminology was not employed there.

The specific constraints on the Choi operator of

MCB1B2→AD1D2
are precisely the same as those in (14)–(17),

with the identifications C ↔ A, B ↔ B, A ↔ A′, and D ↔ B′.
Explicitly, a superchannel �(A→B)→(C→D) is 2-extendible if

the Choi operator �P
CBAD of its corresponding bipartite chan-

nel PCB→AD satisfies the following conditions: there exists a

Hermitian operator �M
CB1B2AD1D2

such that

(
FB1B2

⊗ FD1D2

)(
�M

CB1B2AD1D2

)
= �M

CB1B2AD1D2
, (134)

TrD2

[
�M

CB1B2AD1D2

]
= �P

CB1AD1
⊗ IB2

, (135)

�M
CB1B2AD1D2

� 0, (136)

TrAD1D2

[
�M

CB1B2AD1D2

]
= ICB1B2

. (137)

Every one-way LOCC superchannel is 2-extendible.
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E. Completely PPT preserving superchannels

A superchannel �(A→B)→(C→D) is C-PPT-P if its corre-

sponding bipartite channel PCB→AD in (117) is C-PPT-P and

obeys the nonsignaling constraint in (118) [31]. This implies

the following for its Choi operator �P
CBAD:

�P
CBAD � 0, (138)

TrAD

[
�P

CBAD

]
= ICB, (139)

TrD

[
�P

CBAD

]
=

1

dB

TrBD

[
�P

CBAD

]
⊗ IB, (140)

TBD

(
�P

CBAD

)
� 0. (141)

F. 2-PPT-extendible superchannels

A superchannel �(A→B)→(C→D) is 2-PPT-extendible if its

corresponding bipartite channel PCB→AD in (117) is 2-PPT-

extendible. Again, there is no need to explicitly indicate that

(118) holds. The following conditions hold for the Choi oper-

ator �P
CBAD of a 2-PPT-extendible superchannel: there exists a

Hermitian operator �M
CB1B2AD1D2

such that (134)–(137) hold, as

well as

TB2D2

(
�M

CB1B2AD1D2

)
� 0,

TCA

(
�M

CB1B2AD1D2

)
� 0.

Similar to what was already discussed in Sec. II B 5, the fol-

lowing constraints are redundant:

TB1D1

(
�M

CB1B2AD1D2

)
� 0, (142)

TCAB2D2

(
�M

CB1B2AD1D2

)
� 0, (143)

TCAB1D1

(
�M

CB1B2AD1D2

)
� 0, (144)

TB1D1B2D2

(
�M

CB1B2AD1D2

)
� 0. (145)

Note that every one-way LOCC superchannel is 2-PPT-

extendible.

G. 2-PPT-extendible nonsignaling superchannels

Finally, we can impose an additional nonsignaling con-

straint on 2-PPT-extendible superchannels, such that the

extension of its corresponding bipartite channel is nonsignal-

ing from Alice to both Bobs. The additional constraint

on the Choi operator �M
CB1B2AD1D2

of the extension channel

MCB1B2→AD1D2
is as follows:

TrA

[
�M

CB1B2AD1D2

]
=

1

dC

TrAC

[
�M

CB1B2AD1D2

]
⊗ IC . (146)

Every LOCR superchannel is nonsignaling and 2-PPT-

extendible, which follows from definitions and the form of the

corresponding bipartite channel in (133). This fact plays an

important role in our analysis of approximate quantum error

correction. In more detail, we obtain our tightest lower bound

on the simulation error of approximate quantum error correc-

tion by relaxing the set of LOCR superchannels to the set of

nonsignaling and 2-PPT-extendible superchannels. We note

here that this approach was already considered in [18], and

our main contribution here is to employ unitary covariance

symmetry of the identity channel to reduce the complexity of

the SDPs from that work.

VI. QUANTIFYING THE PERFORMANCE OF

APPROXIMATE QUANTUM ERROR CORRECTION

A. Quantifying simulation error with normalized diamond

distance and channel infidelity

In approximate quantum error correction [49] or quantum

communication [2], the resource available is a quantum chan-

nel NÂ→B̂ and the goal is to use it, along with an encoding

channel EA→Â and a decoding channel DB̂→B, to simulate a

d-dimensional identity channel idd
A→B. We can use the nor-

malized diamond distance to quantify the error for a fixed

encoding and decoding, as follows:

e(NÂ→B̂, (EA→Â,DB̂→B))

:= 1
2

∥∥idd
A→B − DB̂→B ◦ NÂ→B̂ ◦ EA→Â

∥∥
�. (147)

By minimizing over all encodings and decodings, we arrive at

the error in using the channel NÂ→B̂ to simulate the identity

channel:

e(NÂ→B̂) := inf
(E,D)

e(NÂ→B̂, (EA→Â,DB̂→B)). (148)

We can alternatively employ channel infidelity to quantify the

error:

eF (NÂ→B̂, (EA→Â,DB̂→B))

:= 1 − F
(

idd
A→B,DB̂→B ◦ NÂ→B̂ ◦ EA→Â

)
, (149)

eF (NÂ→B̂) := inf
(E,D)

eF (NÂ→B̂, (EA→Â,DB̂→B)). (150)

Note that the transformation of the channel given by

DB̂→B ◦ NÂ→B̂ ◦ EA→Â (151)

is a superchannel, as discussed in Sec. V, with corresponding

bipartite channel

PAB̂→ÂB := EA→Â ⊗ DB̂→B. (152)

As this bipartite channel is a product channel, it is contained

within the set of LOCR superchannels, which in turn is con-

tained in the set of one-way LOCC superchannels.

