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Phenotypic differentiation in populations of a gladiator
tree frog: environment, genetic drift and sexual selection
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Phenotypic differentiation among animal populations is common, yet few studies have simultaneously examined
the adaptive and neutral mechanisms behind it. Such evolutionary processes become more relevant in species with
complex behaviours that undergo global and local selective pressures throughout their geographical range. Here we
measured and compared morphological and acoustic variation across the distribution range of a Neotropical gladiator
tree frog that shows elaborate reproduction (territoriality, complex courtship and female choice). We then incorporated
molecular and landscape data to examine the roles of sexual selection, genetic drift and acoustic adaptation to the
environment in call differentiation, i.e. the acoustic adaptation hypothesis (AAH). We found that calls varied more
than morphology among populations, but differences in calls or morphological traits were not explained by genetic
differentiation. We found no evidence for the AAH, but a significant relationship in the opposite direction regarding
call frequencies suggests an indirect role of sexual selection. Differentiation on call traits that are associated with
individual discrimination and/or female attraction also corroborated an important role of sexual selection. We show
that multitrait and multimechanism approaches can elucidate intricate processes leading to phenotypic variation
among individuals and populations. We emphasize that studies of species with complex reproductive behaviours
across their range may provide insights into different selective pressures leading to phenotypic differentiation.

ADDITIONAL KEYWORDS: Amphibia —bioacoustics — Bokermannohyla ibitiguara — Brazil — complex vocalization
— genetic differentiation — Hylidae — intraspecific variation — morphometry.

INTRODUCTION accumulates as a result of landscape features that
limit gene flow (Manel et al., 2003; Pato et al., 2019;
Nali et al., 2020), variation in populations scattered
throughout a species’ range may increase due to
neutral evolution. Nonetheless, variation in phenotypic
traits can be increased rapidly by local pressures, such
as divergent sexual selection on specific traits used for
mate recognition, a process that can lead to unique
lineages (Gerhardt, 1999; Stuart et al., 2017). Because
the association among traits, the environment and
population isolation are complex, accounting for
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Ecologia Evolutiva de Anfibios, Departamento de Zoologia, crucial when investigating the evolution of lineages
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de Fora, 36036-900, Juiz de Fora, Minas Gerais, Brazil. E-mail: a population-level approach to phenotypic differences
r_nali@yahoo.com.br will be especially informative (Pascoal et al., 2017).

Microevolutionary processes acting on populations
potentially lead to speciation events or extinction of
divergent lineages across time and space (Crow &
Kimura, 1970; Futuyma, 2005; Wagner, 2016). When
looking at the whole distribution range of a species,
intraspecific variation in organismal traits is a
common pattern (Elmer et al., 2010; Brusa et al., 2013;
Talal et al., 2015). As genetic differentiation normally
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Two examples of phenotypes that vary among
animal populations under a composite of selective and
neutral processes include external morphology and
vocalizations. Variation in morphological characters,
especially morphometrics, has always been reported
in the field of taxonomy, but only more recently has
morphology been combined with genetic variation to
investigate, for example, undetected cryptic species
and diversification of lineages (Elmer et al., 2010;
Havermans et al., 2013; Warwick et al., 2015; Ortega-
Andrade et al., 2015; Nali et al., 2023). Vocalization
constitutes the main communication system in
many organisms (Bradbury & Vehrencamp, 2011),
mediating same-sex interactions such as male-male
competition and opposite-sex interactions such as
female mate choice within a population (Ryan, 1990;
Gerhardt, 1994; Bailey et al., 2017, Pettitt et al., 2020).
Morphology and calls can be intimately related; for
example, animals with larger body sizes emit lower-
pitched calls due to physical aspects of the vocal
apparatus (Ryan & Brenowitz, 1985; McClelland et
al., 1996; Barclay et al., 1999; Nali & Prado, 2014a).
This provides acoustic cues for females to select males
with more advantageous sizes (Bastos & Haddad,
1996; Lu et al., 2010). Although accounting for acoustic
and morphological characteristics seems crucial to
investigate differentiation mechanisms (Lougheed
et al., 2006), few studies have combined population
genetics, morphological variation and calling behaviour
simultaneously (but see Lougheed et al., 2006; Funk
et al., 2011; Pato et al., 2019). The combination of
such traits may help disentangle the roles of neutral
processes, such as genetic differentiation due to genetic
drift in isolated populations, from those of different
adaptive mechanisms (Wilkins et al., 2013).

