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Abstract

The magnetorotational instability (MRI) is a fundamental mechanism determining the macroscopic dynamics of
astrophysical accretion disks. In collisionless accretion flows around supermassive black holes, MRI-driven plasma
turbulence cascading to microscopic (i.e., kinetic) scales can result in enhanced angular-momentum transport and
redistribution, nonthermal particle acceleration, and a two-temperature state where electrons and ions are heated
unequally. However, this microscopic physics cannot be captured with standard magnetohydrodynamic (MHD)
approaches typically employed to study the MRI. In this work, we explore the nonlinear development of MRI
turbulence in a pair plasma, employing fully kinetic particle-in-cell (PIC) simulations in two and three dimensions.
First, we thoroughly study the axisymmetric MRI with 2D simulations, explaining how and why the 2D geometry
produces results that differ substantially from 3D MHD expectations. We then perform the largest (to date) 3D
simulations, for which we employ a novel shearing-box approach, demonstrating that 3D PIC models can
reproduce the mesoscale (i.e., MHD) MRI dynamics in sufficiently large runs. With our fully kinetic simulations,
we are able to describe the nonthermal particle acceleration and angular-momentum transport driven by the
collisionless MRI. Since these microscopic processes ultimately lead to the emission of potentially measurable
radiation in accreting plasmas, our work is of prime importance to understand current and future observations from
first principles, beyond the limitations imposed by fluid (MHD) models. While in this first study we focus on pair
plasmas for simplicity, our results represent an essential step toward designing more realistic electron—ion
simulations, on which we will focus in future work.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); Accretion (14); Plasma physics (2089)
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1. Introduction

Astrophysical accretion disks are ubiquitous in the universe,
often surrounding massive compact objects such as black holes
and neutron stars. Plasmas in accretion disks rotate around the
central object with a differential-rotation profile determined by
the object’s gravity; gravity also drives accretion of gas onto
the central object, thus requiring a mechanism of angular-
momentum transport and redistribution throughout the disk.
Such a mechanism has not been completely understood so far.
The magnetorotational instability (MRI; Velikhov 1959; Chan-
drasekhar 1960; Balbus & Hawley 1991, 1998) has been
proposed as a possible pathway to promote angular-momentum
transport in accretion disks: the MRI causes a dramatic
amplification of any pre-existing seed magnetic field, however
small, driving and sustaining turbulence at macroscopic scales.
The development of the MRI thus creates the conditions to
connect the plasma dynamics at the smallest and largest length
scales in accretion disks. Although the development of strong
turbulence is an inevitable consequence of the MRI, it remains
to be understood whether, and under which conditions, this
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turbulence can also be responsible for efficient angular-
momentum transport.

Several studies have been conducted on the linear MRI
theory (Balbus & Hawley 1991; Goodman & Xu 1994; Latter
et al. 2009; Pessah & Goodman 2009), but the full nonlinear
development of this instability cannot be treated analytically.
Decades of research efforts have employed magnetohydro-
dynamic (MHD) simulations to study the complex, turbulent
state that arises during the nonlinear stage of the MRIL In
particular, local models of accretion disks—where only a small
sector of the disk is simulated—have attracted widespread
recognition, owing to the possibility of studying the MRI
development separately from its embedding astrophysical
environment. From the very beginning, such simulations have
been conducted with the so-called shearing-box approach
(Hill 1878; Hawley et al. 1995), where a small simulation box
with locally Cartesian coordinates is taken as representative of
the large-scale behavior of the whole disk. In the shearing-box
paradigm without density stratification, the vertical (z, parallel
to the rotation axis) and toroidal (¢, the direction of rotation;
locally y) coordinates are periodic, and the radial (r, locally x)
coordinate employs shearing-periodic conditions that model
the background differential rotation of the disk. Several MHD
codes implementing the shearing box have been developed
(e.g., Gressel & Ziegler 2007; Stone & Gardiner 2010) and
applied (e.g., Matsumoto & Tajima 1995; Stone et al. 1996;
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Sano & Inutsuka 2001; Pastorello et al. 2013; Hirai et al. 2018)
to study the MRI. These works have found that, when the
initial conditions involve a weak, purely vertical magnetic field,
the system initially evolves to a state of so-called “channel
flows” where strong radial and toroidal magnetic fields
develop. The magnetic-field polarity and flow bulk velocity
change sign at the channel interfaces, which become
susceptible to the development of parasitic instabilities (e.g.,
tearing, Kelvin—Helmholtz, or drift-kink modes among others;
Goodman & Xu 1994; Pessah & Goodman 2009) and magnetic
reconnection. These secondary modes feed off the primary
instability, eventually destroying the macroscopic channels and
driving a turbulent state.

While MHD studies have provided fundamental insight into
the physics of the MRI, plasmas in astrophysical accretion
disks should in many cases be treated with kinetic approaches.
In particular for radiatively inefficient accretion flows (RIAFs)
around supermassive black holes (SMBHs) accreting at low
rates, it is expected that plasma particles (electrons and ions)
can travel long distances between binary collisions, i.e., their
mean free path is comparable to the macroscopic scales in these
environments. As a consequence, electrons and ions in RIAFs
can be thermally decoupled at short distances from the central
object; both species can experience strong nonthermal accel-
eration, but energy partition can be unequal. In particular,
electron acceleration to high energies can result in the emission
of most of the outgoing observable disk radiation. Such a
collisionless, two-temperature, nonthermal, radiative state
cannot be fully captured with the standard MHD simulations
typically employed for accretion-disk modeling; it is, however,
imperative to investigate plasmas in these conditions with
appropriate methods to correctly interpret current and future
observations, such as the first direct images of the accretion
flow around M87" and SgrA™ (EHT Collaboration 2019, 2022).
So far, no self-consistent (i.e., first-principles) model of
collisionless MRI-driven turbulence, including reconnection,
angular-momentum transport, plasma heating, and particle
acceleration has been produced.

The scarcity of accurate theoretical models has profound
impact on our understanding of accretion physics. For example,
recent observational campaigns are affected by heavy uncer-
tainties due to a lack of a reliable theory for the electron/ion
energy partition in accretion disks. One of the most widely
employed models of plasma heating in general-relativistic
magnetohydrodynamic (GRMHD) simulations used to interpret
Event Horizon Telescope (EHT) images (e.g., Ressler et al.
2015; Chael et al. 2018; EHT Collaboration 2019) is based on
the nonrelativistic gyrokinetic (GK) approximation (e.g.,
Schekochihin et al. 2009), in which the magnetic moment of
particles is assumed to be conserved. This assumption reduces
the dimensionality of the problem and makes it much less
computationally challenging, allowing accurate calculations of
energy partition between different species in turbulence
(Howes 2010; Kawazura et al. 2019), including MRI
turbulence (e.g., Kawazura et al. 2021, in the reduced-MHD
limit). However, the GK assumptions prevent one from
studying nonadiabatic heating mechanisms (in which the
magnetic moment is not conserved). Additionally, GK heating
models do not take into account deviations of the particle
distribution function from thermodynamic equilibrium (e.g.,
pressure anisotropy). Such deviations can significantly modify
the rate of Landau damping (Kunz et al. 2015, 2018), which is
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the main dissipation mechanism in GK. In addition, in realistic
astrophysical plasmas, the magnetic moment of particles is not
expected to be conserved on global dynamical timescales,
allowing for a number of heating mechanisms not included
in GK. For example, if high-frequency fluctuations are present,
turbulence can be dissipated due to cyclotron resonance
(Kennel & Engelmann 1966; Isenberg 2004; Isenberg &
Vasquez 2007; Arzamasskiy et al. 2019; Squire et al. 2022);
alternatively, if electric-field fluctuations at scales comparable
to particle gyroradii have sufficiently large amplitudes, particles
can start experiencing a random walk in velocity space and
extract energy from these fluctuations (‘“‘stochastic heating”;
McChesney et al. 1987; Chandran et al. 2010; Hoppock et al.
2018; Cerri et al. 2021). It is unclear whether these two
mechanisms are viable in the context of accretion flows,
because both are expected to become less and less important at
large scale separation (i.e., the ratio between global scales and
the scales of particle gyromotion). Additionally, if plasmas
significantly deviate from local thermodynamic equilibrium,
various kinetic microinstabilities can be excited, such as
firchose (Rosenbluth 1956; Chandrasekhar et al. 1958;
Parker 1958; Vedenov & Sagdeev 1958; Kunz et al. 2014a;
Riquelme et al. 2015), mirror (Shapiro & Shevchenko 1964;
Kunz et al. 2014a; Riquelme et al. 2015), ion-cyclotron
(Sagdeev & Shafranov 1960; Ley et al. 2019), and whistler
(Sagdeev & Shafranov 1960; Riquelme et al. 2016). These
instabilities create small-scale fluctuations that scatter particles
and introduce an effective viscosity in the plasma, which
becomes the dominant dissipation mechanism of the cascade
(Arzamasskiy et al. 2022). The partition of energy due to this
“gyroviscosity” has been studied with “kinetic-MHD” methods
(similar to the Braginskii-MHD approach) by Sharma et al.
(2006), who concluded that the ion-to-electron heating ratio
depends on which instabilities are excited and how pressure
anisotropy is mediated by them, making the fully kinetic
modeling of these processes crucial for understanding plasma
heating.

Importantly, plasma energization can also occur in the
presence of current sheets, due to the tearing instability (leading
to magnetic reconnection; see, e.g., Zweibel & Yamada 2009)
and the drift-kink instability (DKI, Pritchett et al. 1996;
Zenitani & Hoshino 2007; Hoshino 2020). Both these
instabilities can operate in turbulent plasmas, where myriad
small-scale current sheets can form (e.g., Zhdankin et al.
2013, 2015, 2018a; Mallet et al. 2017; Loureiro &
Boldyrev 2020). These mechanisms can rapidly convert built-
up magnetic energy to plasma energy, accelerating a significant
fraction of particles to very high (nonthermal) energies (as
shown by kinetic simulations, e.g., Daly et al. 2008; Guo et al.
2014; Sironi & Spitkovsky 2014; Werner et al. 2016; Zhdankin
et al. 2017, 2019; Comisso & Sironi 2018, 2019; Werner et al.
2018; Wong et al. 2020). In particular, the tearing instability
tends to disrupt thin current sheets; concurrently, the DKI can
cause a current sheet to kink (ripple) and become distorted,
dissipating magnetic energy as the sheet turbulently folds over
on itself (Werner & Uzdensky 2021). These processes play an
important role in dissipating magnetic fields generated by the
MRI, and require a kinetic treatment to be captured self-
consistently. Recently, prescriptions for electron/ion heating in
magnetic reconnection obtained from kinetic simulations (e.g.,
Ball et al. 2018; Werner et al. 2018) have been employed in
GRMHD as a way to include the missing microphysics leading
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to plasma heating and subsequent emission (Dexter et al. 2021;
Hankla et al. 2022; Scepi et al. 2022).

Studying the MRI with kinetic approaches is important
beyond the electron/ion thermal- and nonthermal-energization
problem. A primary question is how the aforementioned
angular-momentum transport is realized in collisionless disks;
turbulence could, in principle, supply an effective “collision-
less” viscosity and resistivity determined by electromagnetic,
bulk, and anisotropic-pressure stresses. However, the latter is
not included in standard MHD models, which typically assume
an isotropic pressure. As mentioned above, building on kinetic
theory (Quataert et al. 2002), Sharma et al. (2006) conducted
simulations with a more sophisticated “kinetic” (i.e., Brag-
inskii) MHD model that evolves the parallel and perpendicular
pressure independently, limiting the allowed pressure aniso-
tropy with an ad hoc prescription. These simulations have
shown that pressure anisotropy can enhance the effective
viscosity, but a first-principles explanation for the observed
dynamics is still lacking.

Turbulent angular-momentum transport and particle accel-
eration in collisionless plasmas can be self-consistently
modeled from first principles with particle-in-cell (PIC)
simulations. Riquelme et al. (2012) and Hoshino (2013)
presented the first attempts to conduct shearing-box PIC
simulations in 2D. These pioneering works focused on pair
plasmas (for simplicity), and found that reconnection and
turbulence during the nonlinear MRI stage can produce
substantial nonthermal particle acceleration and momentum
transport. Hoshino (2015) carried out the first-ever 3D
shearing-box PIC simulation for a pair plasma and found
similar results during the nonlinear MRI stage. These findings
were corroborated by additional large-scale 2D pair-plasma
simulations by Inchingolo et al. (2018), who pointed out the
role of drift-kink instabilities in driving the turbulent state. All
these results align well with 3D simulations conducted by Kunz
et al. (2016) with a nonrelativistic hybrid approach (although
these employed a different initial magnetic-field geometry),
where ions are fully kinetic and electrons are treated as a
charge-neutralizing massless fluid.

Although they have provided new, fundamental insight, the
aforementioned PIC studies of the MRI so far presented in the
literature have been rather inconclusive in determining the
exact dependence of simulations on the chosen physical and
numerical parameters. The main issue impeding a comprehen-
sive understanding of the collisionless MRI is the presence of
very different scales of length and time that have to be included
in PIC simulations for these to achieve the converged,
mesoscale dynamics that is expected from MHD numerical
experiments. In nonrelativistic astrophysical plasmas, the
kinetic (microscopic) length scales for each particle species j
subjected to a magnetic field B are the Debye length

Apj = /kT; / (47rnjqj2) , the skin depth c/w,; (with the plasma

frequency wp; = /47quj2 /mj), and the Larmor radius

pcj=micu | J/ (g;B) (where u, represents the particle velocity
perpendicular to B); here, T and n are the plasma temperature
and number density, and ¢ and m are the particle charge and
mass. For an accretion disk subjected to the MRI, the
macroscopic length scales at a specific distance ry from the
central object are the most-unstable MRI wavelength
AMrr = 27va /€ and the disk scale-height H = vy, /g, where

w =R / /47rzjnjmj is the (nonrelativistic) Alfvén speed, vy, is
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Figure 1. Representation of the hierarchy from microscopic (kinetic) to
macroscopic (fluid) length scales that are relevant for kinetic shearing-box
simulations of the MRL

the plasma thermal speed, and (), is the disk rotational
frequency at ry. The relative ordering of microscopic (kinetic)
and macroscopic (fluid) spatial scales for cold plasmas is
depicted in Figure 1. The separation between macroscopic and
microscopic scales in real astrophysical systems is typically
enormous, and including a realistic separation in PIC
simulations translates into prohibitive computational costs. To
face the problem, PIC methods typically employ a reduced (i.e.,
unrealistic) separation between fluid and kinetic scales.
Unrealistic physical parameters can, however, have a sub-
stantial effect on simulation results. Studying how a certain
choice of parameters translates into a specific simulated result
is a key element in interpreting many kinetic studies presented
in the literature, but it has so far been underexplored. In
addition, the reduced dimensionality of 2D simulations can
dramatically alter the MRI evolution (Sano & Stone 2002;
Masada & Sano 2008), adding to the uncertainty of the PIC
results presented in literature.

In this work, we aim at filling the existing knowledge gap in
the physics of the collisionless MRI by carrying out a thorough
exploration of PIC simulations in two and three dimensions.
We assess the effect of all relevant physical parameters on
kinetic simulations, and most importantly, we conduct large-
scale, fully kinetic 3D simulations of unprecedented size. With
these runs, we can analyze the phenomenology of MRI-driven
turbulence, angular-momentum transport, and particle accel-
eration self-consistently, exploring a wide parameter space. In
this first study, we focus on pair plasmas for simplicity, with
the aim of approaching the more relevant electron—ion case in a
follow-up work.

This paper is organized as follows: in Section 2, we present
the relevant equations for shearing-box PIC simulations and the
methods employed to carry out our numerical study. In
Section 3, we discuss the choice of simulation parameters
and the implications for the numerical cost of the simulations
we run. In Section 4, we present a large parameter-space
exploration of the 2D axisymmetric pair-plasma MRI, discuss-
ing its phenomenology, the numerical convergence of simula-
tions, and the mechanisms of angular-momentum transport and
particle acceleration. In Section 5, we present the first large-
scale, 3D, fully kinetic simulations of the MRI conducted with
a newly developed “orbital-advection” shearing-box method.
Finally, in Section 6, we discuss our results and present our
main conclusions.

2. Kinetic Shearing-box Equations

In this section, we present the theoretical models employed
for the numerical simulations presented in Section 4 and
onward. First, we briefly describe the particle and field
equations in a rotating frame (Section 2.1) and the transforma-
tion to shearing coordinates (Section 2.2). Then, we present a
new formulation of the governing equations that simplifies the
existing approaches and is appropriate for 3D simulations
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(Section 2.3). We will call this new paradigm kinetic orbital
advection.

2.1. Equations in a Rotating Frame

We consider a small Cartesian sector of an accretion disk
with coordinates (r, ¢, z), i.e., the radial, toroidal, and vertical
(parallel to the central object’s axis of rotation) directions. We
apply a boost to a frame of reference that moves with rotational
velocity vo= Qg x r, where 4= (0, 0, ) is the rotational
frequency. The local box assumes a coordinate system (x, y, z),
where ro+ x gives the radial position by means of a (small)
increment x with respect to a reference radius ry; y is the
azimuthal (toroidal) direction, ignoring effects of curvature;
and z is still the vertical direction. The rotational velocity is
assumed to be nonrelativistic, i.e., v02 < c2. The disk is
assumed to be differentially rotating, implying that an observer
in the corotating frame, at some radius ry with velocity vy(rp),
measures a background shear in the toroidal direction. Across
short distances, the corresponding background velocity profile
can be linearized as w(x) = —sQoxé,, with s=3/2 for a
Keplerian disk (note that the equations we write below remain
applicable for arbitrary s).

Maxwell’s equations for the electromagnetic fields in the
corotating frame become (e.g., Schiff 1939; Hoshino 20137)

OB = —cV x E, (1)

8t(E _k

xB):cV X B — 4rn]J
c

—Vx(vox(E—mxB)), )
C

V -B=0, 3)

V.(E—ExB):mrp, 4)
C

for the electric and magnetic fields E and B, evolving in time
according to the source terms J and p, i.e., current and charge
density. We note that, in this frame, there exist four vector
fields, E, E', B, and B, obeying the relations (Arendt 1998)

%

E=E+ 2 «B, )
C

B*=B - X « E*, (©6)
C

and one could write different (but equally valid) versions of

Maxwell’s equations in terms of any set of such fields.

Equations (1)—(4) employ E and B, as this choice makes the

resulting equations more suitable for numerical integration.
The relativistic particle equations of motion in the rotating

frame are

u

dx
—=— (N
dr 5

du _ i(E + 2 B) + 2u x Qo + 29sQ3xe,,  (8)
dr m cy

for a particle with position x and spatial part of the
four-velocity wu = (u,, u,, u;) (with the Lorentz factor

7 Note that there is a sign typo in Hoshino (2013) in the first v, term on the
right-hand side of Equation (2).
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v =41+ u?/c?). On the right-hand side of Equation (8),
the Coriolis, centrifugal, and radial gravitational forces
(simplified to the small-box approximation) add to the usual
electromagnetic Lorentz force acting on particles. Equations
(1)-(8) will be referred to as the kinetic shearing-box (KSB)
system from now on.

Because of the background shearing profile, peculiar
boundary conditions are necessary in shearing-box simulations.
Maxwell’s Equations (1)—(4) require a special treatment at the
x-boundaries, reflecting the fact that the shear advects and
distorts field lines and fluid bulk motions. These shearing-
periodic boundary conditions are

E (xi,y,2) =E (xo,y — Ay, 2)

+w(Ly) X B(xo, y — Ay, 2)/c, ©)

B(xi, y, 2) = B(xo, y — Ay, 2), (10)
J(xi, y, 2) = J (X0, y — Ay, 2)

+ w (L) p(x0, y — Ay, 2), (an

pxi, ¥, 2) = p(xo, y — Ay, 2), (12)

where x; and x, represent the position of the inner and outer x-
boundaries and L,=x,—x; is the box size along x. The
difference in y-coordinate Ay, = sQyL,t increases with time,
and at the periodic times t =NL,/(sQoL,) with N € N, the
simulation box is strictly periodic again along x. The y- and z-
directions always remain strictly periodic.

Finally, note that, in particle simulations, special boundary
conditions must be applied to particles crossing x-boundaries.
First, the velocity of each particle must be modified by adding
or subtracting (upon crossing the outer or inner boundary,
respectively) the global velocity offset s(2oL.. Second, the
position of each crossing particle must be shifted by a distance
Ay, along the positive or negative y-direction (for particles
crossing the outer or inner boundary, respectively).

The numerical implementation of the KSB system presents
significant complications, due to the shearing-periodic bound-
ary conditions. These difficulties mainly arise in computer
codes employing MPI parallelization: because corresponding
points along the inner and outer x-boundaries shift in position
as time passes, the communication between processors across
these boundaries is substantially more complex than in the case
of standard periodic boundary conditions. Additionally, the
values of E and J must be corrected (with B and p,
respectively) prior to communication, which requires additional
interpolation because these quantities are typically not defined
at the same spatial locations.

