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The mixedness of one share of a pure bipartite
state determines whether the overall state is a
separable, unentangled one. Here we consider
quantum computational tests of mixedness, and
we derive an exact expression of the acceptance
probability of such tests as the number of copies of
the state becomes larger. We prove that the analytical
form of this expression is given by the cycle index
polynomial of the symmetric group Sk, which is itself
related to the Bell polynomials. After doing so, we
derive a family of quantum separability tests, each
of which is generated by a finite group; for all such
algorithms, we show that the acceptance probability
is determined by the cycle index polynomial of the
group. Finally, we produce and analyse explicit circuit
constructions for these tests, showing that the tests
corresponding to the symmetric and cyclic groups
can be executed with O(k2) and O(k log(k)) controlled-
SWAP gates, respectively, where k is the number of
copies of the state being tested.

1. Introduction
Entanglement is an inherently quantum mechanical
phenomenon and thus is of great interest in quantum
information science. Separability tests acting on pure
states equivalently test for entanglement, thus creating
an avenue to identify potentially resourceful states

2023 The Author(s) Published by the Royal Society. All rights reserved.
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and verify entanglement generation protocols. Much work has been done to understand
entanglement, including the positive partial transpose (PPT) criterion [1,2] and the related
entanglement measure known as logarithmic negativity [3–5]. Another well-known approach
considers k-extendibility of a state [6–8], with related quantifiers proposed in [9–11]. Experimental
entanglement tests have also been implemented on trapped ion [12] and optical systems [13,14].
These notions exemplify how entanglement is characterized and quantified in the current
literature.

The most common quantum computational test of separability of pure states is the swap
test, introduced in [15], applied in [16] for entanglement detection, and used in quantum
fingerprinting [17]. To understand it, first recall that a pure bipartite state |ψ〉AB is separable if
it can be written as a tensor product of two states, as

|ψ〉AB = |φ〉A ⊗ |ϕ〉B . (1.1)

Now, if we take two copies of this separable state, it has the following form:

|ψ〉A1B1
⊗ |ψ〉A2B2

= |φ〉A1
⊗ |ϕ〉B1

⊗ |φ〉A2
⊗ |ϕ〉B2

. (1.2)

This state is invariant under a swap of systems A1 and A2, as well as a swap of systems B1 and
B2. Thus, the swap test accepts with certainty in this case; however, if a pure bipartite state is
not separable, the two-copy state does not possess the above swap invariance, and the swap test
can detect this lack of invariance by means of the phase kickback trick, well known in quantum
computation. Here we make use of the swap test, as well as generalizations of it, to study the
symmetry of quantum states with respect to an arbitrary finite group [18,19].

The recent work in [19] proposed a generalization of the swap test as a method for detecting
entanglement, based on the observation that multiple copies of the separable state in (1.1) are
invariant under arbitrary permutations of both the A systems and B systems. Indeed, by writing
such a state down explicitly as

k⊗
i=1

|ψ〉AiBi
=

k⊗
i=1

|φ〉Ai
⊗ |ϕ〉Bi

, (1.3)

it is clear that such a state is invariant as mentioned above. However, if the state |ψ〉AB is not
separable, then checking for various kinds of permutation invariance of the state

⊗k
i=1 |ψ〉AiBi

leads to more fine-grained tests of entanglement with alternative mathematical expressions for
the acceptance probability of the test. Other works, such as [20,21], express interest in systems
of a similar nature. Understanding these expressions in more detail is one of the main goals of
the present paper. Our intention is to generalize the family of separability tests in [19] further
by establishing a one-to-one correspondence between finite groups and a subset of quantum
separability tests and to compare the cost of implementing these new tests with that of the swap
and symmetric groups tests.

Before we discuss our results, let us indicate how our approach falls within the framework of
G-Bose symmetry tests, as developed in [19]. We use this method to discuss the separability of
a pure bipartite state [7], although group symmetry tests have been used to great effect to test
other properties as well (e.g. [22]). These symmetry tests involve a group G and determine if a
given state is invariant under the action of a unitary representation of that group. Bose symmetry
tests specifically describe situations where every element of a group is considered simultaneously
rather than consecutively. The quantum algorithm is implemented by physically realizing the
projector onto the symmetric subspace, and the symmetry of the state is manifested through
the acceptance probability of the algorithm (see [23] for a thorough discussion of the symmetric
subspace in regards to quantum information). In the G-Bose symmetry framework, a pure state
|ψ〉AB is given and an Sk-Bose symmetry test is conducted on the tensor-power state |ψ〉⊗k

AB, where
Sk denotes the symmetric group on k letters. Possessing this tensor-power state is equivalent to
having access to k copies of our state being tested. The swap test is recovered as a special case in
which k = 2.
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The G-Bose symmetry tests allow for a generalization of the swap test to more copies of a state
of interest and higher-order groups. These algorithms exchange simplicity for certainty, analogous
to how fingerprinting is both more accurate and complicated when greater numbers of prints
are taken. In choosing to investigate group symmetries, rather than merely the swap test, the
separability of a state can be determined more quickly and accurately. In what follows, we will
explicitly consider the trade-off between the swap test, which may pass some states with high
probability even if entangled, and higher-order permutation tests, which will reject entangled
states with higher probability than a swap test in exchange for the use of more resources.

The natural question is, when do these more complex tests merit performing? In this work,
we derive the acceptance probability of a generalized separability test. In doing so, we present an
inherent reliance on the cycle index polynomial, a particularly important polynomial in Pólya
theory [24,25] that encodes the structure of a permutation group by storing the number of
elements of a given cycle type as its coefficients. This allows us to compare separability tests
generated from various groups, as well as investigate the mathematical relationships inherently
present in these tests. We directly show that an arbitrary finite group generates a separability test
with its acceptance probability given by the cycle index polynomial of that group. We supplement
this by then giving explicit quantum circuit descriptions for groups of interest and counting
the number of gates needed to realize each test. Combining our acceptance probability results
with resource counting gives us a metric to compare when the relative strictness of the test is
outweighed by the benefit of fewer gate resources, and we discuss this factor in more detail in §5.

The rest of our paper is organized as follows. In §2, we review the algorithm for the bipartite
pure-state separability test in [19], and we prove that the acceptance probability of this algorithm
is given by the cycle index polynomial [24,25] of the symmetric group Sk, which is itself related to
the complete Bell polynomials [26]. This enables us to write the acceptance probability as both the
permanent and the determinant of particular matrices, as a consequence of Newton’s identities
[27]. In [19], it was conjectured that this acceptance probability does not increase as k → ∞. In §3,
we prove that this conjecture is true. In fact, we show that it strictly decreases and converges to
zero whenever ρB := TrA[|ψ〉〈ψ |AB] is not a pure state.