By supplementing the encoding and decoding with com-

mon randomness, the resulting error correction scheme ϒ ≡
ϒ(Â→B̂)→(A→B) realizes the following simulation channel:

ϒ(NÂ→B̂) :=
∑

y

p(y)D
y

B̂→B
◦ NÂ→B̂ ◦ E

y

A→Â
, (153)

where {p(y)}y is a probability distribution and {Ey

A→Â
}y and

{Dy

B̂→B
}y are sets of quantum channels. Recall from Sec. V C

that ϒ is an LOCR superchannel, and let LOCR denote the set

of all LOCR superchannels. Then we can quantify the simu-

lation error under LOCR in a manner similar to Sec. III A: we

can use the normalized diamond distance to quantify the error

for a fixed LOCR superchannel ϒ , as follows:

eLOCR(NÂ→B̂, ϒ(Â→B̂)→(A→B))

:= 1
2

∥∥ idd
A→B −ϒ(Â→B̂)→(A→B)(NÂ→B̂)

∥∥
�. (154)
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By minimizing over all such superchannels, we arrive at the

error in using the channel NÂ→B̂ to simulate the identity

channel:

eLOCR(NÂ→B̂) := inf
ϒ∈LOCR

e(NÂ→B̂, ϒ(Â→B̂)→(A→B)). (155)

As before, we can alternatively employ channel infidelity to

quantify the error:

eF
LOCR(NÂ→B̂, ϒ(Â→B̂)→(A→B))

:= 1 − F
(

idd
A→B, ϒ(Â→B̂)→(A→B)(NÂ→B̂)

)
, (156)

eF
LOCR(NÂ→B̂) := inf

ϒ∈LOCR
eF

LOCR(NÂ→B̂, ϒ(Â→B̂)→(A→B)).

(157)

However, we have the following:

Proposition 6. For a channel NÂ→B̂, the LOCR simulation

errors defined from normalized diamond distance and channel

infidelity are equal to each other:

eLOCR(NÂ→B̂) = eF
LOCR(NÂ→B̂). (158)

Proof. The proof of this equality is similar to the proof of

Proposition 1, following again from the symmetry of the target

channel, which is an identity channel having the symmetry in

(65), and the fact that a channel twirl can be implemented by

means of LOCR. Note that a channel twirl of a channel MA→B

has the following form:
∫

dU U
†
B ◦ MA→B ◦ UA, (159)

where U is a unitary channel. �

By exploiting the fact that a superchannel of the form in

(151) is contained in the set of LOCR superchannels, the

following inequality holds:

eLOCR(NÂ→B̂) � min{e(NÂ→B̂), eF (NÂ→B̂)}. (160)

It is unclear if e(NÂ→B̂) is equal to eF (NÂ→B̂) in general:

a critical aspect of the proof of Proposition 6 is the fact

that LOCR superchannels are allowed for free, so that the

symmetrizing twirling superchannel can be used. In the unas-

sisted setting, we cannot use twirling because it is an LOCR

superchannel and thus not allowed for free.

Recall again that the identity channel idd
A→B possesses the

unitary covariance symmetry in (65). Considering this leads

to the following proposition:

Proposition 7. The optimization problems in (155) and

(157), for the error in simulating the identity channel idd
A→B,

simplify as follows:

eLOCR(NÂ→B̂) = eF
LOCR(NÂ→B̂) (161)

= 1 − sup
P

EF (NÂ→B̂;P ), (162)

where the optimization in (162) is over every LOCR protocol

P , defined as

P :=
{(

p(y), E
y

A→Â
,D

y

B̂→B

)}
y
, (163)

and EF (NÂ→B̂;P ) ∈ [0, 1] is the entanglement fidelity:

EF ≡ EF (NÂ→B̂;P ) (164)

:=
∑

y

p(y) Tr
[

d

AB

(
D

y

B̂→B
◦ NÂ→B̂ ◦ E

y

A→Â

)(

d

AB

)]
.

(165)

An optimal LOCR simulation channel for both eLOCR(NÂ→B̂)

and eF
LOCR(NÂ→B̂) has the following form:

EF idd
A→B +(1 − EF )DA→B, (166)

where DA→B is the channel defined in (69). Thus, the LOCR

simulation channel applies the identity channel idd
A→B with

probability EF and the randomizing channel DA→B with prob-

ability 1 − EF .

Proof. See Appendix D of the Supplemental Material

[43]. �

B. LOCR simulation of general point-to-point channels

We can use a point-to-point channel NÂ→B̂, along with

LOCR, to simulate another general point-to-point channel

OA→B. In this case, the simulation channel ÕA→B has the form

ÕA→B := ϒ(Â→B̂)→(A→B)(NÂ→B̂), (167)

where ϒ(Â→B̂)→(A→B) is an LOCR superchannel, as discussed

in Sec. V C. The simulation error when employing a specific

LOCR superchannel ϒ(Â→B̂)→(A→B) is

eLOCR(OA→B,NÂ→B̂, ϒ(Â→B̂)→(A→B))

:= 1
2
‖OA→B − ÕA→B‖�, (168)

and the simulation error minimized over all possible LOCR

superchannels is

eLOCR(OA→B,NÂ→B̂)

:= inf
ϒ∈LOCR

eLOCR(OA→B,NÂ→B̂, ϒ(Â→B̂)→(A→B)).