2.2. Equations in Shearing Coordinates

A simpler alternative approach for PIC simulations has been
proposed by Riquelme et al. (2012) in the form of a
transformation to the so-called shearing coordinates (originally
developed and employed for MHD calculations; Goldreich &
Lynden-Bell 1965; Goldreich & Tremaine 1978; Narayan et al.
1987; Kaisig 1989). The transformation consists of a boost
along y to a reference frame moving with velocity vy(x),
thus obtaining the cancellation of velocity offsets at the
x-boundaries.® Assuming a 2D (x—z) geometry, Maxwell’s

8 Note that all terms containing v, in the KSB system are neglected prior to

boosting the reference frame, under the assumption that v¢ < c2.
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equations can then be rewritten and simplified to obtain

OB = —cV x E — 5{)B.é,, 13)
OE =cV x B — sQQE. e, — 4n], (14)
V -B=0, (15)

V - E = 4mp, (16)

which only differ from the standard Maxwell’s equations by
two source terms that drive the shearing of electric- and
magnetic-field lines along y (see Riquelme et al. 2012 for
further details). Correspondingly, the particle equations of
motion are rewritten by subtracting the background shearing
velocity, such that

e _u (17)
dr 5

du _ i(E + 2 & B) 1+ 2u X Qg+ sQouie,.  (18)
dr m cy ’

We will refer to Equations (13)—(18) as the kinetic shearing box
in shearing coordinates (KSB-SC) system. Note that, because
of the boost, all quantities (electromagnetic fields, currents,
velocities, etc.) measured in this reference frame are not
equivalent to those measured in the standard corotating frame
employed for the KSB system. In particular, particle velocities
here do not include the background shearing-velocity part,
implying that the current density measured in this frame lacks
the corresponding contribution from the background shearing
motion.

The KSB-SC equations above are adequate for 2D axisym-
metric simulations such as those conducted by Riquelme et al.
(2012) and Inchingolo et al. (2018) (as well as in Section 4 of
this work). These equations are advantageous for such
simulations also because they are far less complicated to solve
numerically than those of the KSB system, since the x-
boundaries are here strictly periodic. However, the full 3D
version of the KSB-SC equations includes several additional
terms that explicitly depend on the y-coordinate (Riquelme
et al. 2012); the numerical implementation of these terms is
substantially more complicated than that of the original
KSB equations. For this reason, the KSB-SC system has so
far only been employed for 2D simulations.

2.3. A New Approach: Kinetic Orbital Advection

Here, we propose a new approach to kinetic shearing-box
simulations in 3D. This is based on a combination of existing
techniques that have been employed in previous MHD and PIC
studies of the MRI. Our method is similar to the implementa-
tion of the KSB system as presented by Hoshino (2013, 2015),
but simplifies the required boundary conditions and employs
equations similar to those of the KSB-SC system, while
remaining fully applicable in 3D. The construction of our
method follows the so-called “orbital advection” approach that
is widely applied in MHD shearing-box implementations (e.g.,
Gressel & Ziegler 2007; Stone & Gardiner 2010 and references
therein). As we will show in the following, the basic idea is that
electric fields and particle momenta are replaced with
corresponding quantities boosted to a frame moving with v,
but the coordinates of the simulation box are kept in the lab
frame. We note that a similar strategy was employed in
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nonrelativistic hybrid simulations by Kunz et al. (2014a,
2014b, 2016).

To construct our set of equations, we start from the
KSB system. First, as done in all previous works, we neglect
the terms involving v in Maxwell’s equations (Riquelme et al.
2012; Hoshino 2013, 2015; Inchingolo et al. 2018). Then,
assuming v> < ¢2, we apply a Galilean transformation,

E~E+ % xB, (19)
c
where E’ is the electric field in the comoving frame.
Substituting for E’ in Maxwell’s equations, we get

B = —cV x (E’ BRI B), (20)
C
a,(E/ %y B) — ¢V x B — 47J, Q1)
C
VvV - B=0, 22)
v . (E’ BRI B) — 4. (23)
C

Further, substituting Equation (20) into (21), we obtain
OE'=cV x B — 4xn]

—vsx(VxE')+5x(Vx(ExB)), (24)
C C

where, for consistency with the assumption vs2 < c2, we will
ignore the last term on the right-hand side. Note that, having
removed the bulk-motion electric field v, x B/c from E, one
would expect E’ < E; however, E' can still be large due to
nonideal effects—e.g., at reconnection sites—hence we retain
the term v, x (V x E’) in Equation (24). A clear advantage of
a formulation involving E’ as the electric field is that the
boundary condition along radial boundaries becomes

E'(xi,y,2) = E'(xo, y — Ay, 2), (25)

which, in contrast with Equation (9) for the KSB system, does
not require correction of the electric field at the radial
boundaries with the corresponding magnetic field. This
simplifies the numerical implementation of boundary condi-
tions significantly.

Before rewriting Maxwell’s equations into a form that is
suitable for a numerical treatment, it is convenient (for reasons
that will become apparent later) to substitute the current, J,
with the comoving current J'. By applying another Galilean
transformation, we get

J ~J — pv. (26)

Note that using J’ as a source term for Maxwell’s equations
modifies the boundary condition (11), which becomes

J/(Xi, Y, Z) = J/(XO’ y = Ayy Z) (27)

and is manifestly simpler to implement numerically, since it
requires no correction of the current at the boundaries. We can
now employ Equations (22) and (23) to obtain the following
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evolution equations for E’ and B,

O:By = —cO\E! + c@ZE}', — v5,0yBy
OBy = cOE! — cO,E, — vs,0,By — By, (28)
OB, = —cOLE) + cO,E] — v;,0,B;

OE; = OB, — cO.By + v,0,E, — v ,0,E; — 4ml]
8,Ey' = —cO0,B; + c0,B;

—VsyOcEy — Vs, OyE; — vs,0:E. — Aml]
8,EZ/ = cOxBy — cOyB; + vs,yayEz' — vs,_\,azE}/, — 4qJ!

Z

., (29)

where we have neglected all terms of order 3. This form of
Maxwell’s equations is simple to handle numerically, since it
can be written as

OB = —v,,0,B + (other terms), (30)
OE' = +v,,0,E" + (other terms), 31
where the “=+” in the equation for E’ is a “~” for the y-

component and a “+4” for the other components. These
equations present a manifestly advective term in the y-
direction, which can then be treated with any of the available
schemes for numerical advection (see Appendix A for further
details).

In our approach, we choose to keep the particle position in
the lab frame, but to solve for the particle momenta u’ in the
comoving frame. In the nonrelativistic limit, this simply
reduces to separating out the shearing velocity v from velocity
fluctuations superimposed to this background. This choice
serves three purposes: first, we avoid the representation of a
constant background by a finite amount of computational
particles, greatly reducing computational noise (as also noted
by Kunz et al. 2014b); second, by evolving the particle velocity
in the comoving frame, we can directly collect the current J’,
justifying the use of the comoving current as a source term in
Maxwell’s equations; third, we avoid the need to modify the y-
velocity of particles crossing x-boundaries, thus simplifying the
application of boundary conditions.

To derive our particle equations of motion, we start from
Equation (8); we then boost u to the frame moving with v,

/

U, = u,
'

Uy = Yslly = %Vsy7> (32)
/

MZ = U,

where 7, = 1/«/1 — v2/c?. If we again assume v < ¢2, this
essentially becomes a Galilean transformation, and we have
Ys=1 and u; = uy, — 7'v, with 4/ = . We then substitute
into the equation of motion (8) to obtain

du  du odvg dy'
~ — 4y L

E dt dt dr

:i(E—&— u, ><B—|—v—s><B)
m cy c

+ 2@ x Qo + v x Qo + 7'sQ3xé,), (33)
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and for the particle position we have

/
&2y, (34)
e+
The terms containing ~' on the left-hand side of
Equation (33) can be expanded: the first term is
, dvg

¥ E = — /SQO%éy = —SQ()M;éy, (35)

and the second term can be treated in the following way: if
v =,
o & _u e

Oty 2 e
dr dr vy dt dr

where v/ = u’/+’. Now using Equation (8) together with
E'=E + (v/c) X B, we get

!

GRS i(E’+v— xB)
dr m c

+ ' + ) - Qu x Qo+ 2y xe,). (37)

Multiplying by v, and neglecting all terms of order €3 (for
consistency with the assumption ~; > 1), we thus have

!
,,sdi ~ l(v/ - Ey. (38)
dt m

Finally, on the right-hand side of Equation (33), we can expand
the term

Yy x Qo = —’y’sQ%xéx, (39)

which cancels exactly with the rotational-gravitational term in
Equation (33). The final form of our momentum equation is
therefore

!/ !
W _gfp W g
dt m cy'

!
+2u' x Qo + sQou,é, — l(u—/ . E’)Vs, (40)
m

Y

which is exactly the same as Equation (18) from the KSB-
SCsystem plus the additional term’® (q/m)@’ - E')v, /7.
Note that the correspondence with the KSB-SC momentum
equation is not a coincidence: in both cases, the evolution of
the particle velocity is calculated by separating out vy.

To summarize our choice of equations, we have (dropping
all primes for simplicity)

0B, = —cO\E; + cO.E, — v, ,0,B,

0By = cOE; — cO.E; — v, ,0,B, — sQ)Bx, 41
0B, = —cO,E, + cOyE, — vs,0,B,

° This additional term is not a peculiarity of our formulation; it is simply

neglected in Riquelme et al. (2012) and Inchingolo et al. (2018). This term
represents additional inertial forces proportional to the energy gain of a particle
due to work exerted by electric fields (Arendt 1998).
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OE, = Casz - Casz + VS,)'a.VEx -
3,Ey = 7C8XBZ + Casz

Vs yOrEy — 4mly

, (42
—VsyOrEx — Vs ,OyEy — vs,0.E; — 47, 42)
OE; = c0:By — cOyBy + vs yO\E, — v ,0.E, — 47/,
V - B=0, 43)
v . (E—E XB):47Tp, (44)
c

for the electromagnetic fields, and

%_E(E + L x B)
dt m cy

+2u x Qo + sQou.e, — i(ﬁ . E)vs, (45)
m\7y
&2y, (46)
dr ~y

for the particle motion. Equations (41)—(46) constitute the
paradigm for the kinetic shearing box with orbital advection to
be employed in our 3D simulations, and will be referred to as
the KSB-OA system from now on. This set of equations
requires simpler boundary conditions than the KSB case and
can be directly applied to 3D studies, contrary to the KSB-
SC framework. The numerical approach to solve these
equations is described in detail in Appendix A.

Finally, we note that Equation (46) can result in super-
luminal particle motion, especially when u/~ ~ ¢, because the
velocity addition with v is nonrelativistic. To avoid this issue,
we can apply the proper relativistic boost back to the observer’s
frame, to ensure that the velocity on the right-hand side is
always subluminal:

__ w 47
dr [y + uyvsyls
R e 5] 48)
dt v+ uy vs,y’
& s (49)

dr B [v + uyvs,y]% '

The numerical solution of these equations is slightly more
complicated, and requires a simple nonlinear iteration (see
Appendix A.2 for details). In large-scale simulations, however,
this difference in computational cost may be significant. We
thus resort to employing Equations (47)-(49) only when
superluminal motion is detected during a run. Note, however,
that these equations of motion are not entirely consistent with
the derivation of the momentum Equation (45) given above,
where dx /d t=u/~v+ v, was assumed. We have verified that
this discrepancy does not impact our results significantly.

We emphasize that, in deriving the equations above, we have
implicitly assumed that average bulk flows remain essentially
nonrelativistic throughout the development of the MRI and the
subsequent nonlinear turbulent stage. This assumption is manifest
in the adoption of Galilean transformations for the boost of
quantities to the comoving frame; the requirement of maintaining
subrelativistic flows also applies to other methods discussed in the
previous sections. In all our runs presented in this work, we have
indeed verified that this assumption is respected.
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3. Choice of Physical Parameters and Computational
Considerations

In Section 1, we have discussed the scale hierarchy that
characterizes multiscale systems such as collisionless accretion
disks. In realistic scenarios, the various length scales
represented in Figure 1 typically differ by orders of magnitude;
in simulations, we are bound to employ a drastically reduced
scale separation, due to computational constraints. Here, we
illustrate how the choice of physical parameters influences the
computational cost of simulations, as well as the limitations
that affect such numerical experiments.

The simulations presented in the next sections always start
from a weak vertical magnetic field B, in a box filled with
uniform, thermal pair plasma (with particle mass m = m; = m,,
number density ng=n;o=n,0) with dimensionless temper-
ature 0y = kTo/(mc?) (with To= T,0=T.p) and zero bulk
speed (measured in the frame moving with v,). In addition to
6o, the other basic dimensionless parameters we must choose in
our simulations are the initial Alfvén speed (normalized over
the speed of light, and calculated with the nonrelativistic
expression) VA,()/C = Bz,o/\/47rnome(l + m;/m,)c* and the
cyclotron-to-rotational frequency ratio we/$2 = gB.o/(mc).
Setting these quantities also automatically produces the
value of the total (counting both species) thermal-to-magnetic
pressure ratio By = 2nokT /[BZ fé87r)] =20y/(vio/c?). To
choose the free simulation parameters, we need to consider (i)
the underlying assumptions of our model, i.e., a nonrelativistic
shearing box (where volume-averaged bulk flows always
remain subrelativistic), and (ii) the astrophysical environ-
ments we target, i.e., accretion disks around SMBHs. To
respect the nonrelativistic shearing-box assumptions, we need
va0/c < 1; for conditions appropriate to astrophysical accre-
tion disks, we need 6, < 1 and wc/€y > 1. Setting these free
parameters produces an ordering of microscopic and macro-
scopic scales; to appropriately model accretion around SMBHs,
we should in principle respect the ordering depicted in
Figure 1, but we will show that this is not always
straightforward.

In terms of the free parameters 6y, vao/c, and wc/Qo, the
length scales shown in Figure 1, normalized to the total
(including both species) plasma skin depth c/w,, are given by

2o, (50)

c/wp

Pc \/9_0 (51)

c/wp a0/ ¢

AMRL - we (52)
c/wp 0
H__ we Jfo (53)

c/wp Qo vao/c

and ro/(c/wp) ~ H/(c/w,) if we assume a thick accretion disk,
i.e., setting the pressure scale-height H automatically sets the
distance r, from the central object.'® Imposing the aforemen-
tioned typical values 6y <1, vao/c <1 thus produces the
nonrelativistic ordering of microscopic scales Ap < ¢/w, < pc.

19 Thig last assumption indicates an underlying discrepancy in the application
of the unstratified shearing-box model to thick accretion disks, where vertical
stratification would in principle be required.
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Next, we need to choose the separation between the kinetic
scales and the macroscopic scales Ayr; and H. These are
related by

AVRL _,_We VA,O/C’ (54)
Pc Qo \/9_0
H wc
2 (55)
Pc Qo
with
H _ oo 1 (56)

Ar 2mao/c 2780

We thus see that it is easy to impose Ayri/pc > 1, H/pc > 1
by carefully choosing wc/$20 > 1, but the separation H/Avri
depends instead on the previous choice of 6y and vao/c.
Hence, care is needed in the choice of plasma temperature and
Alfvén speed to ensure pc < Avrr < H while also keeping the
correct microscopic ordering. We note that the free dimension-
less parameters also determine the macroscopic-to-microscopic
temporal-scale separation,

L. prc/Sho (57)
wp va0/C
i)l — e, (58)
LUE QO

where Po=27/{)y is the orbital period, and the ordering

w;l < we! < Py must be respected.

When choosing parameters for numerical simulations, a
realistic scale separation and correct scale ordering are
generally hard to achieve. The computational cost of a typical
shearing-box simulation directly derives from the relations
expressed above, with the addition that the vertical box size
L,/Avr1 and the final simulation time #.,4/Po enter as
additional macroscopic scales that should respect the ordering
AMmri < L, < H and Py < tepg. As we will show in Section 4,
physically valid simulations indeed require box sizes of at least
a few Ayrp in each spatial direction, as well as #.,q 2 10P. In
this work, we will always employ a spatial resolution
Ax = c¢/wp; while this choice does not typically resolve the
Debye length Ap at the beginning of the simulation, in all cases
the plasma is heated quickly enough to increase the effective
Debye length to scales larger than the grid spacing well before
the nonlinear MRI stage. We have also checked that our results
do not change significantly with higher resolution. The choice
of temporal resolution immediately follows as Af >~ rcpLw),
(where rep ~27"? and rep.~27"/3 are the 2D and 3D
Courant-Friedrichs—Lewy factors, respectively).

For 2D simulations, we will employ the KSB-SC paradigm
and typically allow for L, > H in order to avoid excessive
computing costs (see below) when conducting the parameter-
space scan presented in Section 4.3. We have verified that the
qualitative behavior of the results is the same when employing
parameters that instead respect the constraint L, < H. The
computational cost for our 2D runs can thus be estimated using

L we (59
>\MRI QO

L o L _ L Ari_Pc
Ax c/wp AMRI Pc €/ wp

N,
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for the number of required grid points N, along a generic
spatial direction, and

N, ~ Tend _ Tend Py o Tend WC/QO (60)

FCFLW)

i
Py repLwy Py vao/c

for the number of time steps N, needed to reach a final time #.,,4.
We can observe that, in terms of the free parameters, the
required grid size increases linearly (in each direction, i.e., as N§
in 2D runs) with we/Qp. In 2D runs, the typical choice for the
free parameters is wc /2y = 10-30 (but we have run simulations
with much larger values), vao/c=0.01, 0y=1/32 (e,
Bo=624 for both species)) which translate into
Avri/Ax >~ 60-180 and Po/Atr~~8000-25,000. With these
values, the microscopic scales are rather well-separated,
pc/(c/wp) = 17.8; however, the macroscopic scales are much
less distinguishable, i.e., H/Ayri~2.8. Furthermore, the
separation between macroscopic and microscopic scales is
large, but still far from realistic, i.e., Avri/pc = 10.6. For a
domain size L = 8 \pry in each dimension and a final simulation
time 7., = 15Py, these parameters imply evolving a grid of size
up to ~1500 x 1500 cells for ~400,000 time steps. Achieving
better scale separation is in principle possible, e.g., by
increasing we/o; however, the required grid size and simula-
tion duration can become prohibitive well before reaching
realistic values (e.g., an estimated we/€Qy ~ 107 around M87*).

With the insight gained from our 2D campaign, we will run
3D simulations employing the KSB-OA formulation and
demand L,=H, for complete consistency with the spatial
scale ordering. We will then vary L,/L, and L,/L, indepen-
dently, taking care to ensure that the velocity offset
vo(Ly) =sQL, < ¢ at x-boundaries."' The required grid size
in each direction is thus

N~ L _ L H Mri_Pc
# c¢/wp  HMmi pe ¢/wp

0
- Lwc Voo . (61
H Qg vap/c

while the number of time steps is computed as in the 2D case.
In general, \/6y/(va.0/c) > 1, and therefore it is clear that 3D
runs will be more expensive than 2D simulations, not simply
due to the dimensionality but also in terms of the effect of the
free parameters. For example, a large-box 3D simulation with
we/Qo =15, vaop/c>0.007, 6p=1/128 in a box of size
LZ = 2>\MRI$ Ly = 2Lx = 8AMRI’ run until fend = lSPO, 1mphes
evolving a grid of ~256 x 1024 x 128 cells for ~250,000 time
steps.

Finally, we note that the reasoning outlined above only
relates to the initial conditions of each simulation; in practice,
as the system evolves, macroscopic and microscopic scales
tend to become better separated as the magnetic field is
amplified and pc is reduced. The MRI dynamics also helps to
better resolve the kinetic scales (e.g., the skin depth), because
these will become larger as plasma is heated during the system
evolution.

" This is not necessary in 2D: as mentioned by Riquelme et al. (2012), in the
shearing-coordinate frame, the global profile of the shearing velocity is
v /c = —tanh(sQyx/c)é,, such that v, < c regardless of the simulation size.
This does not apply to our 3D simulations, which do not employ shearing
coordinates.
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Table 1
List of 2D Simulations
Box Size (L, x L) we/o Bo AMRI/ Pc
2 X 223k 6 624 2.13
2 X 2N 30 624 10.67
2 X 22k 120 624 42.65
2 X 223kt 240 624 85.30
4 X ANR 30 624 10.67
8 X 8\ k1 6 624 2.13
8 X 8\ rs 15 624 533
8 X 8\ 30 0.1 842.30
8 X 8\ r1 30 1 266.36
8 X 8\ k1 30 5 119.12
8 X 8\ rs 30 78 30.16
8 X 8Xrt 30 624 10.67
8 X 8\ k1 30 2,496 5.33
8 X 8\ 60 624 21.33
16 x 4\ 30 624 10.67
16 X 16X g 30 624 10.67
32 X 8\ 30 624 10.67
32 % 320 30 624 10.67

Note. In all cases, vao/c=0.01;the numerical resolution is such that
Ax = ¢/w,, and we employ 25 particles per cell per species.

4. Two-dimensional Simulations of the MRI in Collisionless
Pair Plasmas

In this section, we present the results of several PIC
simulations of the collisionless MRI in 2D. The parameters for
each simulation are specified in Table 1. In all runs, we solve
the KSB-SC system with the relativistic PIC code ZELTRON
(Cerutti et al. 2013). Our initial setup consists of a 2D (in the xz
poloidal plane) box filled with thermal plasma and a weak
vertical magnetic field determined by our choice of initial
parameters wc/Qo, vao, and Gy (or equivalently, 6p). We
always employ 25 particles per cell per species, and adopt a
resolution such that Ax= c/w,. Our largest 2D simulations
employ computational grids with 44807 cells, for a total of over
one billion particles. Finally, note that, in our runs, we do not
perturb the initial conditions, such that the MRI grows from
random, base-level fluctuations (i.e., numerical noise).

