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Humans perceive millions of colors along three dimensions of color space: hue, lightness, and chroma. A major
gap in knowledge is where the brain represents these specific dimensions in cortex, and how they relate to each
other. Previous studies have shown that brain areas V4 and the posterior inferotemporal cortex (PIT) are central
to computing color dimensions. To determine the contribution of V1 to setting up these downstream processing
mechanisms, we studied cortical color responses in macaques—who share color vision mechanisms with humans.

We used two-photon calcium imaging at both meso- and micro-scales and found that hue and lightness are laid
out in orthogonal directions on the cortical map, with chroma represented by the strength of neuronal responses,
as previously shown in PIT. These findings suggest that the eailiest cortical stages of vision determine the three
primary dimensions of human color perception.

1. Introduction

Trichromatic color vision in primates is advantageous to seeking
food (Osorio and Vorobyev, 1996) and during social interactions (Chang
et al., 2017; Freiwald, 2020a,b; Hasantash et al., 2019; Hiramatsu et al.,
2017; Shepherd and Freiwald, 2018; Sliwa and Freiwald, 2017).
Different combinations of electromagnetic frequencies and intensities
within the visible spectrum result in the colors we see, but colors are not
seen as a linear function of wavelength and intensity. How the brain
achieves the richness of color perception remains a mystery. For more
than one hundred years, artists and scientists have created various sys-
tems to describe the human perception of color. Most of them used di-
mensions of hue, lightness, and chroma, calling into question how
human brains organize neural responses to produce these distinet di-
mensions of color perception.

The primary neural pathway of color signal processing is known
(Conway, 2014; Shapley and Hawken, 2011). Three types of cone pho-
toreceptors are differentially selective to overlapping bands of wave-
length within the retina. Within the ascending retino-geniculo-cortical
pathway, interactions between cone signals take place in both the retina

(Dacey, 1996; Gouras, 1968) and in the lateral geniculate nucleus (LGN)
(De Valois et al., 1966; Derrington et al., 1984). In V1, the subset of
neurons that are selective to colors (Cottaris and De Valois, 1998; Lennie
et al., 1990, 1983; Thorell et al., 1984; Wachtler et al., 2003) concen-
trate within cytochrome oxidase (CO) blobs, in which cells preferring
similar colors are often located in clusters (Garg et al., 2019; Landisman
and Ts’o, 2002; Ts’o and Gilbert, 1988). In V2, hue-selective columns
form band-like patterns in relation to the perceptual color wheel (Xiao
et al., 2003). Downstrean, V4 and the posterior inferotemporal cortex
(PIT) are thought to fully represent perceptual color dimensions (Bohon
et al.,, 2016; Conway and Tsao, 2009; Li et al., 2014). In the infero-
temporal cortex (IT), cells with sharp tuning for saturation are also
found (Komatsu et al., 1992), but whether chroma is represented by a
pattern in a cortical map is unknown. The representation of perceptual
color space appears to have developed gradually along the ventral visual
pathway (Liu et al., 2020).

Subcortical opponent color processes undergo a nonlinear trans-
formation in V1 (Cottaris and De Valois, 1998; De Valois et al., 2000;
Horwitz and Hass, 2012; Stockman and Brainard, 2010), which in-
stantiates the initial organizing principles of the primary three
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dimensions of perceptual color space processing in the brain. Anatom-
ical evidence indicates that V1 layers I1/I1l receive all three kinds of cone
information (Sincich and Horton, 2005), and intrinsic signal optical
imaging (ISOI) has shown that different hues activate organized cortical
representations in V1 (Xiao et al., 2007). This suggests that neural
populations in this area process different colors with segregated circuits.
V1 moreover encodes hue and lightness in parallel (Hass and Horwitz,
2013; Johnson et al., 2001; Lennie et al., 1990; Livingstone and Hubel,
1988; Peng and Van Essen, 2005; Yoshioka et al., 1996) meaning that
there could be a map of how different hue and lightness combinations
are processed, with some V1 cells responses varying as a function of
increased saturation (Hanazawa et al., 2000). In sum, previous studies
indicate that V1 may contribute to the representation of all three
perceptual dimensions of color. We thus initiated this project to deter-
mine V1's precise contribution to the organizing principles underlying
color perception.