(169)

Again we can alternatively consider quantifying simulation

error in terms of the channel infidelity:

eF
LOCR(OA→B,NÂ→B̂, ϒ(Â→B̂)→(A→B))

:= 1 − F (OA→B, ÕA→B), (170)

eF
LOCR(OA→B,NÂ→B̂)

:= inf
ϒ∈LOCR

eF
LOCR(OA→B,NÂ→B̂, ϒ(Â→B̂)→(A→B)).

(171)

VII. SDP LOWER BOUNDS ON THE PERFORMANCE OF

APPROXIMATE QUANTUM ERROR CORRECTION BASED

ON 2-PPT EXTENDIBILITY AND NONSIGNALING

CONSTRAINTS

A. SDP lower bound on the error in LOCR

simulation of a channel

Using (169) to calculate the simulation error, we again

encounter an intractable optimization task. Employing the

same idea from Sec. IV A, we enlarge the set of LOCR su-

perchannels to 2-PPT-extendible, nonsignaling superchannels

(abbreviated henceforth as 2PENS). As noted in Sec. V G, the

2PENS set strictly contains the set of LOCR superchannels.
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Thus, we can obtain a lower bound on the simulation error

by optimizing over all 2PENS superchannels. We define the

simulation error under 2PENS superchannels as

e2PENS(OA→B,NÂ→B̂) := inf
ϒ∈2PENS

1
2
‖OA→B − ÕA→B‖�,

(172)

where ÕA→B is defined in (167).

As a result of the strict containment

LOCR ⊂ 2PENS, (173)

we have the relation

e2PENS(OA→B,NÂ→B̂) � eLOCR(OA→B,NÂ→B̂). (174)

We now state that the simulation error in (172) can be

calculated by means of a semidefinite program.

Proposition 8. The simulation error in (172) can be calcu-

lated by means of the following semidefinite program:

e2PENS(OA→B,NÂ→B̂) = inf
μ�0,ZAB�0,

MAÂB̂1B1 B̂2B2
�0

μ, (175)

subject to

μIA � ZA, (176)

ZAB � �O
AB − TrÂB̂1

[
TÂB̂1

(
�N

ÂB̂1

)
MAÂB̂1B1

/dB̂

]
, (177)

TrÂB1B2

[
MAÂB̂1B1B̂2B2

]
= IAB̂1B̂2

, (178)

(
FB̂1B̂2

⊗ FB1B2

)(
MAÂB̂1B1B̂2B2

)
= MAÂB̂1B1B̂2B2

, (179)

TrB2

[
MAÂB̂1B1B̂2B2

]
=

MAÂB̂1B1

dB̂

⊗ IB̂2
, (180)

TAÂ

(
MAÂB̂1B1B̂2B2

)
� 0, (181)

TB̂2B2

(
MAÂB̂1B1B̂2B2

)
� 0, (182)

TrÂ

[
MAÂB̂1B1B̂2B2

]
= IA ⊗

1

dA

TrÂA

[
MAÂB̂1B1B̂2B2

]
. (183)

The objective function and the first two constraints follow

from the semidefinite program in (46) for the normalized

diamond distance. The quantity

TrÂB̂1

[
TÂB̂1

(
�N

ÂB̂1

)
MAÂB̂1B1

/dB̂

]
(184)

in (177) is the Choi operator of the serial composition of

the available channel NÂ→B̂ and the superchannel with cor-

responding bipartite channel KAB̂1→ÂB1
, with Choi operator

MAÂB̂1B1
/dB̂, where KAB̂1→ÂB1

is the marginal channel of

MAB̂1B̂2→ÂB1B2
, defined as

KAB̂1→ÂB1

(
ωAB̂1

)
:= TrB2

[
MAB̂1B̂2→ÂB1B2

(
ωAB̂1

⊗ πB̂2

)]
.

(185)

The constraint in (178) forces MAB̂1B̂2→ÂB1B2
to be trace pre-

serving, that in (179) forces MAB̂1B̂2→ÂB1B2
to be permutation

covariant with respect to the B systems [see (75)], and that in

(180) forces MAB̂1B̂2→ÂB1B2
to be the extension of the marginal

channel KAB̂1→ÂB1
. The final two PPT constraints are equiva-

lent to the C-PPT-P constraints in (76) and (77), respectively.

B. SDP lower bound on the error of approximate

quantum error correction

The semidefinite program in Proposition 8 can be sim-

plified for the special case NA→B = idd
A→B by exploiting the

unitary covariance symmetry of the identity channel, as stated

in (65).

Proposition 9. The semidefinite program in Proposition 8,

for the special case of simulating the identity channel idd
A→B,

simplifies as follows for d � 3:

e2PENS(NÂ→B̂) = eF
2PENS(NÂ→B̂) (186)

= 1 − sup
M+,M−,M0�0,

M1,M2,M3∈LinOp

Tr

[
TÂB̂1

(
�N

ÂB̂1

)PÂB̂1B̂2

dB̂

]
,

(187)

subject to
[

M0 + M3 M1 − iM2

M1 + iM2 M0 − M3

]
� 0, (188)

IB̂1B̂2
= TrÂ

[
M+

ÂB̂1B̂2
+ M−

ÂB̂1B̂2
+ M0

ÂB̂1B̂2

]
, (189)

M i

ÂB̂1B̂2
= FB̂1B̂2

(
M i

ÂB̂1B̂2

)
∀i ∈ {+,−, 0, 1}, (190)

M
j

ÂB̂1B̂2
= −FB̂1B̂2

(
M

j

ÂB̂1B̂2

)
∀ j ∈ {2, 3}, (191)