In this section, we first briefly describe the typical stages of
the evolution of the collisionless MRI in two-dimensions
(Section 4.1). We then provide a physical explanation for all
the features observed in this evolution (Section 4.2). We
subsequently present an exploration of the physical-parameter
space characterizing kinetic shearing-box simulations of the
MRI (Section 4.3). Then, we discuss the characteristics of
MRI-driven turbulence (Section 4.4), particle energization
(Section 4.5), angular-momentum transport (Section 4.6), and
the zero net-flux case (Section 4.7). From these runs, we
identify a suitable set of parameters to be employed in the
much more expensive 3D simulations presented in Section 5.

4.1. Typical Evolution of the 2D Collisionless MRI

Figure 2 describes the evolution of a typical two-dimen-
sional, PIC MRI simulation of limited box size. The top-right
panel shows evolution of the change (with respect to the initial
value) in magnetic energy for each component of B (normal-
ized to the total energy at r=0). This run employs the
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parameters wc/y = 120, Gy = 624, vao/c =0.01 in a “small”
box of size 2 x 2\r;. The evolution proceeds through several
stages, with the beginning of each phase marked by vertical
black lines in Figure 2. These phases qualitatively characterize
all 2D simulations with finite, net vertical magnetic flux,
independently of the system size and parameters chosen for the
run (aside from a less clear distinction between phases in larger
systems—see the explanation below).

The magnetic energy grows from a pre-instability state
(phase 1), which lasts for ~ 2P, to the linear MRI growth
(phase 2), where the magnetic-field strength increases expo-
nentially by several orders of magnitude. During the linear
stage, the initially vertical magnetic field acquires radial and
toroidal components, resulting in bent magnetic field lines (in
the xz-plane) that self-organize into “channel” flows. This is
visible in Figure 2 (top left), which shows that both the in-plane
magnetic field By = B} + B> and the out-of-plane B,
present channel structures. These channels are of vertical
size ~ Ayry, and the radial and toroidal fields are spatially
uniform inside each channel; both field components reverse
sign at the channel interfaces. The channels represent an exact
nonlinear, equilibrium solution of the MHD equations (Good-
man & Xu 1994); this state is, however, unstable to linear
perturbations, which can lead to further evolution through
secondary (parasitic) instabilities developing on top of the
primary MRI (Goodman & Xu 1994; Latter et al. 2009; Pessah
& Goodman 2009). These include tearing modes, which we see
developing in our simulation (Figure 2): throughout the linear
stage, the magnetic-field strength in each channel increases,
and the thickness of the interfaces where B changes sign
decreases; current sheets that form at these interfaces thin out
until, at >~ 3P,, we observe an abrupt drop in magnetic-field
energy. This moment marks the onset of magnetic reconnec-
tion, mediated by the tearing instability in the thinning current
sheets, and the beginning of phase 3 of the evolution (Figure 2,
center left).

Phase 3 is the most interesting stage of the evolution. This
phase is in principle representative of the typical state of
turbulent accretion disks, where particles (electrons and ions)
can experience acceleration. For electrons, this acceleration
may become strong enough to reach radiative regimes (e.g.,
Ryan et al. 2017; Dexter et al. 2021). The nonlinear stage in
phase 3 is characterized by the competition between the MRI,
which actively strengthens the magnetic field in the channels,
and magnetic reconnection, which depletes magnetic energy in
the current sheets, thereby energizing the plasma. In addition to
the reconnection process, substantial kinking of the current
sheets can in principle disrupt the channels and bring the
system to a saturated, fully turbulent state, which should remain
sustained throughout phase3. However, here we do not
observe the development of such a dynamics. In fact,
turbulence does not generally develop in small-box runs,
where channels persist without being disrupted throughout
several reconnection events (Figure 2, bottom left), marked by
repeated drops in the magnetic-energy evolution during
phase 3. The continuous action of the MRI during this phase
is indicated by subsequent stages of magnetic-energy growth,
which do, however, proceed with decreasing growth rates. This
magnetic-field amplification is particularly strong along the
(out-of-plane) y-direction; the in-plane components show a
much smaller increase.
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Figure 2. Evolution of a typical PIC simulation of the pair-plasma MRI in a small 2D box (2 X 2A2z;). Left column: spatial distribution of the out-of-plane magnetic

field B, and of the in-plane field strength By, = 4 /B2 + Bf at subsequent times during the simulation. Right column: evolution of the change in magnetic energy in all
three components of B (top) and evolution of the volume-averaged 5 = p;/ [Bz/(87r)] and B, =p,/ [Bz/(87r)] (bottom). The beginnings of different phases
characterizing the system evolution (described in the text) are marked with vertical black lines.

Finally, at r >~ 7P,, we observe that the increase in magnetic
energy is halted, and the system rapidly relaxes to a quiescent
state that remains unchanged endlessly (phase 4). This results
from the MRI growth rate decreasing and the unstable MRI
modes migrating to longer and longer wavelengths. Eventually,
these modes grow to length scales larger than the box size, and
the MRI stops. Previous works have shown that magnetic fields
then reorganize into flux tubes that are stable to axisymmetric
perturbations and impede further MRI growth (Riquelme et al.
2012; Hoshino 2013); in our runs, we observe the same
behavior during phase4 (not shown in the left panels of
Figure 2). In realistic environments, the MRI is not expected to
be suppressed over such short timescales; as we discuss in the
next sections, this effect results from the typical (unrealistic)
choice of parameters employed in PIC runs.

As mentioned above, the nonlinear stage of the MRI (phase
3) is expected to achieve a fully turbulent state, which is not
observed in any small-box run. A regime of developed
turbulence can be attained only by increasing the domain size.
Figure 3 shows the typical evolution of a large-box PIC MRI
simulation in 2D, with parameters wc/o =30, [y=624,
vao/c=0.01, and a box size 32 x 32\, i.e., 16 times larger
than the previous run. The left panels show that the (much
more numerous) initial channels formed during the linear stage
break up into smaller structures: this breakup corresponds to
the beginning of the nonlinear state (i.e., phase 3 in the
evolution). The magnetic-energy evolution (top right) shows
that, within 30 orbits, the system is slowly reaching the end of
phase 3 (notice the difference in timescales between this and
the previous run); the energy in By, is still increasing, indicating
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that the MRI has not been completely halted yet. However,
over sufficiently long timescales, the behavior of the MRI in
the large- and small-box cases is similar: in our simulations, we
have observed that arbitrarily large systems eventually evolve
to the same final quiescent state where the MRI has stopped,
with large-scale magnetic loops that persist indefinitely. The
remarkable difference between the two cases is thus repre-
sented by the presence of turbulence, which only manifests
when employing large domain sizes. Notice also how the
presence of turbulence in the large-box case masks subsequent
cycles of MRI growth/reconnection, which can instead be
clearly identified in the small-box run.

The two simulations discussed in this section are represen-
tative of the state of the art of fully kinetic, two-dimensional
MRI simulations in pair plasmas with initial vertical field. In
fact, both simulations employ much larger scale separation—in
terms of wc/Qo and/or box size—than any previous work.
Still, several questions on the physical evolution of such a
system remain open: it is thus far unclear what exactly causes
the subsequent MRI growth-reconnection cycles during phase
3 in the small-box case (and the lack of such a clear distinction
between cycles in the large-box case); it is also not apparent
how the choice of physical parameters drives the transition to a
turbulent state and what causes the decay of turbulence over
time; moreover, it remains unexplained why, even in the large-
box case, the B, energy grows much larger than the other
components, without reaching a clear saturated state such as
that observed in typical MHD simulations (e.g., Pastorello et al.
2013). In the next section, we provide a physical explanation
for all these observations.
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Figure 3. As in Figure 2, but for a large 2D box (32 x 32Xp).

4.2. Physics of the 2D Collisionless MRI

In principle, the desired outcome of any MRI simulation is a
saturated, turbulent nonlinear state that lasts for long times.
However, no 2D PIC simulation of the collisionless MRI with
nonzero net flux presented in literature (including this work)
shows this behavior. While the linear MRI stage is generally
well-captured (for reasonable simulation parameters), from the
onset of magnetic reconnection, the overall behavior of 2D PIC
runs seems to diverge from 3D MHD expectations. Figures 2
and 3 in particular show that the magnetic energy increases
steadily, instead of remaining roughly at the level reached at
the end of the linear stage. Furthermore, Figure 3 points out
that, in large systems, a quasi-constant, saturated level can in
fact be maintained at least for the energy in B, and B, (i.e., the
in-plane components), but not for B,. We explain this issue,
together with the overall 2D MRI dynamics in PIC, with the
following reasoning.

At the end of the linear stage, to maintain a saturated state,
the magnetic-field amplification by the MRI should be
approximately balanced by dissipative mechanisms. Strong
magnetic fields induced by the MRI can in principle be rapidly
destroyed via reconnection, generally resulting in turbulence
and small-scale magnetic structures, which can then seed the
MRI again in a continuous cycle. In 3D MHD simulations with
sufficiently large box size, this is realized without issues (see
Latter et al. 2009 for a discussion on MHD simulations with
varying box size). However, 2D PIC simulations have reduced
dimensionality, and also allow for the presence of pressure
anisotropy. The latter is typically not included in standard
MHD (with exceptions, e.g., Sharma et al. 2006). Both the 2D
geometry and the development of pressure anisotropy play an
important role in axisymmetric PIC MRI simulations.
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Figures 2 and 3 (bottom right panels) show the evolution of
the volume-averaged (3,=p,/ [B*/(8m)] and (B, =p, / (B? /
(8m)], where p and p, are the parallel and perpendicular (to
the magnetic field) thermal plasma pressure. We observe that
non-negligible pressure anisotropy p, > p; develops during the
MRI evolution, starting from the linear phase: a strong increase
in B is accompanied by an increase in perpendicular particle
energy, due to the invariance of the magnetic moment
W= muf /(2B). This anisotropy alone can drive three distinct
mechanisms: (i) an increase in the growth rate of tearing modes
(e.g., Chen & Palmadesso 1984); (ii) the excitation of mirror
modes (e.g., Kunz et al. 2014a), which can also couple with
tearing modes, further increasing the tearing growth rate (Alt &
Kunz 2019; Winarto & Kunz 2022); and (iii) a decrease in the
growth rate of the MRI (Quataert et al. 2002). During the linear
stage, the first two mechanisms cause the rapid onset of
magnetic reconnection: the enhancement of tearing modes
occurs concurrently with the natural thinning of current sheets
that form at the interface of channel flows. At the same time,
the MRI growth rate is reduced both by pressure anisotropy (
i.e., the third mechanism above) and by the fact that, by this
time, v, has increased substantially and the most-unstable MRI
wavelength Ayry = 27va /€ is much larger (possibly larger
than the box size) than in the beginning of the simulation. As a
result, as reconnection is initiated, the MRI drastically (but
temporarily) slows down.

We note that the excitation of the mirror instability
mentioned above should in principle limit the growth of
pressure anisotropy, because in realistic systems, mirror modes
can act on timescales comparable to those of the MRI. This
represents a crucial point in typical PIC MRI modeling: the
usual choice of physical parameters is such that, in simulations,
mirror modes grow unrealistically slowly. This can be simply



THE ASTROPHYSICAL JOURNAL, 938:86 (38pp), 2022 October 10

estimated by demanding that the mirror-instability growth rate
be comparable to that of the fastest-growing MRI mode, i.e.,
wel2 ~ 3Q/4, where An=pi/py—1-1/6, (Kunz et al.
2014a). During the linear stage, we measure a typical peak
value Ay~ 107", implying that wc/Qy~ 10> would be
required for fast mirror modes; the measured typical value of
A, is even lower during the nonlinear phase, achieving
A < 1072, which requires we /o~ 10* to satisfy the condi-
tion above. As discussed in Section 3, this regime simply
cannot be achieved realistically in simulations. As a conse-
quence, the MRI dynamics in PIC runs will inevitably result in
the development of larger pressure anisotropy than expected
with realistic physical parameters.’

A large pressure anisotropy, combined with the migration of
unstable wavelengths to larger scales, could in principle
suppress the MRI from proceeding further already at the end
of the linear stage. Fortunately, magnetic reconnection can at
least partially counter this process, both by decreasing the field
strength and by decreasing pressure anisotropy via parallel
particle acceleration at reconnection sites. This is exactly what
we observe for both the small- and the large-box cases right
after the onset of reconnection (Figures 2 and 3, bottom right).
In all our runs, we consistently find that reconnection events
push the anisotropy in the direction opposite to that induced by
the MRI, at times achieving p; ~p,. We also note that an
additional (but probably largely unimportant) mechanism of
anisotropy reduction may stem from the conservation of the
invariant pyB>/p’ (e.g., Sharma et al. 2006 and references
therein), which further increases p; when magnetic energy is
depleted during reconnection (Hoshino 2013).

As reconnection dissipates magnetic energy and reduces
pressure anisotropy, the system returns to conditions that allow
for the MRI to develop. At the same time, tearing modes are
progressively quenched due to the thickening of currents sheets
at channel interfaces. This temporarily halts the reconnection
process. The MRI is therefore free to start again, commencing a
new exponential-growth stage (as can be observed during
phase 3 of the evolution in Figure 2, top right). However, recall
that, by this time, v4 is much larger than in the initial state, and
the most-unstable MRI modes may no longer fit inside the
simulation box. The MRI growth rate is then appreciably
smaller than the asymptotic value 3Q/4. This new MRI phase
thus amplifies magnetic fields more slowly, but the overall
dynamics is similar to that of phase2: p, > p, anisotropy is
again realized due to u conservation; current sheets become
thinner at the channel interfaces; magnetic reconnection
eventually disrupts the sheets, and so on. During each cycle,
the MRI growth rate decreases as v, increases further; in
addition, while reconnection tends to re-establish isotropy, in
our 2D runs we observe that the p, >p, anisotropy
accumulates across subsequent cycles, increasing over time.
Reconnection and (unrealistically slow) mirror modes thus fail
to keep the MRI-driven anisotropy limited. At each subsequent
cycle, the accumulated effect of the increase in Ayry and in the
pressure anisotropy pushes the MRI to smaller and smaller
growth rates. Eventually, all unstable MRI wavelengths grow

29t is important to emphasize that, with our typical choice of parameters,
mirror instabilities will not be completely absent in the simulations we perform.
Characteristic mirror “stripes” are indeed visible inside the channels during the
linear stage (e.g., Figure 2, top left). Our (necessarily) unrealistic scale
separation simply reduces the importance of these instabilities with respect to
the overall dynamics. This must be taken into account when interpreting the
physical results of our simulations.
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beyond the box size, and the process cannot remain self-
sustaining. The MRI completely stops and reconnection
dissipates magnetic energy at the remaining current sheets.
The system then reaches the quiescent state described in this
and previous works (Riquelme et al. 2012; Hoshino 2013).

The reasoning outlined above explains why we observe the
MRI slowing down and eventually stopping altogether in 2D
simulations of any size: the lack of saturation in magnetic
energy (especially in B,) and unregulated pressure anisotropy,
over time, cause the migration of MRI wavelengths to scales
larger than the box size. This could be mitigated if magnetic-
field saturation were achieved after the linear stage, and if
pressure anisotropy could be efficiently limited. This is better
verified in larger boxes: indeed, even though the end state of
the evolution is the same, qualitative differences between the
nonlinear evolution of the MRI arise between large and small
simulations. The differences are due to three main reasons: (i)
In small boxes, a large number of tearing modes are suppressed
due to the limited separation between current-sheet length
(~ L,) and thickness ( ~ c¢/w,), which slows reconnection and
allows for magnetic fields to grow stronger via the MRI. (ii)
Large boxes also allow for the formation of a larger number of
channels along z, and for the excitation of the DKI in long
current sheets, which is instead suppressed in small simulations
(as noted by Inchingolo et al. 2018 as well as in Section 4.3.4
of this work). The DKI in larger boxes significantly contributes
to breaking up and mixing the more numerous channel flows,
inducing a turbulent state. (iii) Relatedly, the lack of developed
turbulence in small boxes results in less efficient reduction of
pressure anisotropy via turbulent magnetic-field dissipation and
pitch-angle particle scattering. Magnetic fields and pressure
anisotropy thus grow much faster when the MRI evolves in
smaller boxes, resulting in a more rapid migration of unstable
modes to wavelengths larger than the box size. This migration
is slower in larger boxes, which can also fit larger wavelengths;
as a consequence, the nonlinear turbulent stage is sustained for
far longer.

The arguments above still do not explain why the MRI, in all
2D simulations, fails to saturate at an approximately constant
level during the nonlinear stage, but rather induces a
continuous growth in the magnetic energy (specifically in By;
see Figure 3, top right). This occurs irrespective of the box size,
and represents a major discrepancy with 3D MHD simulations.
This issue was not addressed in previous works, but it has in
fact a clear explanation: in 2D axisymmetric simulations, the
out-of-plane, toroidal magnetic field B, cannot be subjected to
magnetic reconnection. This is a fundamental problem for
maintaining a saturated nonlinear state;'* without reconnection
along y, the amplification of B, via the MRI is practically
unimpeded. The only mechanism counteracting this effect is
represented by advection, mixing, and reconfiguration of
opposite-sign B, regions; but as observed in Figure 3 (left
panels), even for large system sizes, the long-term evolution of
the system inevitably consists of macroscopic B, structures
emerging from the turbulent state as the MRI is halted.

The reasoning outlined above leads us to conclude that, in
2D, achieving a minimally sustained turbulent state is in fact
possible, but only in simulations with sufficiently large boxes
(in accordance with Inchingolo et al. 2018). However, our

13 Especially because the MRI is particularly efficient at amplifying magnetic
fields in the y-direction, as can be inferred by simply observing the KSB-
SC system—the only first-order (in {);) source term appears in the equation for B,
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analysis also shows that the ultimate fate of any 2D simulation
is to reach a nonlinear stage that does not truly saturate, but
rather features a strong, unimpeded increase in B, eventually
resulting in the suppression of the MRI as unstable modes
migrate to longer and longer wavelengths. We note that the
absence of saturation for B, was previously observed by
Riquelme et al. (2012), who reported that 2D MHD simulations
also display a similar behavior. In Section 5, we will show that
the issues outlined above can be ameliorated in 3D simulations,
where reconnection along y is allowed.

4.3. Parameter-space Exploration

Having established the general features of 2D kinetic MRI
simulations, we now present a detailed parameter-space scan
where we exhaustively explore the effect of four specific
parameters. As illustrated in the previous sections, we expect
2D simulations to be fundamentally different from 3D runs; our
exploration is nevertheless instructive, because many features
of the 2D dynamics are still present in 3D (see Section 5). In
particular, 2D results help us choose a reasonable set of
parameters to be employed in 3D runs, which are much more
expensive and are necessarily more limited in the parameter
space that can be explored. The parameters we explore are:

1. The separation between macroscopic and microscopic
temporal scales, parameterized by the ratio between the
initial cyclotron frequency and the rotation frequency,
we/; previous works have explored the range we /g~
1020 (Riquelme et al. 2012; Hoshino 2013, 2015;
Inchingolo et al. 2018). Here, we will employ a much
larger range of values.

2. The separation between physical domain size and (macro-)
instability scales in terms of the box size (e.g., in the
vertical direction, L =L,) compared to the initial most-
unstable MRI wavelength A\yr;. Previous 2D works have
advocated the need to employ values L/ gy > 8 to reach
convergence in the results of kinetic MRI simulations
(Inchingolo et al. 2018).

3. The initial plasma temperature, or equivalently, the initial
thermal-to-magnetic pressure ratio 3y = 8mp/B¢ (with
p=p.+p; the total pressure). This was previously
investigated in the range (3, ~ 100-6000 (Hoshino 2013).

4. The aspect ratio L,/L, of the simulation box. In
particular, we will explore the case of boxes elongated
along x. This point was not explored in previous kinetic-
MRI works.

In this section, we will focus on assessing convergence in the
results based on the magnetic-energy amplification. In light of
the discussion presented in Section 4.1, we opt for excluding
the B, component from the convergence analysis, because the
lack of reconnection along y in 2D simulations fundamentally
affects the evolution of magnetic fields in the direction
perpendicular to the simulation plane. The analysis of other
important physical processes (such as turbulence, nonthermal
particle acceleration, and angular momentum transport) will be
presented in Section 4.4 and onward.

4.3.1. Effect of the Temporal-scale Separation (wc/f2)

We begin our investigation by evaluating the impact of the
wc/€o ratio. At first, we will focus on a limited box size;
although small-box runs differ substantially from the large-box
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case (see Section 4.2), they are still useful to understand the
effect of scale separation when only MRI and reconnection are
present, and fully developed turbulence is excluded. Moreover,
the small-box case allows us to explore a much wider
parameter space, since larger wc/€y values imply larger
/\MRI/(c/wp) ratios and therefore more resolution needed per
Amri (see Section 3). Limited box sizes will be the necessary
condition for affordable 3D runs and it is therefore interesting
to analyze this case in 2D before performing 3D simulations.
Later, we will consider larger boxes in 2D resulting in a more
realistic system evolution.

For this first analysis, our box has size 2 x 2\;z;. We run
four simulations with wc/ =6, 30, 120, 240, keeping the
initial 5y =624 (including both electrons and positrons; the
corresponding temperature is 6y = 1/32 for each species) and
the initial Alfvén speed vao/c =0.01. The large range of
frequency ratios we explore allows us to assess the effect of the
separation between fluid (of size A\yry) and kinetic (of size pc)
scales when these differ substantially. In particular, our choices
of parameters result in Ayr1/pc = 2, 10, 40, and 80 for the four
runs, respectively.