In §4, we generalize the bipartite pure-state separability test to an algorithm involving any
group G, in which a G-Bose symmetry test is performed on the tensor-power state |ψ〉⊗k

AB. By
identifying G with a subgroup of Sk, which is guaranteed to exist by Cayley’s theorem, we
show, by the same reasoning as in §2, that the acceptance probability of the algorithm is given
by the cycle index polynomial of the group G. We discuss how these generalized tests are
in fact separability tests for pure, bipartite states, and they have an interesting connection to
combinatorics via the cycle index polynomial. Finally, in §5, we analyse the resources needed
to implement these tests on quantum computers; in doing so, we show that simpler groups can
give comparable performance for fewer resources. Finally, we conclude in §6 with a summary,
followed by open questions for future work.

2. Bipartite pure-state separability test
Let us begin by reviewing the construction of the bipartite pure-state separability test in [19]. As
discussed therein, it can also be viewed as a G-Bose symmetry test. We now recall the definition
of a G-Bose symmetric state.

Definition 2.1. Let G be a finite group with a unitary representation US : G → U(H), where
U(H) denotes the set of all unitaries that act on a Hilbert space H. Then a state ρS is called G-Bose
symmetric if

ΠG
S ρSΠ

G
S = ρS, (2.1)

where ΠG
S := (1/|G|)∑g∈G US(g) is the group representation projection and |G| is the order of the

group (the number of elements in the underlying set).

In Dirac’s notation, a pure state |ψ〉S is G-Bose symmetric if ΠG
S |ψ〉S = |ψ〉S. This property is

equivalent to ||ΠG
S |ψS〉 ||2 = 1, where || · ||2 denotes the standard Euclidean 2-norm. For a general
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mixed state, the condition Tr[ΠG
S ρS] = 1 is equivalent to the definition in (2.1), as argued in [19].

Thus, the algorithm from [19] tests for G-Bose symmetry by checking the latter condition (see also
[28, ch. 8]). Indeed, we append an ancillary register C in the state |0〉C to the state |ψ〉S (where the
symbol ‘0’ is identified with the identity element of the group G) and act on C with the quantum
Fourier transform, leaving a composite system in the state

|+〉C ⊗ |ψ〉S , (2.2)

where |+〉C is defined to be the uniform superposition over all labels of the group elements:

|+〉C := 1√|G|
∑
g∈G

|g〉C . (2.3)

Next we act on the state in (2.2) with the controlled unitary
∑

g∈G |g〉 〈g|C ⊗ US(g), producing the
state

1√|G|
∑
g∈G

|g〉C ⊗ (US(g) |ψ〉S). (2.4)

We now project register C onto the state |+〉C, which can be accomplished probabilistically by
applying the inverse quantum Fourier transform to C, measuring C in the {|g〉 〈g|C}g∈G basis, and
declaring ‘accept’ if |0〉 〈0|C occurs and ‘reject’ otherwise. Then the acceptance probability p is
given by

p =
∥∥∥∥(〈+|C ⊗ IS)

(
1√|G|

∑
g∈G

|g〉C ⊗ (US(g) |ψ〉S)
)∥∥∥∥2

2
(2.5)

=
∥∥∥∥ 1

|G|
∑
g∈G

US(g) |ψ〉S

∥∥∥∥2

2
(2.6)

= ||ΠG
S |ψ〉S ||22 (2.7)

= Tr[ΠG
S |ψ〉 〈ψ |S]. (2.8)

By convexity, this result is easily generalized to the case in which the state of system S is described
by a density operator ρS, so that the acceptance probability is equal to Tr[ΠG

S ρS].
Now, to test for the separability of a bipartite pure state ψAB, we suppose that k copies of

the state ψAB are available, which we write as ψ⊗k
AB . We also identify the A systems by A1 · · · Ak

and the B systems by B1 · · · Bk. We then perform an Sk-Bose symmetry test on the state ψ⊗k
AB by

identifying S with A1B1 · · · AkBk and US(π ) with IA1···Ak ⊗ WB1···Bk (π ), where π ∈ Sk and WB1···Bk :
Sk → U(HB1···Bk ) is the standard unitary representation of Sk that acts on HB1···Bk ≡HB1 ⊗ · · · ⊗
HBk by permuting the Hilbert spaces according to the corresponding permutation. Define ρB :=
TrA[ψAB]. By applying (2.1), the acceptance probability for the bipartite pure-state separability
algorithm is given by

p(k) := Tr[ΠB1···Bkρ
⊗k
B ] (2.9)

where

ΠB1···Bk := 1
k!

∑
π∈Sk

WB1···Bk (π ). (2.10)

Figure 1 reviews the G-Bose symmetry test. The circuit begins with k copies of an initial
bipartite state |ψ〉AB. The Bi subsystems are collected and subject to a controlled unitary gate
whose mathematical description involves each unitary U(g). The control register is initialized
to the state |+〉C, as defined in (2.3). Under the separability test circuit, G = Sk, and the unitary
representation is a permutation of the Bi subsystems.

Our first main result is a formula for the acceptance probability p(k) in (2.9) as a sum over the
partitions of k of a product of traces of ρB and its powers and certain scaling factors. In particular,
the formula is identical to that of the cycle index polynomial of the symmetric group Sk, with
each variable xj taking the value Tr[ρj] (see the discussion after the following proposition for
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�ψ�A1B1

�ψ�AkBk

�+�c

B1

A1

Bk

Ak U (g)

Figure 1. Quantum circuit to implement a G-Bose symmetry test. We take k copies of an initial bipartite state |ψ〉AB and
consider the reduced state ρB = TrA[|ψ〉〈ψ |AB]. The collection of these reduced states is then subjected to the separability
test determined by the group, where |+〉C is defined in (2.3) and U(g) is an element of the group representation.

more on this). In what follows, we use the standard cycle notation wherein (i1 i2 · · · ik) refers
to the permutation σ : {1, . . . , k} → {1, . . . , k} that sends i1 to i2, i2 to i3, and so on with ik mapping
to i1. For example, (1 2 3) refers to the permutation σ defined by σ (1) = 2, σ (2) = 3 and σ (3) = 1.
We follow the standard convention for functions so that a product of cycles (a composition of
functions) is read from right to left. For example, (1 2 3)(2 3) = (1 2)(3) = (1 2).