A well-studied adaptive mechanism shaping call
differentiation is sexual selection, for which frogs
have been a useful model (Gerhardt, 1994; Ryan &
Rand, 2003a; Lemmon, 2009; Kaiser et al., 2018). Local
selection on calls can be either stabilizing, when females
prefer values toward the mean to avoid heterospecific
mating, or directional, when females prefer extreme
values that indicate high-quality males (Ryan, 1990;
Reichert, 2013; Andreani et al., 2021). In addition,
emission of certain parts of the call might evolve to
repeal other males, also with direct consequences for
male reproductive success (Endler, 1992; Nali & Prado,
2014a; Reichert, 2014). In any of these cases, call
traits across a species’ range will vary as a function
of female selection (intersexual selection) or selection
by competing males (intrasexual selection), and such
mechanisms can operate depending on intermale call
variability (Joshi et al., 2019). In the absence of sexual
selection, neutral evolution due to genetic isolation
and drift may shape call differentiation (Velasquez et
al., 2013; Lee et al., 2016). At the very least, neutral

evolution may impose constraints and shape the
acoustic window that could be later subject to adaptive
selection (Wilkins et al., 2013; Pascoal et al., 2017).

A much overlooked adaptive mechanism that
promotes call differentiation is adaptation to the
environment (Wilkins et al., 2013). The acoustic
adaptation hypothesis (AAH) postulates that acoustic
signals are adapted to maximize transmission
success by avoiding degradation and attenuation
(Morton, 1975; Hansen, 1979), as production and
reception of signals are equally important to elicit
behavioural responses by the receiver (Endler, 1992).
Signalling across a forest habitat, for instance, may
impose selective pressures on temporal and spectral
parameters. Low-pitched calls should evolve in
more closed environments due to their enhanced
transmission across vegetation (Morton, 1975).
Calls should have longer durations because longer
signals across obstructed environments increase the
probability of detection and create reverberations
that enhance propagation distance (Slabbekoorn et
al., 2002; Nemeth et al., 2006). Finally, the emission
of fewer notes per time unit should be favoured to
avoid overlapping of the reverberating signals, which
could affect detection. The AAH has been investigated
mostly in birds and mammals, with controversial
yet more convincing support (Boncoraglio & Saino,
2007; Ey & Fischer, 2009). In frogs, results are largely
inconsistent (Ziegler et al., 2011; Erdtmann & Lima,
2013; Goutte et al., 2018; Velasquez et al., 2018;
Bezerra et al., 2021), such that further quantification
of environmental variation is needed to understand
the role of the environment in shaping frog calling
behaviour (Erdtmann & Lima, 2013; Bezerra et
al., 2021). Moreover, studies attempting to explain
call variation as a function of sexual selection and/
or genetic drift did not investigate adaptation to
the environment (see Wilkins et al., 2013), which
hampers our understanding of the multiple possible
mechanisms driving population differentiation.

In this study, we investigated phenotypic
differentiation in a Neotropical gladiator tree frog
by simultaneously analysing, for the first time,
morphology, calls, molecular data and landscape
features. Our focal species, Bokermannohyla
ibitiguara (Cardoso, 1983), inhabits streams in dense
riparian forests within the Brazilian savanna. This
species is territorial and has a complex courtship
with tactile and different acoustic stimuli (Nali
& Prado, 2012; Nali et al., 2022), complex calling
behaviour with different pulsed notes emitted and
modulation of call parameters (Cardoso, 1983; Nali
& Prado, 2014a; Nali et al., 2022), and significant
individual call variation and discrimination
(Turin et al., 2018). Additionally, populations are
genetically differentiated across breeding sites
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Figure 1. Sampling localities (streams) of Bokermannohyla ibitiguara in south-eastern Brazil (star in detail) across
the Serra da Canastra mountain range. Points are coloured according to four different genetic clusters under a previous
Bayesian analysis conducted by Nali et al. (2020) (white = PNSC cluster, green = Capitdlio cluster, grey = Sacramento 2
cluster and black = Sacramento 1 cluster; see text for details). Image source: Google Earth.

with different degrees of forest cover (Nali et al.,
2020), and hybridization with a congener is known
(Nali et al., 2023). First, we analysed whether
intraspecific variation in calls and morphology are
partitioned among populations and genetic clusters
and their degree of variation. Then, we assessed the
relative importance of neutral processes (genetic
drift/isolation) and adaptive mechanisms (sexual
selection and the AAH) in call differentiation across
its distribution range. Our study contributes to the
understanding of mechanisms leading to phenotypic
variation in acoustically oriented taxa, including
those with complex reproductive behaviours.

MATERIALS AND METHODS

STUDY SITE AND INDIVIDUAL SAMPLING

The Serra da Canastra mountain range is located
in south-eastern Brazil, within South America’s
second largest morphoclimatic domain, the Brazilian
Cerrado (Silva et al., 2006). The climate is markedly
seasonal, with a hot and rainy summer and a dry
winter (Queirolo & Motta-Junior, 2007). This savannic
formation is covered by Cerrado vegetation, patches
of semideciduous forest, gallery forests along streams,

and grasslands at higher elevations, up to 1500 m a.s.l.
(Dietz, 1984).