PÂB̂1B̂2
=

1

dB̂

TrB̂2

[
PÂB̂1B̂2

]
⊗ IB̂2

, (192)

QÂB̂1B̂2
=

1

dB̂

TrB̂2

[
QÂB̂1B̂2

]
⊗ IB̂2

, (193)

PÂB̂1B̂2
:=

1

2d
[dM0 + M1 +

√
d2 − 1 M2], (194)

QÂB̂1B̂2
:=

1

2d

[
2d
(
M+

ÂB̂1B̂2
+ M−

ÂB̂1B̂2

)
+ dM0

ÂB̂1B̂2

−M1
ÂB̂1B̂2

−
√

d2 − 1 M2
ÂB̂1B̂2

]
, (195)

TÂ

(
2M+

ÂB̂1B̂2

d + 2
+ M0

ÂB̂1B̂2
+ M1

ÂB̂1B̂2

)
� 0, (196)

TÂ

(
2M−

ÂB̂1B̂2

d − 2
+ M1

ÂB̂1B̂2
− M0

ÂB̂1B̂2

)
� 0, (197)

[
G0 + G3 G1 − iG2

G1 + iG2 G0 − G3

]
� 0, (198)

G0
ÂB̂1B̂2

:= TÂ

(
M+ + M− +

M0 − dM1

2

)
, (199)

G1
ÂB̂1B̂2

:= TÂ

(
M+ − M− +

M1 − dM0

2

)
, (200)

G2
ÂB̂1B̂2

:=
√

3(d2 − 1)

2
TÂ

(
M2

ÂB̂1B̂2

)
, (201)

G3
ÂB̂1B̂2

:=
√

3(d2 − 1)

2
TÂ

(
M3

ÂB̂1B̂2

)
, (202)

TÂB̂1

(
dM+

d + 2
+ M− +

dM0 − M1 −
√

d2 − 1 M2

2

)
� 0,

(203)
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TÂB̂1

(
M+ +

dM−

d − 2
−

dM0 − M1 −
√

d2 − 1 M2

2

)
� 0,

(204)[
E0 + E3 E1 − iE2

E1 + iE2 E0 − E3

]
� 0, (205)

E0
ÂB̂1B̂2

:=
TÂB̂1

(
d (M+ − M−) + L0

2

)

d2 − 1
, (206)

E1
ÂB̂1B̂2

:=
TÂB̂1

(
− M+ + M− + L1

2

)

d2 − 1
, (207)

E2
ÂB̂1B̂2

:=
TÂB̂1

(
M+ − M− + L2

2

)
√

d2 − 1
, (208)

E3
ÂB̂1B̂2

:= TÂB̂1

(
M3

ÂB̂1B̂2

)
, (209)

L0 := (d2 − 2)M0 + dM1 + d
√

d2 − 1 M2, (210)

L1 := dM0 + (2d2 − 3)M1 −
√

d2 − 1 M2, (211)

L2 := M1 − dM0 −
√

d2 − 1 M2, (212)

TrÂ[2M+]

(d + 2)(d − 1)
=

TrÂ[2M+ + M0 + M1]

d (d + 1)
, (213)

TrÂ[2M−]

(d − 2)(d + 1)
=

TrÂ[2M− + M0 − M1]

d (d − 1)
, (214)

1

2
TrÂ[M0] =

dIB̂1B̂2
+ TrÂ[M− − M+ − M1]

d (d2 − 1)
, (215)

1

2
TrÂ[M1] =

−IB̂1B̂2
+ d TrÂ[M+ − M− + M1]

d (d2 − 1)
, (216)

TrÂ[M2] = TrÂ[M3] = 0. (217)

For the case of d = 2, the SDP is the same, with the exception

that we set M−
ÂB̂1B̂2

= 0 and the constraints in (197), (204), and

(214) are not used.

Proof. See Appendix E of the Supplemental Material

[43]. �

We now provide expository remarks similar to Remarks

4 and 5, as well as an additional remark about approximate

quantum error correction assisted by one-way LOCC.

Remark 10. The SDP in the statement of Proposition 9

is rather lengthy, and so we provide some explanation here.

The constraint in (188) and the constraints M+, M−, M0 � 0

in (187) correspond to the constraint of complete positiv-

ity in (175) (i.e., MAÂB̂1B1B̂2B2
� 0). The constraint in (189)

corresponds to the constraint of trace preservation in (178).

The constraints in (190)–(191) correspond to the constraint

of permutation covariance in (179). The constraints in (192)–

(193) correspond to the nonsignaling constraint in (180). The

constraints in (196)–(198) correspond to the PPT constraint

in (181), and the constraints in (203)–(205) correspond to the

PPT constraint in (182). Finally, the constraints in (213)–(217)

correspond to the nonsignaling constraint in (183).

Remark 11. Even though the number of constraints in the

SDP above appears to increase when compared with the SDP

from Proposition 8, we note that the runtime of the SDP

above is significantly reduced because the size of the matrices

involved in each of the constraints is much smaller. This

is the main advantage that we get by incorporating unitary

covariance symmetry of the identity channel.

If we only optimized over the larger set of 2-extendible

channels instead of the set of 2-PPT-extendible nonsignal-

ing channels, the SDP would be much simpler, given by

(187)–(193). However, optimizing over the smaller set of 2-

PPT-extendible nonsignaling channels gives tighter bounds at

a marginal increase in computational cost, and thus we also

include the PPT constraints in (196)–(198) and (203)–(205)

and the nonsignaling constraints in (213)–(217).

