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Abstract. We present a general approach to the bifurcation analysis of spatial framework structures with
symmetry. While group-theoretic methods for bifurcation problems with symmetry are well known, their actual
implementation in the context of geometrically exact frameworks is not straightforward. We consider spatial
structures comprising assemblages of Cosserat rods; the main difficulty arises from the nonlinear configuration
space, due to the presence of (cross-sectional) rotation fields. We avoid this via a single-rod formulation,
developed earlier by one of the authors, whereby the governing equations are embedded in a slightly enlarged
linear space. The field equations for a framework then comprise the assembly of all such rod equations,
supplemented by compatibility and equilibrium conditions at the joints. We demonstrate their equivariance under
the natural symmetry-group action, and the implementation of group-theoretic methods is now clear within the
enlarged linear space. All potential generic, symmetry-breaking bifurcations are predicted a-priori. We then
employ an open-source path-following code, which can detect and compute simple, one-dimensional bifurcations;
multiple bifurcation points are beyond its capabilities. For the latter, we construct symmetry-reduced problems
implemented by appropriate substructures. Multiple bifurcations are rendered simple, and the path-following
code is again applicable. We first analyze a simple tripod framework, providing all details of our methodology. We
then treat a more complex hexagonal space frame via the same approach. Both structures exhibit simple and
double bifurcation points.
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Introduction

Group-theoretic methods in bifurcation problems with symmetry are well established. Sattinger was
the first to introduce such ideas in the context of local bifurcation analysis [20]. A more systematic and
generic-classification approach was subsequently developed by Golubitsky and co-workers [10]. Other
monographs on the subject have also appeared, e.g., [3], [16], [22]. The use of group-theoretic ideas in
global-numerical path following was first introduced in [11], with several other works of this type following
subsequently, e.g., [6], [15]. The analyses of either simplified space-truss structures or “n-box” reaction-
diffusion problems are presented in these papers. The review article [25] discusses such approaches,
among other things, for problems of structural mechanics. We mention that far less trivial examples of
group-theoretic methods in bifurcation problems from solid/structural mechanics are presented in [4],
[5], [8], [23]. In any case, each of the above studies entails a nonlinear problem in a linear space.

We treat another class of nontrivial problems from nonlinear structural mechanics in this work, viz.,
spatial frameworks comprising assemblages of special Cosserat rods. The main difficulty here is that the
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description of even a single Cosserat rod requires a nonlinear configuration space: The orientation of
each cross-section is described by a finite rotation. Of course, finite rotations are not additive, and the
set of all such rotations, denoted by SO(3), is not a linear space. Thus, we are confronted with a nonlinear

problem in a nonlinear space.

A general finite-element approach to the statics of an elastic Cosserat rod, fully embracing the
nonlinear configuration space, is presented in [21]; Newton’s method is carried out on the discretization
of the nonlinear solution manifold. A simple alternative approach is provided in [14]: Quaternions are
directly employed in lieu of rotations, while the mixed formulation incorporates a “dummy” parameter
such that the unit-quaternion equation need only be enforced at the boundary points. In this way, the
problem is embedded in a slightly enlarged linear space. The number of boundary conditions (seven at
each end) match the correct number of unknowns (fourteen) in well-formulated rod problems. Any
standard 2-point-boundary-value solver can be employed as a consequence.

The formulation introduced in [14] is convenient for the analysis of geometrically exact Cosserat-rod
frameworks in 3D. This has already been observed and implemented in [24]. Moreover, it functions well
with the open-source continuation code AUTO [7], also employed in [24] but without symmetry
considerations. The code is written for nonlinear systems of first-order ordinary differential equations,
which are solved accurately via the collocation method; it can detect and compute simple, single-mode
bifurcations. On the other hand, multiple bifurcations points are beyond its capabilities; group-theoretic
reduction becomes important. In this work we demonstrate and exploit the equivariance of the governing
equilibrium equations via group-theoretic methods. The main idea is to systematically obtain reduced
problems rendering multiple bifurcations simple. A point of departure here is that we construct such
reduced problems via well-chosen substructures. This is in the spirit of [1], but for nonlinear bifurcation
problems.

The outline of the work is as follows. In Section 1 we first recall the equilibrium field equations for
hyperelastic Cosserat rods, including their derivation via stationary potential energy. The latter is non-
trivial, due to the presence of rotations; although ostensibly well known, we derive it here for
completeness. More importantly, we use it to deduce group equivariance later in the work. We finish
this section with a summary of the formulation presented in [14].

In Section 2 we consider a simple three-rod tripod, arranged symmetrically with a rigid or “welded”
joint at the crest, where a dead load along the axis of symmetry is applied. We analyze this simple model
in order to set the stage for the more realistic and complicated structure treated in Section 3. We explicitly
demonstrate the invariance of the total potential energy leading to the equivariance of the field equations
and illustrate the use of group-theoretic ideas in a simple setting. We first make qualitative-generic
predictions concerning potential bifurcations, cf. [10], [16]. Next, we analyze the complete structure via
AUTO, revealing several simple bifurcations. We then construct a reduced problem to capture a double
bifurcation. The latter is facilitated via an appropriate substructure. All bifurcations found are in
consonance with the qualitative predictions — with one exception: A simple, symmetry-preserving
bifurcation is also uncovered. While this does not follow from generic predictions, it is a consequence of
the simultaneous flexural buckling of the rods. This also occurs in symmetric, pin-jointed tripods
comprising elastic rods [2].

In Section 3 we take up the analysis of a hexagonal framework dome. This has the appearance of the
simple, low-dimensional space-truss dome considered in [11], where only 2-force members are



considered. In contrast, the structural members here are deformable Cosserat rods connected by rigid
joints. A centerline placement field and a cross-sectional rotation field is required to specify the
configuration of each rod in the structure. The representation of symmetry and equivariance is far more
complicated here, but we rely on the same approach employed in the analysis of the tripod in Section 2.
Several group-theoretic predictions for potential bifurcations are again provided. In particular, two types
of double bifurcation points are now possible. An analysis of the full structure via AUTO reveals several
simple bifurcations in accordance with the qualitative predictions. We then construct two distinct
reduced problems, each implemented via a specific substructure, that capture all of the possible double
bifurcations.

We also point out that a similar hexagonal Cosserat framework dome was analyzed as part of a 2004
PhD dissertation [19]. The approach there differs from ours in several ways. The finite-element
formulation of [21] is employed in [19], yielding a problem in a high-dimensional nonlinear space. The
equivariance of the global field equations is not discussed (but is tacitly assumed). In addition, the work
employs global numerical projections onto fix-point spaces preserving subgroup symmetries, as carried
out in the low-dimensional problem treated in [11]. Of course, projections are only valid in linear vector
spaces. Assuch, they are imposed incrementally in [19], resulting in an expensive and rather cumbersome
procedure. This part of the work from the dissertation was never published.

1. Preliminaries

Notation: As is common practice, we let R denote both Euclidean 3-space and its Euclidean inner-
product translate space. Vectorsin R are denoted by bold-face, lower case symbols, e.g., X, v, and bold-

face, upper case symbols, e.g., A,L, denote linear transformations of R into itself. The inner product
between vectors a,b is denoted a-b; their right-handed cross product is written axb. The transpose

and determinant of A are denoted A’ and det A, respectively. The set of all proper rotations is given by
SO3)={Q:Q ' =Q",detQ =1}. For any skew-symmetric transformation Q, i.e., Q" =—Q, there is a
unique vector, written ® = axial(€2), such that Qa=mxa for all vectors ae R

We now summarize the formulation for a single rod pertinent to our analysis of frameworks. Let
{e,,e,,e,} denote a fixed, right-handed orthonormal basis. We consider a straight, uniform rod occupying

the reference configuration {xe, : x[0,L]}. Let r(x) denote the position vector (with respect to some
fixed origin) of the material point that occupies xe, in the reference configuration, while R(x) € SO(3)
denotes the rotation of the cross-section of the undeformed rod contained in span{e,,e,} at position xe,.

The field (r,R) on [0,L] uniquely specifies the configuration of the rod in the deformed configuration.
The last two vectors of the orthonormal field
d.(x):=R(x)e;,, i=1,2,3, (1.2)
are called directors in the special Cosserat. Differentiation of (1.1) yields
. =1,2,3, (1.2)

where K:=1 is a skew-symmetric field and (° .. Hence, there is a unique axial vector field



K = axial(K) (1.3)
such that (1.2) is equivalent to , 1=1,2,3. We then write

dk=xd,. (1.4)

The six components v,,x;,i =1,2,3, comprise the strain measures of the theory. We assume that the rod
is hyperelastic, viz., there is smooth stored-energy function W(v,,v,,v;,k,k,,&;), W:(0,0)x R R
such that

ow ow

n=—-d, and m=—-d,
v, Ok,

1 1

(1.5)

correspond to the contact force and contact couple fields, respectively. Moreover, the total internal
potential energy of the rod is given by

L L r.
[0 WW,,V,, Vs, K, Ky, Ky )dx =J.O W(R , (1.6)

where we have made use of (1.1) and (1.4) in obtaining the right side of (1.6). For simplicity, we assume
the absence of external body-force and body-couple fields. The following is well-known but not well-
documented in the literature:

Proposition 1.1 The first-variation condition (stationary potential energy) for (1.6) formally delivers the
balance-of-forces and balance-of-moments equilibrium equations

I o 0,1), (1.7)
respectively, with n and m given by (1.5).
Proof. See Appendix A.