In Figure 4 (top left), we show the evolution of the change in
magnetic energy (excluding the energy in B, as mentioned in
the previous section), normalized by the initial total energy of
the system, for the four runs until = 10P,. All simulations
present the common features outlined in Section 4.1, i.e., four
typical phases of evolution. Each phase develops similarly as
wc/€o increases, but fundamental differences are present. In
particular, the linear phase is well-captured only for
we/Qo = 30. As we increase we/€p from 6 to 240, we observe
that the saturation level of the magnetic energy (during the
nonlinear stage) increases by roughly one order of magnitude.
Larger wc/€)y values also correspond to an increase in the
duration of the nonlinear stage (before the flattening of the
curves). The cases we/Q = 120 and we/Q = 240 exhibit very
small differences in the results; the nonlinear stage has
approximately the same duration, and the saturation level is
approximately the same (at least in the early nonlinear stage,
before the MRI slows down). This indicates that, with a fixed
box size, the results are well-converged'* with respect to an
increase in wc/€, even though the latter is still orders of
magnitude away from any realistic values (e.g., wc/€~
10" around M87").

The small-box case is not representative of a realistic MRI
evolution, as it lacks important dynamics such as fully
developed turbulence. For this reason, we run another series
of simulations, employing a larger box of size 8 x 83z and
the values wc/§ =6, 15, 30, and 60 (all other parameters are
the same as for the small-box case). The results are shown in
Figure 4 (top right; note the longer timescales on the x-axis).
Qualitatively, this medium-box case presents the same trend
displayed by the previous set of runs: the linear phase is well-
captured for we/Qp > 15, and the nonlinear saturation level and
nonlinear stage duration increase with we/€y. Additionally,
this case displays a full breakup of channels and a turbulent
behavior throughout the nonlinear stage. We observe that the
magnetic-energy saturation is roughly the same for wc/Qp >
15; during the nonlinear stage, the results appear well-
converged between wc/y =230 and wc/Qy =60, and they
only diverge at late times (when the MRI is slowing down). We

14 Recall that, in these plots, we have excluded the B, component from the
total magnetic energy.
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Figure 4. Evolution of the change in the in-plane magnetic energy for our parameter-space exploration of the 2D pair-plasma MRI. Top left and top right: varying wc/
Qo at a fixed [ for a small- and a medium-size simulation box, respectively. Bottom left: varying the box size at a fixed wc /€ and (3. Bottom right: varying (3, at a

fixed we/QY for a medium-size box.

conclude that, when fixing the box to larger sizes, the results
converge more quickly, as wc/€) increases, than in the small-
box case.

This analysis shows that, when keeping the box size fixed,
solely increasing the temporal-scale separation produces a
nonlinear MRI evolution that converges for “large enough”
we/Qp, both for small box sizes (~2 x 2A3;) and for larger
boxes (>8 x 8\%r). However, the converged state is qualita-
tively different in the small-box and in the large-box case, and
the value of wc/€ at which convergence is reached also
depends on the box size. These considerations are likely to carry
over to 3D simulations, which will be explored in Section 5.

4.3.2. Effect of the Box Size (L/\yry)

In this section, we explore the effect of an increasing box
size L/ Ayrr.- We tun five simulations, progressively enlarging
the simulation domain from 2 x 2\ up to 32 x 32\, In
all cases, we fix wc/Q =30, Bo=624, and vao/c=0.01.
Figure 4 (bottom-left panel) reports the change in magnetic
energy for all runs until #=30P,. We observe that larger
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domains tend to increase the duration of the nonlinear stage; for
a domain size >16 x 16\3sg;, the system is not yet completely
quiescent at 30 orbits. In addition, the saturation level is
roughly the same for system sizes of at least 8 x 8 \3jr;, which
suggests that convergence has been reached. This observation
appears consistent with the conclusions presented in Inchingolo
et al. (2018), but there are fundamental differences between
their considerations and the ones presented here.

First, our runs employ a larger we/Qp =30 (wc/Q =10
was chosen for the simulations in Inchingolo et al. 2018). This
difference may appear unimportant, but we have shown in
Figure 4 (top right) that wc/$2 < 15 does not reliably produce
converged magnetic-field amplification for a box size of
8 x 8\rr- Second, Inchingolo et al. (2018) claim that, for a
box size of at least 8 x 8\ the foral magnetic energy
(including the out-of-plane B,) converges; we do not observe
such convergence in our results simply by increasing the box
size. Rather, we see that the in-plane magnetic-field strength
reaches convergence for sufficiently large boxes. Adding the
out-of-plane field to this analysis does not show convergence
even for very large values of wc/€. Third, Inchingolo et al.
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(2018) argue that an indicator of convergence is represented by
a volume-averaged v, /c < 1 (using the nonrelativistic expres-
sion for v,), which they observe for box sizes of at least
8 x 8\}r;. However, their analysis is limited to rather short
timescales; in all our 2D numerical experiments (regardless of
the box size), we invariably find that, on average, va/c > 1
over sufficiently long times, due to a lack of saturation in By, (as
we have argued in Section 4.2). This specific issue can be
mitigated in 3D simulations, as we will show in Section 5.1.1.

From the analyses carried out here and in the previous
section, we conclude that a combination of “large enough”
frequency ratio and system size is necessary for two reasons,
namely (i) to reach convergence (at least in terms of the in-
plane magnetic-field amplification), i.e., to obtain results that
become insensitive to further increase in both wc/€y and
L/ vrp; and (i) to include all the relevant physics (such as
turbulence) with sufficient scale separation. Solely varying one
of these parameters does not ensure that the results will be
converged and also physically valid. From our results, it
appears that wc/Qo=30 and a system size of 8 X 8\
suffice in respecting this criterion while attaining satisfactory
convergence in the results. However, we will show in
Section 4.5 that extra care must be taken when choosing
simulation parameters if one considers their effect on particle
energization. Finally, we note that the aforementioned wc/)
and box size may still impose excessive computational costs in
3D runs. However, we will show in Section 5 that the different
nature of the 3D MRI dynamics may allow for less stringent
conditions on the physical parameters.

4.3.3. Effect of the Initial Plasma-§3

In this section, we assess the effect of 3y on the system
evolution. This was previously investigated by Hoshino (2013),
who explored the range [y~ 100-6000;here, we run six
simulations with Gy=0.1, 1, 5, 78, 624, 2, and 496,
respectively. For consistency with the parameters employed
in the previous sections, we choose wc /= 30, va o/c =0.01,
and a box size of 8 x 8\{p;. Fixing these parameters implies
that we are bound to change [, by changing the initial plasma
temperature 6, correspondingly (see Section 3); to keep the
initial temperature sufficiently far from relativistic values, we
take a maximum [y = 2496 (corresponding to 0y = 1/8).

The results of the six runs are shown in Figure 4 (bottom
right). The magnetic-field strength at saturation appears to
decrease steadily as [, increases; however, this is simply an
effect of our choice of normalization over the initial total
energy. In fact, we observe that the total (i.e., between initial
state and the saturated nonlinear stage) magnetic-field ampli-
fication B2/B¢ is roughly the same in all these simulations;"
because the energy of the system is dominated by the thermal
energy, the ratio between magnetic energy and total initial
energy will decrease with increasing 6, (and therefore ().

To better evaluate convergence in this case, we thus consider
the quantity Byoi/Bporo. This is shown in Figure 5 (left panel),
which demonstrates that the amplification of the in-plane
magnetic field is well-converged across all simulations and
does not depend on the initial (y. In the same figure
(right panel), we also plot the value of the volume-averaged

!5 This observation agrees with the results presented in the previous section:
the magnetic-field amplification depends on wc/€, which does not change
during this scan.
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(3 in time. Regardless of (3, all simulations reach (3) <1 at the
beginning of the nonlinear stage, followed by a gradual
increase until () ~ 1-10 at t ~20P,, marking the end of the
turbulent stage and the emergence of quiescent magnetic loops.
The fact that () at saturation does not depend on (3 and is
roughly consistent (around 0.1-1) across simulations, together
with the fact that the magnetic-field amplification is also
comparable, implies that the the particle energy at saturation is
approximately the same for all simulations. This signifies that
the particle-energy gain (i.e., measured as /0, at saturation) is
smaller if the initial 6 is larger. This also explains the behavior
of the 3y =0.1 case, in which (3) increases between the initial
state and the saturated value, instead of decreasing: in this case,
0/0, is larger than B2/Bg and thus 3/3, > 1 at saturation. This
dynamics can be understood via the following argument:
because the magnetic energy at saturation is the same for all
cases, the amount of energy available for dissipation via
reconnection (and thus convertible into kinetic energy) is the
same. The net increase in particle energy will thus be equal
across all cases, but the ratio between final and initial energy
will be larger if 6, (and hence f) is smaller.

These results show that no substantial differences arise for
values 3y~ 0.1-2500, at least in terms of global quantities such
as the magnetic-field amplification and the plasma-3 at
saturation. The system evolution appears very similar,
particularly during the nonlinear phase, in which the value of
[ may influence mechanisms such as turbulent particle
energization. Our results are in good agreement with those
presented in Hoshino (2013), with the caveat that, in their case,
Va0 Was also varied alongside 6, to change the initial ;. We
have also explored the case (p~ 0.1, while Hoshino (2013)
employed a minimum value Gy~ 96. Our small-3, case is
particularly interesting, as it produces the same results found
for much larger 3, cases; in literature, it is instead generally
thought that a small G, should completely impede the
development of the MRI. However, this only applies when
the vertical box size is comparable to or smaller than H: indeed,
choosing H/L.=1 and varying 6, (and hence ;) while
keeping wc/g and v fixed could produce a situation in
which the MRI cannot develop because the vertical box size
becomes smaller than Mg In our case, however, we have
ignored this constraint and taken L, = 8 \\jg; (Which can result
in L,>H, e.g., in our By=0.1 case). Thus, in all our
simulations, the vertical box size can still fit channel modes and
the MRI can develop regardless of the initial 3,. Here, we
choose to violate H/L,>1 because, when this condition is
imposed (e.g., in our 3D simulations, Section 5), the chosen
value of 3, results in additional constraints on length and
timescales (see Section 3). We have, however, verified that our
results do not qualitatively change when respecting the
H/L,> 1 condition.

4.3.4. Effect of the Box Aspect Ratio

Finally, we analyze the effect of the box aspect ratio (L,/L,)
in 2D MRI simulations, which has not been explored in
previous kinetic studies. This analysis is motivated by multiple
reasons: first, 3D MHD simulations have shown that domains
with aspect ratio L,/L, = 1 may produce substantially different
results in terms, e.g., of the efficiency of angular-momentum
transport (e.g., Bodo et al. 2008; Latter et al. 2009 and
references therein); second, as we (and previous works) have
shown, turbulence can more easily develop in large-box



THE ASTROPHYSICAL JOURNAL, 938:86 (38pp), 2022 October 10

B

Bacchini et al.

100 T T T T T T T T T T
4 - e
10 10°
10°
2
S 10 102
a8 10!
>~ 10 8 X 8\2p;, we /o = 30 @ 1
R — =01 10
b — =1
— 107 fo=5 0
10
10-3 — Gy =178
» —— By =624
10 — Gy = 2496 101
10*5 L L L L L L L L L
10 15 20 25 30 0 5 10 15 20 25 30
t/Py t/ Py

Figure 5. Comparison of 2D pair-plasma simulations of the MRI with variable [, in a medium-size box and fixed wc/€. Left: in-plane magnetic-energy variation
normalized over the initial field strength. Right: corresponding evolution of the volume-averaged [ in time.
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Figure 6. Comparison of 2D pair-plasma simulations of the MRI with variable box aspect ratio. Top: spatial distribution of the in-plane field strength at t = 4.2P,, for a
simulation with box size 4 x 43z (left) and 16 x 4\2; (right), with we /0 = 30, 3y = 624. The elongated-box case shows turbulent structures that do not develop
in the corresponding square-box case. Bottom left: evolution of the change in magnetic energy for runs with variable box size and aspect ratio at fixed wc/€2 and .
Bottom right: evolution of the volume-averaged (3, and 3, for the square-box case 4 X 4)\12\/1121 and for the elongated-box case 16 x 4/\§,1R1.

simulations that fit a larger number of channel modes (via large
L./ Mg ratios) and that allow for the DKI to contribute to
channel breakup and mixing (via large L./(c/w,) ratios).
However, if enough channel modes fit in L., it may not be
necessary to further enlarge the simulation box in both x and z;
the development of the DKI may be achieved solely by
enlarging the box along x, given that current sheets develop
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only along this direction (in 2D). This is attractive because it
allows for simulations with large L, (resulting in developed
turbulence) without the need for a correspondingly large L..
This is also of great importance for 3D simulations where we
will demand that H/L,=1: as discussed in Section 3, this
condition implies that the chosen value of L./Avg; will
determine the computational cost (in terms of resolution and
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time steps). Keeping a reduced L, while still including all the
relevant physics by enlarging L, (and L,, in 3D) can greatly
reduce the computational effort required.

To assess the possible advantages of aspect ratios L,/L, > 1,
we compare the square-box cases of size 4 x 4\, and
8 x 8\yg; Wwith simulations where we choose L,/L.=4,
resulting in boxes of size 16 x 4 \{z; and 32 x 8. We fix
the simulation parameters to wc/Qp=230, Gy=624, and
vao/c =0.01. The results are presented in Figure 6. The top
panels show a snapshot of the in-plane field strength at t =4.2P,,
(shortly after the beginning of the nonlinear stage) for a square-
box simulation of size 4 x 4}z and for an elongated-box run of
size 16 x 4\}g;. Turbulent structures are visible in the
distribution of By, when L./L,> 1;such structures do not
develop in the square-box case, indicating that a limited x-extent
inhibits important dynamics leading to the breakup and mixing of
channel flows. This difference clearly appears in the bottom-left
panel of the same figure, which shows the evolution of the in-
plane magnetic energy for all four runs. While the linear MRI
stage is well-captured in all cases, the nonlinear stage proceeds
substantially differently for a 4 x 43z, box, with the system
displaying the small-box behavior discussed in Section 4.3.1. The
evolution of the elongated box of size 16 x 4\{1g;, however, is
much more similar to the larger-box case 8 x 8%y, resulting in
a saturated, turbulent nonlinear stage. Similarly, the elongated case
32 x 8\{r; shows a much longer nonlinear stage (which lasts
until the end of the run) than the corresponding square-box case.

As a further confirmation of the presence of additional
channel breakup and mixing dynamics, in Figure 6 (bottom-
right panels) we plot the evolution of the volume-averaged (3
and (3, for the cases 4 x 4\yp; and 16 X 4\3g;. In
Section 4.2, we argued that the duration and saturation level
of the nonlinear stage are heavily influenced by the efficiency
of reconnection to limit magnetic-field amplification and
pressure anisotropy; here, we observe that the magnetic energy
saturates at lower values, and that the pressure anisotropy is
indeed better quenched in the elongated-box case, which allows
for stronger reconnection and more developed turbulence. The
migration of MRI modes toward long wavelengths is therefore
slower in elongated boxes. The square-box case, instead,
prevents fast DKI modes and very rapidly builds strong
magnetic fields and large pressure anisotropy right after the first
onset of reconnection. These results prove that simulations in a
box of limited vertical extent can still reproduce all the MRI
physics of interest (including a saturated turbulent state) simply
by increasing the domain’s spatial extent in the direction(s)
normal toz. For 3D simulations, this will be particularly
important when choosing the optimal box geometry for
physically meaningful simulations that are also computation-
ally affordable.

4.4. Spectra of 2D MRI-driven Turbulence

In this section, we briefly analyze the power spectrum of the
magnetic-field component in the simulation plane (B, as well
as in the out-of-plane direction (By). This analysis provides a
clear indication of turbulent activity during the system
evolution, and allows us to infer whether MRI-driven
turbulence develops at all.

In Figure 7, we plot the isotropic power spectrum for a
simulation run in a domain of size 8 x 8\ Wwith
we/Qp =160, By=624, and vso/c=0.01. We choose this
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Figure 7. Isotropic power spectrum of the in-plane (red lines) and out-of-plane
(blue lines) magnetic field for a 2D pair-plasma MRI simulation with
parameters wc/Qy =60, [y =624, and box size 8 x 8\2r. The spectra
during the linear stage (dashed lines) are peaked around the most-unstable MRI
wavenumber kygry. At late times during the nonlinear stage (solid lines), the
spectra feature characteristic slopes indicating an inertial range, and a clear
spectral break in the vicinity of the average Larmor-radius wavenumber k,,.

particular set of parameters, among the various cases explored
in the previous sections, as it represents a good compromise
between box size and separation between macroscopic and
microscopic scales. In the plot, the dashed colored lines
represent the spectrum of By, (red) and B, (blue) measured
during the linear MRI phase. Both spectra are strongly peaked
around the most-unstable wavenumber kyg; (marked by a
vertical dotted line), indicating active MRI growth at the fastest
rate. A second, less pronounced peak is visible at this time in
both spectra around kc/w, == 0.1; this is compatible with the
most-unstable wavenumber of mirror modes, suggesting that
mirror activity is present at this time in the system evolution (as
also discussed in Section 4.2 and as noted by Inchingolo et al.
2018). We repeat the measurement of magnetic-field spectra at
a late time t~ 10P, (solid lines), when the system has entered
the nonlinear stage. These spectra feature characteristic slopes
that identify an inertial range: at length scales larger than the
typical Larmor radius, i.e., k <k,=1/pc, the B, spectrum
has a shallow slope that could be comparable with k> /3, which
hints at a cascade process akin to the typical strong-turbulence
MHD picture (e.g., Goldreich & Sridhar 1995). At k~k,/2,
this spectrum changes to a slope close to K or slightly steeper,
indicating the transition from Alfvénic turbulence to a kinetic
range. The B, spectrum is instead characterized by this ock 3
slope (or steeper) at all scales, in agreement with previous 2D
studies (Inchingolo et al. 2018). Power in both spectra falls
rapidly at large k, as the cascade reaches sub-Larmor scales,
where strong magnetic energy dissipation is expected to occur.
We have verified that numerical dissipation at the grid scale is
minimal; we elaborate upon this in Appendix C.

The measured spectra suggest that the system has indeed
reached a state of well-developed turbulence during the
nonlinear stage. In general, we measure the same spectral
slopes in the majority of the simulations explored in our
parameter-space scan. In a few cases, however, the results
deviate from this expectation: in particular, we find that
(square) system sizes <4 X 4X\jg; and scale separations
we/Qo < 15 do not produce spectra with such clear power-
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law behavior, hinting at a turbulent cascade that is not fully
developed. In the previous sections, we have argued that such
cases lack the action of certain physical mechanisms, such as
drift-kink instabilities, that promote the transition to a turbulent
state. Our analysis supports this statement, as well as our claim
from Section 4.3.4 that an elongated simulation box facilitates
the development of turbulence by giving the additional
instabilities sufficient room to grow: indeed, we find that,
e.g., the case with box size 16 x 4\, produces magnetic-
field spectra with characteristic turbulent slopes, while the
4 x 4X3g; case does not.

Even though our results are in good agreement with the only
other (to date) spectral analysis of the 2D, fully kinetic MRI
presented in literature (Inchingolo et al. 2018), a few additional
observations are worth reporting here. First, the spectra we show
in Figure 7 are not necessarily representative of the whole
nonlinear stage. Measuring the spectra at other times reveals
additional features, e.g., a progressive shift of the spectral break in
By toward smaller wavenumbers. This is expected in numerical
simulations of turbulence due to the continuous plasma heating
that pushes pc closer to the macroscopic scales (Zhdankin et al.
2018a; see Section 4.5), but the scale separation we include in our
runs is rather limited from the start, which allows for tracking this
phenomenon only over relatively short timescales. Additionally,
as we have illustrated in Section 4.2, our 2D simulations are
characterized by the absence of reconnection along y, which
probably alters the development of the B, spectrum with respect to
the 3D case. This issue, combined with the fact that the MRI
continuously slows down (and then stops; see Section 4.1) in our
simulations, produces late-time power spectra that are no longer
representative of MRI turbulence and differ substantially from
those shown here. Finally, we note that, over long times, we
observe a progressive pile-up of energy at large k values (not
shown in Figure 7), which we attribute to numerical noise
accumulating on short wavelengths; this complicates the long-
term spectral analysis.

Our results also differ from the typical spectra seen in 3D
MHD and hybrid simulations. For example, Kunz et al. (2016)
and Walker et al. (2016) measured a ock™* spectrum for B, in
the inertial range, which they attribute to sharp reversals of B,
over short length scales. It is entirely possible that the
difference between our 2D results and 3D MHD and hybrid
results originates from our fully kinetic, pair-plasma setup.
Moreover, the simulations conducted in Kunz et al. (2016) also
differ in the background magnetic-field configuration, which
has zero net flux. Our initial setup includes a nonzero net-flux
magnetic field, which changes the MRI evolution drastically
(see Section 4.7). This may produce additional differences in
the turbulent spectra. In Section 5.2, we will discuss spectra for
our 3D simulations.