Theorem 2.2. Let ψAB denote a pure bipartite state and define ρB := TrA[ψAB]. Then the acceptance
probability p(k) for the bipartite pure-state separability test is given by

p(k) =
∑

a1+2a2+···+kak=k

k∏
j=1

(Tr[ρj
B])aj

jaj aj!
, (2.11)

where the sum is taken over the partitions of k.

Proof. Let π := (1 2 · · · k) and consider the representation WB1···Bk (π ). It was shown in [29]
that Tr[WB1···Bk (π )ρ⊗k

B ] = Tr[ρk
B], but we include a proof here for completeness. Expanding ρ in the

standard basis as ρ =∑
i,j pi,j|i〉〈j|, we have

Tr[WB1···Bk (π )ρ⊗k
B ] = Tr

[
WB1···Bk (π )

∑
i1,...,ik
j1,...,jk

pi1j1 · · · pikjk |i1〉〈j1| ⊗ |i2〉〈j2| ⊗ · · · ⊗ |ik〉〈jk|
]

(2.12)

= Tr
[ ∑

i1,...,ik
j1,...,jk

pi1j1 · · · pikjk |ik〉〈j1| ⊗ |i1〉〈j2| ⊗ · · · ⊗ |ik−1〉〈jk|
]

(2.13)

=
∑

i1,...,ik
j1,...,jk
t1,...,tk

pi1j1 · · · pikjkδt1ikδj1t1 · · · δtkik−1δjktk (2.14)

=
∑

t1,...,tk

pt2t1 pt3t2 · · · ptktk−1 pt1tk . (2.15)
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Meanwhile,

Tr[ρk] = Tr
[ ∑

i1,...,ik ,j1,...,jk

pi1j1 · · · pikjk |i1〉〈j1|i2〉〈j2| · · · |ik〉〈jk|
]

(2.16)

=
∑

i1,i2,...,ik

pi1i2 pi2i3 · · · pik−1ik piki1 . (2.17)

Thus, by relabelling the indices, we see that

Tr[WB1···Bk (π )ρ⊗k
B ] = Tr[ρk]. (2.18)

Similarly, we can show for every m-cycle πm ∈ Sk that

Tr[WB1···Bk (πm)ρ⊗k
B ] = Tr[ρm]. (2.19)

Now suppose πm and πn are disjoint m and n-cycles, respectively. Then they act on different
Hilbert spaces and so the trace of the product of their representations acting on ρ⊗k

B splits into the
product of traces. That is,

Tr[WB1···Bk (πm)WB1···Bk (πn)ρ⊗k] = Tr[ρm]Tr[ρn]. (2.20)

Now, since every m-cycle yields a factor of Tr[ρm] and products of disjoint cycles split the trace,
we have

p(k) = Tr[ΠB1···Bkρ
⊗k
B ] (2.21)

= Tr
[

1
k!

∑
π∈Sk

WB1···Bk (π )ρ⊗k
B

]
(2.22)

= 1
k!

∑
π∈Sk

Tr[WB1···Bk (π )ρ⊗k
B ] (2.23)

= 1
k!

∑
a1+2a2+···+kak=k

c(a1, . . . , ak)
k∏

j=1

Tr[ρj
B]aj (2.24)

where c(a1, . . . , ak) is the number of cycles in Sk with cycle type (a1, . . . , ak), which is known to be
k!/
∏k

j=1 jaj aj! (see [30, eqn (13.3)]). Thus, the equality in (2.11) follows. �

The cycle index polynomial of a permutation group G is defined by

Z(G)(x1, . . . , xn) := 1
|G|

∑
g∈G

xc1(g)
1 · · · xcn(g)

n , (2.25)

where cj(g) denotes the number of cycles of length j in the disjoint cycle decomposition of g.

Setting xj = Tr[ρj
B], we see that the acceptance probability of the separability test is given by the

cycle index polynomial of the symmetric group Sk (see [30, ch. 37, p. 526]), so that it satisfies the
recurrence relation

p(k) = 1
k

k∑
j=1

Tr[ρj]p(k−j). (2.26)

Furthermore, the cycle index polynomial of the symmetric group Sk is equivalent to

1
k!

Bk(x1, x2, 2!x3, 3!x4, . . . , (k − 1)!xk), (2.27)

where Bk(x1, . . . , xk) is the complete Bell polynomial [31]. From this perspective, the acceptance
probability can be interpreted as the kth raw moment of a probability distribution with the first k
cumulants given by 1, Tr[ρ2], . . . , Tr[ρk].
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Using a variant of Newton’s identities [27], we can also write the acceptance probability as
both a determinant and a permanent of sequences of matrices. To see this, define two sequences
of matrices by

Pk :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 · · ·
Tr[ρ2] 1 2 0 · · ·

...
...

. . .
. . .

Tr[ρk−1] Tr[ρk−2] · · · 1 k − 1

Tr[ρk] Tr[ρk−1] · · · Tr[ρ2] 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.28)

and

Dk :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · ·
Tr[ρ2] 1 −2 0 · · ·

...
...

. . .
. . .

Tr[ρk−1] Tr[ρk−2] · · · 1 1 − k

Tr[ρk] Tr[ρk−1] · · · Tr[ρ2] 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.29)

Let {λi}i be the eigenvalues of ρB. Then {λm
i }i are the eigenvalues of ρm

B . So the trace of ρm
B is given

by

Tr(ρm
B ) =

∑
i

λm
i . (2.30)

That is, Tr(ρm
B ) is the mth power sum of the eigenvalues, so that the acceptance probability p(k) is

given by the kth complete homogeneous symmetric polynomial. A variant of Newton’s identities
[27] relates the kth complete homogeneous symmetric polynomial hk with the kth power sum pk
by khk =∑k

j=1 hk−jpj. Now applying Cramer’s rule, we can write

hk = 1
k!

det

⎛
⎜⎜⎜⎜⎜⎜⎝

p1 −1 0 · · ·
p2 p1 −2 0 · · ·
...

...
. . .

. . .
pk−1 pk−2 · · · p1 1 − k
pk pk−1 · · · p2 p1

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.31)

= 1
k!

perm

⎛
⎜⎜⎜⎜⎜⎜⎝

p1 1 0 · · ·
p2 p1 2 0 · · ·
...

...
. . .