Fieldwork was conducted in 12 breeding streams
with different riparian forest cover throughout the
distribution range of B. ibitiguara during the rainy
season (October—March) from 2010 to 2015 (Fig. 1,
Supporting Information, Table S1; Nali et al., 2020).
We sampled males for this study, as they are the main
target of sexual selection in frogs, and found them by
acoustic and visual searches at the breeding sites. We
recorded calls at ~1 m distance from the males using
a Marantz PMD-660 digital recorder and Sennheiser
MEG66 unidirectional microphone at a 16-bit
resolution and 44 100 Hz (e.g. Nali & Prado, 2014a).
Air temperature was measured during each sampling
event with an analog thermometer. Most males were
collected for morphometric measurements (Watters
et al., 2016), killed by spraying a solution of 10%
lidocaine in the gular region, fixed in 10% formalin
and preserved in 70% ethanol (McDiarmid, 1994).
Individuals that were not collected were identified
by unique natural marks (e.g. Nali & Prado, 2014a)
or marked with the toe-clipping method (Waichman,
1992) to avoid recording the same male more than
once, and we used the toes as tissue samples for
genetic analyses (see below). Collected specimens
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were deposited in the Célio F. B. Haddad Amphibian
Collection, Universidade Estadual Paulista, Rio Claro,
Sao Paulo, Brazil (Table S2).

MEASUREMENT OF MORPHOLOGICAL AND CALL
VARIABLES

Due to some subjectivity inherent to bioacoustics (Kohler
etal.,2017),and also to morphometric measurements (e.g.
how one handles the caliper and the specimens; Watters
et al., 2016), a single researcher (R.C.N.) measured
voucher specimens and analysed calls, avoiding biases.
A digital caliper was used to measure 12 morphometric
traits (Watters et al., 2016) to the nearest 0.01 mm
for each specimen (Supporting Information, Fig. S1):
snout—vent length (SVL), head length (HL), head width
(HW), eye diameter (ED), tympanum diameter (TD),
eye—nostril distance (END), internarial distance (IND),
forearm thickness (FaT), forearm length (FaL.), hand
length (HaL), foot length (FoL) and tibial length (TiL).
Specimens were measured without previous knowledge
of the population, and each measurement was taken
from the left side across specimens.

A total of 79 males had their calls analysed
using the software Raven Pro 1.4 (Cornell Lab of
Ornithology, Ithaca, NY, USA) with FFT (fast Fourier
transformation) = 512 points, brightness = 70 and
contrast = 70 (e.g. Nali & Prado, 2014a). Males of B.
ibitiguara emit calls with a sequence of ca. five to six
long notes, followed by a sequence of average six short
notes (Cardoso, 1983; Nali & Prado, 2014a; Supporting
Information, Fig. S2). Thus, we were able to measure the
following call variables: (1) minimum frequency of the
long note (LN min freq), (2) dominant frequency of
the long note (LN dom freq), (3) duration of the long note
(LN dur), (4) pulse rate of the long note (LN pulses), (5)
minimum frequency of the short note (SN min freq), (6)
dominant frequency of the short note (SN dom freq),
(7) duration of the short note (SN dur), (8) minimum
frequency of the sequence of short notes (SNseq min
freq), (9) dominant frequency of the sequence of short
notes (SNseq dom freq), (10) duration of the sequence
of short notes (SNseq dur), (11) number of long notes
per minute (LN/min), (12) number of short notes per
minute (SN/min), (13) number of sequences of short
notes per minute (SNseqg/min) and (14) number of short
notes per sequence (SN/seq). Further details on our call
measurements are available in Table S3.

We measured five long notes, five short notes and
up to five sequences of short notes across different
calls per individual and calculated the means for
each variable. In the few cases where the individuals
called from inside cavities and/or at the water level
(N = 5), only temporal variables were measured due
to physical differences in spectral parameters in those
situations (Munoz & Penna, 2016; Mufioz et al., 2020;

R. C. Nali, pers. obs.). Recordings with inferior quality
(e.g. with strong background water noise) were only
used to measure parameters with good visualization,
in Raven Pro 1.4. These quality control procedures
yielded ~9.3% missing data, and consequently we had
slightly different sample sizes across our analyses.

Call parameters of B. ibitiguara may be influenced
by male body size and air temperature (Nali & Prado,
2014a; Turin et al., 2018), which are corrected in
studies of population variation (Kaefer & Lima, 2012;
Baraquet et al., 2015). Thus, we calculated Pearson’s
product-moment correlations between air temperature
and all 14 call parameters to remove the influence of
this variable; call parameters were then adjusted to the
average temperature of 20.59 °C (range = 17-25 °C;
SD = 2.02; N = 79) based on the overall regression
coefficients for each parameter (e.g. Prohl et al., 2007).
To remove the body size effect, we performed the
same for correlations with male SVL (e.g. Veldsquez
et al., 2013); call parameters with a significant SVL
effect were adjusted to the average SVL of 39.37 mm
(range = 33.3—-49.15 mm; SD = 3.51; N = 79). We used
this fully adjusted acoustic dataset in all analyses
except those of AAH (see below).