Various color systems have been used to study V1 responses, but
near-uniform perceptual color spaces are rarely employed. Color grat-
ings are often displayed to activate cells, especially as there has been
great interest in understanding the relationship between orientation and
color. In addition, most physiological studies of V1 have focused on
equiluminant hue responses. Some studies have constrained lightness
levels without controlling chroma, which could reduce response efficacy
as a function of hue (Bohon et al., 2016). Notably, such methods are
seldom used in human vision studies. Thus, to establish a suitable cor-
respondence between V1 responses in macaques and perceptual re-
sponses in human participants, we adopted a Munsell color space
approach (Munsell, 1919), which is often employed in human color
experiments.

Munsell color space consists of a central axis representing achromatic
lightnesses between Ny to Nig, with hue represented in the plane
orthogonal to the lightness axis, and color chroma indicated with
increasing distance from the central axis. Thus Munsell color space is
geometrically cylindrical and it has the advantage of clearly defining
and standardizing discrete points that can be used for human color
perceptual testing. The orthogonal relationship between its color di-
mensions has moreover been verified as psychophysically valid to
human perception via multidimensional scaling (Indow and Kanazawa,
1960). Thus our use of Munsell color space allowed us to constrain the
stimulus set of the current study to a defined and feasible range that
nevertheless spanned the majority of human perceptual color space
across all three dimensions. Although Munsell color space is not
perfectly uniform perceptually, neither is any other color space. We
overcame this drawback by also projecting color stimuli into various
frequently used color spaces (such as CIELUV and CIELAB color spaces).
To further limit experimental complexity, we studied color space in
isolation and did not examine its relationship to spatial response dy-
namics. Further studies will examine the important relationship be-
tween the color maps we have discovered and orientation maps.

Given the potentially small size of V1 color circuits, traditional
techniques such as ISOI may not be precise enough to image the V1
representation of color space. Moreover, because many V1 cells are only
partially tuned to color stimuli (Friedman et al., 2003), the low SNR of
ISOI may prevent the reliable detection of all color-related responses.
Though electrophysiological recordings may resolve some of these is-
sues, they are themselves limited in that they do not provide the local
sampling density or the spatial coverage necessary to map a large area of
the cortex. Thorough mapping of multiple perceptual dimensions with
electrophysiological approaches would also be time-consuming as it
would require displaying an exceedingly large number of visual stimuli
during the experiments. To overcome these difficulties, we used
long-term two-photon imaging experiments in V1 (Li et al., 2017a) of
two awake rhesus macaques (Macaque mulatta) in conjunction with the
ultrasensitive genetically encoded calcium indicator GCaMP6s (Chen
et al., 2013). We systematically mapped color perception in meso and
nicro scales in a restricted color space, by presenting carefully chosen
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color stimuli selected along with the hue, lightness, and chroma di-
mensions of Munsell color space (Munsell, 1919). Our data revealed that
these dimensions are precisely represented in V1, and that there is a link
between two-dimensional cortical color representation and
three-dimensional perceptual color space.

2, Materials and methods
2.1. Experimental design

Rhesus monkeys (Macaca mulatta) were purchased from Beijing
Prima Biotech and housed at Peking University Laboratory Animal
Center. The study used three healthy adult male monkeys, 4 - 5 years of
age and weighing 5 — 7 kg. All experimental protocols were approved by
the Peking University Animal Care and Use Committee.