4.5. Particle Energization in 2D

We now turn our attention to the question of particle
energization in the 2D collisionless MRI. With our PIC
approach, we can measure nonthermal effects, which are not
included in MHD models. Our pair-plasma simulations are not
representative of the electron—ion plasma expected to make up
typical RIAFs, but we can still infer qualitative features in the
mechanisms driving particle energization during the MRI
development that could potentially carry over to the case of
large m;/m,.
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Prior to conducting any analysis, we emphasize a few key
points raised in earlier sections. First, it is now clear that, in all
of our 2D simulations (regardless of system size and
parameters chosen), the MRI eventually stops and the system
reaches a quiet steady state. We should bear in mind that such a
“quiet” state consisting of magnetic loops is not physically
realistic, and is a product of the 2D geometry. Second, in the
ideal situation where the MRI has evolved into a fully turbulent
state, we do not expect the particle energy to saturate in time at
a well-defined value. This turbulent state can be regarded as
analogous to driven-turbulence simulations (e.g., Zhdankin
et al. 2018b) where energy is constantly injected into the
system. In our case, the injection mechanism is the MRI on
large scales, and in addition, heating and dynamo processes
self-consistently regulate the energy injection in our simula-
tions. Third, the rate of particle energy gain will obviously
depend on the physical conditions under which the MRI
develops. We have already shown that the system evolution is
drastically different for small/large boxes and for small/large
we/Qo (see Section 4.1). We will need to consider such
differences to attribute the measured energization to the correct
mechanism. Finally, we remark that, due to the fundamentally
different physical processes at play (e.g., lack of reconnection
along y in 2D), we expect the results of 3D simulations to
potentially differ from those presented here. These differences
will be discussed in Section 5.3.

Figure 8 shows the evolution of the average Lorentz factor
(top row) in three simulations that are representative of the
parameter-space scan presented in Section 4.3: the small-box/
large-frequency ratio case 2 X 2\, we/Qo =240 (left
column); the medium-box/medium-frequency ratio case
8 X 8\ we/Q =60 (central column); and the large-box/
small-frequency ratio'® case 32 x 32\rp» we/Qo = 30 (right
column). In all cases, Fp = 624 and v, o/c = 0.01. In each case,
the energy evolution is shown until shortly after the moment
when the MRI wavelength grows beyond the box size. This
moment depends on the simulation parameters, and it differs in
each of the three cases. For each simulation, we show the
evolution of electron and positron energies separately, as well
as their average and difference.

The first feature we observe is a differential energization
between electrons and positrons, which becomes substantial at
late times. Although surprising (compared to standard PIC
simulations), this is a genuine physical phenomenon in the
shearing-box paradigm. Our setup involves a simple (and by
itself, symmetric) electromagnetic configuration, i.e., a uniform
vertical field; but differently from standard PIC simulations, the
addition of a unidirectional (along y) background rotational
profile results in a symmetry-breaking effect. Charged particles
in this situation ought to behave differently depending on the
sign of their charge, which determines how their cyclotron
gyromotion combines with the background rotation. Analyti-
cally, we can observe that the shearing-box equations include
extra forces acting on particles in addition to the usual Lorentz
force. These forces cause drifts in the particle motion, which
depend on the sign of the charge and of the mean magnetic field.
We have found that this additional dynamics plays a fundamental
role in the energization process, with electrons consistently
gaining more energy than positrons (by a factor ~3) in our

16 Note that the “small” we/$o employed here is still approximately twice as
large as the largest value employed in previous works on the pair-plasma MRI.



THE ASTROPHYSICAL JOURNAL, 938:86 (38pp), 2022 October 10

2 X 202y, wo/Q = 240, fy = 624

8 % 8251, wo /S = 60, By = 624

Bacchini et al.

32 X 3202, wo /S = 30, By = 624

10t 4

=1

10°

Electrons
Positrons
Average

= = = () = (%)

10

10°

30

-5

20

10

0

10? 10° 10* 107! 10°

y-—1

107! 10° 10!

F—1

10° 10*

10°
a4 —1

16()

Figure 8. Particle energization in 2D pair-plasma MRI simulations. Top row: average Lorentz factor for electrons and positrons for simulations with a small box /large
we/o (left), medium box /medium we/Qy (center), large box /small we/ (right). In each case, the difference between () of the two species is shown as a dashed
green line, and the end of the nonlinear stage is marked with a vertical dashed—dotted line (notice the difference in timescales between different runs). Bottom row:
evolution of energy distributions in time (including both species) for the three runs. In each case, the distributions are shown until the same final time as in the top row.
The dotted lines indicate the average and cutoff Lorentz factors v ~ gBAvgi/ (mc?) (with B = B, or B = B,; see text) characterizing the quiescent end state of each run.

largest simulations, for our specific choice of an initial B aligned
with the object’s axis of rotation. This phenomenon is exactly
reversed when reversing the orientation of the vertical field: we
have indeed verified that simulations in which B,  is antiparallel
to the rotation axis result in positrons gaining more energy
than electrons. The differential-heating mechanism reported
here has not been discussed in previous works, but it is in fact a
crucial point to consider in future electron—ion simulations,
where the heating ratio between species is a primary analysis
target, because it relates directly to observations. In the
following, we will focus on analyzing particle energization
on average (including both species); we discuss the causes
and the importance of this differential heating in detail in
Appendix B.

Comparing the three cases shown in Figure 8, we observe
that the average -~y at the end of each run consistently reaches
values > 10%; however, the energization proceeds very differ-
ently for different simulation parameters, as is evident from the
slope of each curve over time. In the small-box case (left
column in Figure 8), the heating rate is evidently much larger
during brief, “bursty” periods that correspond to large-scale
reconnection events, starting at 7~ 3.5P,, which marks the
onset of reconnection after the linear stage. Each event is
followed by a “quiet” phase where particles gain energy
steadily at a much slower rate. During each quiet phase, the
energization rate is very similar, and the transition to and from
reconnection is visible. Conversely, the large-box case (right
column) shows a smooth increase in the kinetic energy, without
the energization “bursts” observed in the small-box case. The
heating rate here progressively decreases as time passes; the
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energization proceeds much more slowly (notice the difference
in timescales between different cases) and around = 30P,,
when the MRI is slowing down and halting, the average
Lorentz factor reaches a plateau. The medium-box case (central
column) shows features that appear as a combination of the
other two cases: the energy increases very rapidly at a few
moments in time, with smooth phases of slower heating in
between.

Regardless of the specific processes contributing to particle
energization, analyzing the energy distribution functions in
each case reveals several similarities. Figure 8 (bottom row)
shows the energy distributions (including both species) at
several different times, until the moment the MRI is halted in
each of the three cases (again, notice the difference in
timescales). In all cases, at the onset of magnetic reconnection
(marking the transition to the nonlinear stage), the distribution
abruptly jumps to much larger average energies and a clear
nonthermal component arises. The nonthermal population
appears to follow a power-law distribution with index
~2.5-3 (both slopes are shown in the plot to guide the eye),
but this value changes substantially as time passes. As the
system evolves, the spectra become shallower and the main
part of the distribution resembles a Maxwellian; in addition, in
all cases, we observe the progressive formation of a second
peak in the distribution at high energies, and a stabilization of
the cutoff ~y at a value that grows larger with larger wc /.

That the energy distributions continue to evolve as long as
the MRI is active is unsurprising, given that the system
includes a free energy source. However, the shift from a power-
law distribution to a double-peaked shape is peculiar.



THE ASTROPHYSICAL JOURNAL, 938:86 (38pp), 2022 October 10

Measuring the peak and cutoff « across our large parameter
space reveals a common feature: these values correspond
almost exactly to the Lorentz factors of particles with gyroradii
of size ~ Ayr1, When measuring the magnetic-field strength at
the center and at the edge (which we indicate with B. and B.,
respectively) of the large-scale, stable magnetic loops that form
at the end of the system evolution (the corresponding values of
~ are indicated in Figure 8 by black dotted lines). These loops
originate from plasmoids created via reconnection, well before
the end of the nonlinear stage when the MRI starts to slow
down. Particles are gathered inside the loops as these continue
to merge; when the MRI is completely halted, these loops have
grown to size ~ Ayry and contain almost all particles inside.
The energy distribution evolves to reflect this state: particles
trapped inside the loops, where B ~ B, tend to increase their
energy such that mczv/ (gB.) ~ Mri (e.g., Hillas 1984), which
creates the peaked distribution we observe. The maximum
particle energy will then be limited by the strong magnetic field
at the loop edge such that mc27/ (gB.) ~ Amri1, With B, ~ 10B..
This creates the energy cutoff that we measure in our runs.
As discussed in earlier sections, the main difference between
the MRI evolution in the three cases is the presence of
sustained turbulence in the nonlinear stage. In the small-box
case, turbulence cannot develop and the energization is
mediated by intermittent reconnection events, separated by
“quiet” periods where magnetic fields are amplified in coherent
channel structures and particles can increase their perpendicular
momentum adiabatically via g conservation. In large boxes,
there is no clear distinction between subsequent (discrete)
reconnection events—turbulence results from the breakup and
mixing of channel flows, and more chaotic processes come into
play. To verify quantitatively that turbulent heating is the main
driver of particle energization in the large-box case, we follow
an approach similar to that described by Zhdankin et al.
(2018a). Assuming Alfvénic turbulence, the energy injection
from electromagnetic fields to particles can be written as

dKint
dt

531%1\45 V_A’ (62)
8w ginj

where Kin = 2nmc*((7) — 1) (counting both particle species) is
the average internal (kinetic) energy and éBjys, Va, and tinj are
the characteristic root-mean-square magnetic energy, the
corresponding Alfvén speed, and the injection length scale of
the turbulent cascade. In our case, the relevant magnetic field
and Alfvén speed are those corresponding to the late-time,
saturated state achieved in the xz-plane, because the out-of-
plane B, only acts as a guide field and does not participate in
the cascade process (due to the lack of reconnection along y).
For the injection scale, we select fjnj= Aygrr: during the
turbulent nonlinear stage, in all cases, we measure the largest
magnetic-field structures to be of size comparable to the initial
MRI wavelength (despite the system evolution pushing the
MRI to much larger scales); this is an indication that the system
retains some memory of the initial conditions. In Figure 9, we
show this measurement of energy injection (integrated in time)
for the three simulations presented above. We observe that the
large-box case reaches, at late times, a saturated state that
agrees very well with our simple estimate. This appears to
indicate that the turbulent-cascade process at play is well-
described by Alfvénic turbulence. For the small- and medium-
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Figure 9. Estimate for injection of magnetic energy and conversion into kinetic
energy assuming Alfvénic turbulence, for the three simulations presented in
Section 4.5. In each case, the end of the nonlinear phase is marked with a black
Cross.

box cases, the physics involved in the nonlinear stage is
substantially different, and our estimate fails to accurately
describe the energy-injection process. In 3D, we expect the
physics of this injection to include additional dynamics along y,
which allows B, to participate in the cascade process. The
absence of this mechanism in 2D is a potential source of
discrepancy between 2D and 3D results.

4.6. Stresses and Angular-momentum Transport in 2D

In this section, we analyze the effective viscosity that
originates from the MRI nonlinear dynamics in 2D pair-plasma
simulations. We define an effective-viscosity parameter
(Shakura & Sunyaev 1973),

a = <R«\3' + MX} + AX}>

(p)

where (...) denotes a volume average. Here, R,, = mnU,U,/T*
is the Reynolds stress, with ' = /1 4+ U?/c? and U = (U,,
Uy, U,) the spatial part of the bulk four-velocity of the plasma
in the frame moving with velocity vs; M,, = — B,B, /(4m) is the
Maxwell stress; and Ay, =— (p, — p”)BxBy/B2 is the aniso-
tropic stress (e.g., Sharma et al. 2006). Our PIC simulations,
where the plasma can be relativistically hot, require special
care when measuring « and its components. Given a
distribution function f(x, u, f), we first compute the bulk
velocity U= (1/n) fuf(x, u, t)d3u for each particle species
separately. Then, we apply a Lorentz boost to obtain #, the
spatial part of the four-velocity of each particle in the frame
moving with U. We subsequently define a pressure tensor for
each particle species as

(63)

p:meQ@ij% (64)
5

where ¥ = /1 + @2/c?. The isotropic, parallel, and perpend-
icular pressure are then p = tr(P)/3, p=F bb, and
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Figure 10. Left column: evolution of the a-parameter and of the volume-averaged Maxwell, Reynolds, and anisotropic stresses for a small box /large wc/Qq (top),
medium box/medium wc/€2 (center), and large box/small we/$2 (bottom) simulation of the 2D pair-plasma MRI. Right column: evolution of the volume-averaged

pressure anisotropy and (3, 3, for the same simulations.

p. = (1/2)P: (I — bb), respectively, where b = B /B and B
is the magnetic field in the frame moving with U. R,, and A,,
are computed for each species separately, and then summed
across species.

In Figure 10, we show the time evolution of the average o and
its components (left column) as well as the volume-averaged
(B1)» (BL). and the pressure anisotropy ((p. —py)/p) (right
column) for the small-box/high-frequency ratio case
2 X 20 R we/Q =240 (top row), the medium-box/med-
ium-frequency ratio 8 x 8 X}y, we/Q = 60 (middle row), and
the large-box /small-frequency ratio 32 x 32X, we/ = 30
(bottom row). In all cases, Gp=624 and vao/c=0.01. All
simulations are characterized by a rapid increase in all
components of « during the linear stage, with a peak at o~ 1
right before the onset of reconnection. At this point, different
parameters determine strong differences in the results: during the
nonlinear stage, we observe that the volume-averaged M,, can
grow and remain close to unity at early times in the small- and
medium-box cases; conversely, in the large-box case, M,,
rapidly settles to ~0.1 after the onset of reconnection and slowly
decreases to ~0.01. In all cases, the anisotropic stress A,,
achieves the highest (volume-averaged) value ~0.1 at the onset
of reconnection, and then firmly settles around 0.02—0.05 for the
whole duration of the nonlinear phase. The Reynolds stress is
consistently the least important component of « and remains
much smaller than the other two during the nonlinear phase.
Overall, the a-parameter closely follows the evolution of M,, in
the small- and medium-box cases, attaining values 0.1-1;in the
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large-box case, o~ 0.01-0.1 and the contribution of A, is more
significant, providing most of the angular-momentum transport
in the late nonlinear stage when the magnetic field is dissipating
via reconnection and turbulence. We note, however, that in the
large-box case, wc/$ is substantially smaller than in the small-
box case (respectively we/€p =30 and we/Qp = 240); because
the scale separation affects the development of mirror modes
(see Section 4.2), pressure anisotropy may be exaggerated in the
small frequency-ratio case. Larger values of wc/Qy would be
needed to verify the trend of the anisotropic stress in the large-
box case, but this involves computational costs beyond our
current possibilities. We will investigate the matter more in detail
in future work.

These results align well with the discussion provided in the
previous sections. The MRI in the large-box case behaves
qualitatively differently from the small-box case: the system
develops strong turbulence during the nonlinear stage,
promoting the continuous, more efficient dissipation of
magnetic fields and faster pressure isotropization. In small
boxes, this dissipation is primarily mediated by episodic, large-
scale reconnection events, with phases of strong magnetic-field
amplification driving pressure anisotropy in between. This
suggests that, in a large box, M,, and A,, will be reduced in
comparison with a small-box case. The right-hand panels of
Figure 10 confirm this reasoning: pressure anisotropy is much
more pronounced at the beginning of the nonlinear stage in
smaller boxes, while it remains rather limited in the large-
box case.
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Figure 11. Evolution of the in-plane magnetic-energy variation for several 2D pair-plasma simulations of the MRI with zero net magnetic flux. Left: simulations with
varying box size and fixed wc/€, [o. Right: simulations with varying wc/€ and fixed box size and (3.

If a is invoked as a coefficient of turbulent angular-
momentum transport, then the large-box case where turbulence
can develop is more relevant to provide a first-principles
measure of the effective turbulent viscosity in a collisionless
plasma. In this case, our 2D numerical experiments indicate
that the Maxwell stress provides the primary contribution to a,
with the anisotropic stress achieving smaller values
A,y/M,,~0.2. This result differs from the findings of Kunz
et al. (2016), who reported A,,/M,,~ 1;however, we stress
again that 2D runs have the intrinsic limitation of lacking
reconnection processes in the dominant magnetic-field
component B,. In 3D, we may then expect large differences
with the results presented here: dissipating B, via reconnection
may imply that the Maxwell stress could achieve much smaller
values than those measured in 2D, possibly increasing the
relative contribution of pressure anisotropy in determining c.
On the other hand, in the previous sections we have argued that
reconnection along y may help reduce pressure anisotropy by
increasing p; and hence decreasing A,,. We will discuss the
dynamics of angular-momentum transport in 3D in Section 5.4.

4.7. Net Flux versus Zero Net Flux

We conclude our investigation of the 2D collisionless-MRI
dynamics by briefly considering the case of zero net flux. In
contrast with the simulations presented in the previous sections,
here the initial magnetic field is set to B(r=0)=
—B, ¢ sin(2mx/L,)eé, such that no net flux is present along z.
This case was briefly discussed in Riquelme et al. (2012) in 2D
and was the focus of the only (to date) 3D hybrid study of the
MRI (Kunz et al. 2016).

In Figure 11, we plot the evolution of the in-plane magnetic
energy for a few simulations with exactly the same parameters
employed in Section 4.3 (aside from the initial magnetic-field
configuration). In particular, we compare By, in several cases:
first, by keeping a fixed wc/Qp=230, [Go=0624, and
vao/c=0.01 (the latter two measured with the maximum
value ofB), in larger and larger simulation boxes
L./ Mvri =L/ duri =4, 8, 16, and 32 (left panel); then, by
fixing the box size L,/Ayri=L./Avri=38, [o=624, and
vao/c=0.01, and increasing the frequency ratio wc/€ =6,
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15, 30, and 60 (right panel). From this comparison, we observe
that the general statements made for the nonzero net-flux case
hold here as well: the duration of the turbulent, saturated
nonlinear stage that follows the linear growth of the MRI
increases both with box size and with wc/€). Over time, the
turbulence rapidly decays as magnetic fields grow and pressure
anisotropy develops (not shown), pushing the MRI wavelength
to scales larger than the box size. However, the zero net-flux
case is also characterized by striking differences, with the most
prominent being a much more efficient breakup and mixing of
channel flows. This was also observed by Riquelme et al.
(2012), who attributed this behavior to the fact that the
instability develops nonuniformly in different regions of the
domain; in particular, the most-unstable MRI wavelength
AMri = 27va /€ is shorter where B, is weaker and longer
where B, is stronger, producing a spatial inhomogeneity in the
dominant instability wavevector. Channels forming inside
regions of weaker/stronger B, are therefore spatially nonuni-
form, and tend to be destroyed much more quickly. Hence,
differently from the net-flux case, the breakup of channels
formed during the linear stage is not solely mediated by the
onset of tearing modes (and concurrently of kink instabilities):
the dynamics does not need to “wait” for the magnetic field in
the channels to grow strong enough (and for current sheets to
thin out enough) that reconnection can occur. Instead, the
intrinsic inhomogeneity of the background field mediates the
mixing and redistribution of magnetic energy. As a conse-
quence, the saturation level reached in all simulations with zero
net flux is much smaller than in the corresponding nonzero flux
cases.

Figure 11 also shows important differences in how these
simulations tend to converge: while it appears that progres-
sively better convergence is achieved for increasing wc/$2 at a
fixed box size, enlarging the box size does not result in
converging results. Larger boxes seemingly produce a steady
increase in the magnetic-field amplification, in contrast with the
clear convergence observed for the net-flux case. We also note
that, because the magnetic field here reverses its direction
through the box, we observe no sign of the differential heating
of electrons versus positrons that we measured in the net-flux
case (see Section 4.5). Charges with opposite sign are indeed
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Table 2
List of 3D Simulations
Box Size (L, x L, x L,) we/o Bo AMRI/ Pc
2 X 2 X 2XR 15 312 7.46
4 X 4 % 2N 15 312 7.46
4 % 8 X 2N 15 312 7.46

Note. In all cases, vao/c > 0.007; the numerical resolution is such that
Ax =~ ¢/wp, and we employ 27 particles per cell per species.

equally likely to experience differential gyromotion and drift
toward current sheets, overall resulting in an almost perfectly
balanced energization among electrons and positrons.

In this work, we focus on nonzero net-flux simulations
primarily because, in any astrophysical accretion disk, the
complete absence of vertical magnetic flux is not expected;
realistically, any portion of the disk will be threaded by some
magnetic field carrying a net flux, however small. Additionally,
the behavior of zero net-flux simulations is fundamentally
different from the expected development of a “pure” MRI: the
former situation is more akin to a dynamo problem, and does
not feature the same qualitative evolution of the nonzero net-
flux case. Our results show that the case of zero net flux differs
enough from the case with nonzero magnetic flux to deserve a
thorough, dedicated exploration, which we will pursue in
future work.

5. Three-dimensional Simulations of the MRI in
Collisionless Pair Plasmas

In this section, we present 3D PIC simulations conducted
with ZELTRON, where we have implemented the newly
developed KSB-OA model (see Section 2.3). In general, we
expect 3D runs to produce results more physically realistic (at
least in terms of the magnetic-field evolution and subsequent
development of turbulence) than corresponding 2D simula-
tions, for the reasons discussed in Section 4.2. We will
therefore select simulation parameters that strictly enforce three
physical constraints: (i) a sufficiently subluminal velocity offset
at the x-boundaries, i.e., vy(L,) =sQL,<c;(ii) a vertical
extent of the simulation box that does not exceed the disk
pressure scale height, i.e., L.,/H < l;and (iii) a sufficiently
large separation between macroscopic and microscopic scales
(at least in the beginning of each run), in terms of Avri/pc.

Due to the much higher computational cost of 3D runs, in
this first study we will explore a limited parameter range
inspired by the results of 2D simulations. We will show that 3D
runs of relatively small size already provide fundamental new
insight into the physics of the collisionless MRI. The 3D
simulations discussed in this work are summarized in Table 2;
all runs are initialized analogously to the 2D case, with a weak
vertical magnetic field determined from the initial simulation
parameters. We always employ 27 particles per cell per species,
and a numerical grid such that Ax =~ ¢/w,. In future work, we
will conduct larger simulations with better scale separation to
achieve more realistic regimes.