GENETIC DISTANCES AND GENETIC CLUSTER
ASSIGNMENT

To assess genetic differentiation among the 12
populations in this species, we used a genetic distance
matrix from a previous study (Nali et al., 2020),
containing genotypes of 17 microsatellite markers
developed for the species (Nali et al., 2014) with
individuals collected at the same streams and time
periods. The matrix consisted of pairwise F, values
[F /(1 - Fg )] between pairs of the same 12 populations
(Rousset, 1997) and included 273 individuals (adults
and larvae; see Nali et al., 2020); most of the adults
were also analysed for this work (Supporting
Information, Table S1). Individual genotypes were
also used in a Bayesian analysis in the software
STRUCTURE (Pritchard et al., 2000), in which delta
K showed a clear peak for four genetic clusters, with
a high average coefficient of membership (percentage
of individual assignment = 90.3%; Nali et al., 2020).
Thus, each population was classified as belonging to
one of the four assigned genetic clusters: Sacramento
1, Sacramento 2, SCNP and Capitélio (Table S1;
Fig. 1). Detailed procedures on laboratory protocols,
software parameters, quality control of markers and
interpretations can be found in Nali et al. (2020).

ASSESSMENT AND COMPARISONS OF MORPHOLOGICAL
AND ACOUSTIC DIFFERENTIATION

We used two group classifications when analysing
acoustic and morphological variation: populations (12
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streams) and genetic clusters (four clusters). We used
Kruskal-Wallis tests to check whether morphological
and call traits varied among populations and clusters
in R (R Core Team, 2020). We then were able to
interpret the variation of call parameters in light of
previous studies with the species regarding sexual
selection and call discrimination (Nali & Prado, 2012,
2014a, b; Turin et al., 2018; Nali et al., 2022).

To assess how the two phenotypic traits (morphology
vs. calls) might differ in variation, we first calculated
coefficients of variation (CVs) within each cluster
and population for each morphometric and acoustic
variable. Each CV was expressed as a percentage using
the formula CV = SD/mean x 100. We then ran Mann—
Whitney tests among call CVs vs. morphological CVs,
for both populations and clusters. Thus, significantly
higher CVs indicate higher variation in that specific
phenotype (morphology or calls). To analyse the degree
of population/cluster differentiation for each phenotype
in a multivariate approach, we used canonical variate
analyses (CVAs) with morphological variables pooled
together and acoustic variables pooled together. Each
dataset was log-transformed, scaled and centred, and
then split into train (70%) and test (30%) subsets. We
examined the percentages of individuals correctly
assigned to each group (e.g. Lougheed et al., 2006),
in which lower percentages of correct classifications
indicate less group differentiation according to each
phenotype. All analyses were conducted in R, and the
canonical roots of each analysis were plotted using
ggplot2 (Wickham, 2016).

Finally, to determine whether call differentiation
and morphological differentiation were correlated
or decoupled in this species, we calculated two
Mahalanobis distance matrices among populations
by using the canonical roots of the CVAs, one for
morphology and another for calls. These distance
matrices were then correlated using Mantel tests
(Mantel, 1967) in PASSAGE v.2.0 (Rosenberg &
Anderson, 2011), with significance assessed under
9999 permutations. To make matrices comparable
in our analyses, they were all scaled, i.e. each value
was divided by the largest value of that matrix (e.g.
Lougheed et al., 2006).

NEUTRAL EVOLUTION AND CALL DIFFERENTIATION

To test for correlations between genetic distances and
call distances among populations, i.e. possible neutral
evolution on calls (Wilkins et al., 2013), we first
calculated individual Mahalanobis distances for log-
transformed acoustic variables that were significantly
different among populations in the Kruskal-Wallis
tests (see above; e.g. Funk et al., 2009). We then used
Mantel tests to investigate correlations between our
genetic distance matrix (as explained previously) vs.

distances of each significant acoustic parameter, scaled
accordingly (dividing each value by the largest value in
the matrix). Additionally, we used the aforementioned
Mahalanobis matrix of acoustic distances among
populations (calculated from our CVA) and ran a
simple Mantel test between genetic distance and
acoustic distance. We also controlled for geographical
distance by using partial Mantel tests. We obtained
Mahalanobis distances for each individual acoustic
variable and ran Mantel tests using PASSAGE v.2.0
(Rosenberg & Anderson, 2011), with significance
assessed under 9999 permutations.