The detailed procedures were described previously (Li et al., 2017a).
Briefly, the animals were anesthetized, and a craniotomy was performed
over V1 under sterile surgical conditions. The dura was reflected, and
AAV vectors (AAV1.hSynap.GCaMP6s.WPRE.SV40, Penn Vector Core)
were injected at multiple sites of the cortex, about 150 nL at each site.
Injection sites were spaced at intervals of about 800 um across the
cortical surface. To avoid possible damage to the functional column
structure, the injection pipette was inserted at an angle of 45 degrees to
the surface. Within our 10 mm diameter imaging window, we completed
10-22 injections. The dura was then sutured, the bone flap replaced, and
the skin was sutured. After 1-2 months, the animal was anesthetized
again, the bone flap was removed under sterile conditions, and a dur-
otomy was performed. A 2 cm-diameter round glass cover slip with a 1
cm-diameter titanium ring was positioned under the —1 em wide dura
hole, with the titanium ring attached to the skull using dental cement,
carefully applied to create a sealed imaging chamber that held the cover
slip against the cortex. A large stainless-steel ring was attached with glue
to the skull around the outside circumference of the craniotomy’s edge
(which allowed us to attach a cap to protect the chamber between re-
cordings). A custom three-point head stabilization halo was imple-
mented to minimize motion of the skull during recordings. We mounted
three head posts at roughly equidistant points around the circumference
of the skull: two on the left and right temples respectively, and one on
the back of the skull. These three points formed a plane, and during
recordings, were connected to a heavy steel plate with T-shaped braces
positioned under the microscope as part of the monkey chair assembly.
Following the implantation surgery, the animals recovered in the vi-
varium for one or more months.

During imaging procedures, each monkey was seated in a primate
chair under the microscope. Each monkey fixated on a small white spot
(0.1°) within a window of 1° for over 2 s to obtain a juice reward. Eye
positions were monitored with an infrared eye-tracking system (ISCAN)
at 120 Hz.

Visual stimuli were generated using a ViSaGe system (Cambridge
Research Systems, UK) and displayed on a 21-inch CRT monitor (SONY
G520, refresh rate = 80 Hz, maximum luminance = 105 cd/m?). The
CRT was positioned 51 cm away from the eyes of the animals and
calibrated for precise color emission as described below. The V1
neuronal receptive field (RF) sizes and positions (ranging from 2.7° to
4.8° of eccentricity within the monkeys’ visual fields) were estimated
using manual mapping with black and white dots.

2.2, Visual stimuli

We employed a set of 93 different visual stimuli to determine the
stimulus preference of each cell (Fig. 1E). Orientation and color pref-
erence was determined with drifting Gabors (SF = 3 cycles/degree,
speed = 2.67 cycles/second, ¢ = 0.25°, and contrast = 100%) or static
color disks (1° in diameter), respectively. Each Gabor or disk stimulus
was presented for one second following a one-second blank interval,
once fixation was voluntarily initiated by the monkey. All stimuli were
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Fig. 1. Stimulus set, single-cell calcium signal, and local cortical calcium (LoCa) signals. (A) The color stimulus set contains 11 achromatic lightness colors (Munsell
color Ny to Nyg), 4-7 chroma levels (Chroma = 2-14) with a Munsell Value (lightness) of 5 for each hue, and 9 lightness levels for each hue (Munsell Chroma = 6).
Color stimuli were presented as round static disks on CRT. (B) Twelve achromatic drifting gratings were also included in the stimuli set. The arrows indicate the
directions of the drifting gratings. (C) An exemplar two-photon image (average of a time series) from a 25x objective lens. (D) Time course of response (mean + STE
from N = 10 trials) from the exemplar cells shown in (C) for the most preferred stimulus (red line) versus the least preferred stimulus (blue line). (E) Mean responses
( + STE, N = 10 trials for each stimulus) as a function of stimuli from the cells indicated in (C). Each data point corresponds to a stimulus from (A) or (B). (F)
Averaged LoCa signals (AF/F map) evoked by five hues (Munsell 5 R, 5Y, 5 G, 5B, or 5 P, Value = 5, Chroma = 6). (G) Significant pixels in (F) (one-tailed t-test for
paired samples, p < 0.01) are shown in gray. Highlighted pixels in bright gray are patches clustered by the OPTICS algorithm. Contoured convex-hulls indicate the
patches in the following analysis. (H-I) LoCa signals are highly effective in revealing cortical locations activated by different hues. Dashed contours are copied from
(‘G). The thickness of the colored contours indicates the relative signal strength of pixels within that contour.
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shown against a background of either homogenous gray (Munsell color
Ns) or a mosaic of randomly chosen achromatic dots with Munsell colors
Np to Nyp. Randomly chosen backgrounds were re-randomized for each
presentation and balanced to equal an average luminance of N5. Ocular
dominance (OD) was determined by alternately presenting achromatic
gratings to each individual eye.