Remark 12. By excluding the nonsignaling constraints in

(213)–(217), the resulting SDP gives a lower bound on the

simulation error of approximate quantum error correction as-

sisted by a one-way LOCC channel. That is, the resulting SDP

gives a lower bound on

e1WL(NÂ→B̂) := inf
�∈1WL

e(NÂ→B̂,�(Â→B̂)→(A→B)), (218)

where

e1WL(NÂ→B̂,�(Â→B̂)→(A→B))

:= 1
2

∥∥ idd
A→B −�(Â→B̂)→(A→B)(NÂ→B̂)

∥∥
�, (219)

with � a one-way LOCC superchannel, as defined in (123).

By the same reasoning given for Proposition 6, this error is no

different if we use infidelity instead of normalized diamond

distance.

VIII. EXAMPLES

In this section we present some numerical results from our

semidefinite programs. To perform these numerical calcula-

tions, we employed CVXPY [50,51] with the interior point

optimizer MOSEK. All of our Python source code is available

with the arXiv posting of our paper.

A. Approximate teleportation and quantum error correction

using special mixed states and channels

First, we provide bounds on the performance of approxi-

mate teleportation (i.e., on the error in simulating an identity

channel), when using a particular set of imperfect resource

states. In the past, PPT constraints alone (i.e., without 2-

extendibility) have been used to obtain bounds on objective

functions involving an optimization over the set of LOCC

channels (see, e.g., [15,31–35]). We can also use them to

obtain a lower bound on the simulation error of approximate

teleportation. By following techniques similar to those in

[15,31], we find the following SDP gives a lower bound on

the simulation error of approximate teleportation:

1 − sup
KÂB̂�0

⎧
⎪⎨
⎪⎩

Tr[KÂB̂ρÂB̂] :

KÂB̂ � IÂB̂,

−IÂB̂ � d TB̂(KÂB̂) � IÂB̂

⎫
⎪⎬
⎪⎭

. (220)

See Appendix F of the Supplemental Material [43] for a proof.

We note here that PPT constraints are implied by the 2-PPT-

extendibility constraints given in Proposition 3, so that the

optimal value in (220) is not smaller than the optimal value

in (187). We also note that an SDP bearing some similarities

to that in (220) was presented in [52], but that SDP calculates
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FIG. 1. Comparison between 2-PPT-extendiblity and PPT con-

straints for bounding the simulation error in approximate teleporta-

tion, when using the resource state p
ÂB̂ + (1 − p)πÂ ⊗ σB̂, where

p ∈ [0, 1]. The plot shows that 2-PPT-extendibility gives slightly

better bounds for p < 0.5. For higher values of p, the two curves

become indistinguishable.

a bound on one-shot distillable entanglement, whereas the

SDP in (220) calculates a bound on the error of approximate

teleportation.

In the following example, we show that 2-PPT-

extendibility gives strictly stronger bounds than PPT con-

straints alone, when optimizing over one-way LOCC chan-

nels. Consider the following mixed state:

p
ÂB̂ + (1 − p)πÂ ⊗ σB̂, (221)

where p ∈ [0, 1], 
ÂB̂ is the maximally entangled state of

Schmidt rank three, πÂ is the maximally mixed state of di-

mension three, and σB̂ is a randomly selected 3 × 3 density

matrix. Using the state in (221) as the resource for approxi-

mate teleportation, lower bounds on the simulation error, as

given by 2-PPT-extendibility, are stronger than those given

by PPT constraints alone, for small values of p. Figure 1

compares the lower bounds obtained for different values of

p and randomly generated σB̂. The state σB̂ that was used to

generate data for Fig. 1 is as follows:

⎡
⎢⎣

0.140 0.043+0.024i −0.143 + 0.028i

0.043 − 0.024i 0.222 −0.257+0.006i

−0.143−0.028i −0.257 − 0.006i 0.638

⎤
⎥⎦.

(222)

We note here that the SDP calculations depend on the

choice of σB̂. For certain choices of σB̂, the difference in

the errors disappears for all values of p, e.g., when σB̂ is

a maximally mixed state. It still remains open to determine

the full set of resource states for which 2-PPT-extendibility

gives stronger bounds on the simulation error. Regardless,

this example demonstrates that including 2-PPT-extendibility

constraints can improve the bounds obtained using PPT con-

straints alone.

One can consider the same comparison for approximate

quantum error correction. Using similar techniques, we derive

the following SDP lower bound on the simulation error of

approximate quantum error correction for a channel NÂ→B̂,

FIG. 2. Comparison between 2-PPT-extendiblity and PPT con-

straints for bounding the simulation error in approximate quantum

error correction when using the resource channel with Choi state

p
ÂB̂ + (1 − p)πÂ ⊗ σB̂, where p ∈ [0, 1] and σB̂ is defined in (222).

PPTNS and 2PENS are the curves obtained using the SDPs in (223)

and Proposition 9, respectively, giving lower bounds on the error

in approximate quantum error correction. There is no significant

difference in the numerical values obtained from these two condi-

tions. PPT and 2PE are the curves obtained using the same SDPs but

without the nonsignaling constraints, hence, giving lower bounds on

the error in one-way LOCC-assisted approximate error correction.

when using PPT and nonsignaling constraints only:

1 − sup
KÂB̂,σÂ�0

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Tr
[
KÂB̂�N

ÂB̂

]
:

KÂB̂ � σÂ ⊗ IB̂,

d2 TrÂ[KÂB̂] = IB̂,

σÂ ⊗ IB̂ ± d TB̂(KÂB̂) � 0,

Tr[σÂ] = 1.