ENVIRONMENTAL INFLUENCE ON CALL
DIFFERENTIATION

To test whether call differentiation among populations
resulted from acoustic adaptation to different degrees
of forest cover (the AAH), we first quantified the
forested areas for each population. High-resolution
satellite images for each population were extracted
from the software Google Earth Pro. The images
originated from CNES/Astrium satellites (pixel
resolution = 0.35 m) during the years 2013 or 2014,
when we conducted the majority of our fieldwork, and
were visualized from ~1.5 km above the ground. We
georeferenced and processed each image in ArcGIS
9.3.1 (ESRI, 2009) as follows: we drew a circle with a
500-m radius around the centroid of the population,
considering our sampling points within that population,
and manually classified the gallery forests within that
circle (e.g. Nali et al., 2020). We then calculated the
percentage of forested area per locality (relative to the
total circle area) and used it as a proxy; that is, higher
percentages mean a more closed forested environment
(e.g. Nali et al., 2020). Finally, we ran linear multiple
regression models with call variables that are
predicted to vary by habitat type according to the
AAH as dependent variables. Considering that body
size and air temperature are confounding factors in
the study of the AAH (Goutte et al., 2018), we included
percentage forest cover, male SVL and air temperature
as independent variables within each model. The ten
dependent call variables used in this analysis were:
minimum frequencies of long notes, short notes and
sequences of short notes; dominant frequencies of
long notes, short notes and sequences of short notes;
duration of long notes, short notes and sequences of
short notes; and note repetition rate (combination of
the mean number of long notes per minute and short
notes per minute). Every call parameter, as well as
SVL and air temperature, were averaged for the
individuals collected in each particular stream, and
each dataset was log-transformed for the analyses. We
ran model diagnostics using the package performance
(Lidecke et al., 2021).
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RESULTS
INDIVIDUAL SAMPLING AND DATASET CORRECTION

We recorded calls of 79 males and measured 83
collected males (Supporting Information, Table S2).
Air temperature was significantly correlated with all
14 call variables, and male size (SVL) was correlated
with seven call variables, so the acoustic dataset
was corrected accordingly for the variation analysis
(Table S4).

MORPHOLOGICAL AND ACOUSTIC VARIATION

All but two morphological variables were statistically
different among the 12 populations (Supporting
Information, Table S4), but only tympanum diameter
was different among the four genetic clusters (Table
S4; Supplemental Boxplots). Nine call parameters,
including the six spectral parameters and the temporal
parameters SNseq dur, LN pulses and LN/min, were
significantly different among populations, with similar
results among clusters (Table S4; Supplemental
Boxplots).

CVs within populations for call variables
ranged from 0 to 71.8% (median = 13.1%; N = 161
coefficients; Supplemental Spreadsheet), and those for
morphometric variables ranged from 1.42% to 18.9%
(median = 7.52%; N = 144 coefficients; Supplemental
Spreadsheet). Acoustic CVs within populations were
higher than those for morphology (Mann—Whitney
U =6.8; P <0.0001). CVs within genetic clusters
for call variables ranged from 4.3% to 61.61%
(median = 14.96%; N = 56 coefficients; Supplemental
Spreadsheet), and those for morphometric variables
ranged from 6.26% to 16.06% (median = 8.95%;
N = 48 coefficients; Supplemental Spreadsheet).
Acoustic CVs within genetic clusters were also higher
than those for morphology (Mann—Whitney U = 3.6;
P < 0.001). Combined, our results show that calls
varied significantly more than morphology within
populations and genetic clusters, even after removing
the effects of temperature and male SVL on calls.

Our CVAs showed similar results. In the analysis
of call variation among genetic clusters, the first and
second roots of the CVA explained, respectively, 63.13
and 22.3%, while the two first roots in the analysis
of call variation among populations explained,
respectively, 39.2 and 23.1%. In the analysis of
morphological variation among genetic clusters,
the first and second roots of the CVA explained,
respectively, 74.05 and 18.08%, while the two first
roots in the analysis of morphological variation
among populations explained, respectively, 39.94 and
19.67%. The scatterplots of the first two roots showed
morphological and acoustic overlap, but less so for
calls (Fig. 2), a similar pattern observed in density

plots of each first root (Supporting Information, Fig.
S3). Accordingly, individuals were much more often
assigned to the correct population in the CVA based
on calls (35.7%) than based on morphology (15%).
Regarding genetic clusters, individuals were slightly
better assigned for morphology (62.5%) than for calls
(55.6%). These differences agree with our Mantel tests,
which showed no correlation between morphological
differentiation and acoustic differentiation in this
species (Table 1).

NEUTRAL EVOLUTION AND CALL DIFFERENTIATION

Our Mantel test of global acoustic distance vs. genetic
distance was non-significant, even when controlling for
geographical distance (Table 1). Similarly, our analyses
of genetic distance vs. distances of nine individual
call variables that were significantly different
among populations were all non-significant (Table
2). Supporting Information Tables S5-S8 contain the
scaled matrices for genetic, morphological, acoustic
and geographical distances, respectively, among our 12
populations.