Next, we suppose that the uniform rod has cross-sectional reflection symmetry across the plane
spanned by {e,,e,}. Let E denote the reflection transformation defined by

Ee, =¢,,Ee, =—¢,,Ee, =e¢,. (1.8)
From the formulation in [13], a hyperelastic rod with such symmetry satisfies the invariance condition
W(ER"v,~ER"x) =W (R"v,R"k). (1.9)

The negative sign in (1.9) follows from the fact that —E® is the axial vector of EQEfor any skew-
symmetric transformation  with axial vector o.

Finally, we summarize the formulation presented in [14], which we employ in our forthcoming analyses.
First, we express (1.7) in componential form relative to the director basis field {d,,d,,d,}. We write such
components as triples of the form n =(n,,n,,n,), v=(v,,v,,v;), etc. Then (1.7) is equivalent to

;

_ (1.10)
] Fnxy.

We assume that the 6x6 Hessian matrix D*W(:) is positive definite for each of its arguments on

(0,0)xR  which insures the existence of a complementary energy density I'(n,m) (the Legendre
transform of W) such that



yza—r and /_<=6—F. (1.11)
n om

The substitution of (1.11) into (1.10) gives

— (1.12)
. or
7 -+ nx—.
uin on
Next, we express the placement fields r,R in terms of their components with respect to the fixed
basis, viz.,
r=re, r=(1,1,n),

2 (1.13)
R=Re ®e¢, R:=[R,],

where [R;] represents the 3x3 matrix of components. We henceforth express all components with

respect to the fixed basis with an overbar, as above in (1.13). According to Euler’s theorem, there is an
“instantaneous” axis of rotation corresponding to a real eigenvector n with Rn=n. Let geR )
denote the counterclockwise angle of rotation about n (according to the right-hand rule), given by the
trace formula #rR =1+2cos¢. Choosing n-n=1, we associate R with the quaternion

q=(4,,9), | (1.14)
q, =cos(¢/2), q:=sin(¢/2)n.

Writing q = g.e,, it follows that
4, +4-4=q, +q +4; +q; =1, (1.15)

and the matrix R admits the parametrization

@+ -1/2 qq,-9,95  49;+9,9
R@=2| q9,+49,95 4. +4-1/2 qq,—q,9, |, (1.16)
99— 4,9, 4 +49.9 4, +q5—1/2

where q:=(q,,4,,4,,4;)- Finally, as derived in [14], we have

- = _or
i q =R,
on
- or (1.17)
g9 Ag +uq=A(Q)_—+uq,
on
where 1 € R is an unspecified (dummy) parameter and
-4 49, —4
A@G)=| ~ Tt T (1.18)
q3 qo _ql
_qZ ql QO

The field equations comprise (1.12) and (1.17). As shown in [14], if (1.15) is satisfied at the endpoints,
then  is zero and (1.15) automatically holds over (0,L), i.e., (1.15) is not a required field equation. For

a rotational boundary condition of place, (1.15) is automatically satisfied at that boundary point. On the



other hand, if an applied couple is imposed or if a “mixed” rotational boundary condition is prescribed,
then (1.15) must be specified at that boundary point as well. Either way, seven boundary conditions are
always prescribed at each end, which agrees with the fourteen unknowns n,m,7,q and x. In practice via

finite-precision arithmetic, 14 computes to an extremely small value.

%‘ Top Elevation
Figure 1: Global and local basis for the tripod represented on top-down (left) and elevation(right) view.

2. A Simple Tripod Framework with Symmetry:
2.1 Formulation and Equivariance
We first consider a simple tripod composed of three identical, straight, prismatic, unstressed,
hyperelastic rods of length L all meeting at a perfectly rigid or welded joint at A, i.e., all rods have the

same displacement and rotation at the joint. The rods are arranged symmetrically, the supports of the
rods are identical, and we assume that the angle between the horizontal plane and each bar is 7 /3

radians, cf. Figure 1. Let {i ,i,,i,} denote a fixed orthonormal global basis for R® and let {e”’ e}’ e}’

be the fixed orthonormal local basis oriented along the j‘h undeformed rod, j=1,2,3, such that

e’ =(1/2)i, - (V3 /)iy, e =i, e =(3/2)i, +(1/ )i,

2) ) 3) _ (2) _ (00 B
€ _R27z/3ej » € _R27z'/3ej _R47r/3ej » =123,

(2.1)

where R, denotes a clockwise rotation through the angle 27 /3 about i,;its matrix relative to the
fixed global basis is given by
-1 30
-3 -1 0| (2.2)
0 0 2

1
[R27r/3] = 5

In what follows, repeated subscripts sum (Einstein convention) while repeated parenthetical superscripts,

™ rod has reflection symmetry across the plane spanned

labeling the rods, do not. We assume that the j
by {el’),e{"}.



A configuration of the tripod is uniquely described by the placement and orientation field of each rod,
represented by

u= (r(”,R(”,r(z),R(z’,r(”,R(”), (2.3)

where r'” :[0,L]—> R and R :[0,L]— SO(3) denote the placement and rotation field of the deformed
j" rod, respectively, j=1,2,3; each is presumed to be continuously differentiable.

For compatibility at joint A, we require

r(0)=r?0)=r®0):=r,,

(2.4)
R"(0)=R?(0)=R¥(0)=R,
where r,,R ,, the joint placement and orientation, respectively, are unknowns.
If the supported ends of the rods are clamped, we require
r'(L)=(L/2)i,, ¥ (L)=(L/2)R, 4i,, PV (L)=(L/2)R,, i, 2.5)

RY(L)=R?(L)=R™(L)=1,
where I denotes the identity. For “ball-in-socket” supports, (2.5); still hold along with the vanishing of

all end moments, viz.,
m"(L)=0,;=1,23, (2.6)

where m'”’ :(0,L) >R denotes the contact-couple field for the j’h rod, j=1,2,3. In this case, an
additional boundary condition, corresponding to (1.15) evaluated at x = L, must also be incorporated. Of
course, other compatibility/boundary conditions are possible, e.g., fixed supports (2.5) with a ball-in-
socket at joint A, implying vanishing torques as in (2.6) but evaluated at x=0. Other “mixed” conditions
(symmetrically arranged) are possible, the explicit details of which we do not present.

We assume that the tripod is subjected to a dead, concentrated load at joint A of the form —A1i,. The
total potential energy of the structure is then given by

Y u Uu iy, (2.7)
where
Uu jOL (R "D,
[R(./')]T:' () [R(j)]TK(‘i) = xWe)

and W :(0,0)xR R is the stored-energy function, common to each of the rods.

Proposition 2.1 The first-variation condition (stationary potential energy) for (2.7) delivers the balance-of-
forces and balance-of-moments equilibrium equations and the joint equilibrium conditions

I ’ ’ in (0,1), j=1,2,3,

3 3
> 0 (0)-2i; =0, > m"(0)=0,
Jj=1

J=1

(2.8)

respectively, where n"’ =——d" andm"”’ =——d", j=1,2,3.
ov ! ok
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Proof. See Appendix A.

In order to employ the formulation (1.12), (1.17), we first replace (2.8)s with

; or , or
) _ () _ s
ve = oD and k7" = om0 7T

1,2,3. (2.9)

We also have the system (1.12)-(1.18) for each of the rods, denoted by a parenthetical superscript
j=12,3. We do not rewrite these here. Finally, we replace (2.3), (2.4), and (2.5). by

u= (r“) q“) r® q(2> r® q<3>)
q”(0)=9"(0)=9"(0), (2.10)
q"(L)=9?(L)=9"(L)=(1,0),

respectively. We remark that a given a unit quaternion q=(g,,q), (¢,)° +q-q =1, corresponds to a
unique rotation. However, there are two choices for a unit quaternion for a given rotation R € SO(3):
If q corresponds to R, then so too does —q. Nonetheless, this causes us no problems: Once a choice

has been made, we employ only continuous unit-quaternion fields as functions of continuation
parameters.