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (223)

See Appendix G of the Supplemental Material [43] for a

proof. We note here that essentially the same SDP was given

in [31] (up to a transpose in the objective function). The SDP

in [31] resulted from taking the error criterion to be in terms

of entanglement fidelity when transmitting the maximally

entangled state. Our proof here clarifies that essentially the

same SDP results when using normalized diamond distance or

channel infidelity as the error criterion. The second constraint

in the SDP (d2 TrÂ[KÂB̂] = IB̂) corresponds to the nonsignal-

ing condition. Following the same reasoning as in Remark 10,

removing this constraint leads to an SDP that provides a lower

bound on the simulation error of approximate quantum error

correction assisted by one-way LOCC.

The example state in (221) can also serve as the Choi state

of a channel, due to the fact that the reduced state of system

Â is maximally mixed. In Fig. 2 we plot the lower bound in

(223) and the lower bound from Proposition 9 for the corre-

sponding channel. Additionally, we also plot the simulation

errors that result from excluding the nonsignaling constraints

from both SDPs. The resulting SDPs provide lower bounds

on the errors in approximate quantum error correction as-

sisted by one-way LOCC using PPT and 2-PPT-extendibility,

respectively. Figure 2 demonstrates that the lower bound in

Proposition 9 improves upon (223) for one-way LOCC sim-

ulation but provides no advantage for LOCR simulation. The
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FIG. 3. Comparison between bounds on the simulation error for

approximate teleportation when using a two-dimensional special

mixed state and a three-dimensional special mixed state as a resource

to teleport a two dimensional state. The resource state is of the

form p
ÂB̂ + (1 − p)πÂ ⊗ σB̂, where p ∈ [0, 1] and σB̂ is chosen to

be (225) when dB̂ = 2 and (226) when dB̂ = 3. The bounds on the

simulation error are calculated using both the 2PE constraints given

in Proposition 3 and the PPT constraints given in (220). There is

no significant difference in the numerical values obtained from both

constraints for dB̂ = 2.

difference between all four curves becomes very small (less

than 10−3) for higher values of p.

B. Three-dimensional approximate teleportation using

two-dimensional special mixed states

In this example, we investigate the simulation error in ap-

proximate teleportation when a lower dimensional imperfect

resource state is used to teleport a higher dimensional state.

We use a similar resource state as in (221):

ρÂB̂ = p
ÂB̂ + (1 − p)πÂ ⊗ σ ′
B̂
, (224)

but the maximally entangled and maximally mixed states are

two-dimensional. Additionally, σ ′
B̂

was generated randomly

and is taken as

σ ′
B̂

=
[

0.287 −0.347 + 0.132i

−0.347 − 0.132i 0.713

]
. (225)

In Fig. 3 we plot the bounds on the simulation error versus the

parameter p in (224), when using the 2PE constraints given in

Proposition 3 and the PPT constraints given in (220). We also

compare this to the bounds on the simulation error when using

a three-dimensional special mixed state instead. The resource

state used is the same as the state in (221), but σB̂ is chosen as

follows:
⎡
⎢⎣

0.287 −0.347 + 0.132i 0

−0.347 − 0.132i 0.713 0

0 0 0

⎤
⎥⎦, (226)

in order to provide a closer comparison with the two-

dimensional case in (224).

We see from Fig. 3 that a two-dimensional resource state

with a small amount of imperfection can outperform a three-

dimensional resource with higher amounts of imperfection for

FIG. 4. Lower bounds on the simulation error of approximate

quantum error correction for depolarizing channels when simulating

a two-dimensional identity channel. The bounds are calculated using

the SDP in Proposition 9 with 2-PPT-extendibility constraints, and

the SDP in (223) with PPT constraints only, for different dimensions

of the depolarizing channel (dB̂ = 2 and dB̂ = 3). There is no sig-

nificant difference in the numerical values obtained from PPT and

2-PPT-extendibility constraints for dB̂ = 2. The bounds are obtained

without the nonsignaling constraints, hence, corresponding to one-

way LOCC simulation.

the task of three-dimensional approximate teleportation. We

also notice that the 2PE constraints and the PPT constraints

give the same error values when dB̂ = 2, but give different

values when dB̂ = 3, as seen in Fig. 1 as well.

C. Approximate quantum error correction

for depolarizing channels

In this example, we investigate the simulation error in

approximate error correction for qubit and qutrit depolarizing

channels, with the goal of simulating a qubit identity channel.

The Choi state of the depolarizing channel DÂ→B̂ is given by


D

ÂB̂
:= p
ÂB̂ + (1 − p)πÂB̂, (227)

where p ∈ [0, 1], 
ÂB̂ is the maximally entangled state, and

πÂB̂ is the maximally mixed state. For a qubit depolarizing

channel, dÂ = dB̂ = 2, and for a qutrit depolarizing channel,

dÂ = dB̂ = 2.

In Fig. 4 we plot the lower bounds on the simulation

error of approximate error correction for a depolarizing chan-

nel, when simulating a qubit identity channel. The bounds

are obtained using the 2-PPT-extendibility conditions from

Proposition 9 and using the PPT conditions from (223).