In the following sections, we will first describe the physics of
small- and large-box 3D PIC simulations of the pair-plasma
MRI, and how these relate to corresponding 2D simulations.
We will then analyze the 3D turbulence, particle energization,
and angular-momentum transport that characterize the 3D case.
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5.1. Physics of the 3D Collisionless MRI

Figures 12 and 13 show the results for two representative 3D
simulations of the collisionless MRI in pair plasmas, employ-
ing a small (2 x 2 x 2\ and a large (4 x 8 x 2\}sgr;) box
size, respectively. In these figures, we show subsequent
snapshots of the spatial distribution of B, and B, (left panels),
of the evolution of the change in magnetic energy (top-right
panel), and of the volume-averaged parallel and perpendicular
plasma-( (bottom-right panel). These simulations are initialized
with parameters such that L.=H, M\yri/pc>~7.5, and
v(Ly)/c ~0.125 (in the small-box case) and vy(L,)/c ~0.25
(in the large-box case). In both cases, imposing these
conditions results in a frequency ratio wc/€2=15 and a
plasma temperature 6y = 1/128 such that 3y =312 (including
both species), with an initial Alfvén speed va o/c >~ 0.007.

For the small-box case (2 x 2 X 2Ayg)) shown in
Figure 12, we observe that the evolution of the magnetic
energy (top-right panel) is initially qualitatively similar to those
of 2D simulations of comparable L,, L, (see the 2D case of
Figure 2): from the initial state, the field strength grows
exponentially until saturation is reached. The nonlinear stage,
however, shows qualitative differences: we observe that the
magnetic energy in all components (dominated by By, which
does not saturate in2D) remains approximately around the
saturation level for ~2 orbital periods after the end of the linear
stage, before starting to slowly decrease. This behavior is due
to the 3D geometry and is illustrated by subsequent snapshots
of the B, and B, distribution in the domain, shown in Figure 12
(left panels). Around ¢ ~ 3.7P (top-left panels) we observe that
channel flows form, during the linear stage, in the xz-plane over
length scales of A\yry, similarly to the 2D dynamics. However,
in 3D, these channels also span the entire y-extent of the
simulation domain. At the channel interfaces, reconnection
starts dissipating magnetic energy when current sheets become
sufficiently thin and tearing modes are excited (around
t~4.2P,, center-left panels). In 3D, reconnection can take
place also along y, thus dissipating energy stored in B, (and not
just in B, and B, as in 2D). The channel interfaces are indeed
heavily perturbed, and magnetic reconnection can act along all
spatial directions (e.g., around ¢~ 5.4P, , bottom-left panels).
The saturated energy level of the nonlinear stage we measure
between >~ 4P, and t =~ 6P, is maintained due to the balance
achieved between injection (via the MRI) and dissipation (via
reconnection) of energy into the system.

Starting from ¢~ 6P, the system slowly relaxes toward an
end state where the MRI slows down and then stops. This final
state (not shown in the left panels of Figure 12) is a two-
channel configuration with lower B, energy. From =~ 8P,
onward, we observe that the energy in B, and B, oscillates
around approximately the same values; the spatial distribution
of the magnetic field tends to assume a “shear-wave”
configuration with coherent, large-scale structures aligned with
the shear flow appearing cyclically. No reconnection occurs at
this point; the system appears to maintain this state endlessly.
The dynamics that characterizes this state is different from that
of the early nonlinear stage, and it is doubtful whether it can
even be associated with the MRI at all. Qualitatively, it appears
that MRI modes have migrated to wavelengths longer than the
box size, and that the 3D geometry is allowing a quasi-steady
state that consists of periodic oscillations. This dynamics is of
no relevance for this work, but it is interesting to note the
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Figure 12. Evolution of the pair-plasma MRI in a small 3D box (2 X 2 x 2)\3y). Left: spatial distribution of the radial (B,) and toroidal (B,) magnetic field at
subsequent times during the simulation. Right: evolution of the change in magnetic energy in all three components of B (top), and evolution of the volume-averaged

B) and (3, (bottom).

difference between the 3D and 2D end states, with the latter
consisting of stable loops in the xz-plane.

The evolution of the volume-averaged 3, and 3,, shown in
Figure 12 (bottom right), closely follows that of the magnetic
field: in the early nonlinear stage (between r~4P, and
1~ 6P;), we measure an increase (3) ~ (03,) ~ 0.2-10, with
very brief periods where (3,) > (3;) and subsequent “bursty”
reconnection events re-establishing isotropy periodically. At
late times, pressure anisotropy accumulates and pushes the
MRI growth rate to smaller and smaller values.

The small 3D run discussed above achieves magnetic-energy
saturation in the nonlinear stage, thus already improving over
2D runs of much larger size (in x and z). However, in such a
small simulation, we do not obtain a developed turbulent state,
consistently with the results of the sole 3D fully kinetic study
previously presented (Hoshino 2015). For this reason, we now
focus on the larger simulation shown in Figure 13 with box size
4 x 8 x 2)\g;. This case is chosen as representative of a
situation where the numerical domain size is rather limited in z
(in our case, by the requirement L, << H)—hence a small
number of channel modes are expected to grow during the
linear stage—but the larger extent in x and y now allows for
additional instability mechanisms that cannot be included in the
previous 2 x 2 x 2M\ygr; case. For 2D simulations, in
Section 4.3.4 we have argued that boxes elongated in x
promote the development of turbulence by allowing for drift-
kink modes that can disrupt the channels; here, we observe
exactly this effect in3D. Elongated channels are here
susceptible to more numerous DKI modes than in the small-
box case. These long-wavelength modes also cause ripples in
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the current sheets of larger amplitude, up to the point where
current sheets at the interfaces of different channels interact
with each other. This eventually causes a loss of coherence in
the channel structures and the complete disruption of the
sheets. This is not observed in the small-box case, where
ripples along the current sheets are of much smaller amplitude
and do not cause the breakup of channels.

The top-right panel of Figure 13 shows that the system
evolution now proceeds through a linear stage where the
magnetic field is amplified roughly 10 times less than in the
previous cubic-box case. The onset of magnetic reconnection
results in a nonlinear stage that is qualitatively different from
that of the small-box case: repeated cycles of period ~2P are
observed where the magnetic energy in all components grows
and is rapidly dissipated before growing again. Each growth
phase corresponds to the formation of macroscopic channels,
and each dissipation phase results in the complete breakup of
said channels, which lose coherence and decay into “turbulent”
structures (whether this can truly be called a turbulent state will
be discussed in Section 5.2). This behavior is visible in the
spatial distribution of B, and B, at subsequent times in
Figure 13 (left panels).

Reconnection in this elongated-box simulation is evidently
much more active than in the cubic-box case. We observe that
the macroscopic current sheets violently kink in both x and y,
eventually resulting in the emergence of the turbulent state. The
bottom-right panel of Figure 13 shows that the stronger
reconnection dynamics also heavily impacts the evolution of 3:
because of the smaller magnetic-field amplification (with
respect to the cubic-box case), the nonlinear stage is
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Figure 13. As in Figure 12, but for a box size of 4 X 8 X 2X3z.

characterized by a volume-averaged (3) ~ 10, which can grow
up to ~100 during the dissipation phase of the channel-breakup
cycles. Pressure anisotropy is well-regulated, during the early
nonlinear stage, by subsequent reconnection events, which
periodically re-establish isotropy; in the late nonlinear stage, a
finite (tens of percent), unquenched pressure anisotropy is
retained, marking the transition to the same end state described
above for the small-box simulation.

The numerical experiment reported in Figure 13, however
limited in box size and scale separation, provides the first,
striking evidence that large 3D PIC simulations of the
collisionless MRI possess qualitative features analogous to
corresponding MHD simulations. In contrast to the 2D case,
where important physical processes are impeded by the reduced
dimensionality, here we observe an MRI behavior akin to that
exhibited by 3D MHD runs, with the cyclic creation (via the
MRI) and destruction (via reconnection) of channel flows. In
the next subsections, we discuss more quantitative comparisons
with 2D simulations as well as the effect of choosing different
aspect ratios in 3D runs.

5.1.1. 2D versus 3D MRI Dynamics

Figure 14 shows the evolution of the volume-averaged
Alfvén speed (left panel), calculated with the nonrelativistic
expression, and of the volume-averaged pressure anisotropy
(L —py/p (right panel) for the two runs presented in the
previous section (with box size 2 x 2 x 2A\yg; and
4 x 8 x 2\r;» respectively), as well as for an analogous
run with box size 4 x 4 x 2\yg;. In the same plots, these 3D
runs are compared with a small-box 2D simulation (with box
size 2 x 2\r;) employing the same physical parameters. We
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observe that the 3D simulations display a qualitatively different
behavior overall.

To respect the validity of the nonrelativistic shearing-box
paradigm, we have verified that bulk flows always remain
subrelativistic in all our runs. However, as was also found in
earlier work (Riquelme et al. 2012; Inchingolo et al. 2018),
here we observe that the average vi® in the 2D run vastly
exceeds the speed of light during the nonlinear stage, violating
the underlying model assumptions. For 2D, Inchingolo et al.
(2018) attributed this behavior to the limited size of the
simulation box, showing that, for larger domains >8 x 8\,
the constraint VA~ /c < 1 was fulfilled over short times.
However, our 2D campaign (Section 4) shows that, in all
cases (irrespective of the box size), the system inevitably
evolves such that vi® /¢ > 1 over sufficiently long times. This
occurs because the out-of-plane B, fails to saturate in 2D, due
to a lack of dissipation processes (i.e., reconnection) along y
(see Section 4.2). The violation of the V};IR /¢ < 1 condition
breaks the underlying nonrelativistic shearing-box assumption,
and therefore puts into question the physical validity of the 2D
results. In addition, the lack of saturation in 2D heavily
contributes to the migration of MRI modes to scales larger than
the box size. Our 3D simulations shown in Figure 14 (left
panel) display a different behavior, with the magnetic-field
amplification (and therefore V}\\IR /c) reaching much smaller
values. Even a limited-size, cubic-box run already results in
AR /¢ ~ 1 (i.e., ~10 times smaller than in the corresponding
2D case), and larger and larger 3D boxes progressively
improve this result. Our largest two cases, with box size
4 x4 x2 g and 4 x 8 X 2\g;, firmly maintain viR/
¢ < 1 for the whole duration of the nonlinear stage.

The fact that, in 3D, MRI saturates at lower magnetic-field
amplitudes implies that unstable MRI wavelengths do not
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Figure 14. Left: evolution of the volume-averaged Alfvén speed (calculated with the nonrelativistic expression) for several 3D PIC simulations of the pair-plasma
MRI, compared with a 2D simulation using the same initial physical parameters. In the 3D runs, the constraint vy~ /¢ < 1 is much better respected. Right: evolution of
the volume-averaged pressure anisotropy, which influences the MRI growth rate, in the same runs. The 3D runs develop smaller anisotropy over longer times.

migrate to larger length scales as quickly as in 2D. Thanks to
the more efficient reconnection during the nonlinear stage, in
3D the MRI is not aggressively suppressed by the unbound
growth of magnetic fields. This supports our statement on the
significance of 3D simulations: capturing the MRI and
reconnection dynamics along the toroidal direction is essential
to model a physically meaningful evolution of the instability,
which can then maintain a saturated state for longer times.

Two-dimensional simulations also display a qualitatively
different behavior in the development of pressure anisotropy:
Figure 14 (right panel) shows the evolution of the volume-
averaged (p, — py)/p in the same 2D and 3D simulations. In 2D,
the anisotropy rapidly increases during the nonlinear stage, and
progressively accumulates as the MRI continues to amplify B,
without the dissipative effect of reconnection along y, up to a
maximum ((p, — py)/p) == 1. In all 3D runs, this anisotropy is
limited to smaller values (up to a maximum ((p, — p)/p) = 0.5)
for the whole duration of the nonlinear phase, mildly increasing
toward the end of the run. This is verified both in the cubic-box
case and in larger boxes, indicating that the additional
reconnection along y plays a major role in constraining the
development of pressure anisotropy. This anisotropy eventually
contributes to pushing MRI wavelengths to larger scales and to
halting the MRI development, but over longer timescales than in
corresponding 2D cases.

5.1.2. Effect of the Aspect Ratio

The 2:4:1 aspect ratio employed for the simulation presented
in Figure 13 has been chosen by carefully analyzing a number
of runs with varying L,, L,, and L,. As illustrated in Section 3,
the physical domain size in z (i.e., L./ Ayrr) heavily impacts the
simulation cost, when demanding that the macroscopic scale
ordering H/L_ > 1 be respected. In practice, choosing L_/ Ayr1
and \yry/pc determines the required number of grid cells per
Amri and the number of time steps per Py. Then, the aspect
ratios L,/L, and L,/L, are free parameters, each impacting the
overall simulation cost linearly (i.e., quadratically when
combined). Ideally, we are free to choose a small vertical
extent, e.g., L./ Avrr = 2, and then elongate the box in x and y
to better include the reconnection physics (as shown in
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Sections 4.3.4 and 5.1). However, the x-extent of the box
cannot be increased indefinitely, because we demand that the
condition vy(L,)/c < 1 be satisfied at the radial boundaries. Our
tests indicated that numerical artifacts appear at the boundary
when L,/L, >4 (corresponding to vy(L,)/c > 0.5). Hence, we
choose L,/L. =2 in our 3D simulations. Elongating the box in
y is less problematic, since no constraints related to the
nonrelativistic shearing-box model exist in the toroidal
direction.'” We have chosen L,/L,=4 in our largest run.

In earlier sections, we have argued that boxes with larger
L,/L, produce better-developed turbulence; Figure 14 indeed
demonstrates that, as we enlarge a 1:1:1 box to 2:2:1 and then
to 2:4:1, we can observe the emergence of the characteristic
cycles of creation and destruction of channel flows. Reconnec-
tion acts more efficiently when L,/L.>1, resulting in
dynamics more similar to that expected from 3D MHD
numerical experiments. It remains to be assessed whether the
effect of the aspect ratio changes when macroscopic and
microscopic length scales are better separated, and whether
even larger L,/L, produce significant changes in the results.
Due to the exceptional computing costs involved for such
simulations, we defer this analysis to future work.

5.2. Spectra of 3D MRI-driven Turbulence

In Figure 15, we show the isotropic power spectrum of the
poloidal (Bpo = JBXZ + Bz,z) and toroidal (B,) magnetic-field
components for the large-box simulation discussed in
Section 5.1 (with parameters we/ =15, Go =312, and box
size 4 x 8 x 2\yry: see Figure 13). This run is characterized
by an “episodic” behavior during the nonlinear stage, where
cycles of channel creation /destruction can be clearly identified.
The magnetic-field strength and configuration change drasti-
cally throughout each cycle; for this reason, in Figure 15, we
focus on the cycle occurring toward the end of the nonlinear
stage (between t ~ 9P, and r =~ 11Py; see Figure 13), and time-
average the power spectra throughout the cycle.

17 Note, however, that curvature effects have been neglected when construct-
ing the shearing-box equations; L,/L, can then be larger than L,/L,, but must
remain limited to a certain extent.
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Figure 15. Isotropic power spectrum of the poloidal (red line) and toroidal
(blue line) magnetic field for the 3D pair-plasma MRI simulation of Figure 13
(we/Q =15, fo=312, and box size 4 x 8 x 2\3ry). The spectra are
averaged over one channel disruption/creation cycle during the nonlinear stage
(between t >~ 9Py and t =~ 11P,), showing a persistent peak around the most-
unstable MRI wavenumber kyr;. The spectra feature characteristic slopes
indicating an inertial range, and a spectral break in the vicinity of the average
Larmor-radius wavenumber k, measured at t =~ 10P,,.

The results show a persistent peak in the spectra around
kmrr, the wavenumber of the most-unstable MRI mode
calculated with the initial simulation parameters. This peak is
indicative of the fact that the MRI is active through the cycle,
although magnetic-field dissipation via reconnection is clearly
dominant during the dissipation phase, when channels are
being disrupted and magnetic energy is converted into heat.
Such dissipation results in a turbulent cascade, which can be
identified in the spectra via the presence of an inertial range
with characteristic slopes. At moderate wavenumbers, the
poloidal-field spectrum features a shallow slope that could be
comparable to k> /3, although the spectra are quite noisy
(especially in the inertial range) and a precise measurement of
the spectral slopes is hard to obtain. Regardless of the exact
power-law index, we clearly observe that a spectral break
occurs around k >~ k,, with k, being the wavenumber corresp-
onding to the average Larmor radius measured at # ~ 10P, (i.e.,
at the midpoint in time through the cycle). In the sub-Larmor
range (k > k), the By, spectrum steepens to a slope o k=32 in
Figure 15, a slope ock ° is also indicated to guide the eye. The
toroidal-field spectrum similarly features a shallow slope
consistent with k2 at k < k, (although this part of the spectrum
is also rather noisy), and a spectral break and steepening
to o k> in the kinetic range.

These 3D spectra present similarities as well as substantial
differences with those shown in Figure 7 for the 2D case. Like
in 2D, for the poloidal field, we observe an inertial range with
acck /3 slope, indicative of a turbulent MHD-type cascade
driven by energy injection at large scales; similarly to 2D, for
Byo1, we measure a spectral break and a steepening in the sub-
Larmor range, althou§h in 3D this part of the spectra features a
slightly steeper o< k> slope. Especially at kinetic scales, 2D
and 3D spectra show substantial differences: the B, spectrum in
3D presents a spectral break not observed in 2D, and the kinetic
range is here much more extended. In addition, we pointed out
that, in 2D, the spectra continuously evolve, and over time, the
measured characteristic slopes do not persist. We believe that
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this is an artifact of the reduced 2D dimensionality; in 3D, we
have verified that the spectra shown in Figure 15 consistently
appear over each channel creation/disruption cycle in the
nonlinear stage as long as the MRI is active.

Our 3D results are in good agreement, at least in the inertial
range (k < k,), with the 3D hybrid simulations of Kunz et al.
(2016) as well as with 3D MHD results (e.g., Walker et al.
2016). Slight differences with these works arise in the kinetic
range (k > k,), where we measure a k32 slope instead of the
ock— reported by Kunz et al. (2016). However, their result was
related to the ion sub-Larmor scales in a hybrid simulation,
while here we are considering fully kinetic pair plasmas. Future
3D PIC runs with electron—ion plasma will clarify whether this
discrepancy is related to our pair-plasma assumption.

5.3. Particle Energization in 3D

In this section, we briefly analyze particle energization in the
3D pair-plasma MRI. We focus on our largest simulation
presented in Figure 13 (wc/Q =15, o =312, and box size
4 x 8 x 2\3g;) and measure the evolution of the mean
Lorentz factor for electrons and positrons separately, as well
as the average value for both species. In addition, we compute
the energy distribution function at subsequent times during the
simulation. The results are shown in Figure 16.

Much like in the 2D case (Section 4.5), we observe that the
particle energy constantly increases throughout the run, with
the average Lorentz factor reaching values ~10—40 at the end
of the simulation (left panel). Also similarly to our 2D
simulations, we measure significant differential heating
between the two particle species, with electrons reaching
energies ~4 times larger than positrons on average. The energy
distribution functions measured for both species together (right
panel) show that, right after the onset of reconnection at
t~4.7P,, there is a significant nonthermal component in the
energy spectra; this nonthermal tail follows a power law that
persists until the end of the run as the plasma heats, while an
additional high-energy peak progressively develops around
v~ 100 (indicated by a dashed line in Figure 16). At the end of
the simulation (f ~15 Py), particles have accumulated around
the peak energy, eroding the power-law tail of the spectrum.

These 3D results show both remarkable similarities and
qualitative differences with our 2D runs. First, the differential
heating already found in 2D simulations arises in 3D essentially
in the same way, with electrons gaining more energy than
positrons; the mechanism driving this effect is the same as in
2D simulations (which we elaborate on in Appendix B). The
plasma heating proceeds, on average, very similarly to our
large-box 2D runs (see Figure 8), where developed Alfvénic
turbulence drives a rather smooth increase in particle kinetic
energy. In 3D, the “episodic” nature of the channel creation/
disruption cycles manifests itself in the evolution of (), where
we observe periodic (small) increases corresponding to the
repeated onset of reconnection events. The particle energy
distribution also evolves similarly to the 2D case, at least in the
beginning of the nonlinear stage; like in 2D, the slope of the
power-law tail is ~2.5-3, persisting until the end of the run. A
qualitative difference with 2D simulations lies in the end state
reached in 3D runs: the high-energy peak shown in Figure 16
here precisely corresponds to the Lorentz factor of particles
with pc >~ L, (calculated with the mean magnetic-field strength
at saturation). In 2D, we observed that a high-energy peak
develops due to the “quiet-loop” end state that emerges due to
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Figure 16. Left: evolution of the average Lorentz factor for electrons, positrons, and for the two species combined in the 3D pair-plasma MRI simulation of Figure 13
(we/Qo =15, fp =312, and box size 4 x 8 x 2)\3rD)- As in 2D, electrons heat significantly more than positrons. Right: evolution of the particle energy distribution
during the nonlinear stage (t >~ 4.7-15P,) of the same simulation. Right after the onset of reconnection at ¢ >~ 4.7P,, the distribution has developed a nonthermal tail
following a power law (the slopes of power laws with indices 2.5 and 3 are shown to guide the eye). The nonthermal population persists until the end of the run, while
a separated high-energy peak develops around vy ~ 100 (dotted line), which corresponds to the maximum attainable energy, due to the system size in the z-direction.

the reduced dimensionality; here, it appears that the system is
simply reaching a state where particles accumulate around the
highest attainable energy according to the simulation-box size.
This evolution is very similar to that of forced-turbulence
kinetic simulations, where particles accumulate, at late times,
around the maximum energy determined by the box size
(Zhdankin et al. 2018b). In our runs, the accumulation of
particles around the maximum energy and the shift of the
distribution to larger average energies progressively reduce the
extent of the power law. The development of the high-energy
peak also relates to (but is not a direct consequence of) the
differential heating discussed above, with electrons accumulat-
ing faster around the highest attainable energy.