2.3. Calibration of CRT chromaticity in CIE coordinates

We used an automated closed-loop system to establish the proper
RGB values for a given CIE coordinate’s chromaticity with our video
stimulation system’s CRT. Each specified stimulation color from our set
of 93 stimuli was assigned target coordinates for the calibration function
(x; ¥: Y:). We then presented a one-degree patch of the stimulus on
the CRT with an initial arbitrary RGB test value and measured the video
output with a SpectroCAL spectroradiometer (Cambridge Research
Systems, UK). We corrected the error between the measured and desired
CIExyY coordinates by adjusting the RGB values to reduce the error
function (e), followed by a retest, using this formula:

e = (—xr*xr)2+ ())c7Y1)2+ (Y(:* Yr)z

Xy Vi Y,
Let x., ¥., and Y, be the measured CIExyY coordinates. This search al-
gorithm repeated until the error was optimized to a level below 1% (e
> 0.01), within the CRT’s RGB color space of (R+1, G=*1, B=%1).

Once e < 0.01 for each color and achromatic stimulus in our set, the RGB
values were stored for use in our experiment.

2.4. Munsell color space parameters

To calibrate our chromatic stimuli to specific points within Munsell
color space, we obtained the CIE_1931 xyY coordinates for each Munsell
color from the Munsell Color Science Laboratory of Rochester Institute
of Technology (RIT, htips://www.rit.edu/cos/colorscience/rc_munse
1l renotation.php). To test the lightness response of various hues while
holding chroma stable, we chose Chroma level 6. This was based on our
preliminary data showing that peak SNR in neuronal calcium signal
responses occurred when chroma levels were significantly below ceiling
(Fig. 3 F). This choice allowed us to achieve the most linear possible
neural responses as a function of lightness across the entire stimulus set
without saturating.

We note that Chroma 6 of some stimuli could not be produced by our
CRT (due to its limited gamut), for a subset of lightness levels. This
typically occurred at the extremes of the Munsell Value range (i.e., one
and/or nine, see Fig. 1 A). To estimate Chroma at the extreme ranges of
our CRT, we fit splines to both the x and y coordinates listed within the
RIT Munsell Color table and interpolated the intermediate chroma levels
from the coordinate curves at a resolution of 0.1. We then employed the
maximum chroma level achievable using our closed-loop color calibra-
tion system (above) during the experiments (see Tables 1 and 2).

2.5. Calculation of stimulus color coordinates and DeltaE in other color
spaces

To calculate DKL coordinates for our color stimuli, we measured the
spectrum of our CRT (Scrr) using the same spectroradiometer used to
calibrate the CRT’s chromaticity. Color matching functions (CMFs)
(Stockman and Sharpe cone fundamentals, 2000, 10 degrees) (Stockman
and Sharpe, 2000) were obtained from Color and Vision Research Labs
(http://www.cvrl.org). The transformation from RGB to LMS was
defined as LMS = CMFs * Scpr * RGB’. These LMS coordinates were
transformed into DKL coordinates by Ims2dkl function in the toolbox of
"Computational Color Science using MATLAB" (Peng and Van Essen,
2005). We converted each stimulus’s CIExyY coordinates into CIEXYZ
coordinates, and to other color spaces, using the "Computational Color
Science using Matlab" toolbox. In DKL and Munsell color spaces we
defined DeltaE as the Euclidean distance between colors. When using
other color spaces, we defined DeltaE following their specific
conventions.

2.6. Two-photon imaging

Two-photon imaging was performed using a Prairie Ultima IV (In
Vivo) microscope (Bruker Nano, GmbH, formerly Prairie Technologies)
driven by a Ti: Sapphire laser (Mai Tai eHP, Newport Spectra-Physics
Ltd). The wavelength of the laser was set to 1000 nm. The objective
lens was either 16X (N.A. = 0.8, Nikon), 25X (N.A. = 1.05) or 4X (N.A.
= 0.2, Nikon). Laser scanning employed a combination of galvanome-
ters (galvos) and resonance frequency scanners (resonant) to sweep the
laser across x and y positions within each z-axis depth to create an image
at each depth. To obtain static images with high resolution
(1024 x 1024), we used galvos for both x and y positioning, which
resulted in slow scans (—1 sec / frame). We used fast resonant-galvo
scanners (up to 31.5 frames per second) to obtain calcium response
time-series (resolution 512 x 512) of neuronal activities (typically, 8 fps
while employing online averaging of every four scanned frames). We did
not observe any cortical damage in long-term recordings using the 4X
objective with 90 mW laser power on the cortex.