The bounds are calculated for the case of one-way LOCC

assistance, i.e., by ignoring the nonsignaling constraints in

(213)–(217) and the constraint d2 TrÂ[KÂB̂] = IB̂ in (223), re-

spectively. We notice from Fig. 4 that the 2-PPT-extendibility

constraints give better bounds compared to the PPT con-

straints when using a three-dimensional depolarizing channel

to simulate a two-dimensional identity channel. However,

both sets of constraints give the same bounds when a

two-dimensional depolarizing channel is used to simulate a

two-dimensional identity channel. This was also observed in

the numerical calculations of [18].
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FIG. 5. Lower bounds on the simulation error of unideal tele-

portation when using the two-mode squeezed vacuum state as the

resource state. The parameter λ = tanh(r), where r is the squeezing

parameter. Larger values of λ correspond to larger values of entan-

glement, which leads to a smaller error in simulating the identity

channel.

We also note that a three-dimensional depolarizing channel

provides little advantage over a two-dimensional depolarizing

channel for simulating a two-dimensional identity channel.

Therefore, a two-dimensional depolarizing channel with a

slightly higher value of the parameter p can outperform a

three-dimensional depolarizing channel with a lower value of

p, for the purpose of approximating a qubit identity channel.

D. Approximate teleportation using the two-mode

squeezed vacuum state

Two-mode squeezed vacuum states are easily prepared in

laboratories and have entanglement content that can be param-

eterized by λ � 0. They are defined as [53]

√
1 − λ2

∞∑

n=0

λn|n〉|n〉. (228)

They are used as a resource state in continuous-variable quan-

tum teleportation [54] and have also been used as a resource in

experiments on teleportation of photonic qubits [4,55]. Here

we investigate bounds on the performance of qudit teleporta-

tion with the two-mode squeezed vacuum state as the resource

state.

The parameter λ denotes the strength of squeezing applied

(λ = tanh(r), where r is the squeezing parameter). For low

squeezing strength, we can ignore higher order terms in λ

without inducing much error. We use the following state in

our calculations for qudit teleportation:

1
√

1 + λ2 + λ4

2∑

n=0

λn|n〉|n〉. (229)

However, for higher values of the squeezing strength (i.e., λ

near to one), we do not expect this approximation to be good.

Figure 5 demonstrates that the simulation error increases

with d for fixed values of λ, where d is the dimension of

the target identity channel that the protocol is simulating.

The simulation error does not go to zero for d > 3, even for

maximally entangled qutrit resource states. Therefore, pro-

FIG. 6. Action of an amplitude damping channel on a three-level

quantum system. The parameters γ10, γ20, and γ21 represent decay

rates between the respective levels.

jecting this trend further, we conclude that simulation of a

higher-dimensional identity channel with a lower-dimensional

resource state incurs larger errors in the simulation. We note

here that we observed no difference in the values calculated

by the SDPs in (223) and Proposition 9.

E. Approximate quantum error correction for a three-level

amplitude damping channel

Here we present an example of our bound for the simu-

lation error in approximate error correction. We consider a

three-level amplitude damping channel, as defined in [22], to

demonstrate our SDP in Proposition 9.

The channel can be defined using three decay parameters,

labeled by the states involved: (γ10, γ21, γ20). See Fig. 6 for a

depiction. The Kraus operators for the three-level amplitude

damping channel are as follows:

K0 :=

⎡
⎢⎣

1 0 0

0
√

1 − γ10 0

0 0
√

1 − γ21 − γ20

⎤
⎥⎦, (230)

K1 :=

⎡
⎢⎣

0
√

γ10 0

0 0 0

0 0 0

⎤
⎥⎦, (231)

K2 :=

⎡
⎢⎣

0 0 0

0 0
√

γ21

0 0 0

⎤
⎥⎦, (232)

K3 :=

⎡
⎢⎣

0 0
√

γ20

0 0 0

0 0 0

⎤
⎥⎦, (233)

so that its action on an input state ρ is given by
∑3

i=0 KiρK
†
i .

For the map to be completely positive and trace preserving,

the decay parameters must obey

{
0 � γi � 1 ∀i ∈ {10, 21, 20}
γ21 + γ20 � 1

. (234)

Figure 7 plots the lower bound on the simulation error as a

function of the decay parameter γ10, for various values of the

other decay parameters. We notice in Fig. 7 that the simulation

error monotonically increases with the decay parameters. As

all three decay parameters approach zero, the channel be-

comes close to an identity channel. This is reflected in the

plot as the simulation error also approaches zero. We note here
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FIG. 7. Lower bounds on the simulation error of approximate

quantum error correction when using a three-level amplitude damp-

ing channel. The parameters γ10, γ21, and γ20 are decay parameters

for the labeled states. The dimension d of the target identity channel

is set equal to the input and output dimensions (equal to three) of the

amplitude-damping channel.

that we observed no difference in the values calculated by the

SDPs in (223) and Proposition 9.

F. Comparison of computational runtimes

In this section we present the average runtime to exe-

cute various SDPs listed in this work. The calculations were

performed on a computer with 16 GB RAM and an Intel

i7-9750H processor.

All calculations that generated the entries in Table I em-

ployed the two-dimensional maximally entangled state. For

approximate teleportation, the input is the maximally entan-

gled state of Schmidt rank two, and for approximate error

correction, the input is the qubit identity channel. The sim-

ulated channel is also the qubit identity channel in all cases.

The runtimes were calculated using time.time() function in

Python. They are only presented for the purpose of compari-

son and can vary moderately.

All runtimes are listed in Table I, where we see that the

unsimplified SDP for approximate teleportation with 2-PPT-

TABLE I. Comparing the runtime of different SDPs presented

in this work. 2PE refers to 2-PPT-extendibility constraints and NS

indicates that nonsignaling conditions were used. All calculations

were done for a two-dimensional resource state and simulating the

two-dimensional identity channel.