The tripod possesses the symmetry group C, ,generated by the rotation R, . and the reflection

across the plane spanned by {i,,i,}. We denote the latter transformation by E, which has the matrix

1 0 O
[E]=]0 -1 O (2.11)
0 0 1
relative to the global basis. More specifically,
G, ={Ry,5.ER, s 1k =1,2,3}. (2.12)

Observe that the transformation ER,, ,represents a reflection across the plane spanned by
{R,,s1,15},k=1,2,3, where R,_,, denotes the clockwise rotation about i, through the angle k7 /3.

The natural group action of C,, on configuration space (2.10): is generated by

o 6 3 M ) @ &)
T, u=R, r".R,_.q”".R, r"R,_q".R, r”R, .qd")

and (2.13)
T.u=(Er",Eq",Er® Eq?,Er® Eq?),

where the actions on unit quaternions are defined as follows:

R,,59=(q,.R,,59),
Eq:=(q,.—Eq).

The group generated by the transformations (2.13) is a faithful representation of C,, on configuration

(2.14)

space. Observe that (2.13); corresponds to a rotation of a configuration (2.10); about i, through the
clockwise angle 27 /3, while (2.13), represents a reflection of a configuration across the plane spanned



by {i.,i,;}. The other elements in the group {T,

Ro a3 ? TE 7-R2jm’3

=T, ..j=123} have similar

interpretations. For that reason, the representation is termed natural.
Our first task here is to establish:

Proposition 2.2 The potential energy (2.7) is invariant under the representation generated by the
transformations (2.13), i.e.,
YV Tu V u GeC,,. (2.15)

Proof: It is enough to show that (2.15) holds for the generators (2.13). First notice that (2.13);involves
r’ - Rzmr(” and q¥) — Rzmq‘j) —=RY - RZMR(”R;B, j=12.3. (2.16)
In view of (2.1) and (2.7),, we deduce from (2.16) that
[R(/)]T ) —)V(/) (/+1) ] _1 2 3 (2_17)

(4) M

with the understanding that e;” =e;’,i=1,2,3. Obviously this goes the same way for the last three

arguments of W, viz.,
k” >R, k" andR” 5 R, ;RYR] ;=[RV]kY > ke, j=123. (2.18)

Then (2.7), (2.13)4, (2.17) and (2.18) imply

V T u Zj WD, ke )dx + AR, o, i

In particular, the strains from the ;j” rod “move” to the (j+1)" rod under the transformation, and the
invariance of the internal potential energy is now clear. The loading term is also invariant: R, i, =i,
andR,_.r,-R, i, = . Given that the compatibility and boundary conditions (2.4), (2.5), and (2.10)
are unaffected by (2.13)1, we conclude that (2.15) holds for G=R,_,,.

The demonstration for T, requires more care, due to the reflection symmetry of each individual rod.
The first step is similar to (2.16):

l.(j) N Er(j) and q(j) N Eq(j) — R(j) —)ER(j)E, ] — 1’2’3. (2.19)
Hence,
[R(f)]T :
[R(/)]TK(j) — axial([R(_/)]T]' . ((j)‘ (2.20)

Next, we note
Ee!’ e’ Ee{ =-¢{’ Ee{’ = ¢!’ .21)
Ee” =e'”,Ee!”’ = —ef’,Eef’ =el’.

Then (2.7), (2.13),, (2.19)-(2.21) yield



Y Tu=[ WED ] -EV[x e dx
+ IOL WEP Ve +vVe? +vPelP], —EP[kPel? +x Vel + xVel )dx (2.22)
+ J.OL WEPvPe® +1vPel) +vPeV], —EV[xPe + kel + xVeV )dx
+ AEr, i,
where E" denotes the reflection across the plane spanned by {e\”,e{’},j=1,2,3. Now use the fact

that Ei, =i, along with cross-sectional reflection symmetry (1.9) to see that (2.22) becomes
L Ma® ()40
Vo Tu=[ W, ke )dx

L
+f WPe? +1vPVe +vVel?, kPe® + xVel + kel )dx
0 (2.23)
L
+ IO WPe? +vVel +viPel) | kPel? +kPel) + kiPelV ) dx
+Ar, i,

In this case, the strains from rod 3 move to rod 2 and vice-versa under the transformation. It is
straightforward to demonstrate that the compatibility and boundary conditions (2.4), (2.5) and (2.10) are
unaffected by (2.13),. We conclude that (2.23) is precisely the sameas V u

We now use the invariance of the potential energy (2.15) to establish the equivariance of the governing
equations (2.10), the proof of which is provided in Appendix A.

Proposition 2.3 The equilibrium equations (2.8) are equivariant, i.e.,

(6 Tuh T V uh (2.24)

for all GeC,,and for all admissible variations h:=(n",0",n*,0% n,0%), satisfying the end
conditions (in consonance with (2.4), (2.5))

N (L)=0, 8Y(L)=0,;=1,2,3,

(2.25)
1”(0)=1"(0)=1"(0), 6(0)=0“(0)=0"(0).
Here the generators of the action of T ono=08Vare defined by
f s {27[/311(3)’R2/z’/3m(3)’R27r/3n(1)’R27r/3m(1)’R27r/3n(2)’R27z/3m(2) )’ (2 26)
T ® _Em®,En®,-Em®,En®,~Em®) '
forall 6 =m",m" n” m® n® m®), and the inner product employed in (2.24) is defined by
3L
— ), () 0.
(o,h) .—;J.O {n .9 +m" .09 }ax. (2.27)
Proof. See Appendix A.
We express (2.24) abstractly in the strong form via
f(AL,Tu=Tf u orallGeC,, (2.28)

10



where
f(A,u)=0 (2.29)

represents the strong form of the equilibrium equations (2.8).

2.2 Exploitation of Symmetry and Bifurcation
It is well known that equivariance (2.28) implies that the nonlinear operator in (2.29) admits linear

invariant subspaces, which we now outline. Let X’ denote configuration space, defined via (2.10),, viz.,

3

X 0,L),R 0,1),5%)) (2.30)

where S’ is the set of all unit quaternions, and let X denote subset of all configurations satisfying the
boundary conditions and joint-compatibility conditions, viz., (2.4);, (2.5): and (2.10)2s:. Then
f:R X Y where the target space is the linear vector space YV L],R let 2= C;, be a
subgroup of the tripod symmetry group C, ,and define the X fixed-point space

X u X Tu uforallGeX}. (2.31)

This is simply the set of all admissible configurations enjoying the symmetry characterized by the subgroup
>. Inany case, (2.28) implies

fA,):R X Y (2.32)

where ) is the target fixed-point space
Yy y YTy y ralGeZ}.
Indeed, if ue X then (2.28) and (2.31) immediately give f(1,u)=f(1,T u)= Tf u orallGex

The main idea is to choose subgroups strategically, viz., in such a way that the symmetry-reduced
bifurcation problem (2.29), (2.32) entails only a 1-dimensional (single-mode) bifurcation analysis, which is
considerably simpler than the analysis of a multiple-bifurcation point. This is usually called the equivariant
branching lemma. In particular, numerical branch switching is routine in the 1D case. We use generic,
local-bifurcation arguments [10], [16] to guide our analyses before computing solution paths. The group

C,, has three non-equivalent irreducible representations (irreps), denoted y(G"),k =1,2,3, with generators

o 0
YRy = VE =1

Vin, =75 =1, (2.33)

o, AL ] e 10
Ryzrs 2_\/? _l’E 0_1’

respectively, cf. [18]. The first irrep (1) is always associated with symmetry-preserving configurations,
while the other two provide a preview of the type of potential symmetry-breaking bifurcation modes we
can expect.

b

Irrep (2) is associated with a potential 1-dimensional bifurcation, preserving rotational symmetry while
breaking reflection symmetry. The latter conclusion follows from the observation that ;/f;) =—1. The

single bifurcation equation — in the parameter A and the unknown amplitude — is odd in the latter
variable. Consequently, the bifurcation will be a “pitchfork”.

11



Irrep (3) is associated with a potential double bifurcation point, i.e., the null space of the tangent
stiffness is generically 2-dimensional. This is in consonance with the fact that representation (3) involves
2x2 matrices. Unlike the previous case, there are now two local bifurcation equations —in the parameter
A and two unknown amplitudes. Moreover, the bifurcation equations are equivariant under the matrix

representation 7, the latter of which is the complete symmetry group of an equilateral triangle in the
plane, denoted D,. There are three equivalent ways to break the symmetry leaving that of an isosceles
triangle. For instance, one of these has the symmetry group X ={I,E}. Accordingly, we expect three

equivalent bifurcating branches. It is enough to compute only one; by virtue of (2.28), (2.29), the other
two can be generated via consecutive actions of (2.13);. One such branch of solutions can be computed
efficiently as a 1-dimensional bifurcation via the restriction (2.32) employing the simple reflection
subgroup X just mentioned. Finally, we mention that the equivariance of the bifurcation equations under

7 also implies that the bifurcation equations exhibit a quadratic term. Thus, a potential bifurcation will

be transcritical in this case.