Due to the difference in signal-to-noise (SNR) for each of the three
different objectives, the number of trials used to sample functional re-
sponses varied by objective type (N = 10-11 for 16x or 25x objective
data, N = 50 for 4x data).

2.7. Overall image analysis paradigm

To establish the functional anatomy of color processing in V1 from
microscopic data acquired at varying resolutions, we analyzed the data
at multiple spatial and temporal scales, as described in the following
sections. In summary, we first pre-processed the raw image files to
determine the image pixels that we later analyzed for functional activity.
We grouped those pixels in three ways. First, we determined meaningful
cellular shapes for the identification and screening of individual cells
(cellular maps)—this allowed us to analyze individual cell response time
courses for some of the analyzes. Second, to create functional anatomical
maps of stimulus selectivity we binned raw pixels 2 x 2 and determined
fluorescence responsivity to visual stimuli (i.e., AF/F maps). We used
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Fig. 2. Circular representation of hues in V1. (A) Mesoscale pixel map of hue preference. Each pixel is rendered by the hue that evoked the maximum response (4x
objective, N = 50 trials for each stimulus). White lines indicate the border of ocular dominance (OD) colummns. Pinwheel centers are marked by black crosses. The
eccentricity of this cortical location was around 4.7°. (B) Mesoscale pixel orientation preference map. Pseudo colors denote orientation. Pinwheel centers are marked
by white crosses. (C) Pinwheel centers for hue versus orientation are presented on a single map. (D) Site 1 in (A) was magnified with a 25x objective lens across 7
cortical depths (80-250 pum). Pinwheel-like patterns were verified by three different analysis modalities to determine that analysis artifacts do not explain the results:
micro pixel maps, contour maps, and cellular maps. The thickness of the colored contours indicates the relative signal strength of the pixels within the contour. (E)
Exemplar linear-zone-like color fields (Site 2 from (A)). (F) Response heat maps of hues versus orientations from each cell in (D), sorted by hue, reveal no systematic
relationship between color tuning and orientation tuning. (G) Pairwise measurements between patches of non-adjacent hues reveal larger cortical distances than
between spectrally adjacent hues (one-tailed Wilcoxon rank-sum test, p < 0.05 in 8 of 10 pairs). The notches indicate median + 1.57% IQR / sqrt(n), n = 24-28. (H)
Median cortical distances between any pair of hues embedded within 2-dimensional cMDS space. Stress = 0.06 and 0.13 for monkeys A and B, respectively. The lines
on the circles are error bars indicating the distances between patches of two hues ( = 1.57* IQR / sqrt(n)). Data derive from a 2 mm x 2 mm cortical area shown in
Fig. 52D. (I) Cortical distances between hues are highly correlated with AE in near-uniform Munsell, as well as CIELUV and CIELAB perceptual color space in both

monkeys. Correlation coefficient bars with p < 0.05 are in black, otherwise gray.
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these pixel-by-pixel response time-series to analyze both raw calcium
responses and to create functional maps of perceptual selectivity such as
hue and orientation. Third, we established the statistical significance of
newly discovered functional maps relevant to color perception (such as
hue and lightness) by analyzing clusters of significantly responsive
pixels. We conducted several further statistical analyzes to better un-
derstand the data in a variety of ways, such as classical multidimensional
analysis and other tests of statistical significance of the results, as
described below.