ENVIRONMENTAL INFLUENCE ON CALL
DIFFERENTIATION

The percentage of gallery forest varied from 1.12
to 29.08% among our 12 populations (Supporting
Information, Table S1). In our multiple regression
analyses, we found no evidence for the AAH, but in
two different ways (Table 3). The six spectral variables
correlated significantly but positively with percentage
gallery forest, i.e. in a pattern that is opposite of
what is expected from the AAH. The remaining four
variables did not correlate with percentage gallery
forests. Some acoustic traits, as expected (Kohler et al.,
2017), showed significant correlations with male SVL
and air temperature.

DISCUSSION

Our results showed significant morphological and
call variation across the geographical range of
B. ibitiguara. However, calls varied significantly
more than morphology among populations.
Regarding genetic clusters, nine call variables were
significantly different, but the only morphological
difference was tympanum diameter, a phenotypic
trait that is itself related to acoustic communication
(Narins et al., 2007). This first assessment suggests
that local selective pressures on calls could be
stronger compared to morphology across the
distribution range (Funk et al., 2011; see discussion
below).
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Figure 2. Acoustic (A and B) and morphological (C and D) variation in Bokermannohyla ibitiguara, in which each convex
hull represents a genetic cluster or a population (stream) within the state of Minas Gerais, Brazil (population GLG was
excluded due to insufficient acoustic data). Scatter plots were built upon the first and second loading roots of each canonical
variate analysis (CVA).

Table 1. Results of Mantel tests to investigate correlations among genetic, acoustic and morphological distances in
populations of Bokermannohyla ibitiguara, state of Minas Gerais, Brazil; geographical distances were also held constant
(partial Mantel) in analyses containing genetic distance, which was dependent on geography

Distance matrix 1 Distance matrix 2 Controlled matrix R P N populations
Geographical Genetic _ 0.54 <0.001 12
Geographical Acoustic _ 0.17 0.30 11
Geographical Morphological _ 0.15 0.34 12
Acoustic Morphological _ 0.01 0.97 11
Genetic Acoustic _ 0.06 0.85 11
Genetic Morphological _ 0.02 0.93 12
Genetic Morphological Geographical -0.07 0.81 12
Genetic Acoustic Geographical -0.03 0.93 11
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Table 2. Results of the Mantel tests among genetic distances vs. Mahalanobis distances of nine call variables of

Bokermannohyla ibitiguara, south-eastern Brazil

Call variable Not controlling for geographical distance  Controlling for geographical distance N
R p R P
LN min freq 0.095 0.33 0.218 0.39 11
LN dom freq 0.096 0.69 0.213 0.31 11
LN pulses 0.155 0.45 -0.082 0.72 11
SN min freq -0.018 0.93 -0.107 0.62 11
SN dom freq 0.249 0.23 0.119 0.60 11
SNseq min freq 0.084 0.67 -0.037 0.87 11
SNseq dom freq 0.143 0.50 0.034 0.89 11
SNseq dur -0.036 0.94 -0.054 0.90 11
LN/min 0.179 0.38 -0.149 0.49 12

Population GLG was excluded from most analyses due to insufficient individual measurements.

Multivariate analyses showed call and morphology
differences, with more overlap in morphological
than in call traits (Fig. 2). Call traits allowed more
accurate assignment of individuals to populations
of origin. Sexual selection on mate recognition
traits (e.g. calls) is expected to precede selection on
phenotypes not exclusively involved in reproduction,
such as morphology, potentially leading to population
differentiation and increased speciation (Hoskin
et al., 2005; Lougheed et al., 2006; Guerra & Ron,
2008; Gonzéalez et al., 2011). Given that female frogs
recognize and select males based on call properties
(Gerhardt, 1994; Murphy & Gerhardt, 2002; Baugh &
Ryan, 2010), our findings suggest that sexual selection
might be leading to call variation in B. ibitiguara,
although only playback experiments with males to
evaluate intrasexual selection have been conducted in
this species (Nali & Prado, 2014a). Other frogs show
more intense call variation among lineages when
compared to morphology, including tree frogs in the
family Hylidae (e.g. Lougheed et al., 2006; Funk et
al., 2011). Bokermannohyla ibitiguara has a highly
male-biased operational sex ratio (Nali & Prado, 2012;
Nali et al., 2020; R. C. Nali, pers. obs.), where females
choose among many active calling males at breeding
sites (Nali & Prado, 2012), as seen in other frog species
(Murphy & Gerhardt, 2002; Schwartz et al., 2004).
Calls can travel great distances, despite degradation,
to be perceived and discriminated (Bradbury &
Vehrencamp, 2011), while direct evaluation of
morphological traits (e.g. male size) requires closer
interactions (Ritz & Kohler, 2010). Thus, selecting calls
that vary among individuals may be a first filter that
highly increases female efficiency in selecting partners
(Joshi et al., 2019; Pettitt et al., 2020).