. . .
pk−1 pk−2 · · · p1 k − 1
pk pk−1 · · · p2 p1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.32)

Thus, by identifying the acceptance probability with hk and the trace of ρj with pj, we have

p(k) = 1
k!

perm(Pk) = 1
k!

det(Dk). (2.33)

See [32, ch. 1, §2] for more information on equations (2.26), (2.31) and (2.32).

3. Strictly decreasing acceptance probability
In [19], it was conjectured that the acceptance probability of the bipartite pure-state separability
test is monotone non-increasing in k. We answer this conjecture in the affirmative as a corollary
of the following lemma about complete Bell polynomials. In fact, we show that this inequality
is strict and the acceptance probability approaches zero in the limit k → ∞ whenever ρB is not a
pure state.
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Lemma 3.1. Suppose 1 = p1 ≥ · · · ≥ pn+1 ≥ 0. Then

1
(n + 1)!

Bn+1(p1, . . . , n!pn+1) ≤ 1
n!

Bn(p1, . . . , (n − 1)!pn). (3.1)

Proof. The complete Bell polynomial satisfies the recurrence relation [33]

Bn+1(x1, . . . , xn+1) =
n∑

j=0

(
n
j

)
Bn−j(x1, . . . , xn−j)xj+1. (3.2)

Letting xi = (i − 1)! pi and defining Bj := Bj(1, . . . , (j − 1)!pj), we have

1
n!

Bn − 1
(n + 1)!

Bn+1 = 1
n!

Bn − 1
(n + 1)!

n∑
i=0

(
n
i

)
Bn−ii!pi+1 (3.3)

= n
(n + 1)!

Bn − 1
(n + 1)!

n∑
i=1

(
n
i

)
Bn−ii!pi+1 (3.4)

= n
(n + 1)!

Bn − n
(n + 1)!

n−1∑
i=0

(
n − 1

i

)
Bn−i−1i!pi+2 (3.5)

≥ n
(n + 1)!

Bn − n
(n + 1)!

n−1∑
i=0

(
n − 1

i

)
Bn−i−1i!pi+1 (3.6)

= n
(n + 1)!

Bn − n
(n + 1)!

Bn (3.7)

= 0, (3.8)

where in the second equality, the i = 0 term was combined with the first term, and the inequality
is justified by pi+2 ≤ pi+1. �

Proposition 3.2. The acceptance probability p(k) is strictly decreasing and limk→∞ p(k) = 0 when ρB is
not a pure state.

Proof. Writing the acceptance probability in terms of the complete Bell polynomials as in (2.27)
and noting that 1 = Tr[ρB]> Tr[ρ2

B]> · · ·> Tr[ρk+1
B ]> 0 (since the eigenvalues of a mixed state are

strictly less than one), we have

p(k+1) = 1
(k + 1)!

Bk+1(1, . . . , k!Tr[ρk+1
B ]) (3.9)

<
1
k!

Bk(1, . . . , (k − 1)!Tr[ρk
B]) (3.10)

= p(k), (3.11)

where we have applied lemma 3.1, noting that inequality (3.6) is now strict because the
inequalities between traces of powers of ρB are strict as noted above. Thus, p(k) is strictly
decreasing. Since the acceptance probability is given by the cycle index polynomial of the
symmetric group, it satisfies the recurrence

p(k) = 1
k

k∑
j=1

Tr[ρj]p(k−j). (3.12)
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Let r be the total number of eigenvalues of ρB. From the fact that p(k−j) ≤ 1, we have

p(k) ≤ 1
k

k∑
j=1

Tr(ρj
B) (3.13)

= 1
k

k∑
j=1

r∑
i=1

λ
j
i (3.14)

=
r∑

i=1

1
k

k∑
j=1

λ
j
i (3.15)

=
r∑

i=1

1
k

(
1 − λk+1

i
1 − λi

− 1
)

. (3.16)

Since ρB is not a pure state, we have λi < 1 for all i, so that λk+1
i → 0 as k → ∞ and the acceptance

probability therefore goes to zero in the k → ∞ limit. �

These results indicate that as k → ∞, fewer repetitions of the test are needed to determine
whether a given pure state is entangled. There is a trade-off, however, between increasing k and
the computational resources needed to conduct a single test. As k increases, one might suspect
that the resources needed will increase in such a way that a large enough k is not feasible. Indeed,
as one of our results, we discuss the scaling in this claim in §5.

4. Generalization of the algorithm
It is possible to consider a generalization of the bipartite pure-state separability algorithm to
groups other than the symmetric one. Furthermore, we can show that these algorithms are also
separability tests. Let G be a finite group, and let ψAB be a pure state. Recall that Cayley’s theorem
[34] guarantees that every finite group is isomorphic to a subgroup of a permutation group. Then
there is a representation of G that takes every g ∈ G to an element π ∈ Sk for some k ∈ N and maps
π to the operator that permutes the Hilbert spaces in the composite Hilbert space H⊗k. Then a
generalization of the bipartite pure-state separability algorithm is given by performing a G-Bose
symmetry test on the state ψ⊗k

AB .
By the argument in the proof of theorem 2.2, we see that one simply has to count the number

of cycles of any given cycle type in the permutation subgroup isomorphic to G to obtain a formula
for the acceptance probability of the algorithm. That is, the argument in theorem 2.2, combined
with Cayley’s theorem, proves the following theorem:

Theorem 4.1. Let pG denote the acceptance probability with respect to the group G for the generalization
of the bipartite pure-state separability algorithm. Then

pG = Z(G)(1, . . . , Tr[ρk]). (4.1)

That is, the acceptance probability pG is given by the cycle index polynomial (2.25) of G evaluated at
xj = Tr[ρj] for j ∈ {1, . . . , k}.

As an aside, we note that (4.1) has an interesting combinatorial meaning. Let {λi}r
i=1 denote the

eigenvalues of ρ. By Pólya’s enumeration theorem [35,36], we can interpret (4.1) as a generating
function for the number of non-equivalent colourings of a set S with the r colours {λi}r

i=1. The role
of G here is to define the equivalence between colourings through its action on S.

We now list several examples involving finite groups, including the symmetric groups, which
reproduces the result obtained in §2 (the acceptance probability of the bipartite pure-state
separability test). The most trivial example is the identity group.