2.8. Image data pre-processing

We analyzed data using customized MATLAB code (The MathWorks,
Natick, MA). We continuously recorded from an imaging plane during a
calcium recording session, producing a time series (TS) of images that
could be related to the synchronized stimulus presentation. To address
motion artifacts during long recordings, we analyzed the first 5000
images of each TS and averaged the 10% most correlated images to
create a template image. The remaining images were then motion-
corrected using this template by normalizing with a cross-correlation-
based translation algorithm (Li et al., 2017b). Eight averaged frames
(about 1 second in recording duration) before and after each stimulus
onset were averaged to form the FO and F1 frames of a stimulus
response, respectively. Cellular and response extraction for all subse-
quent analyzes followed from a primary initial procedure: we spatially
binned pixels 2 x 2 to enhance SNR by reducing noise (examples in
Fig. 1H and D).

2.9. Signal to noise ratio

Signal to noise ratio was defined by SNR = Jrefun, where y,,, and
Homin Were the mean responses to the best and worst stimuli. SE,, and
SEmin Were the corresponding standard errors (Nauhaus et al., 2012).
SNR was computed pixel-by-pixel to get a raw SNR map. This raw SNR
map was smoothed (Gaussian filters, & = 35 um) to cover or exclude
regions with SNR < 3 (Fig. 5B and C). This was applied to calculate the
functional maps described in the “Functional mapping analyzes” section
below.

2.10. Functional mapping analyzes

We conducted three different types of basic pixel-by-pixel analyzes to
study the responsivity of our TS to our 93 individual stimuli. First, we
calculated the pixel-by-pixel SNR of these responses (see above). Sec-
ond, we calculated the average calcium responses over multiple trials
and used them to produce AF/F maps (examples in Fig. 1F and G), where

Dy B FO) -

AF/F :-',17}_% and n (n > 1) was the number of stimulus
fi=1

conditions. Finally, the statistical significance of the map was deter-

mined with a Student’s t-test comparing the F1 and FO means for each

pixel’s response to each stimulus (described in more detail in the

‘Identification of clustered patterns with connected component

labeling” section below).

The average AF/F maps for orientations versus hues were computed
and normalized. Peaks on these maps were thresholded (0.75), and
pixels within the union of the peak regions were compared by Pearson
correlation (Fig. S1E).

2.11. Cell extraction and screening

A temporal response analysis was created for each cell (rather than
for each pixel in each image), by identifying the individual cells in each
image and deriving a time-course of their responses as a function of
visual stimulation. Responsive cells for each stimulus condition were
identified as round regions of interest (ROIs) that exhibited calcium
responses, using the AF/F maps described above. We set the radius (r) of
each ROI manually (r = 5.5 pm; for 16x, r = 3.5 pixels; for 25%, r = 5.5
pixels). We convolved the AF/F maps with a difference-of-gaussians
(DOG) filter (61 = 0.25 * r, 62 = r) and binarized the results using the
triangle threshold method (Zack et al., 1977). We defined the ROIs from
these binary maps as responsive cells. ROIs which were too large (area >
7 * (2r)?) or too small (area < x * (r / 2)°) or not round (with round
index 4 * 1 * area / perimeter?> < 0.5) were discarded. We applied a
mask defined by these ROIs to the raw image frames to obtain the
fluorescence responses to each stimulus and determined the aggregate
average ROI response by averaging the ROI’s pixels. The ratio of fluo-
rescence changes (cellular AF/F) was thus defined as the response to a
stimulus. We identified visually responsive cells by discarding cells that
did not exhibit significant response selectivity for any of the 93 visual
stimuli that we presented (tested with a one-way ANOVA, p > 0.01). We
subsequently identified color-responsive cells (hue, lightness, and
chroma responsivity) using the same ANOVA test, by restricting the test
to the responses from the specific chromatic stimuli.

2.12. Pixel map creation

We created various pixel-based maps (rather than cell-based maps)
of functional preference from the 2 x 2 binned AF/F maps, in which
every pixel in the image was assigned a preference. These maps were
created by examining the functional responses to different subsets of our
93 stimuli set (hue, lightness, orientation, and chroma), to produce 4
different functional preference maps. Note that chroma did not produce
a spatial map and was revealed to be represented by the magnitude of
the functional response (see analysis below). To create pixel maps from
the AF/F maps, we determined the response of each pixel to the
appropriate stimuli for each functional type. The stimulus which acti-
vated a given pixel most powerfully was assigned as the pixel’s preferred
stimulus for each functional map’s stimulus dimensions. That is, each
individual pixel, within each of the four different pixel maps, was
assigned a preference for hue, orientation, lightness, and chroma. These
pixel maps were later used as the basis of statistical analyzes to extract
the presence of pinwheels, linear zones of response, etc. (see below).