Both the differential heating and the emergence of the high-
energy peak can be ameliorated with larger boxes and/or better
scale separation, which imply higher computational costs; for
example, we have conducted preliminary runs with larger
domain sizes, confirming that in such cases the high-energy
peak shifts to higher v, proportionally to the extent of the
smallest side (usually L,) of the simulation domain. System-
atically studying the effect of box size and scale separation on
particle energization in 3D involves high computational costs,
and we thus defer it to future work.

5.4. Stresses and Angular-momentum Transport

To conclude our first study of 3D MRI simulations, we
consider the evolution of the a-parameter and of the viscous
stresses. Figure 17 (top left) shows the measured values of «
and of the volume-averaged M,,, R,,, and A,, for the simulation
presented in Figure 13 (wc/Q =15, o =312, and box size
4 x 8 x 2)\3r;). We clearly observe that, for this run, the
anisotropic stress dominates the overall angular-momentum
transport; this differs substantially from 2D cases, where
A,y > M,, was verified only at late times (when the MRI is
halting and pressure anisotropy accumulates). The top-right,
bottom-left, and bottom-right panels of Figure 17 show,
respectively, the evolution of o and of the volume-averaged
M,, and A,, for the 2D and 3D cases already compared in
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Section 5.1.1. In all these cases, wc/S =15 and Gy =312,
while the box size and dimensionality are varied to compare the
2D and 3D dynamics as well as the 3D small- and large-box
evolution. We observe that, during the active nonlinear phase,
« is smaller for 3D runs than in the 2D case; a further decrease
in o occurs from small to large box sizes in3D runs.
Comparing the most important stress components, we notice
that M,, follows the same decreasing trend observed for a,
while A,, remains essentially unchanged across all runs. It is
therefore evident that the smaller value of o~ 0.1 achieved in
the large-box 3D case (whereas a > 1 in the active nonlinear
phase of the 2D run) is solely related to a decrease in the
Maxwell stress.

The explanation for this behavior is straightforward: as we
have argued in the previous sections, large 3D boxes drive
much more efficient reconnection dynamics, which in turn
results in a magnetic-field saturation at lower values than both
small 3D simulations and arbitrarily large 2D runs. The
Maxwell stress, on average, becomes correspondingly smaller
and so does . Since A,, remains somewhat constant across
all these cases, our results could in principle suggest that
the main driving mechanism for angular-momentum transport
in large 3D simulations is represented by pressure anisotropy
(this result was also reported by Hoshino 2015). However,
we believe that the large value of A,, observed here may
simply be an artifact of the reduced scale separation employed
in our 3D numerical experiments. In particular, we measure
(Ayy)/(p) = 0.1 in these runs, which is nearly twice as large as
the value found in 2D simulations with large boxes or large
scale separation (compare Figure 17). In such cases, pressure
anisotropy is more efficiently limited by developed turbulence
and/or faster mirror modes; with the limited scale separation
and box size employed in our 3D runs, it is not unreasonable to
think that the measured anisotropy is thus exaggerated. Three-
dimensional Braginskii-MHD and hybrid simulations (Sharma
et al. 2006; Kunz et al. 2016) have indeed shown that A, ~ M,
is expected in fluid modeling, but that anisotropic momentum
transport does not typically dominate the overall value of « by
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Figure 17. Top left: evolution of «v and of the volume-averaged Maxwell, Reynolds, and anisotropic stress in the 3D pair-plasma MRI simulation of Figure 13 (wc/
Qo = 15, By = 312, and box size 4 x 8 x 2\}x;). Top right: comparison of o for 2D and 3D simulations employing the same wc/Qg and (3, and different box sizes.
Bottom left and right: comparison of the volume-averaged Maxwell and anisotropic stress for the same 2D and 3D simulations.

the large margin we observe here. To assess the precise role
and trend of anisotropic stresses in 3D fully kinetic simulations,
we will conduct large-box studies with better scale separation
in future work.

6. Discussion and Conclusions

In this work, we have presented a comprehensive exploration
of the magnetorotational instability (MRI) in collisionless pair
plasmas via fully kinetic particle-in-cell simulations. With a
shearing-box setup implemented in our relativistic PIC code
ZELTRON (Cerutti et al. 2013), we have carried out a vast array
of 2D runs, exploring an unprecedentedly large parameter
space. In particular, we have conducted very large-scale 2D
simulations with macroscopic-to-microscopic temporal-scale
separation up to ~10 times larger than previous works and with
system size up to twice as large as the largest simulations
presented in literature. In addition, we have carried out large-
scale 3D PIC simulations of the MRI in pair plasmas, achieving
for the first time a global mesoscale dynamics akin to that
observed in MHD works. To study the axisymmetric MRI with
PIC, we have resorted to the established 2D shearing-
coordinate approach employed in previous publications
(Riquelme et al. 2012; Inchingolo et al. 2018); for 3D
nonaxisymmetric simulations, we have developed and applied
a novel “orbital-advection” formulation of the shearing box that
simplifies pre-existing methods (Hoshino 2013, 2015) and is
less complicated to implement numerically.

An important result of our study is the demonstration that 2D
(axisymmetric) fully kinetic simulations of the MRI are
qualitatively different from corresponding 3D kinetic runs.
We have pointed out for the first time such differences, and
provided a physical explanation for the behavior of the kinetic
MRI in 2D. We found that axisymmetric PIC simulations are
intrinsically limited in the physical processes they can model,
and such a limitation has important consequences for the
overall MRI evolution. In particular, the lack of reconnection
along the out-of-plane (toroidal) direction results in a lack of
saturation of the strongest magnetic-field component, B, with
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detrimental consequences for the development and sustainment
of turbulence. However, we also found that many important
lessons learned from 2D runs will carry over to the 3D case: for
example, with our extensive parameter scans in 2D, we have
determined the minimal values of key physical parameters (in
terms of the dimensionless scale separation, system size, etc.)
that need to be reached for meaningful studies. Thus, 2D
simulations give us guidance (starting point) for designing 3D
runs. Differences and similarities between the 2D and 3D cases
are illustrated in detail below.

By conducting large-scale 3D simulations of the MRI, for
the first time we have demonstrated that fully kinetic
simulations can reproduce the mesoscale dynamics typically
observed in MHD: multidimensional, macroscopic channel
flows cyclically form and get disrupted by parasitic instabil-
ities, particularly via drift-kink modes. The channel disruption
results in developed turbulence, and several channel creation/
growth/disruption cycles can be observed during the nonlinear
stage in large-scale 3D runs. This result also aligns with
previous 3D hybrid simulations (Kunz et al. 2016). Conversely,
channels developing in small-scale runs are not efficiently
disrupted and no turbulence develops, in agreement with the
sole 3D fully kinetic study presented in literature so far
(Hoshino 2015), which employed a simulation box of
limited size.

In addition to studying the general MRI dynamics, we have
explored in detail several physical processes that develop
concurrently with the linear and nonlinear stages of the main
instability. Our results can be summarized as follows:

1. We have extensively described the typical nonlinear
evolution of the MRI in fully kinetic shearing-box
simulations, explaining each phase of the evolution and
the differences between the small- and large-box cases, as
well as between the 2D and 3D cases. We have explained
how small and large simulations differ in producing
developed turbulent states, and how the choice of
physical parameters impacts the overall evolution and
duration of the nonlinear MRI. We have also identified
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the role of pressure anisotropy in these simulations,
observing that a large Ap=p, —p) can develop and
accumulate throughout the nonlinear stage of the
instability; this anisotropy is likely exaggerated by our
choice of modest scale separation (but still much larger
than that employed in previous studies) that necessarily
characterizes PIC simulations. A limited scale separation
can result in inefficient mirror modes, which grow much
more slowly than the MRI, allowing for persistently large
pressure anisotropy. This anisotropy ultimately partici-
pates in pushing MRI modes to wavelengths larger than
the box size, halting the MRI dynamics over long times.
. By exploring a large parameter space, we have assessed
the numerical convergence of key quantities (e.g., the
magnetic-field amplification) in 2D simulations when the
physical parameters are varied. We have studied the
effect of the separation between the macroscopic (€5")
and microscopic (wEl) temporal scales, wc/Co; of the
separation between box size and MRI scales L/ Aygy; of
the initial plasma-3; and of the box aspect ratio.
Increasing wc/$2o with a fixed box size generally results
in a longer duration of the nonlinear stage and in an
increase of the magnetic energy at saturation. We have
shown that, at some largewc/€Qp, the results (in
particular, the saturated magnetic energy) eventually
converge; however, this converged nonlinear state is
qualitatively different for small and large boxes, and the
precise value of wc /2 resulting in convergence depends
on the box size. Similarly, fixing wc/ and only
increasing the box size produces results that converge for
sufficiently large box sizes; in large boxes, a sustained-
turbulence state can develop, whereas in small simula-
tions it does not. This partly agrees with previous 2D
work by Inchingolo et al. (2018), who focused their
analysis on increasing box sizes while keeping wc/ 0
fixed. They concluded that convergence in the magnetic-
field amplification is attained, in 2D, for box sizes of at
least 8 X 8\%p;, and that large-box simulations can
maintain a volume-averaged va/c <1 (calculated with
the nonrelativistic expression) throughout the system’s
evolution, respecting the underlying assumptions of the
nonrelativistic shearing box. We have instead demon-
strated that 2D simulations, over sufficiently long times,
invariably develop an average va/c > 1, owing to the
absence of reconnection in the y-direction. This does not
occur, however, in our 3D runs of sufficiently large size;
we conclude that 3D simulations are of key importance to
obtain physically valid results that respect all the
underlying assumptions of the shearing-box model.
Considering the effect of the initial plasma-3, we found
that the results are practically unchanged in the range
Bo =2 0.1-2500: independent of the initial [, all simula-
tions end up with plasma beta more or less within the
same universal final range, of order 0.1-1 for 2D runs.
This result holds as long as the unstable MRI modes can
fit in the simulation box, i.e., under the constraint
L, > Mgy Finally, we have observed that the geometry
of the simulation box can impact the development of the
nonlinear MRI stage dramatically: boxes with aspect ratio
L,/L.>1 result in developed turbulence much more
easily than corresponding boxes with L./L. = 1, both in
2D and 3D. We have observed that this is caused by
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additional drift-kink modes that are impeded in small
simulation domains, and that can promote channel-
disruption events in elongated boxes instead.

. We have verified that sustained turbulence develops, in

our simulations, during the nonlinear MRI evolution. The
isotropic power spectra of the poloidal (B =

B? + Bzz) and toroidal (B,) magnetic field during this
phase show the presence of an inertial range with
characteristic power laws, indicative of turbulent activity.
Both in 2D and 3D, the By, spectrum features a shallow
slope roughly consistent with o k33 at large and
intermediate spatial scales, and a spectral break in the
vicinity of the average Larmor-radius wavenumber k, =

pel. In the 3D case, at length scales below pc, the By,
spectrum steepens to a ok > slope and a clear kinetic
range is present. The B, spectrum appears to follow a
k3 slope at all scales in 2D; in 3D, B, instead follows a
shallower slope compatible with ock  in the inertial
range, and a k> slope in the kinetic range. Our 2D
results are consistent with previous 2D studies (Inchin-
golo et al. 2018); our 3D results for B,, in the inertial
range, are in agreement with MHD and hybrid-kinetic
simulations (Kunz et al. 2016; Walker et al. 2016).
However, the latter comparison is complicated by the
difference in the underlying models (our fully kinetic PIC
versus MHD or hybrid methods). Considering works
focusing on pair plasmas, a similarity can be drawn
between our model and that employed in Zhdankin et al.
(2017, 2018a), since both cases consider a forced-
turbulence system evolution. However, in those works, a
ok slope (or steeper) was found for k >k, which
differs from our shallower k2 result in the kinetic
range. This measurement is also hard to compare against
analytic expectations, as no previous studies (to the best
of our knowledge) have focused on the specific case of
pair-plasma MRI-driven turbulence we consider. For
example, Loureiro & Boldyrev (2018) considered a low-(3
pair plasma in a tearing-mediated cascade, finding a ok
slope in the kinetic range; our conditions, however, are
those of a high-beta plasma, and we have no basis to
claim that our cascade is tearing-mediated in nature. It is
also interesting to note that solar-wind observations
commonly report a spectral slopeockq/ 5 k%3 (not
extremely far from our oc k2% result) at sub-ion-Larmor
scales, consistent with gyrokinetic calculations (e.g.,
Schekochihin et al. 2009). Whether a similarity can be
drawn between this and our case will be verified with
future electron—ion simulations.

. Concerning particle energization in 2D and 3D, we found

that energy injection in large runs is akin to that brought
about by Alfvénic turbulence. In these simulations,
turbulence is well-developed and particle heating pro-
ceeds smoothly, with the system achieving a steady-state
balance between turbulent magnetic-energy dissipation
and particle energization. In contrast, when turbulence is
not well-developed (e.g., in small boxes), particle
energization occurs mostly during short “bursts” corresp-
onding to large-scale reconnection events. Moreover, for
the first time, we have reported that substantial differ-
ential heating can occur between electrons and positrons
in MRI simulations. The physical mechanism behind this
phenomenon is represented by additional drift forces



THE ASTROPHYSICAL JOURNAL, 938:86 (38pp), 2022 October 10

(related to the background differential rotation) that affect
opposite charges differently, causing a symmetry break in
the gyromotion of electrons and positrons in a uniform
magnetic field. This effect is unrealistically large in our
simulations, due to our choice of (necessarily) limited
scale separation wc/Qo. We have elaborated on how
tuning the values of physical parameters can ameliorate
this issue and its implications for the interpretation of the
results.

5. The particle energy distribution functions in our 2D and
3D simulations show the presence of substantial
nonthermal particle acceleration during the nonlinear
MRI stage. A power-law tail with index ~2.5-3
consistently develops as the MRI transitions to sustained
turbulence, both in 2D and in 3D. Our results are in good
agreement with previous works; however, here we have
demonstrated that in 2D this power-law state is transitory,
and that the overall evolution can produce very different
energy distributions over time. Inchingolo et al. (2018)
carried out a similar analysis but focused on the early
nonlinear stage, where a power-law index ~2 can indeed
be realized. However, such a state is clearly still evolving,
and it changes drastically later on. At late times, the
power-law part of the distributions progressively dis-
appears, and a high-energy peak develops. This is
completely determined by the artificial 2D end state
(with characteristic “magnetic loops”), driven by the
reduced dimensionality of these runs. Riquelme et al.
(2012) described a similar late-time 2D dynamics, but
attributed this evolution to the MRI; we emphasize that
such a state is in fact not representative of the response of
particles to the MRI, because the latter has slowed down
(or completely stopped) by the time when the quiescent
end state has developed. Conversely, in our 3D simula-
tions, the developed nonthermal features are maintained
with the same power-law index until the end of the run.
However, the nonthermal tail is progressively eroded by
the accumulation of particles around the highest energy
attainable (which increases with box size). Hoshino
(2015) observed a similar effect in small-box 3D
simulations; this result is also consistent with forced-
turbulence PIC simulations (Zhdankin et al. 2018b) and
points to the need for larger (and more expensive) 3D
numerical experiments. Note that the slope of the
nonthermal tail we measure in our simulations differs
from the results presented by Hoshino (2015); it is also
unclear whether the development of the observed
nonthermal features in 3D remains unchanged when
further increasing the box size and/or scale separation. In
future work, we will perform additional simulations with
a focus on assessing the impact of physical and numerical
parameters on the resulting particle energization.

6. In our 2D and 3D simulations, we observed that viscous
stresses (in particular, the dominant xy-component of the
stress tensor) can develop during the nonlinear MRI
stage. This can lead to efficient angular-momentum
transport: an effective (dimensionless) collisionless
viscosity a = ((My,) + (Ay) + (Ry))/(p) (Shakura &
Sunyaev 1973) arises both in 2D and 3D runs, mainly
due to Maxwell and anisotropic stresses. In 2D, the
Maxwell stress M,, = — BB, /(4) is likely exaggerated
due to a lack of saturation in B, caused by the reduced
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dimensionality; in 3D large-scale runs, where magnetic
fields saturate at lower amplitudes, this stress firmly
settles on (M,,)/(p) = 0.01-0.1, consistently with pre-
vious hybrid simulations (Kunz et al. 2016). The
anisotropic stress A, = — (p, — py)B,B,/B>, on the
other hand, shows a more complex trend. When keeping
the samewc/€, the average pressure anisotropy
(p. — py) generally decreases from 2D to 3D and from
small to large boxes; however, because the average B?
decreases as well, (A,,)/(p) maintains roughly the same
average value ~0.1 in 2D and 3D simulations. As a
result, we measure A,, > M,, in our largest 3D runs,
which is counter to the general expectation A,, S M,,.
We believe that this enhanced anisotropic angular-
momentum transport is related to our (necessarily)
limited scale separation and system size; with realistic
parameters, efficient mirror modes would rapidly quench
pressure anisotropy, likely decreasingA,,. Hoshino
(2015) measured a similarly enhanced angular-momen-
tum transport due to pressure anisotropy in small-box 3D
simulations, which was likely due to the same mechan-
isms we describe here.

Although we have addressed several key aspects of the
kinetic physics of the MRI, our study still presents several
limitations. The most prominent open question is whether 3D
PIC simulations could produce results that completely align
with hybrid and MHD studies, and how the nonthermal particle
acceleration and angular-momentum transport depend on the
box size and choice of physical parameters. Here, we have
conducted the largest (to date) 3D PIC runs that successfully
reproduce the global mesoscale MRI dynamics, but our scale
separation and box size remain rather limited. Larger simula-
tions with better separation would be needed (i) to completely
characterize the properties of particle energization, e.g.,
whether large-scale runs, where the box size does not rapidly
interfere with the nonthermal part of the spectrum, present the
same nonthermal features as those observed here; and (ii) to
understand the general trend of viscous stresses when the scale
separation is substantially larger, possibly achieving the
expected ordering A,, SM,, in simulations where pressure
anisotropy is well regulated. Moreover, the issue of substantial
differential heating in 3D runs remains to be addressed, as it
can complicate the analysis of particle energization even in
pair-plasma simulations.

Despite these limitations, our work paves the way for several
future studies focused on the exploration of other properties of
the MRI. For example, we have reported here the stark contrast
between simulations with and without net magnetic flux; this is
a well-known aspect of the MRI dynamics that has been
extensively studied with MHD shearing-box models (e.g.,
Gardiner & Stone 2005). Several works have even pointed out
that 3D simulations with and without net magnetic flux behave
substantially differently for boxes with different aspect ratios
(e.g., Bodo et al. 2008; Walker & Boldyrev 2017); moreover,
in ideal MHD, it is generally observed that the a-parameter
representing angular-momentum transport tends to zero in the
case of zero net magnetic flux, unless explicit dissipation
coefficients are included (e.g., Fromang et al. 2007; Fromang
& Papaloizou 2007). In collisionless models (including ours),
such dissipative effects are naturally included (as shown, e.g.,
by Kunz et al. 2016), and the phenomenology of angular-
momentum transport can be studied from first principles. All in
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all, we believe that a systematic PIC study of the zero-net-flux
case may be particularly important to understand the exact
mechanisms behind the phenomenology of MRI dynamo; we
will pursue such a study in the future. Another important
analysis to be carried out in future work concerns the initial
magnetic-field configuration: here, we have limited ourselves
to the purely vertical-field case, but it is well-known that
different field geometries (especially when an initial By is
present) can result in qualitatively different global MRI
evolution and turbulence properties (e.g., Gardiner &
Stone 2005; Goedbloed & Keppens 2022). This aspect has
not been considered in kinetic or hybrid works, but it would be
important to study generic field geometries, which are expected
in realistic astrophysical scenarios. Finally, we note that
studying the kinetic MRI with vertical stratification (as
opposed to the case without stratification that we considered)
could in principle provide results that are more physically
relevant for modeling thick accretion disks (e.g., Hirabayashi
& Hoshino 2017) and resolve convergence issues that notably
affect MHD studies (e.g., Regev & Umurhan 2008; Bodo et al.
2014).

We conclude by remarking that the next step in our line of
work concerns electron—ion (m; > m,) simulations. Studying
the large mass ratio case, and especially the energy partition
between particle species, is fundamental for the correct
interpretation of data from current and future observations
targeting RIAFs (EHT Collaboration 2019). In these collision-
less astrophysical environments, electrons and ions are
decoupled and a two-temperature state can originate from
turbulence and/or radiation-reaction dynamics (Arzamasskiy
et al. 2019; Zhdankin et al. 2019; Kawazura et al. 2020, 2021;
Zhdankin et al. 2021). With our simulations, we will be able to
study the process of temperature decoupling (and possibly the
dynamics of radiation) during the MRI from first principles.
Moreover, information from fully kinetic simulations can be
used as input for global fluid simulations of accretion around
compact objects employing subgrid models to account for the
missing microphysics (Ressler et al. 2015; Chael et al. 2018;
Scepi et al. 2022). Given the ever-growing interest in
understanding the dynamics of collisionless accretion disks
around SMBHs, we believe that this work has the potential to
substantially impact our insight into the physics of such space
environments.
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Appendix A
Numerical Methods for the Kinetic Shearing Box

A.l. Shearing-coordinate Simulations in 2D

For two-dimensional simulations, in this work we employ
the KSB-SC formulation, which is preferable because no
complicated boundary conditions are required (the simulation
domain is periodic in all directions). Numerically, the
implementation of the KSB-SC system of equations in a PIC
code requires the solution of modified Maxwell’s equations and
a peculiar particle-push step. These modifications are, however,
straightforward: for the electromagnetic fields, the additional
terms on the right-hand side of Equations (13) and (14) are
linear and point-wise, and can therefore be treated explicitly
with a standard leapfrog algorithm by interpolating in time and
space to maintain second-order accuracy (see Riquelme et al.
2012). The particle-push step is similarly formulated as a
modification of a standard Boris scheme that includes here
extra (linear) terms. We refer to Section A.2.2 for more details
on this modified Boris algorithm.