Example 4.2. Let G = {e} be the identity group and let WB1···Bk : G → U(HB1···Bk ) be the unitary
representation mentioned above. Then WB1···Bk (e) = I, and the acceptance probability is given by
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the cycle index polynomial of the identity group. That is,

p(k)
id = Tr[ρB]k = 1. (4.2)

Example 4.3. Let G = Ck = 〈g〉 be the cyclic group of rotations of a regular k-gon. We have many
options for the representation, as there are in general many k-cycles to which we can map the
generator of Ck. However, each choice produces an isomorphic permutation subgroup, and so we
may as well choose WB1···Bk (g) = (1 2 · · · k). Then the acceptance probability is given by the cycle
index polynomial of Ck. That is,

p(k)
cyc = 1

k

∑
m|k

φ(m)(Tr[ρm
B ])k/m, (4.3)

where the sum is over all m dividing k, and φ(m) is the Euler φ-function [34], which gives the
number of n ∈ N such that n ≤ m and gcd(n, m) = 1.

Example 4.4. Let G = Dk be the dihedral group, which is generated by the rotation r and
reflection f of a regular k-gon. As for the case of the cyclic group, we choose a unitary
representation so that it sends the rotation r to a k-cycle. The reflection f is then mapped to a
product of �k/2
-cycles. Then the acceptance probability is given by the cycle index polynomial
of Dk. That is, when k is even,

p(k)
dihedral = 1

2k

∑
m|k

φ(m)(Tr[ρm
B ])k/m + 1

4

(
(Tr[ρ2

B])(k−2)/2 + (Tr[ρ2
B])k/2

)
(4.4)

= 1
2

p(k)
cyc + 1

4

(
(Tr[ρ2

B])(k−2)/2 + (Tr[ρ2
B])k/2

)
, (4.5)

and when k is odd,

p(k)
dihedral = 1

2k

∑
m|k

φ(m)(Tr[ρm
B ])k/m + 1

2
(Tr[ρ2

B])(k−1)/2 (4.6)

= 1
2

p(k)
cyc + 1

2
(Tr[ρ2

B])(k−1)/2. (4.7)

Example 4.5. Let G = Ak be the alternating group, which is already a permutation group. Then
the acceptance probability is given by the cycle index polynomial of Ak. That is,

p(k)
alt =

∑
a1+2a2+···+kak=k

k∏
j=1

1 + (−1)a2+a4+···

jaj aj!
(Tr[ρj

B])aj , (4.8)

where (−1)a2+a4+··· denotes (−1)a2+a4+···+ak if k is even and (−1)a2+a4+···+ak−1 if k is odd.

Example 4.6. We also list the example already discussed in theorem 2.2. Let G = Sk be the
symmetric group, which is already a permutation group. Then the acceptance probability is given
by the cycle index polynomial of Sk. That is,

p(k)
sym =

∑
a1+2a2+···+kak=k

k∏
j=1

(Tr[ρj
B])aj

jaj aj!
. (4.9)

Example 4.7. Let G = Q8 be the quaternion group. We can represent Q8 as a subgroup of S8
by identifying {1, −1, i, −i, j, −j, k, −k} with {e, (1 2)(3 4)(5 6)(7 8), (1 3 2 4)(5 7 6 8), (1 4 2 3)
(5 8 6 7), (1 5 2 6)(3 8 4 7), (1 6 2 5)(3 7 4 8), (1 7 2 8)(3 5 4 6), (1 8 2 7)(3 6 4 5)}. Then
the acceptance probability is given by the cycle index polynomial of Q8, which can be read off
from the permutation representation. That is,

pquat = 1
8

(
1 + (Tr[ρ2

B])4 + 6(Tr[ρ4
B])2

)
. (4.10)
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Example 4.8. In this example, we generalize the cyclic test to products of cyclic groups. Let
G = Z

k
m be the product of k copies of the group Zm. We represent G as a permutation subgroup by

labelling its elements and letting them act on the group to construct a permutation. For example,
if k = 1, then G = {0, 1, . . . , m − 1}. Since 0 has no effect on any element of the group, we map it
to the identity element e. Meanwhile, 1 acts on each element of the group by sending 0 to 1, 1 to
2, and so on. So we identify 1 with the cycle (1 · · · m). The remaining permutations are defined
similarly.

Returning to the more general setting, we see that the elements of each order n correspond to
products of n-cycles. Now, for an element of G to have order n, each component must contain an
element of an order that divides n, with at least one component filled by an element of order n. So
the number of elements of order n is given by

k∑
i=1

(
k
i

)
(φ(n))i

(∑
l|n
l<n

φ(l)
)k−i

=
(
φ(n) +

∑
l|n
l<n

φ(l)
)k

−
(∑

l|n
l<n

φ(l)
)k

(4.11)

= nk − (n − φ(n))k, (4.12)

where φ denotes the Euler φ-function. The acceptance probability given by the cycle index
polynomial of Z

k
m is then

p(k)
Zk

m
= 1

mk

∑
n|m

(nk − (n − φ(n))k)(Tr[ρn
B])mk/n. (4.13)

Finally, we show that the above non-trivial examples, as well as any other example involving a
non-trivial finite group, are tests for separability of a pure bipartite state. Thus, we have produced
an entire class of separability tests.

Proposition 4.9. Let ψAB denote a pure bipartite state. Then the generalized bipartite pure-state
separability algorithm is, in fact, a faithful test for separability of ψAB for any non-trivial finite group
G, meaning that the acceptance probability is equal to one if and only if the pure state is a separable state.

Proof. Suppose ψAB is separable. That is, |ψ〉AB = |φ〉A ⊗ |ϕ〉B for some states |φ〉A ∈HA and
|ϕ〉B ∈HB. Then

ρB := TrA[ψAB] = TrA[|φ〉 〈φ|A ⊗ |ϕ〉 〈ϕ|B] = |ϕ〉 〈ϕ|B . (4.14)

That is, ρB is a pure state. From theorem 4.1, the acceptance probability of the algorithm is given
by the cycle index polynomial evaluated at the traces of increasing powers of ρB. But since ρB is

pure, Tr[ρj
B] = 1 for all j ∈ {1, . . . , n}. Then the acceptance probability is equal to the cycle index

polynomial at xj = 1 for all j ∈ {1, . . . , n}. That is,

pG = Z(G)(1, . . . , Tr[ρn]) (4.15)

= Z(G)(1, . . . , 1) (4.16)

= 1
|G|

∑
g∈G

1c1(g) · · · 1cn(g) (4.17)

= 1
|G|

∑
g∈G

1 (4.18)