After we obtained the pixel maps of hue or orientation (Fig. 2A and B,
S2A and S2B) we computed the gradient of hue or orientation angles at
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Fig. 3. Perceptual lightness is represented in a gradient across cortical locations. (A) Patches of achromatic lightness form black and white groups when the stimuli
are shown against a homogenous gray background; at the same cortical location, when stimuli were shown against a mosaic background, the patches of different
achromatic lightness formed linear-zone-like clusters. Centroids of contours on the left panels are shown as disks on the right panels. The disk size indicates the
relative signal strength of each patch. (B) The median cortical distances between achromatic patches ranging in lightness between Ny - Ny, exhibit similar distri-
butions under either gray or mosaic backgrounds. Data from Mk A and B, respectively, n = 15 — 25 clusters. (C) 2D cMDS analysis reveals significant differences
between the two background conditions emiployed. Stresses at dimension 2 are 0.011 and 0.005, respectively. Data come from the cortical area in Fig. S2D. (D)
Contours indicating different lightnesses of varied hues exhibit systematic displacement on the cortex. Contour centroids are shown as disks on the bottom right panel
(disk size indicates the relative signal strength of each contour). The thickness of the colored contours indicates the relative signal strength of pixels within the
contour. (E) Traditional cellular response maps and pixel maps are consistent with the contour map in (D), indicating that the results are not an analysis artifact. The
pinwheel center is indicated by a cyan cross. Cells or pixels are labeled by their most preferred stimulus (maximum response). (F) The average lightness contour
distance from lightness Value 9 reveals that lightness maps follow a graded pattern (distances between the five different hues are averaged, and do not include the
achromatic patches). Data are shown as median + 1.57 * IQR / squt(n), n = 53-74 for monkey A, 79-94 for monkey B. The dashed line represents the median
displacement of patches activated by the same colors (five hues, Munsell Chroma = 6, Value = 5) of different trials. (G) The cortical distances between patches of
different lightnesses of various hues are positively correlated to the perceptual DeltaE between colors described in various color spaces. The correlation coefficient is
significantly higher in the near-uniform perceptual color spaces than in DKL or CIExyY color spaces (n = 36). Colrelation coefficients were compared using a one-

t‘ailecl Williams” t-test for overlapping dependent data, with Bonferroni correction. Significance level, ***= 0.001.
<
Table 1
Coordinates of chroma color stimuli (in CIE 1931 xyY).
SR 5Y 5G 5B 5P
xyY xvY xyY xyY xyY
V5 C2 0.3391 Cc2 0.3505 c2 0.2972 Cc2 0.2793 c2 0.3042
0.3192 0.3628 0.3393 0.3039 0.2925
20.89 20.53 20.51 20.55 20.41
c4 0.3739 C4 0.3922 C4 0.2839 Cc4 0.2496 C4 0.2989
0.3221 0.4061 0.3625 0.2878 0.2696
20.69 20.68 20.56 20.54 20.47
Cce 0.4080 Co 0.4294 ce 0.2684 Coe 0.2211 Cce 0.294
0.3234 0.4430 0.3844 0.2696 0.2496
20.91 20.54 20.43 20.44 20.59
(€] 0.4417 c8 0.4577 Cc8 0.251 cs8 0.1956 Ccs8 0.2891
0.3244 0.4683 0.4104 0.2511 0.2303
20.8 20.75 20.75 20.71 20.67
C10 0.4747 Cc10 0.2841
0.3225 0.2133
20.82 20.83
C12 0.5073 C12 0.2800
0.3195 0.1966
20.89 20.59
C14 0.2781
0.1847
20.41