While variability in phenotypes may result
from local mechanisms such as female preferences
(Kwiatkowski & Sullivan, 2002; Kaliontzopoulou

et al., 2007; Maan & Cummings, 2008; Akopyan et
al., 2017), differentiated call traits alone are not
sufficient to show that they are sexually selected.
Rather, this mechanism can be inferred when these
traits are linked to female preferences, individual
discrimination and/or male competition (Akopyan
et al., 2017; Joshi et al., 2019). The number of long
notes per minute differed across populations, and we
know that long notes of the advertisement call play
a role in female attraction in this species (Nali &
Prado, 2014a), with courtship calls (the call directed
specifically to females during courtship) consisting of
long notes only (Nali et al., 2022). The emission of more
long notes per minute may increase female attraction
in this species (Nali & Prado, 2014a), enhancing male
fitness via sexual selection, and female preference for
calls with higher repetition rates are known for other
frogs (Sullivan, 1983; Forester & Czarnowsky, 1985;
Schwartz, 1986). As a crucial component of vocal effort
(Leary et al., 2008), pulse rate is an important trait
for female selection that can be increased in situations
such as during courtships (Joshi et al., 2019), which
is precisely the case for our focal species (Nali et al.,
2022). The remaining variables that differed among
populations (duration of the sequence of short notes
and dominant frequency) contribute greatly to
individual discrimination in this species (Turin et al.,
2018), and thus females may rely on those variables
to select potential mates (Akopyan et al., 2017). Males
can also use these signals to recognize conspecific
competitors (intrasexual selection; Bee et al., 2001).
The degree of male competition and territoriality
can drive differential evolution of calling signals,
especially in species with complex courtships, in which
males need to rapidly assess mates and competitors
to avoid predation and increase the number of mating
events (Endler, 1992). Indeed, B. ibitiguara exhibits
male competition with vocal duels and elaborate
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Table 3. Multiple linear regressions between ten call variables (dependent variables, in bold) vs. percentage gallery
forest, air temperature and male snout—vent length (SVL) across Bokermannohyla ibitiguara populations, state of Minas

Gerais, Brazil

Traits Whole-model R?

Single-variable ¢ Single-variable P

LN min freq 0.80%*
Percentage gallery forest

Air temperature

Male SVL

LN dom freq 0.75%
Percentage gallery forest
Air temperature

Male SVL

SN min freq
Percentage gallery forest
Air temperature

Male SVL

SN dom freq 0.80%*
Percentage gallery forest
Air temperature

Male SVL

SNseq min freq
Percentage gallery forest
Air temperature

Male SVL

SNseq dom freq 0.72%%
Percentage gallery forest

Air temperature

Male SVL

LN dur 0.57*
Percentage gallery forest

Air temperature

Male SVL

SN dur 0.43
Percentage gallery forest

Air temperature

Male SVL

SNseq dur 0.54%*
Percentage gallery forest

Air temperature

Male SVL

Note repetition rate 0.46*
Percentage gallery forest

Air temperature

Male SVL

0.867**

0.87:%

2.82 0.0257
-4.36 0.0033
-0.89 0.4031

3.09 0.0175

0.14 0.8928
-2.01 0.0849

2.44 0.0445
-1.28 0.2401
-6.25 0.0004

3.39 0.0116

0.01 0.9911
-2.70 0.0306

2.84 0.0250
-1.50 0.1781
-6.52 0.0003

3.01 0.0196
-0.53 0.6117
-2.44 0.0445
-0.34 0.7460
-1.90 0.0944

1.58 0.1539
-0.60 0.5627
-2.05 0.0742
-0.71 0.4969

0.85 0.4213
-3.08 0.0179

0.29 0.7811

2.21 0.0577

0.64 0.5378

0.95 0.3678

Significance of the whole model is stated next to each adjusted R? (*P < 0.05; **P < 0.01; ***P < 0.001). Population GLG was excluded from the analyses
with spectral variables due to a single individual with measured call frequencies.

courtships (Nali & Prado, 2012, 2014a, b; Nali et al.,
2022). This should promote call differentiation even at
a relatively small spatial scale. Although call plasticity
itself can lead to differentiation (Ziegler et al., 2011),
our arguments above indicate that, if present in
this frog species, call plasticity may maximize call
differentiation for sexually selected traits. Even
with our correlational inferences, we emphasize that

playback experiments with females would be crucial in
this species to corroborate a definitive link with sexual
selection.