For the purpose of numerical computations, we choose the following quadratic, “diagonal”
complementary energy function for each of the rods in the tripod:

2 2 2 2 2 2
1—‘:£ n_1+2nl+M+ﬂ+ﬂ+ﬂ , (234)
2\ E4 G4, GJ EI, I

with Young’s modulus E =10’ Pa, shear modulus G =E/2,cross-sectional area 4,shear area A,

torsional moment of inertia J, and bending moments of inertia /,,/,. We choose L=1 for the rod

lengths. Although this appears trivial here, we leave the multiplicative factor "L" in (2.37), anticipating
structures for which the structural members need not have the same lengths, as in the Section 3. We
assume square cross-sections with geometric properties summarized below in Table 1.

Type of | Width | Height | moment of | moment of | Torsional Area | Shear
section w(m) | h (m) | inertia I, (m*) | inertia I3 (m*) | moment of area
inertia J (m*)
Square 6 6 w3h wh3 0.141hw3 wh Swh
34 34 ~ 12 EVE 6
~ 8.08210°°

Table 1: Geometric characteristics of bar cross-sections

We employ the path-following code AUTO [7], which detects and computes simple (single-mode)
bifurcations. As such, we begin with an analysis of the full tripod without symmetry restrictions in order
capture the symmetry-preserving primary solution and any potential bifurcations associated with irrep

)
v
by (1.16) and (1.18). For each rod, we index all quantities appearing in the set of equations by a
o

o0 b

equations (2.4), (2.10),, the boundary conditions (2.5)1, (2.10)s, and the equilibrium conditions (2.8), at
joint A all need to be written with respect to the local coordinate system of each rod.

. The field equations in local coordinates for each rod are given by (1.12) and (1.17), supplemented

parenthetical superscript, viz., 7,9 =(¢"",g"),n"”,m"’,j=1,2,3. Similarly, the compatibility

We first introduce
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i, =Qe!’, k=1,2,3, (2.35)
where Q is the rotation with matrix relative to the global basis given by

1 0 3

[Q]:% 0 1 0| (2.36)

B o 1

the latter of which follows directly from (2.1);. By virtue of (2.1);and (2.2), the compatibility equations
(2.4)1, (2.10); become
[017(0) =[R,,; I[Q1F?(0) =R, s ][O1F (0),
g,"(0)=¢q,”(0)=g.”(0), and (2.37)
[017""(0)=[R,,;][Q1?(0) =[R,,;1[Q1g"*(0),

respectively. Similarly, the boundary conditions (2.5)s, (2.10)3 now read

L/2
[OF" M) =[0F? M) =[0FFP () =| 0 |,
0
g’ =4 M) =¢ 1) =1, and (2.38)

7"H=g"N0=g"n=0,
respectively. For joint equilibrium, we first recall from Section 1 that n"’ =n’R"e\”, j =1,2,3, where
RY =R/¢” ®e;”. Then by (2.1);and (2.35), (2.8); reads

0
[OIRV(@" (0)r"” (0) +[R,, s IIQIR (G (0)n® (0) +[R, s IQIR(@7 (0)n® (0) =| O |, (2.39)
0.

[OIR” (@ (0)m(0) +[R,  IOIR @ (0))m (0) +[R,; IOIR™ @ (0)m" (0) =

The formulation from [14], outlined in Section 1, also requires the specification of (1.15) as a boundary
condition whenever the latter does not involve a purely kinematic rotation. In view of (2.37),3, it is
enough to prescribe

(¢,”(0))* +g"(0)-g"(0)=1. (2.40)

We note that (2.38) represents 21 boundary conditions at s =1. The joint compatibility equations
(2.37) provide 14 more at s =0, say, by relating 7’ (0),(¢'“’ (0),g‘(0)) to 7 (0),(¢'"(0),g""(0)) for
a=2,3. The joint equilibrium equations (2.39) together with (2.40) account for 7 more - for a total of

21 boundary conditions at s =0. Altogether, we have 42 boundary conditions. This is precisely the
number required for the boundary value problem comprising (1.12), (1.17) for each rod, totaling 39 first-

order differential equations in 42 unknowns (including the three dummy parameters 1, j =1,2,3).
Note that we could easily express the system as 42 differential equations by simply appending
s =1,2,3.
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We now discuss the results for the full structure. The symmetry-preserving solutions obtained,
associated with irrep ", are depicted in Figure 2(a). Surprisingly, the results include not only the

primary path but also a symmetry-preserving branch of bifurcating solutions. Sample deformed
configurations of the structure along each solution path are also given in Figure 2(b). Symmetry-
preserving bifurcation is not “generic”, cf. [10]. Here the phenomenon arises on account of the
employed constitutive law summarized in Table 1, which corresponds to a realistic model for
engineering rods: The bending and twisting stiffnesses are several orders of magnitude smaller than the
axial and shear stiffnesses, i.e., the rods are essentially inextensible and unshearable. As such, all three
rods “buckle” in flexure simultaneously under compression, giving rise to the symmetry-preserving
bifurcation. The same phenomenon is well documented for such a tripod comprising inextensible rods
with pin-jointed connections [2].

50
40 ]
30 |- 8
20 F 8

10 + i

~10 - 1

—20 L L L L L L L L L

a) [uf* + L?|]? b)

Figure 2. a) The principal path (black), bifurcation points and a bifurcated branch (orange) corresponding to
symmetry-preserving bifurcation, each associated with the trivial 1D irrep (1). Empty square markers denote
bifurcation points while full circles denote limit points. b) The corresponding deformed configurations (in grey and
orange) plotted against the undeformed configuration (in black), perspective and top (insert) views.

The analysis of the full structure via AUTO also reveals a symmetry-breaking bifurcation associated with
irrep . The primary and bifurcating solution branches along with a sample configuration on the latter
are depicted in Figure 3. The associated configurations maintain only C;- symmetry. We observe that

the bifurcation load occurs at a much smaller value than that of the symmetry-preserving bifurcation. We
remark that the projected curve in Figure 3 appears to show a double intersection at the bifurcation point
ontheright. Infact, the flat, upper part of the curve shown there does not actually contain the bifurcation
point. Another symmetry-breaking bifurcation of the same type occurring at a higher load level is also
present on the principal path, which we do not pursue here.
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a) Viul? + L2[¢]? b)

Figure 3. a) The principal path (black), bifurcation points and first bifurcated branch (red) corresponding to
bifurcations belonging to the non-trivial 1D irrep (2). Empty square markers denote bifurcation points while full circles
denote limit points. b) The corresponding deformed configuration (in red) plotted against the undeformed
configuration (in black), perspective and top (insert) views.

Double bifurcation points, associated here with irrep ', are not detected by the code AUTO.

Accordingly, symmetry reduction via (2.29), (2.32), rendering the bifurcation simple, is needed. As
discussed above, we choose the subgroup X ={I,E} = Z,, corresponding to reflection symmetry about
the plane spani,,i,}, cf. Figure 1. Our approach is facilitated by working with the substructure comprising
rods 1 and 2, accompanied by reflection conditions imposed at the joint A. To begin, we note that the
fixed boundary conditions (2.39) for rods 1 and 2 are unchanged.

In view of (2.4);and (2.10),, we use (2.10)s, (2.13); and (2.14),, to deduce

Er,=r, and -Eq,=q,, (2.41)
for the reduced problem (2.32). Then again by (2.4);and (2.10),, we employ (2.21); to find
n’(0)=¢,"(0)=¢;"(0)=0. (2.42)
In keeping with the formulation of [14], we also require
(4, (0)* +(g5"(0)* =1. (2.43)

The conditions for rod 2 follow similarly. From (2.1) and (2.35), it follows that e} ™ *, /

and thus, r'” =’ R,_,Qi,. Then (2.21) and (2.41) imply i, -r®(0) =1, -[R,_,,Qi, ]*(0) =0, leading
to
Br® 4212 4312 =0. (2.44)

In the same manner using (2.41),, we obtain

24 (0)— 345" (0) =0, 3¢5 (0)—2¢5”(0) = 0. (2.45)

Again, we enforce (1.15) at s =0, viz.,
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(¢,”(0))" +4(g5” (0))" =1, (2.46)

o

where we have made use of (2.45).