A.2. Orbital-advection Simulations in 3D

For three-dimensional simulations, in this work we make use
of the newly developed KSB-OA framework (Section 2.3). The
numerical implementation of our method requires solving
modified Maxwell’s equations that generally include implicit
terms, as well as a modified Boris push (similar to that required
for 2D runs, see Section A.l above). Our numerical approach
also requires shearing-periodic boundary conditions on electro-
magnetic fields, source terms, and particles.

A.2.1. Solution of Maxwell’s Equations

Our versions of Maxwell’s Equations (20) and (21) involve
nonlocal, coupled terms on the right-hand side; this compli-
cates the numerical solution, since a simple leapfrog scheme
cannot be applied to explicitly push the electromagnetic fields
in time. To avoid costly matrix-inversion operations (see, e.g.,
Bacchini et al. 2019), in our first numerical implementation, we
split the solution in two explicit steps. First, all terms on the
right-hand side of Maxwell’s equations that are not related to
advection along y are discretized with a central-difference
scheme in time and space. The resulting system of discrete
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equations (excluding the advective terms) is iterated upon with
a simple predictor-corrector step, which is applied three
times.'® At the end of each predictor-corrector iteration, we
can include the advection of E and B along y in several ways.
In our numerical experiments, we have observed that a simple
central-difference scheme applied to these terms inevitably
results in instabilities developing at the shearing boundaries;
we could therefore opt for a more stable advection scheme
among the many available in literature. However, as a first
approach, we choose an even simpler strategy: to model the
advection of field quantities along y, we simply shift each
component of E and B in space by a distance v, (x)At (with
appropriate signs). The shifted arrays are interpolated at the
resulting spatial locations, which approximates the advection
step. This operation introduces some numerical diffusion, but
we observe that this is in fact beneficial, as it suppresses
numerical instabilities at the shearing boundaries. Our approach
represents a cheap, less sophisticated alternative to more
classical schemes; while this leaves ample grounds for
improvements, it only requires simple spatial interpolation to
model advection, and we observe that this choice produces
acceptable results for this first study. In future works, we will
implement more robust algorithms to accurately capture the
field advection and minimize the numerical diffusion intro-
duced by our approach. Finally, Gauss’s law (Equation (23)) is
enforced, in our approach, with a Langdon—Marder correction

1+ 7+ (hé — &)

1
Al = D L+ 5T+ o+ w@E+ &)

F+ BT - ak - mRE+HE) —h+ BT

(Marder 1987; Langdon 1991); the resulting (small) errors on
charge conservation are thus bounded in time.

A.2.2. Modified Boris Push and Particle-position Update

To solve the momentum Equation (40), we proceed as
follows: first, we define € = gArE/(2m), T=qAtB/(2mc); we
then discretize the equation of motion between two consecutive
time steps as

un+l/2 + un—l/2

un+1/2 _ un71/2 = D€+ X T

¥
+ At(un+1/2 + unfl/Z) % QO

sQoAt _ N
L(uf“/z—i—u; 1/2)ey

un+1/2 + unfl/Z

— . e)éy,
5

18 This approach is essentially an iterative Crank—Nicolson scheme. It is well-
known that this scheme is not asymptotically stable for an infinite number of
iterations (see, e.g., Leiler & Rezzolla 2006); the scheme is, however, stable for
three iterations, which is our choice for all simulations. This represents a good
compromise between stability and accuracy in the solution.

+ sQox" ( (A1)
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where ¥ is the Lorentz factor defined at an intermediate time
between n + 1/2 and n — 1/2. Next, we recast this equation as

ut —ut X T — qu e, — @t - €)e,

=u +ut XT+au é + @ - €e, (A2)

where we have defined u® = u"*'/? Fe T=1/9+ Ay,

€ = €/7, a; =sQAt/2, ay = sQox", and u™ is the unknown
to be solved for. Assuming that ¥ is known (see next
paragraph), Equation (A2) can be solved explicitly by recasting
it as

Aut = C, (A3)

where the right-hand side is the known term C = u~ + u~ X

T4 oqu ey, + ar(u™ - €)eéy, and
! % %
A= ﬁ—al—aza l—azEy —7}—0&2%} . (A4)
~% % 1
The solution is then straightforward,
ut = A'C, (AS5)
with the inverse matrix
T+ TTy B+ Hnt+ i@ s+RE)
1+7 A+53%—ah+a-5&+ 8| (A6)
1+ 7 — % — mFE&+ &)
where
D=1+47— a\(% + &%)
—[RHT - O+ §+ & — &7l (A7)
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After u™t has been calculated, the particle velocity at the next
time step is simply

w2 =yt 4 e (A8)

The definition of 4 is not unique, and it is in fact the
peculiarity that generally distinguishes relativistic particle
pushers (see, e.g., Ripperda et al. 2018). For simplicity, we
can define the mid-point Lorentz factor as

¥ =1+ @)+ 2, u, + 2@ - e)u, [71/c,

(A9)

which is a choice similar to that used in the standard Boris
pusher. This definition is such that, in the absence of electric
fields, energy is conserved exactly. We can solve the resulting
depressed cubic equation for 4 with any available algorithm,
e.g., the one described by Tiruneh (2020): define X =a;/3,
Y=—a,/2, where

ar=—1—[Ww)?+ 20[114;1/!;]/C2,

e)uy’/cz,

(A10)

ar = —20,W - (Al1)
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such that 53 + @;5 + a» = 0. The discriminant Z=X> + ¥*
indicates that there is only one real root if Z > 0,
5=y +JZ + Y- VZ,

and three real roots (of which only one positive and >1) if
Z<0,

(A12)

= 2V X ooy LEHLZ DT, (A13)
where j=1, 2, 3, and ¢ = cos~! (Y/\/ —-X3).

When the new particle velocity is known, the position push
can be carried out in two steps. The position is first updated
with the motion with respect to the background, i.e.,

w172

x' =x" + At——

7n+1/2’ (Al4)

after which the current can be collected with the usual
Villasenor—-Buneman charge deposition (Villasenor & Bune-
man 1992) using the displacement x’ — x". Then, the position
is updated with the shearing-velocity part,

! n
xn+l =x - SQox +Xx

Atey, (A15)
which only modifies the y-coordinate, using the x-position at
the midpoint in time (note that x"*! = x’). Depositing the
current using x’ — x" instead of x""' —x" is essential to
recover J' (in this paradigm, the current due to velocity
fluctuations with respect to the background) instead of J.

As noted in Section 2.3, if particle velocities are relativistic,
the particle position update above may result in superluminal
motion, since it is not guaranteed that (/7 + »)> < ¢%. As an
alternative strategy, we can employ the proper relativistic
velocity boost to update the particle position with a speed that
is ensured to be subluminal. Applying a central-difference
scheme to Equations (47)—(49), the position update is then
formulated as

un+l/2
xn+l:xn + At X ,yn+1/2

+ u;l+1/zvsl’ly+l/2],y;‘t+1/2’ (A16)

u{l+1/2

yn+1 — yn 4+ At Yy
,yn+l/2 + u;lﬂ/zvs'f;l/z
1/2
At /ZVSY;F

+At7n+1/z = M;H/zv;f;,/z, (A17)

w12
Zl’l+1 — Zn + At < (A]S)

/2 nt1/2 /2’
[,Yn+1/2 4 u;1+ / Vsiler / ],y;’l+ /
where v/ =

o —s Qo2 2 = 1 ) 1 12 e,

and x"1/2 = (x4 x) /2. These equations are less trivial to
employ, especially given that Equation (A16) is now non-
linearly implicit in the unknown x”"'. Fortunately, the
nonlinearity is weak and there are no numerical pathologies
on the right-hand side (e.g., the denominator is always >1). The
position update can then be carried out in the following steps:

1. Solve the nonlinear Equation (A16) for x’/ = xntl

obtaining vs’fy“/ 2, 7:“/ % in the process. We have found
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that three or four fixed-point iterations with x" as the
initial guess typically suffice for converging below an
absolute tolerance of 10~ '°,

2. Partially update the y-coordinate as

unt1/2

y
. (A19)
,yn+l/2 + M;HI/ZVS’SLI/Z

y/ :yn + At

. Calculate 7/ = z"*! with Equation (A18).

. Using x/, deposit the comoving-frame current J'.

. Complete the update of the y-coordinate with the
shearing-velocity part,

W W

n+1/2,,n+1/2
RGNS

12 W12 k12
Y2 4 g Vsy

yrHl =y + At (A20)

Appendix B
Differential Heating in Kinetic Shearing-box Simulations of
Pair Plasmas

Kinetic shearing-box simulations are characterized by
additional drift forces in the particle equations of motion,
related to the orbital motion of the accretion disk. These forces
are not charge-agnostic—that is, opposite charges of equal
mass experience difference forces acting upon their motion.
This causes a symmetry break in the dynamics of electrons and
positrons; as a result, in all our simulations (both 2D and 3D),
we observe that the two species in a pair plasma do not
experience the same energization when solving the shearing-
box equations. This appears surprising if compared to standard
(non-shearing-box) PIC simulations of pair plasmas, where the
two species behave essentially in the same way, and the
opposite sign in the charge only serves to maintain global
quasi-neutrality. Here, we prove that the differential energiza-
tion we observe is not a numerical artifact, but rather a physical
effect that characterizes shearing-box PIC simulations. This
statement is also corroborated by several tests—outside of
those presented here—performed during the development of
this work, including the use of unequal density profiles for
electrons and positrons as suggested by Hoshino (2013, 2015)
to better respect Gauss’s law for E. We checked that applying
such a strategy does not change the resulting differential
heating.

This effect stems from the kinetic shearing-box paradigm,
which involves additional forces in the particle equations of
motion. In the KSB-SC system, the momentum Equation (18)
contains the force term

2m§20uy
Fsp = 2mu x Qo + msQourey = | m(s — 2)Qou, |, (B
0

which is related to Coriolis and centrifugal forces in the
comoving frame where all quantities are measured (the same
applies to the KSB-OA system). This additional force causes a
drift of the particle guiding center, which is absent in typical
non-shearing-box kinetic simulations. In the nonrelativistic
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Figure 18. Left: trajectories of test particles (an electron and a positron) moving in the xy-plane when a uniform and constant magnetic field B = (0, 0, By) is present.
The particle motion is computed by solving the equations employed in the shearing-box paradigm. Right: spatial distribution of the radial and toroidal magnetic field
(top row) after the formation of channel flows in a small-box, 2D MRI simulation of size 2 X 20y (with we /2 = 120, [y = 624). The corresponding spatial
distribution of particle drift velocity along z (bottom row) shows that electrons are pulled toward current sheets, and positrons are pushed away.

limit, this drift has the usual expression

VsB
(s — 2)Q0(ux) B,
—2Q0(uy) B, ,
2Q0(uy) By — (s — 2)Q0(uy) By

<FSB> X BC _ ﬂ
qB? qB*

(B2)

where (...) indicates averaging over the particle gyration.
Because the sign of the drift depends on the particle charge, in
general particles of equal mass but opposite charge will
experience opposite drifts in all spatial directions.

We now show that the vgg drift is directly related to the
dynamics leading to the measured differential energization.
First, we note that the initial conditions in our MRI simulations,
B=(0, 0, B,p), lead to a drift motion exclusively in the xy-
plane. Such motion is precisely the well-known epicyclic
motion of particles in orbit around massive objects (e.g.,
Balbus & Hawley 1998), which is here modified by the
presence of a vertical magnetic field. In Figure 18 (left panel),
we show a portion of the trajectory of one electron and one
positron (with m = |¢g| = 1) moving according to Equation (18)
in the presence of a weak magnetic field B, such that
we/Qo = 1, with initial velocity v = (0, 0.1, 0). We observe that
the usual particle gyromotion is here modified by a drift of the
guiding center along £y depending on the particle charge
q = F 1. Moreover, the gyromotion is in itself different for the
two particles, with the electron attaining higher gyrofrequency
and smaller gyroradius (and vice versa for the positron).
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Although the guiding-center drift is purely in the toroidal
direction in this case, this differential gyromotion ought to
manifest in our 2D (x-z) simulations as well, given that the
particle oscillation along x occurs differently for opposite
charges. This difference in particle trajectories implies that
charge neutrality cannot be maintained at all times, and a net
current must arise.

While the differential gyromotion is present, at least in the
beginning, in all our simulations, it is arguably of minor
importance in the overall system evolution. Indeed, in
Section 4.5 we have shown that significant differential heating
primarily manifests during and after the linear stage, when the
magnetic-field geometry differs substantially from the initial
(pre-instability) phase. We find that relevant differential heating
arises due to the channel-flow configuration of B, and B, during
the later stages: B, here is heavily subdominant (see Section
4.1), and the main drift component of vgg is along z. In
Figure 18 (right panels, top row), we plot the spatial
distribution of B, and B, (normalized over the initial field B)
for a 2D, small-box (2 x 2\3r;) simulation with parameters
we/Qo =120, By =624 at t=3.3Py, when channel flows are
present and current sheets have formed at the channel
interfaces. In the same figure (right panels, bottom row), we
also plot the spatial distribution of vsg, for electrons and
positrons taken at the same moment in time. We observe that,
in the vicinity of current sheets, both species are drifting along
z; however, the particular magnetic-field configuration
causes this drift to be directed foward current sheets in the
case of electrons, and away from them in the case of positrons.
In a standard current-sheet (e.g., Harris-like) magnetic
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Figure 19. Differential heating in 2D pair-plasma MRI simulations, measured as the difference in kinetic energy between electrons and positrons normalized over the
instantaneous total energy of the system. Simulations with small box size and variable wc/$2o (left), variable box size and fixed wc/€p (center), and large box size and

variable wc/Qp (right) are compared.

configuration, particles drift toward current sheets, due to the
usual E X B motion, irrespective of their charge. This global
behavior is still verified in our case, but the addition of the vgg
drift now implies that charges of opposite sign drift toward
current sheets at different rates.

Given that particles experience most of the energy gain via
reconnection in current sheets, this differential drift motion can
explain the large difference in particle energy observed
between the two species. Electrons, which flow more quickly
toward current sheets, are capable of gaining more energy over
shorter times; this precisely corresponds to the faster electron
energization rates reported in Section 4.5. Eventually, all
available magnetic energy is distributed, via reconnection,
unequally among the pair-plasma species, with electrons
experiencing a larger energy gain.

The differential heating we report here for the first time (to the
best of our knowledge) is a genuine physical effect—however, it
is arguably of very minimal importance in realistic scenarios.
Indeed, it can immediately be observed that the drift speed vgg is
inversely proportional to we/€Y (and indeed, for the we/Qp = 120
case shown in Figure 18, vsg/c < 1). In realistic environments
where we/~ 107, this drift would be completely negligible,
and therefore no differential heating would be observed. In our
simulations (as well as in any other presented in literature),
however, we are bound to employ much smaller values of wc/,
due to otherwise excessive computational costs. Therefore, when
measuring particle heating in simulations, this effect must be taken
into account, in particular in the context of future electron—ion
numerical experiments, where analyzing particle heating is of
main interest for observations of accreting compact objects. In
such simulations, it will be of major importance to quantify the
“spurious” differential heating described here, in order to correctly
evaluate the energy partition between particle species.

We conclude by reporting the differential heating measured
in our 2D simulation campaign presented in Section 4. This is
shown in Figure 19, where the difference in electron and
positron total energy mc’*(y—1) is normalized over the
instantaneous total energy of the system, in order to measure
the relative importance of differential heating with respect to
the global energetics. We observe that larger wc /€2y values and
larger boxes can ameliorate this issue substantially, keeping the
differential heating below 10%. While it is clear that a larger
wc/€Qp implies smaller drift speeds and therefore smaller
differences in the rate at which particles flow toward current
sheets, justifying the positive effect of larger box sizes is less
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straightforward. Qualitatively, we can consider that smaller
boxes tend to create persistent large-scale channel flows that
are less likely to be destroyed by unstable modes and result in
developed turbulence (as illustrated in Section 4.5); this large-
scale, ordered distribution of magnetic fields is the most
favorable for particles to drift undisturbed toward currents
sheets at different rates. In large boxes where turbulence
develops, particles are less likely to experience such long-lived,
undisturbed motion, being instead continuously scattered
across the turbulent structures. Differential heating can still
accumulate over long times, but will reach much smaller levels.

Appendix C
Energy Conservation in the Shearing Box

Considering for simplicity the 2D shearing box in shearing
coordinates, equations KSB-SC manifestly include source terms
affecting the field and particle evolution. These source terms
translate into energy sources that are not present in standard (non-
shearing-box) PIC simulations. Evaluating energy conservation in
the presence of these sources is not straightforward.

To obtain a measure of energy conservation, we compute the
energy sources directly at runtime. For the fields, the energy
source terms are obtained by dotting Faraday’s and Ampere’s
laws with B and E, respectively:

OB 1 OB?
B - — = ——— = (standard energy terms) — s$2yB,B,,
o 2o gy terms) — séloB. B,
(C1)
2
E - 8—E = l@i = (standard energy terms) — sQoE,E,,
ot 2 Ot

(€2

where in addition to standard energy-exchange terms we now
have extra source terms stemming from the shearing-box
paradigm. For the particles, we dot the momentum equation
with u/~,

du dy
dr dr

u

v

= (standard energy terms) + 52 telly s
v

(C3)

which produces one extra energy source. All terms deriving
from the shearing-box framework are thus proportional to €.

To quantify the importance of the shearing-box sources, we
compute each source term in the whole simulation box during a
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Figure 20. Energy conservation in a 2D pair-plasma MRI simulation with parameters wc/Qo = 30, By = 624, and box size 8 x 82 k1. Left: evolution of the total
electromagnetic and kinetic energy compared with the modified electromagnetic and kinetic energy, where shearing-box source terms have been subtracted. The
modified total energy E,q is a conserved quantity in the absence of numerical errors. Right: evolution during the run of the error on the conserved E,q, relative to the
instantaneous total energy E,, (the latter includes source terms and is not conserved).

representative 2D pair-plasma MRI simulation with parameters
we/Q =30, By=624, and box size 8 x 8\yr;. The source
terms are then integrated in time, to obtain the net energy
variation associated with these terms. Subtracting the net
contribution of each term from the electromagnetic and particle
energy produces a new measure of energy that only accounts
for standard energy-exchange channels (i.e., without external
energy sources related to the shearing box). In simulations, the
total energies including the source terms are given by

BX(1) = >_ B} () AV, (C4)
8

E2(t) =Y E; ()AV,, (C5)
8

for the electromagnetic energy of all grid cells g (with cell
volume AV,), and

K@) =) myc(y(1) — 1), (Co)
p

for the kinetic energy of all particles p. By subtracting the
shearing-box terms, we find that the modified field energies (
i.e., without shearing-box sources) are

. | ‘
Eszgmm—ﬁw§Amﬂmmwme,
(&)}

. 1 !
EEZ(Z) = EEZ(I) — fo dtg AV (=sQUE, o(1E) 4(1)),

(C8)
and the modified particle energy is
_ t t
szKm—fdgjﬂﬁdﬁﬂl (C9)
0 Yo (®)
With these definitions, the modified energies are such that
p2 | 2
81Et0t = az(Bgi + I_() = O’ (CIO)
T
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i.e., the sum of the modified electromagnetic and kinetic energy
integrated over the simulation box remains constant in time (as
in standard PIC simulations), in the absence of numerical
errors. Note that, conversely, the total energy including sources
E = (32 —|—E2)/ (8m) 4+ K is not constant: the sources con-
tinuously inject energy into the system.

Figure 20 (left panel) shows the evolution in time of the
modified electromagnetic and kinetic energy (integrated over the
box) as well as of the sum of the two. The plot shows that the
modified electromagnetic energy becomes negative: this is because
the external energy input for the electromagnetic fields is much
larger than the initial energy, and subtracting this energy source
results in observing exclusively the standard process of magnetic-
energy dissipation, e.g., via reconnection. Because of the external
source, more magnetic energy than initially available can be
dissipated, and the modified electromagnetic energy can fall below
zero. The decrease in electromagnetic energy corresponds almost
exactly to an increase in particle energy via dissipation processes.
The total (electromagnetic plus kinetic) modified energy is much
smaller than its individual components, owing to the fact that the
modified electromagnetic energy becomes negative.

The right panel of Figure 20 shows a measure of energy
conservation calculated as |Eyo () — E((0)|/E (¢). This quan-
tity is such that the numerator expresses the deviation from exact
energy conservation in terms of the absolute error on the
conserved quantity E,(t); normalizing over the instantaneous
total energy (including sources) serves to provide a measure of
how important the numerical errors are compared to the actual
amount of energy in the system at a certain time. We see that the
error is at most of order 102, i.e., numerical energy dissipation is
negligible throughout a typlcal run.
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