Other possible mechanisms that could explain
population-level variance in calls were genetic drift
due to isolation (neutral evolution) and ecological
adaptation of call signals (the AAH). Call differences
among populations were not linked to genetic
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differentiation, indicating selective mechanisms on call
differentiation that are related to non-random mating
rather than landscape isolation effects (e.g. Boul et al.,
2007), the latter of which is known for this species (Nali
et al., 2020). Our results differ from those for another
Neotropical frog (Pleurodema thaul), in which call and
genetic distances were correlated, and call variation
was attributed to genetic drift and isolation (Velasquez
et al., 2013). In this system, despite the influence of
inter-male interactions on signal evolution, the lack
of female preferences suggested a minor role for
intersexual selection (Veldasquez et al., 2014, 2015).
In B. ibitiguara, sexual selection pressures are strong
on both sexes. Females and males engage in complex
courtship with tactile and acoustic stimuli (Nali &
Prado, 2012, Nali et al., 2022). Females are choosy and
inspect oviposition sites, deciding whether to mate
with that male or move to another one (Nali & Prado,
2012; Nali et al., 2022). Males are strong competitors
that emit complex aggressive and modulated calls
and engage in physical combats (Nali & Prado, 2012,
2014a, b). Hence, B. ibitiguara probably suffers much
stronger selective pressures on calls across its range
due to sexual selection in comparison with P. thaul.

Individuals of B. ibitiguara inhabit gallery forests
along streams where breeding and oviposition occur
(Nali & Prado, 2012; Nali et al., 2023). Thus, call traits
may have undergone ecological pressures imposed
by the forest habitat. However, we found no evidence
for the AAH in this species (Table 3). One possible
explanation for this result is behavioural plasticity,
in the form of call adjustment to the surrounding
microhabitat. Previous research has shown that male
tree frogs can adapt their calls to the microhabitat
they use for vocalization, leading to variation in
call traits (Ziegler et al., 2011). Our quantitative
assessment of forested areas, herein measured as
percentage forest cover, was a step further compared
to broad qualitative classifications commonly used
for frogs (Ey & Fischer, 2009; Erdtmann & Lima,
2013; but see Goutte et al., 2018), a procedure that
is desirable because environmental selection on call
traits might be stronger in forests, but relaxed or
minimal in open habitats (Ryan et al., 1990). Although
the forested environment may have a minor role
in shaping call diversification in this species (e.g.
Castellano et al., 2003; Penna & Moreno-Gémez, 2015;
Goutte et al., 2018), the contribution of call plasticity
in the adaptation to microhabitats deserves further
investigation (e.g. Ziegler et al., 2018).

In more forested areas, male frogs emitted calls with
higher frequencies, which was opposite to the AAH
(Table 3). As these results are based on correlations,
other factors may be causing this deviation from
the AAH (Kalko, 1995; Sugiura et al., 2006; Ey &
Fischer, 2009). The short notes of the advertisement

call convey a territorial/aggressive message in this
species, and males lower their call frequencies to repel
intruders and avoid physical combats (Nali & Prado,
2014a). Lower call frequencies are usually correlated
with larger body size, which tend to be important in
intra- and intersexual selection across frogs (Davies &
Halliday, 1978; Asquith & Altig, 1990; Gingras et al.,
2013; Nali & Prado, 2014b; Reichert, 2014; Turin et al.,
2018). Due to their territorial behaviour, reproductive
males distance themselves as much as possible within
the gallery forests (Nali & Prado, 2012), resulting in
more proximity in areas with less forest cover. Thus,
we hypothesize that less gallery forest could lead to
more intense competition among reproductive males
for calling sites, oviposition sites and females in this
species, which could result in the emission of calls with
lower frequencies. Although further studies directly
correlating male densities and call frequencies are
needed, it again indicates the role of sexual selection
in call variation of B. ibitiguara.

Evolutionary studies that integrate genotypes and
phenotypes, and that employ methods to evaluate
multiple mechanisms underlying population
differentiation are crucial but still scarce, particularly
in the megadiverse group of frogs (this study; Wilkins
et al., 2013; Warwick et al., 2015). In organisms with
resource defence or lek mating systems, which may
show elaborate reproductive behaviours (Zina &
Haddad, 2007; Nali & Prado, 2012; Miles & Fuxjager,
2018; Mitoyen et al., 2019), genetic drift may play little
role in morphological and behavioural evolution. To
understand the evolution of acoustically oriented taxa,
studies should rely on natural history observations
allied with experiments to assess preferences for
specific and variable signals and aggressive responses
to them, as well as quantitative measurements of the
environment, which formed the basis of our study
(Endler, 1992; Ryan & Rand, 2003a,b; Ziegler et al.,
2011, 2018; Reichert & Gerhardt, 2013; Nali & Prado,
2014a; Goutte et al., 2018; Nali et al., 2022). While
conducting so many procedures altogether is certainly
a laborious task (Gerhardt, 2013), we emphasize that
combining data helps elucidate the complex and yet
poorly understood associations among the surrounding
environment, behavioural phenotypes and sexual
selection (Ey & Fischer, 2009; Erdtmann & Lima,
2013; Wilkins et al., 2013).
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