From (2.26),, the reduced problem (2.32) delivers n® =En”® and m® =—Em®. The joint
equilibrium equations (2.8),then read

n"(0)+ (T +E);n®(0)=Ai,, m"(0)+(I-E)m>(0)=0. (2.47)

Finally, we express (2.47) relative to the fixed global basis {i,,i,,i,}. Employing (2.1),, (2.11) and (2.36),
we find

(==

[O1R® @V ()11 (0) + ([/1+[EDIR, ,; IOIR™ (@ (0))]n(0)=| 0 |, (2.48)

NS

[OIR® @ (0)]m™ (0) + (11 -[EDIR,.., LQIR™ @ (0))]m* (0) = 0.

Note that (2.42)-(2.46) and (2.48) comprise 14 boundary conditions ats = 0. In addition, the fixed
boundary conditions (2.39) for rods 1 and 2 specify 14 more at s =1, for a total of 28 boundary
conditions as required for the analysis of two rods. We employ AUTO for the reduced problem.

The numerical solution paths for Z, -symmetric configurations are presented in Figure 4. As in the
previous two cases, the principal, symmetry-preserving path is obtained, and the first bifurcating solution
branch, breaking C, to Z,symmetry, is depicted in Figure 4(a). As previously predicted, the bifurcation
is transcritical (asymmetrical). Thus, the two “sides” of the bifurcating solution path are visible in the
projected solution curve in Figure 4(a). Deformed configurations of each side of the bifurcating path are
displayed in 4(b), where the blue shade of each is associated with that shade depicted in Figure 4(a). As
discussed before there are two other bifurcating solution branches equivalent to the one reported here
(say, generated by rotations). Another symmetry-breaking bifurcation of the same type but at a higher
load level is also present on the principal path, which we do not pursue here.
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a) [ul? + L?[¢]? b)

Figure 4: (a) The principal path (black), bifurcation points and first bifurcated branches (blue) corresponding to
bifurcation belonging to the 2D irrep (3). Empty square markers denote bifurcation points while full circles denote
limit points. (b) The corresponding deformed configurations (in variations of blue) plotted against the undeformed
configuration (in black), perspective and top (insert) views.

Our results for the tripod are summarized in Figure 5. We note that the double bifurcation point,
missed without symmetry reduction, is critical for this particular structure. The primary path is stable
between A=0and A=12, after which stability is lost. The transcritical bifurcating solution is also locally
unstable, and the simple bifurcations previously discussed are all unstable.

50

40

30

2 |

10

—10 - i

—20 I I I I I I
0 2 4 6 8 10 12 14

ul + L[]

Figure 5: Summary of primary bifurcating solution paths.
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3. A Space-Frame Dome

Next, we consider the hexagonal space-frame dome depicted below in Figure 6. We assume that each
of the joints A-G is rigid or “welded”. Each of the twenty-four rods comprising the dome is straight and
prismatic with a reflection-symmetric cross-section with respect to planes perpendicular to span {i,,i, }.
The material properties and cross-section of each rod are the same. Each of the joints A-G carries an
external load of —A1i,. Each of the six supports of the structure is clamped. Accordingly, the system
possesses the complete symmetry group

C,, ={R. .ER, ,:k=12,..,6}, (3.1)

where Eis the reflection as defined in Section 1, and R is the proper, clockwise rotation about the

global axis i,.

We employ the same methodology employed in Section 2 for the tripod. In this case, we require twenty-
four placement and twenty-four unit-quaternion fields to describe a configuration. We designate the rods
via the numbering scheme shown in Figure 6. Similar to (2.10), a configuration is uniquely specified by
the fields

() A 2 2 12 12). ..(13) ~(13) 18) ~(18). .(19) ~(19) (24) ~(24)
u=(r".q".r®,q%,r"? g ¥ g, g kg, g%, (3.2)
V3 5
7

Top

Elevation
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Figure 6: Geometry, loading and Euclidian global basis for the hexagonal dome represented on top-down (up) and
elevation(bottom) views. Colors represent bars of the same length length.

Note that we group together the deformation fields in (3.2) for rods of the same type, with each group
separated by semi-colons. The support rods appear in the first group, the top rods next, and the middle
rods (shown in blue in Figure 6) last. The fields for the top and support rods are each defined over the
interval [0,«/37], while each of the middle-rod fields are defined on [0,6]. We orient each rod, defining
the local coordinate system, as follows: Each of the top rods “starts” at joint A. The middle rods are
oriented clockwise about i,, and the support rods have their origins at the joints B-G, respectively.

The total potential energy of the structure is given by

Y u Uu +I, +... 1)1, (3.3)
where
18 37 (AT -
Uu [T (R
[RVT O [ROT K = Ve,

and W :(0,0)xR R is the stored-energy function, common to each of the rods. We assume fixed
boundary support conditions for members (1)-(12), similar to (2.5); and (2.10)s, and joint compatibility,
asin (2.4);and (2.10),. We give a sampling of both:

Boundary conditions:

r'"(37) =r"? (\/37) =-6:/3i, - 2i,,

(3.4)
9" (B37) =9 (B7)=(1,0).
Compatibility at joint A:
BOy=r"0)=...=r"¥(0
r(0)=r"(0)=..=r" (0), a3

q"?(0)=9"(0)=...=q""(0).
The first-variation conditions for the potential energy deliver the equilibrium equations as in (2.8)4,
I ’ ’ in (0,/37), j=1,2,...,18; in (0,6), j=19,...,24, (3.6)

and joint equilibrium, as in (2.8),, at each of the joints A-G. For example, equilibrium at joint B reads

n"”(\37) +n® (6) +n* (0) +n® (0) + n (0) = -Ai,,

(3.7)
m"”(37)+m® (6) + m® (0) + m® (0) + m® (0) = 0.

To properly describe the symmetry-group action on configuration space in terms of the two generators
of C,,, viz, R_, and E, we need to account for the orientation of the continuous “ring” of rods 19-24.

LetzeR denote the continuous arc length of the ring, oriented clockwise starting at location B on
rod 23, and let $eR denote the clockwise angle such that 7=6sin9/sin(2z7/3-9%). We

parametrize the ring via ¢ without changing the symbol of the dependent variable. Borrowing the
representation for the elastic ring presented in [12], we then define
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TR,,/su = (Rn/3r(12) ’R;z/aq(lz)aR;zBr(l) 9R;z/3q(]) stz/3r(2) ,qu(z) a"'aRmr(l ) ,qu(l 1)5
Rﬂ/3r(18)’ R/r/3q(18)7 Rﬂ/3r(]3)’ Riz/3q(l3)"‘ o Rﬂ/3r(l7) b Rn/3q(l7) 5
R_r*(9-7/3)R_,q*(9-7/3),R_;r"(9-7/3),R_.q"(9-7/3),...
R_.r®(9-7/3)R_.q*(9-7/3)),
(3.8)
T,u:==— (Er",Eq*, Er® Eq?,Er?®,Eq®,Er" Eq",Ex"? ,Eq",
Er(ll) Eq(ll) Er(lo) Eq(lo) Er(ﬁ) Eq(ﬁ) Er(S) Eq(5) .
Er(IS) , Eq(15) , Er(14) , Eq(14) ’Er(13) , Eq(13) , Er(lg) , Eq(IS) , Er(”) , Eq(17) ’Er(lﬁ) , Eq(lf)) :
Er® (-9)Eq™ (-9).Er"” (-9)Eq" (-9, Er* (-9).Eq™ (=)
Er®(-9),Eq® (-9).Er® (-9).Eq™ (-8), Er®" (-9 Eq*" (-9)).

Observe that the reflection reverses the orientations of rods 19-24 in this case, which explains the
appearance of "— 3" in the arguments of those actions. The group actions on the support rods and the
top rods do not affect orientations and thus do not act on the independent variable. As in Section 2, the
total potential energy (3.3) is invariant under the group action, viz.,

YV Tu V u LG e(,,. (3.9)

Although we omit the tedious details, we observe that the invariance of the internal energy U/ is a
consequence of the following: Given a configuration field u asin (3.2), then T u, G € C,, ,can be
interpreted as either a rotation by an integer multiple of 7z /3 or a reflection of the configuration across
a plane perpendicular to span{i,,i,} making an angle of an integer multiple of /6 with respect to
spani{i,,i,}. Ineach of the three levels of the structure, the rods are all identical and have reflection
symmetry in their cross-sections. Thus, the internal energy is invariant. For the loading term in (3.3),
we deduce from the generators (3.8) that

r,+r,+.+r, >R _.(r,+r,+...+r1;)
and
r,+r,+..+r, > Er, +r,+...+1,),

respectively. Of course, R’ .i, = Ei, =1i,, and the invariance follows.