= 1 (4.19)

where ci(g) denotes the number of cycles of length i in the disjoint cycle decomposition of g. Thus,
ψAB separable implies that the acceptance probability is identically one.
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Now suppose ρB is a mixed state. Then Tr[ρj
B]< 1 for all j> 1 and we have

pG = Z(G)(1, Tr[ρ2
B], . . . , Tr[ρn

B]) (4.20)

= 1
|G|

∑
g∈G

1c1(g)(Tr[ρ2
B])c2(g) · · · (Tr[ρn

B])cn(g) (4.21)

<
1

|G|
∑
g∈G

1c1(g) · · · 1cn(g) (4.22)

= 1
|G|

∑
g∈G

1 (4.23)

= 1, (4.24)

where we have used the assumption that G is nontrivial to guarantee that at least one of the cj(g)
is nonzero so that the inequality holds. Thus, the test is faithful. �

5. Resource comparison of symmetry tests
Given the generalization in §4, we can now compare the performance of these separability tests.
There are two practical concerns to consider when implementing such a test: the rate at which
the acceptance probability decays and the resources required to construct it. The cycle index
polynomial results described above allow for direct analysis of the former topic, but the latter
requires additional consideration before it can be adequately addressed. First, we will specify how
resources are counted for each algorithm. Then we compare the resource cost for each algorithm
given this framework. We accompany this with a discussion of the acceptance probability of the
compared methods.

We now clarify what is meant by resources in this context. For the G-Bose symmetry test
described in [19] and tests of that nature, the two primary resources are the number of gates
used to construct the test and how many qubits are needed in the control register. We begin with
a discussion of gate counting.

(a) Resource counting of quantum gates
The unitary representation in this context is always formed from a collection of SWAP gates used
to permute the subsystems. SWAP gates can be realized by a sequence of three CNOT gates in
alternating direction. Often, the literature commonly counts the number of CNOT gates used as
a resource (e.g. [37]); however, particular architectures may have more efficient realizations of
the SWAP gate. Furthermore, this algorithm actually calls for controlled-SWAP gates, which may
have vastly different compilations between architectures. For the purposes of this discussion,
we will be counting the necessary number of controlled-SWAPs alone. Furthermore, we do not
restrict to swapping between consecutive Hilbert spaces, although in principle this could be a
limitation of particular systems.

Here, we give an explicit construction for two example groups. The first is the cyclic group test,
which is a simple Abelian subgroup of the symmetric group and therefore of interest as a point
of comparison. Although constructions of cyclic shifts exist in the literature, our construction
follows binary encoding procedures [38,39] and uses fewer gates than a naive implementation and
thus warrants discussion. The second construction given describes a recursive implementation
of the full permutation test. Similarly, although the quantum Schur transform [40–42] gives a
recipe for implementing the symmetric group in principle, the gate construction is abstract and
thus difficult to use for accurate gate counts compared to other approaches. As such, we use the
construction given in [15]. In the following two subsections, we show that a cyclic group test can
be implemented with O(k log(k)) controlled-SWAP gates and a full symmetric group test (also
known as a permutation test) with O(k2) controlled-SWAP gates.
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Note that our tests are only valid for pure states. If it is unknown whether the input state
is pure or mixed, one can first check whether it is indeed pure. To accomplish this, perform a
swap test on the state in question to verify that it has purity approximately equal to one and is
sufficiently pure.

(i) Cyclic group

Analysis of the cyclic group benefits from established literature. Any cyclic permutation can be
achieved in constant depth with k − 1 gates, where k is the order of the cycle [37]. We will now
show that any cyclic group test can be generated by implementing solely the elements in that
cycle that are powers of two. This means that the resource cost of implementing the cyclic test of
order k is (k − 1) log2(k), and the constant depth condition above from [37] gives a corresponding
depth of O(log2(k)) in the separability test.

First, recall that the k-order cyclic group is isomorphic to the set Zk of integers modulo k
under addition. This will allow us to symbolically represent each element by a single number,
understood in this context to be modulo k.

Since the case of k = 1 is trivial, let us first consider the base case of k = 2. This example
illustrates the general construction of cyclic tests and recreates the well-established swap test
[15,17]. The controlled-SWAP element corresponds to the element 1 = 20, and is the sole gate
needed, and the identity element is naturally 0. (Note that 1 is the sole power of two in Z2 = {0, 1}.)
The control state for this test is given by a single qubit state of

|+〉C(2) = 1√
2

(|0〉 + |1〉), (5.1)

where we employ the computational basis. It is clear that each element in the ancillary basis will
give rise to its corresponding group element with this test.

How does this construction generalize? For each given k, we follow a similar recipe as above.
As Ck is isomorphic to Zk, start by identifying each cycle in Ck with a number in Zk. If we always
map the first k-cycle to one, then this map follows simply by mapping cycle composition to integer
addition by one. Consider, for instance, the case of C5. Then the first cycle is (1 2 3 4 5). Map this
to 1. Then the next element, (1 3 5 2 4) = (1 2 3 4 5)(1 2 3 4 5) maps to 1 + 1 = 2. After we
have identified each element of Ck with an element of Zk, we can always rewrite these numbers
in binary. The beauty of binary construction, as is well appreciated in computer science, is that
only elements corresponding to powers of two need to be individually defined, and every other
number can be generated from combinations of them. Thus, after this second rewrite, we have a
mapping between every cycle in Ck and a binary number. Now to construct the circuit, we only
need to implement controlled gates that correspond to cycles that have mapped to a power of
two. For C5, this would be gates that have mapped to 001, 010 and 100 (in decimal: 1, 2 and 4
respectively).

To show how this construction grows, it is most convenient to denote the gates by which power
of two they implement. In figure 2, we label gates as 2j where j ranges from 0 to �log2(k − 1)
. To
see why �log2(k − 1)
 is the final gate, recall the convention that Zk always contains 0 instead of
k. Then the bound falls out from inspection. Revisiting our above example of k = 5, the gates we
identified as necessary can be equivalently represented as 001 = 20, 010 = 21 and 100 = 22.