SDP Runtime (s)

Teleportation unsimplified 2PE 253.03

Teleportation 2PE 10.34

Teleportation PPT 0.19

Error correction unsimplified 147.75

Error correction unsimplified 2PENS 158.22

Error correction 2PENS 5.65

Error correction 2PE 5.38

Error correction PPTNS 0.20

Error correction PPT 0.16

extendibility, given in Proposition 2, is around 25 times slower

than the simplified SDP for the same in Proposition 3. The

SDP for the simulation error in approximate teleportation us-

ing PPT constraints that is given in (220) is several times faster

than when 2-PPT-extendibility constraints are employed, but

we have seen in the examples that 2-PPT-extendibility con-

straints can give tighter lower bounds on the simulation error.

Similarly, we see that the unsimplified SDP for ap-

proximate error correction when using 2-PPT-extendibility

constraints (Proposition 8) is several times slower than the

simplified SDP given in Proposition 9. Again, the SDP with

PPT constraints given in (223) is much faster than the SDP

with 2-PPT-extendibility constraints, but we have demon-

strated examples for which 2-PPT-extendibility constraints

provide a tighter lower bound on the simulation error.

IX. CONCLUSION

In this work, we developed a technique for quantifying the

performance of approximate teleportation using an arbitrary

resource state, by establishing a lower bound on the error in

simulating a teleportation protocol that uses an imperfect re-

source state and one-way LOCC channels. We accomplished

this by combining the notions of C-PPT-P channels and 2-

extendible channels to give a relaxation of the set of one-way

LOCC channels, as was done previously in [18] but for ap-

proximate quantum error correction. We significantly reduced

the complexity of our semidefinite program by exploiting the

unitary covariance symmetry of the simulated identity chan-

nel. This symmetry is useful in semidefinite programs and

can have much wider applications with respect to dynamical

resource theories. As an example, we evaluated our lower

bound when using a two-mode squeezed vacuum state as the

resource state for approximate teleportation.

We used related techniques to quantify the performance of

approximate quantum error correction. Incorporating 2-PPT-

extendibility constraints again led to computationally feasible

semidefinite optimizations for evaluating lower bounds on the

error in approximate quantum error correction. We further

exploited the unitary covariance symmetry of the identity

channel to give a less computationally taxing semidefinite

program to calculate the error. Finally, we demonstrated some

calculations for amplitude damping channels as the resource

channels.

The SDPs in this work provide computational support to

ongoing experimental research in quantum information by

providing tools to analyze available resources and identify

valuable states and channels.

Several directions for future work remain open:

(1) We have only considered 2-extendible channels; in-

corporation of k-extendible channels for k > 2 into our

semidefinite optimization could offer tighter bounds on the

measures we have described. The recent work of [56] might

be helpful for addressing this problem. The notion of 2-

PPT-extendible channels is interesting in its own right via its

connection with one-way LOCC channels.

(2) It would also be interesting to find semidefinite con-

straints on one-way LOCC and LOCR channels, beyond

those presented here, which include k-extendibility, PPT, and

nonsignaling.
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(3) One could also try to find semidefinite tightenings

of one-way LOCC and LOCR, which would lead to upper

bounds on the simulation errors.

(4) The paper [15] shows that PPT constraints are suffi-

cient to determine the exact simulation error in bidirectional

teleportation for certain special states. Future work can iden-

tify a class of resource states that saturate the error bound

using 2-PPT-extendibility constraints, e.g., states that are PPT

but 2-unextendible. Such a class of states can offer insight

not only in the study of teleportation protocols, but also to

entanglement of states and channels.
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APPENDIX: PROOF OF EQ. (12)

We provide a proof of (12) here. Consider that

TrB′
1
◦NAB1→A′B′

1

= TrB′
1B2

◦
(
NAB1→A′B′

1
⊗ P

π
B2

)
(A1)

= TrB′
1B′

2
◦MAB1B2→A′B′

1B′
2
◦ P

π
B2

(A2)

= TrB′
1B′

2
◦FB′

1B′
2
◦ MAB1B2→A′B′

1B′
2
◦ FB1B2

◦ P
π
B2

(A3)

= TrB′
1B′

2
◦MAB1B2→A′B′

1B′
2
◦ P

π
B1

◦ idB1→B2
(A4)

= TrB′
1
◦NAB1→A′B′

1
◦ P

π
B1

◦ TrB2
◦ idB1→B2

(A5)

= TrB′
1
◦NAB1→A′B′

1
◦ R

π
B1

. (A6)

The first equality follows because Pπ
B2

is a preparation channel

that prepares the maximally mixed state πB2
on system B2, and

then we trace it out. The second equality follows by using the

nonsignaling property in (11). The third equality follows from

permutation covariance of the channel MAB1B2→A′B′
1B′

2
[i.e.,

the assumption that (10) holds]. The fourth equality follows

because FB′
1B′

2
is a unitary channel, so that

TrB′
1B′

2
◦FB′

1B′
2
= TrB′

1B′
2
. (A7)

Additionally, we used the fact that

FB1B2
◦ P

π
B2

= P
π
B1

◦ idB1→B2
, (A8)

where idB1→B2
is an identity channel that transforms system

B1 to B2. The fifth equality again invokes the nonsignaling

property in (11). The last equality follows because

P
π
B1

◦ TrB2
◦ idB1→B2

= R
π
B1

. (A9)

That is, TrB2
◦ idB1→B2

is equivalent to TrB1
, so that this action

combined with Pπ
B1

realizes a replacer channel.
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