As in Section 2, the first variation of the potential energy and integration by parts deliver the strong
form of the equilibrium equations, again denoted abstractly by (2.29). Moreover, the equivariance of
the equilibrium equations follows from (3.9) as in Proposition 2.2, viz.,

f(A,Tuy=Tf u orallGeC,, (3.10)

where the generators of the action T in (3.10) are defined as follows: For

() ) W®

— a @ (12) (12), (13) (13) as) (18), (19 _ (19) 24) (24)
c.—(n ,mY nY m”Y . on mY; n omt L on mtY nt om L nY m ),

(3.11)
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~:

n(4) , _Em(4) , En(3) , _Em(3) , En(2) , _Em(Z) , En(l) , _Em(l) , En(12) , _Em(12) ,
En"’,-Em"” En"”,-Em"?,..,En”,~Em”,En”,-Em";
En"™ , —Em"? R En"" , —Em" , En" , —Em‘? R En®™® , —Em"? R En"" , —Em""” s En"? s —Em"® ;
En®” (-9),-Em”” (-9),En"” (-9),-Em"” (=), En** (-9),-Em"" (- 9),
En?(-9),-Em"* (-9),En*” (-9),-Em** (-9),En" (-%),~-Em“" (-9)).

The symmetry group C,, has six irreducible representations [18], the generators of which are:

ye =y =1,
v, =75 =1,
71(5)2 == S)Z_lv

4 _ 4 _
Y, =Ve =-L

fos 08 i (3.12)
o _ 1 -1 \/§ Q) Lo
YR, == s Vi = 5
=213~ 0 -1
yo L1 B yo | b0,
fso2l_ B 1 07F |0 -1

As in Section 2, the first irrep 7" is associated with symmetry-preserving configurations. The 1-
dimensional irreps (2)-(4) are each associated with potential 1-dimensional symmetry-breaking
bifurcations. As before, the second irrep ' is associated with configurations having pure rotational
symmetry without reflections symmetry, viz., C,- symmetry. The other two irreps " and »* are
associated with configurations having only C;, - symmetry (with different orientations). This can be

deduced from the observations ;) =y;” =1and ;" ="y =yg =1.Ineach case, these are

the generators of a 1-dimensional representation of D, = C,,. In the potential case of bifurcation
associated with the irreps (3.12),.4, we expect pitchforks in each case. This follows from the
equivariance of the bifurcation equation under the representation, which induces oddness in the
amplitude variable. As noted before in Section 2, the software AUTO detects and computes such simple
bifurcations — in particular, without symmetry reduction. Again, we take a practical approach here and
analyze to the full structure. For each rod in the framework, we assume the material properties
summarized in Table 2.1, and we rescale according to (2.34), where L denotes the length of the
particular rod. In this way, we obtain a system of equations (1.12), (1.17) for each rod, all defined over
the unit interval, the form of which is necessary for the use of AUTO. The rod equilibrium equations are
combined with joint compatibility equations and joint equilibrium equations, samples of which are
provided in (3.5) and (3.7), respectively. As in the case of the tripod of Section 2, the field equations for
each rod need to be expressed with respect to its local basis, the details of which we omit here. In this
case, we also employ the modified bifurcation criterion proposed in [9], enabling the code to work
accurately for very large boundary-value problems.

The results for the full structure (no symmetry reductions) are now presented. The symmetry-
preserving primary solution branch is depicted in Figure 7, and a few sample configurations
corresponding to various solutions along it are provided in Figure 8. In this case, there are no symmetry-
preserving bifurcations. In particular, the solution curve does not have self-intersections, which only
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arise in the projection shown in Figure 7. Several symmetry breaking bifurcations are indicated in Figure
7. We discuss only those occurring on the first “ascending” part of the solution path. The firstat A=
1.15 is a subcritical pitchfork. The global solution path is shown in Figure 9 along with a typical
configuration. In particular, we observe that solutions on the bifurcating branch maintain C,, -
symmetry associated with the irrep 7. The latter follows from the observation that the configurations

possess a reflection symmetry corresponding to TETR/” = TERH. Remarkably, the second solution branch,
bifurcating at 1=1.22, is of the same type, viz., a C, -symmetric subcritical pitchfork also associated
with 7. The global solution path and a typical configuration are shown in Figure 10. Finally, the third
solution path, bifurcating at A =1.31, and a typical configuration are given in Figure 11. These
configurations also maintain C, - symmetry associated with irrep 7¥; the configurations possess a
reflection symmetry corresponding to T,.

2 ‘ ‘
limit points o
bifurcation points .

1.5 output points X i

—1 I I I I I I

0 20 40 60 80 100 120 140
ul + L?|¢?

Figure 7. Primary solution branch for the hexagonal dome.

Figure 8. Symmetry-preserving configurations along the primary path.
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Figure 9. Primary solution path and first Ca..symmetric pitchfork bifurcation at A= 1.15 and a typical
configuration.

limit points e
bifurcation points .
1.5 |

—0.5 +

—1 1 1 1 1 I I
0 20 40 60 80 100 120 140

‘u|2 +L2|d)|2 S

Figure 10. Primary solution path and second Cs,..symmetric pitchfork bifurcation at A= 1.22 and a typical
configuration.

23



limit pbints i
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Figure 11. Primary solution path and third Cs.symmetric pitchfork bifurcation at A= 1.31 and a typical
configuration.

Double bifurcation points for the complete structure, potentially associated here with the 2-
dimensional irreps ¥ and 7', cannot be detected directly by AUTO; symmetry reduction is required.
The irrep ' is a faithful representation of D,(=C,,)on R »* isnot. But a comparison of the latter
with (2.33)sreveals that ¥ is associated (faithfully) with the symmetry D,(=C,,)on R but with each
element of the group appearing twice. As discussed in Section 2, there are three equivalent ways to break
D,-symmetry (to that of an isosceles triangle) leaving reflection symmetry. Accordingly, if there is
bifurcation associated with 7, we expect three equivalent bifurcating branches; it is enough to compute
only one of these. As discussed in Section 2, we expect such a bifurcation to be transcritical.

Symmetry-breaking bifurcation associated with 7' is more interesting: There are two nonequivalent
ways to break D, symmetry (that of a hexagon) leaving reflection symmetry. One of the symmetry

(6)
b

subgroups comprises the 2x2 identity matrix and y,”, while the other consists of the identity and

-1 0
v =vim =[ 0 J. Notice that the former has a reflection symmetry about a line connecting two

opposing vertices of the hexagon, while the latter has a reflection symmetry about that connecting two
opposing edges of the hexagon. Each of these, in turn, can be accomplished in two other equivalent ways.

Thus, if there is bifurcation associated with 7', then we expect two non-equivalent bifurcating branches,
each associated with two other equivalent branches — for a total of six bifurcating branches. Any such
bifurcation is expected to be a pitchfork; the equivariance of the bifurcation equations under ;/(6) implies

oddness in the amplitude of the reduced 1D bifurcation equation [10].

To capture potential double bifurcations here, we require reduced problems (2.29), (2.32) such that
the bifurcations become simple, as in the Z, - preserving solutions of Section 2. The main task is to obtain

substructures (and boundary conditions) that admit only simple bifurcations. Asin Section 2, we restrict
the symmetry reductions only at the joints A-G. Based on the observations discussed in the paragraph
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above, it is apparent that substructures maintaining only reflection symmetry are required. The first
substructure we employ is shown in Figure 12.

@ D/a) p
V3 15
67

E (D) A
V3 19

@) ) _q

= F

V3
65

Top

Figure 12. Top view of the substructure associated with symmetry group ~ ={ILER }.

The boundary conditions at the supports and the joint compatibility and equilibrium conditions at joints
D, E and F are the same as before (for the complete structure). The boundary conditions at joint A and at
the newly exposed points P,Q arise from the reflection symmetry associated with the reduced problem.
Inview of (3.1), recall that K:=ER € C,, is a reflection across the plane span{i,,i,}. Itis not hard to see

that T, =T, =T,T, , and from (3.8), we find

T.u:==(Kr"",Kq",Kr® Kq”,Kr® ,Kq® ,Kr” Kq”,Kr® Kq® ,Kr®,Kq®,
Kr Kg®,...Kr® Kq®, Kr'"? Kq",Kr'" Kq"";
Kr"® Kq" Kr"” Kq"” Kr'” ,Kq"?,...Kr" Kq"; (3.13)
Kr'® (7 - 9),Kq® (7 — 8),Kr* (7 - 3),Kq™ (7 — 9),Kr"*" (z — 9),Kq*" (7 - 9),
Kr® (7 - 9),Kq® (7 - 9), Kr'"” (7 — 9),Kq"” (z — 9),Kr*® (7 — $),Kq** (x - 9)),
where Kq:=(gq,,—Kq). Similarly, we have