This construction can also be achieved by considering the labelling of the control state. If the
computational basis is read as a number in binary, we can clearly define the relationship between
the computational basis and the group element construction as |g〉 = |gbinary〉 = |gdecimal〉, where
the abstract construction is equivalent to a computational basis in binary, which equivalently
realizes the familiar group element in decimal. For example, following the above convention, the
basis state for k = 5 given by |(1 3 5 2 4)〉 = |10〉 = |2〉 indicates that the element (1 3 5 2 4) can
be labelled as the 2 element of the group. As 2 is obviously a power of 2, this group element must
be encoded in the circuit. This construction is shown generally in figure 2 and for our specific
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�+�

�+�

�+�

ρ k 20 21 2 �log2(k–1)�

Figure 2. Figure demonstrating how to systematically generate a test for the cyclic group of order k. The notation (2j) indicates
the unitary representation of the element in Ck labelled by the jth power of two. Alternatively, this element is obtained by the
full k-cycle (1, 2, . . . , k) acting on itself 2j times. Note that the final power is always given by �log2(k − 1)
. Also, |+〉 =
(|0〉 + |1〉)/√2 in the circuit diagram above and the final measurements are performed in the Hadamard basis, accepting if
all+1 outcomes occur.

H

H

H

H

H

H

�0�
�0�

�0

�1

�2

�0�
ρ
ρ
ρ
ρ
ρ

Figure 3. An example of the cyclic group test for k = 5. The notation (2j) indicates the unitary representation of the element
in Ck labelled by the jth power of two. For this case, only the elements corresponding to 20, 21 and 22 contribute. Notice that, if
the gates are not controlled on the same qubit, each individual cycle collapses to a depth of two with k − 1 gates.

example of k = 5 in figure 3. Note that all elements of Ck will take at most k − 1 SWAP gates to
implement.

Furthermore, note that cyclic permutations can be implemented in a constant depth of two
[37]. To maintain this depth even for the controlled gates, a GHZ state, 1√

2
(|0〉⊗m + |1〉⊗m), where

m = �k/2
, can be used instead of a single plus state, similar to the approach employed in [43].
Then the controls can act on different qubits of the state, and the final measurement is taken by
projecting back to the GHZ state. This state preparation and the corresponding measurement may
add complexity to the ancilla register; however, since the circuit to prepare a k-qubit GHZ state
has depth O(log2(k)) (with the circuit to project onto it being its inverse), this gives the cyclic
group test a depth that grows as O(log2(k)).

To see that this circuit is capable of generating every element of the cyclic group, we again
refer to the isomorphism between Ck and Zk. Writing every element of Zk in binary, it becomes
obvious that every element can be written as an addition of powers of 2 that form the basis of
binary numbers. As such, only elements corresponding to new ‘digits’ need to be considered.

(ii) Symmetric group

We now review a recursive algorithm for the construction of the symmetric group. Necessary to
this construction is the proof that the entire group Sk can be generated in a convenient way, using
solely transpositions. This construction is equivalent to that given in [15], but we explain it here
for completeness.
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A4 A†
4

A3 A†
3

A2 A2
†

�0�

�0�

�0�

�0�

�0�

�0�

ρ

ρ

ρ

ρ

Figure 4. Figure demonstrating how to systematically generate a test for the symmetric group of order four.

Observe that S2 can be generated by the element (1 2). To generate S3, we need only act on
this element from the left by (1 3) and (2 3). Indeed, the remaining elements of S3 are given by
(1 2 3) = (1 3)(1 2) and (1 3 2) = (2 3)(1 2). This serves as our base case, and we now proceed
by induction. Suppose we can generate every element of Sk−1 in this way. We must show that
the remaining elements of Sk are given by acting on Sk−1 from the left by the transpositions
of the form (i k) for i ∈ {1, 2, . . . , k − 1}. To see this, let (i1 i2 · · · im) be an arbitrary m-cycle
in Sk−1. Then acting from the left by (ij k) for some j ∈ {1, . . . , m} yields (ij k)(i1 i2 · · · im) =
(i1 i2 · · · ij−1 k ij · · · im). In this way, we can generate every cycle in Sk. Since every element of
Sk can be decomposed into a product of disjoint cycles, we can now generate every element of Sk
recursively by appending only transpositions of the form (i k). We can visualize this construction
by the circuit given in figure 4 for an example when k = 4.

Given a way to generate Sk, we now need an appropriate control state to implement these
elements. By supposition, the identity can always be implemented via the state |0〉 tensored with
itself to some power. What then for the remaining states? Consider only one ‘layer’ of the recursive
construction of Sk. It suffices to only ever use one transposition at a time. Thus, the control state
for every ith layer of transpositions should take the form

|+〉Si
= 1√

i + 1
(|0〉⊗i + |10 · · · 0〉 + |01 · · · 0〉 + · · · + |00 · · · 1〉), (5.2)
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as given in [15]. These individual control states should be concatenated together to form the
control register for the entire algorithm. For a quick sanity check, when considering the tensor
product of such states as i ranges from 1 to k, the normalization constant out in front becomes√

k! = √|Sk|.
However, a question remains; can the control register for such a circuit also be generated

recursively? Observe, in figure 4, that we denote a series of gates Aj that act on the control
register to create superpositions. Furthermore, notice that we have arranged the transpositions
in a consistent manner such that each gate is appended in ascending order of transposition. Then
we define the gate Aj to act as such:

Aj |0〉⊗j−1 = 1√
j
(|0〉⊗j−1 + |Wj−1〉), (5.3)

where |Wj−1〉 = (1/
√

j − 1)
∑j−1

i=1 |2i〉 is the W-state on j − 1 qubits. Here |2i〉 is the state with a
one in the ith component and a zero elsewhere. We can observe by inspection that this action,
when taken recursively from j = 2 to j = k, will generate a superposition over k! basis elements.
An example of this construction can be seen in figure 4 for k = 4.

There are several choices available to construct these Aj gates. We review two here. One
recursive approach is to begin by designing the circuit for Ai; then the next gate Ai+1 is given
by adding i + 1 control qubits, initializing the first qubit to a superposition of ((1/

√
i) |0〉 +

(
√

i − 1/
√

i) |1〉), then controlling off of this state, implement Ai on the remaining new qubits.
However, this naive approach will use numerous gates and quickly grow in size. In [15], they
assume the first i qubits are initialized and then add i + 1 qubits for the recursive step. The
(i + 1)-th qubit can be acted on by a one-qubit gate Ui given by

Ui := 1√
i + 1

(
1 −√

i√
i 1

)
. (5.4)

Following this, act simultaneously on the i + 1 qubit and the remaining qubits with a series of
two-qubit gates given by

Tj,j+1 := 1√
i − j + 1

⎛
⎜⎜⎜⎝
√

i − j + 1 0 0 0
0 1

√
i − j 0

0 −√i − j 1 0
0 0 0

√
i − j + 1

⎞
⎟⎟⎟⎠ , (5.5)

where j ranges from 1 to i − 1. This will give the desired control state. In all likelihood, there
are even more ways to generate the desired control register. Whichever approach is chosen, the
control state should remain the same. Note that the ancilla cost of the control state should be
at least O(k log2 k) ancilla qubits regardless simply from the magnitude of the symmetric group,
|Sk| = k!.