7 l(lo) ’_Km(IO) ’Kn(9) , _Km(9) ,Kn(S) ,—Km(x) ’Kn(7) ’_Km(7) yers
Kn(l) _Km(l) Kn(12) _Km(lz) Kn(ll) _Km(ll).
Kn“*),—Km“g),Kn(”),—Km(”),...,Kn“”,—Km(”);
Kn(23) (71' _ '9), _Km(23) (ﬂ' _ 19),Kn(22) (72' _ l9),_1(“1(22) (72' _ ]9),
Kn®" (7[ _ 19)’ —Km®" (ﬂ. _ 19),Kn(2°) (ﬂ. _ 19),—Km(2°) (72. _ 3),
Kn(19) (72' _ 19), _Km(l9) (ﬂ' _ 19),Kll(24) (ﬂ' _ l9))1{111(24) (72' _ l9))

(3.14)

Notice that the “slots” for rods 21 and 24 do not change in the actions (3.13), (3.14).
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We choose the subgroup X ={I,K} for the construction of the reduced problem (2.32). From (3.2)
and (3.13), it then follows that (Kr""(z —9),(q,,-Kq)*" (7 - 9)) = (" (9),(q,,q)*" ($)). Evaluating
this at mid-point P ($=37/2=-7/2) gives (Kr,,(q,,,—Kdq,)) =(r,,(q,5.9,)), implying

0

i-r,=0,1i,6-q,=0,

.1 P . qdr (3.15)

i, =0, i, qq =0, a=2,3,
the second set of which follows from the same arguments applied to rod 24 (evaluated at $=7x/2).
Similar conditions result at joint A. For instance, (3.2) and (3.13) via the reduced problem imply that
(Kr"” (s),(q,,~Kq)"”(s)) = (r"?(s),(q,,q)""(s)). Evaluating this at point A (s=0) gives
(Kr,,(q,,,-Kq,))=(r,,(q,4.9,)), implying

i r,=0,i,-q,=0, a=2,3. (3.16)

The equilibrium conditions at P, Q and A follow from joint equilibrium and reflection symmetry. For
example, at mid-point Q we generally have the equilibrium conditions n,+n, =0and m, +m,, =0,

where n m, refer to the force and moment resultant on the substructure, while n,.m refer to that

Q?

Q+
on the right substructure. From (3.11); and (3.14), the reduced problem implies
(Kn* (7 - 9),-Km“ (7 - 9)) = (n*?($),m"*" (9)). Evaluating this at the mid-point Q ($=7/2), we
find (Kn,,-Km,)= (nQng ). Thus, the equilibrium conditions now read mn,=-Kn, and
m, =Km,, implying
i, m,=0,i,-n,=0,
e ¢ (3.17)
i,m,=0,i,-n,=0, =23,
the second of which follows from the same argument applied to rod 21. Balance of force and moments
at joint A (s =0) are generally given by

n"?(0)+n" (0) +n" (0) +n"?(0)+n"”(0) +n"* (0) = - 1i,,

(3.18)
m"(0)+m" (0)+m"” (0) +m"” (0) + m"” (0) + m"? (0) = 0,
respectively. For the reduced problem via (3.11);and (3.14), we deduce n"® (0)=Kn"¥(0),
m"?(0)=-Km"”(0), n"” (0) =Kn"* (0), m"” (0) =—Km"* (0), n"¥(0) = Kn"? (0), and
m"* (0) =—Km"?(0). Hence, (3.18) reduces to
I+K]@m"(0)+n"(0)+n"" (0)) =-1i,,
[I+K]n"(0) (0) (@) 3 (3.19)

[1-K]m"?(0)+m"(0)+m"”(0))=0.

Note that rank[I+ K] =2 and rank[I - K]=1, i.e., (3.19) yields 3 scalar equations. Conditions (3.15)-
(3.17) and (3.19) provide the extra conditions needed for maintaining reflection symmetry on the
substructure of Figure 12. In order to implement AUTO, all rods in the half-structure are rescaled
according to (2.34). This includes the half-lengths of rods DP and FQ, which need to be rescaled
according to (2.34) with L= 3. As before, the field equations for each rod in the half-structure need to
be written with respect to their respective local coordinate system, the details of which we omit.
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The results for the half-structure are shown below in Figures 13 and 14. As expected, the simple C; -

symmetric bifurcations at A= 1.15and A= 1.22 (see Figures 9 and 10, respectively) are captured. The
first new bifurcation detected occurs at A= 1.26, which is transcritical; we deduce that it is associated

with irrep »®. A typical configuration along with the solution path is shown in Figure 13. Along this
branch, the deformed structure appears to possess C, , i.e., rectangular symmetry. This will be
confirmed shortly. The second new bifurcation occurring at 4 =1.42 is a subcritical pitchfork. Hence, it
is associated with irrep ®. The computed branch at hand, depicted in Figure 14, is one of two non-

equivalent solution branches occurring at that bifurcation point. This too will be confirmed shortly. A
typical configuration along the computed solution path is also given in Figure 14.

2

limit pbints "
bifurcation points

[u? + L?|¢[?

Figure 13. Transcritical double bifurcation point at 1 =1.26 and typical configuration with C, symmetry.

2 T T T
limit points 9
bifurcation points

—1 L L 1 1

0 0.5 1 1.5 2 2.5 3 3.5 4

VIul® + L*|[?
Figure 14. Pitchfork double bifurcation point at A =1.42 and typical configuration with Z, symmetry.

Next, we consider the reduced problem (2.29), (2.32) corresponding to subgroup X = {I, E}; the
associated substructure chosen here is depicted in Figure 15. As before, the boundary conditions at the
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supports and the interior joint compatibility and equilibrium conditions at joints F and G are the same
used in the analysis of the complete structure. The boundary conditions at joints A, B and E arise from
the reflection symmetry associated with the reduced problem. For instance, (3.2) and (3.8) imply

(Er®(s),(q,,—EqQ)*(s)) = (r*(s),(q,,q)*”(s)). Evaluating this at s =0, we deduce
(ErB > (qoB > _EqB)) = (rB > (qoB ’qB ))3 and thus’

i, r,=0,i,-q,=0, a=1&3. (3.20)
Similar considerations lead to the same type of conditions at joints A and E:

i, r,=0,1i,-q,=0,

. . (3.21)
i, r,=0,i,-q,=0,aa=1&3.
B
V3
2
(OEAVE
£
V3
2
Top
Figure 15. Top view of the substructure associated with symmetry group ~ = {I,E}.
Force and moment balance at joint E generally read
19) (20) (2) 3) (14) —_ 73
n"”(6)+n"””(0)+n"”(0)+n" (0) +n"* (V37) =-4i,, (3.22)

m™ (6)+m® (0) +m? (0) + m® (0) + m"* (\/37) = 0,
respectively, where we employ the local arc-length coordinates of each rod. For the reduced problem,
conditions (3.11)13 imply n®”(0) =En"” (6), m*”(0) =-Em"” (6), n® (0)=En"®(0),
m® (0) =—Em™ (0),and En"?(6)=n""(6). Thus, (3.22) becomes

[1+E]n" (6)+n®0)+n" (\37)/2} =—Ai,, (3.23)
[1-E]{m" (6)+m® (0) +m"" (/37)/ 2} = 0. '

Beginning with the general equilibrium conditions (3.7), the reflection symmetry of the reduced problem
at joint B implies

[1+E]{n®0)+n® (0)+n""(37)/2} =—Ai,,

(3.24)
[1-E]{m™ (0)+m® (0) +m"”(+/37)/ 2} =0.

Finally, (3.18) and reflection symmetry lead to
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[1+E]mn" (0)+n"®(0) +[n"¥(0) +n"" (0)]/ 2} = i,

(3.25)
[1-E]{m" (0)+m"® (0) +[m"*(0) + m""(0)]/ 2} = 0.

Note that rank[I+ E] =2 and rank[I —E]= 1. Thus, each of (3.23)-(3.25) represent 3 scalar equations.

The results for the half-structure of Figure 15 are as follows: As expected, the simple C, - symmetric
solution branch, bifurcating at A= 1.31 and shown in Figure 11, is again found. Moreover, precisely the
same transcritical bifurcation path depicted in Figure 13 is obtained. This confirms the C, -symmetry of

the configurations along it. The underlying group-theoretic reasoning for this is provided in Appendix B.
Next, a new bifurcating pitchfork branch of solutions is detected at A =1.42, which is given in Figure 16
along with a typical configuration. Observe that this solution branch is distinct from that shown in

Figure 14; e.g., each possesses a distinct reflection symmetry. This confirms that the double bifurcation

point at A =1.42 is associated with irrep y®.

2

"limit points
bifurcation points

1.5

—1 L L L 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4

u? + L?[9]?

Figure 16. Pitchfork double-bifurcation point at A =1.42 and typical configuration with Z, symmetry.