Given this construction, it is easy to see the number of controlled-SWAP gates needed to
perform the symmetric group test. Indeed, from figure 4, we see that the number of controlled-
SWAPs needed when k = 4 is 1 + 2 + 3 = 6, where the 1 corresponds to the permutation (1 2)
needed to generate S2, the 2 corresponds to the permutations (2 3) and (1 3) needed to generate
S3 from S2, and the 3 corresponds to the permutations (3 4), (2 4) and (1 4) needed to generate
S4 from S3. By induction, the number of controlled-SWAP’s needed to perform the kth symmetric
group test is k(k − 1)/2, thus leading to the claimed O(k2) gate complexity.

(iii) Dihedral group

The dihedral group, Dk is isomorphic to the semi-direct product of Zk with Z2, with Z2 acting
on Zk by inversion. As such, it can be formed in a faithful way using a cyclic group generator
and a non-commuting action that squares to identity. Using just the generators of the group, it is
clear that the unitary flip action adds a factor of two to the number of cyclic gates needed, plus
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Figure 5. Plot of the acceptance probabilities of each separability test as k increases, for the symmetric group Sk , the cyclic
group Ck , and the dihedral group Dk . For this example, we use a reduced W-state as an example to illustrate the algorithmic
scaling for an unextendible state. For a separable state, all acceptance probabilities are equal to one.

the additional instance of the flip element acting alone. In this manner, the full dihedral group
requires at most 2k log2(k) gates to implement.

(b) Comparison between subgroups of the symmetric group
Now that we have given a method to count the number of quantum gates necessary for these
separability tests, we consider if there is any advantage to using a simpler group as k increases.
Essentially, when is the trade-off between additional gates and acceptance probability favourable
towards the various tests?

The inherent motivation behind increasing k is to obtain a smaller acceptance probability,
prompting the need for proposition 3.2. Clearly, the symmetric test provides the most stringent
bound (figure 5), yet it grows quickly in terms of gate resources needed (figure 6). The cyclic
group, however, benefits from the simplest construction but does not decay as quickly as the full
symmetric group. It should be noted that, while it certainly appears to be true, we have not shown
rigorously that the tests corresponding to sequences of groups other than the symmetric groups
are decreasing. We suspect that a generating function argument might do the trick, but were not
able to produce this result.

To visualize this trade-off, we consider the quantity Rtest/(1 − Pacc), where Rtest is the number
of resources needed to perform the test via the counting methods described above and Pacc is
the acceptance probability of the test. We employ the quantity 1 − Pacc in the denominator, as we
would like the test to have a lower acceptance probability for non-separable states, and thus the
denominator will converge to one for better algorithms. This quantifier is very closely aligned
with the expected runtime of the algorithm until getting a failure (it would be exactly equal to the
expected runtime if we instead used circuit depth over 1 − Pacc as the figure of merit). Thus, in
comparing this quantity for the various tests, smaller values correspond to more ideal behaviour
from the algorithms. In figure 7, we show this quantity for algorithms generated by the cyclic
group and the symmetric group.

Examining figure 7, we see a clear difference in the performance between the tests generated
by the cyclic group and the symmetric group. The plotted ratio can be thought of as resources-
to-rejection, in the sense that 1 − Pacc is the probability that a non-separable state is correctly
identified—or rather, the failure rate of the algorithm for such a state. Although figure 5 makes it
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Figure 6. Plot of the resource scaling in terms of the number of controlled-SWAP gates used for each group test as k increases.
We consider the symmetric group Sk , the cyclic group Ck , and the dihedral group Dk , and we use the gate counting methods
described in the text.
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Figure 7. We show the ratio of the resources required to rejection probability as k increases. We consider here the cyclic group
of k elements as an example of a simple Abelian group and show it gives an advantage in terms of the resources-to-rejection
metric over the test generated by the full symmetric group.

appear that the standard test generated from Sk would always be preferable, we determine from
this comparison that the Ck algorithm gives more benefit per gate resource.

From this analysis, we can assert that the simpler test for separability is more cost-efficient
than the full permutation test. We show in figure 5 that both tests show a decrease in acceptance
probability as k increases, a desirable trait. However, figure 6 shows how quickly circuit sizes
grow as k increases, particularly for Sk, which can be considered the standard test. Figure 7 bridges
these notions to show that the comparative growth in gate resources of Sk outweighs the relative
decrease in acceptance probability given over the Ck test. We thus determine that the cyclic group
Ck suffices as a separability test of this nature.
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6. Conclusion
In this work, we have presented several separability tests for bipartite pure states, and we have
established analytical expressions for their acceptance probabilities. These expressions invariably
rely on the cycle index polynomial of the group. Indeed, from a mathematical point of view,
this relationship seems natural, due to the inherent combinatorics present in the algorithms.
Nonetheless, these expressions give us direct insight into the performance of any separability
tests generated from a finite group—which we have shown can be feasibly constructed. Using
this perspective, we demonstrate that when using more copies of the state under test, these
tests become more stringent. Additionally, we observe that the full symmetric test using a
representation of the symmetric group gives a quickly decreasing acceptance probability for an
entangled state; however, for the given implementations of these algorithms, other tests can use
fewer resources and still show great efficiency.

Here, we have limited ourselves to pure bipartite states; however, we believe multipartite tests
may yield results in a similar vein. For instance, a trivial implementation would be to separate all
parties into individual tests and then multiply the results. There is a question, however, if more
elegant algorithms exist for multipartite cases, and if interesting mathematics arise in the study
of such systems. Additionally, generalizing these algorithms to apply to mixed states is a natural
next step. In particular, providing tests for separability of multipartite mixed states would be an
interesting subject for further study. Furthermore, we think it would be interesting to study the
performance of these algorithms on near-term quantum devices; all of our analysis in this paper
is for the ideal case.

For future work, we propose considering further the nature of the relationship between cycle
index polynomials and quantum algorithms. Our results have shown a clear benefit in the use
of cycle index polynomials in describing separability tests; is the reverse true? An interesting
question is whether algorithms of this form can be used to determine the coefficients of cycle
index polynomials in general, and we leave this for future work.
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