Finally, we deduce some local stability information via the usual exchange-of-stability arguments [17].
Stable here means that the equilibrium is a local minimum of the total potential energy. The first
ascending portion of the primary C, -symmetric path between =0 and A =1.15s stable, after which
stability is lost; the first subcritical C,, - symmetric pitchfork emanating from A=1.15 is also unstable.
However, the next subcritical C;, - symmetric bifurcation at 4 =1.22 (precisely of the same type) regains
stability as does the primary solution path between 1=1.22 and A=1.26. Beyond that, the primary
solution path and the remaining bifurcating solution paths - 3 branches at 4 =1.26, 1 branch at 1 =1.31,
and 6 branches at 4 =1.42 - are all locally unstable.

Concluding Remarks

We present a general approach to the bifurcation analysis of elastic frameworks with symmetry in
this work. While group-theoretic methods for bifurcation problems with symmetry are well known,
their actual implementation in the context of Cosserat-rod frameworks is not straightforward. The main
difficulty arises from the nonlinear configuration space, due to the presence of (cross-sectional) rotation
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fields. We avoid this via the single-rod formulation of [14], whereby the governing equations are
embedded in a slightly enlarged linear space. The field equations for a framework comprise the
assembly of the rods equations, supplemented by compatibility and equilibrium conditions at the joints.
We establish their equivariance via the invariance of the total potential energy under the group action.
Moreover, the implementation of group-theoretic methods is natural within the linear-space context.
All potential generic, symmetry-breaking bifurcations are a-priori predicted. We employ the numerical
path-following code AUTO [7], which can detect and compute simple, one-dimensional bifurcations.

For double bifurcation points, we construct symmetry-reduced problems implemented by appropriate
substructures. The double bifurcations are rendered simple, and AUTO is again applicable. We mention
that the subgroup-symmetry restrictions are imposed only at the exposed joints of the substructures
used in Sections 2 and 3. In fact, the reduced problem (2.29), (2.32) impacts all exposed degrees of
freedom — not just those at the exposed joints. Nonetheless, our practical approach employed here is
demonstratively successful.

It is entirely possible to construct reduced problems via substructures for all simple bifurcations
found as well — say for increased efficiency as in [1]. For instance, this can be easily done for the tripod
using a single rod. In the same way, each of the simple bifurcations for the hexagonal dome can be
obtained via an appropriate substructure. But there is no real need for such, given that AUTO easily
handles these for the complete structure.

Our formulation is not restricted to rigid (welded) joints. As indicated in (2.6) and the discussion
immediately thereafter, other connection types are possible, e.g., ball-in-socket. Hinged connections
(free rotation about one axis) and “mixed” connections at a joint are also possible. Moreover, our
construction of reduced problems is not restricted to double bifurcation points; multiple bifurcation
points arising from higher symmetry can be reduced in a similar manner. Finally, we point out that
while our formulation is conveniently implemented via AUTO, it does not depend on it. Any two-point
boundary solver —on a rod-by-rod basis, supplemented by joint equilibria and compatibility — can be
employed as the basis for numerical continuation and bifurcation.
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Appendix A

Proof of Proposition 1.1:

For simplicity, we suppose that the configuration of the rod is prescribed at the two ends, viz,
r(0),R(0),r(L)and R(L) are specified. We consider smooth but arbitrary fields n(x),®(x) that vanish
at the end points with @ =@, i.e., @ is a skew-symmetric field. The former is an additive admissible
variation for the field r, in contrast to the variation of the rotation field R. Rather, a finite perturbation
of R(s)reads exp[e®(s)]R(s),and an admissible first-order variation follows from R —

d
d—exp[e@]R |,_o=OR. The first-variation condition for (1.6) then follows from the calculation
£

di R+ &OR +0(¢)]|,_,=0 for all n,®. (A.1))
£
From (1.6), this entails unravelling the pertinent first-order perturbations:
[R+&OR+o0(e)]" (
=R )
where 0 =axial(®). In addition,
il ' £OR +0(¢)]"
=K+s( KO)+o(s),
axial {K + (C '
and then
[R+€OR +o0(e)] [k + (1 Fo(e)]
=Rk +&R" (I OK)+0(s) (A.2)
=Rk +¢R"(
Returning to (A.1), we now find
(U gOR +0(8)]l,_,
- di OLW(RT' - ), R7K+ R0 X
& . (A.3)
oW g - -
0 aVi un; J
—(‘m¢ - o or all 1,8,

where the last line follows from the use of (1.1) and (1.5). The first-variation condition (A.3) expresses
the weak form of the equilibrium equations; the classical form (1.7) follows from (A.3) via integration by
parts and the usual formal arguments of the calculus of variations. o

Proof of Proposition 2.1:

We assume the end conditions (2.4), (2.5). In consonance with those, we consider smooth fields
N (s), @Y (s) satisfying
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n(j)(L) =0, @(j)(L) =0,;=12,3,
n, =1"(0) =1 (0) =q"(0), (A4)
0 (0)=0"7(0)=0%(0),

which we use to construct admissible variations of (r'”,R"Y), j=1,2,3, respectively as in (A.2). We
express this abstractly via

Uuh U R” +£0"R" ¥ + en®,R? + £@PR? 1 + gq®
R? +0RY) +0(s), -
where h:=(m",0", 1,0, 1%,0%), with 0 = axial(®"), cf. (2.25).
Then as in (A.3), we compute the first-variation condition:
(6V u h uh U uh P
_ i{ifLW([R(j)]T - - - £) [R(j)]TK(j) + E[R(j)]T" )dx} |
- = ode? o e=0
+ A5 -n,
3L OW .
— A R(J) T .-
Z [{ 5 (R
+6—W([R(”]T,' "k)e” [RVT i, n,=0 (A.6)
Ok,
3
j=1

for all admissible fields 1,0 = axial®"’, j =1,2,3, satisfying (A.4) ; we used (1.1) and (1.4) in going
from (A.6); to (A.6);. The last line of (A.6) expresses the weak form of the equilibrium equations.

Integration by parts yields, use of (A.4), and the usual formal arguments of the calculus of variations then
deliver the field equations (2.8).o

Proof of Proposition 2.3:

First, we note that (2.24) is trivial for the symmetry-preserving loading term: From (A.6);, the first
variation of the loading potential is simply Ai, -n, = AGi, -n,forall GeC,,. Soit’s enough to show the
validity of (2.24) for the internal potential energy &/ u  Employing (A.5) and (2.26), we compute
directional derivative of the invariance conditions (2.15) (ignoring the loading term):

iZ/ITuh uh

d(‘; uc (A7)
<5u TuTh U uh

for all G € C;, and for all admissible h. The modified action on the space of admissible variations in (A.7),

arises as in (A.5) — from the conversion of skew-symmetric-matrix actions to cross products. It is
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straightforward, if tedious, to verify that the transformations (2.26) generate a faithful representation of
C

3v?

i.e., the mapping G—T is one-to-one, and

TT T T T T I ity (A.8)

Moreover, we claim that

T T , (A.9)

where T denotes the adjoint operator of T with respect to the inner-product (2.27). To see this, first
note that

<'f'f h T Th h)onC, (A.10)

for all smooth fields 6,h, the second equality of which is readily verified via (2.26), (2.27). Thus, T isa
leftinverse. Nowlet 6=T and k=T h inthe second part of (A.10), leading to <f T k T h

<p,k> on C, ,forall pk,i.e., 7:7 is also a right inverse. Finally, we choose h= f K in (A.7)2 and employ
(A.9) to deduce

(U Tu k U uTk
=<f U u ky,
for all G € C,, and for all admissible k. This completes the proof. o

Appendix B

Here we discuss the C, -symmetry of the transcritical bifurcation, depicted in Figure 13, associated
with irrep 7. As noted before in Section 3, (2.33);and (3.12)s reveal that 7" is associated (faithfully)
with D,-symmetry on R but with each element appearing twice. Hence, the maximal isotropy

subgroup of the fixed-point space span{i,} is actually = = {y\”,y, »*> ¥ which is a representation of

D, =\, 79,9 9 v < D,. Accordingly, we can build a projection operator on configuration space

with the symmetry of X via
1
P, = Z[T’ +T, +TR” +TER” 1,
where we use the [ ]11 entries of the matrices comprising X for weights [18], each of which equals 1 in

this case. The operators T, are defined via the generators (3.8). Then P.uc X for any configuration
ueX cf. (2.31), (3.2). We now observe that

TP =TT, +TE+TR7, +TER,,]/4:[TE+T1 +TER,T +TR,T]/4:P2,

B.1
TER”PZ :TER”[TI +T, +TR” +TER”]/4=[TER” +TR” +T,+T,]1/4=P,. (B.1)

Above we have used the fact that T.T,, =T, forall G,H €C,, = D,. Finally, forany v=PueX
(B.1) impliesT, v=v, T,v =V, and T, v =V, i.e, the configuration possesses C, symmetry.
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