each pixel. To address potential gradient discontinuities at the edges of
the angle maps (for example, when n meet — 1), we created a copy of the
angle map and converted the values between [-m 0] to [x 3x] and
recomputed the gradients near the discontinuous edges. Within pin-
wheels the gradients are similar to the velocity fields of a vortex.
Following from Graftieaux (2001), we computed the vortex index of
each pixel of the angle gradient map using an ROI of 19 x 19 pixels: For
each pixel within an ROI, a radial vector map was created by using
vectors from the center of the ROI to each pixel. At each pixel position,
we then computed the sine of the angle between the gradient and the
radial vectors. The mean value of the sine values within an ROI
constituted its vortex index. The absolute value of the vortex index of
each pixel on the angle map formed a vortex index map. Within
pinwheel positions we found the vortex index to be quite close to 1. A
threshold of mean + 5*SD was used to isolate the pinwheel positions.

2.13. Identification of clustered patterns with connected component
labeling

We identified significant pixels by comparing the FO and F1 re-
sponses from 2 x 2 binned pixels with one-tailed Student’s t-test
(p < 0.01, though sometimes when the significant pixels were densely
packed, we employed a significance threshold of p < 0.001 or 0.0001).

We grouped visually responsive pixels into clusters using the OPTICS
‘Igorithm (Python package scikit-learn 0.24.2). We generally employed

the default parameters in OPTICS, except for min_samples and min-
_cluster size. These parameters were estimated in the following way.
First, contiguous pixels within the significant pixel map were identified
as objects using the MATLAB bwconncomp function. Identified objects
were then sorted in descending order by the number of pixels in each
object. The threshold was then identified by determining the “elbow” in
the size frequency distribution, using a triangle threshold algorithm
(Zack et al., 1977). This “elbow” in the frequency distribution was
assigned as the OPTICS variable: min_samples, and thus smaller objects
were filtered out. We defined the OPTICS clustering variable min _clus-
ter size empirically as min _cluster size = 10 x min _samples + 100.

We assigned convex hulls to each of the clusters to identify them as
visually responsive regions of cortical activity for subsequent analyzes of
chromatic and orientation tuning (examples in Fig. 1H). The centroid
(center-of-gravity) of each contour was defined as the position of the
average response-weighted pixel within each contour. We refer to these
stimulus-tuned contours as patches for subsequent analysis.

2.14. Grouping of hue, lightness, chroma, or achromatic patches

To analyze the spatial relationships on the cortex between stimulus-
tuned patches identified in the previous section, we grouped patches as a
function of their density as defined by the OPTICS algorithm. We
grouped using four dimensions: hue, lightness, chroma and
achromaticity.
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Table 2
Coordinates of hue-lightness color stimuli (in CIE_1931 xyY).
5R 5Y 5G 5B 5P N

xyY xyY xyY xyY xyY xyY
vo - - - - - 0.283
0.322
0.332
V1 C3.7 0.435 Cl1.8 0.408 C3 0.262 C2.5 0.212 C5 0.284 0.310
0.277 0.415 0.387 0.253 0.177 0.315
1.250 1.290 1.300 1.278 1.289 1.510
v2 C6 0.465 C3.5 0.435 C5 0.248 Cc4 0.205 Co 0.284 0.309
0.295 0.440 0.405 0.252 0.200 0.317
3.328 3.190 3.290 3.300 3.250 3.610
V3 C6 0.459 C5 0.443 C6 0.248 G5 0.201 Cé 0.286 0.310
0.316 0.451 0.409 0.252 0.213 0.317
7.005 6.840 6.930 6.830 6.875 7.170
v4 C6 0.429 Co6 0.446 C6 0.258 Co6 0.207 C6 0.290 0.311
0.322 0.454 0.399 0.258 0.235 0.315
12.69 12.71 12.60 12.70 12.78 12.38
V5 ce 0.409 c6 0.429 C6 0.268 Ccé6 0.221 ce 0.294 0.310
0.323 0.444 0.385 0.270 0.250 0.316
21.10 21.11 20.90 21.10 20.59 20.90
veé C6 0.394 C6 0.415 C6 0.273 C6 0.232 Cé 0.296 0.310
0.323 0.431 0.378 0.279 0.259 0.316
32.00 31.60 31.90 31.90 31.25 31.53
v7 co 0.381 coe 0.403 (69 0.280 Co 0.240 Ce 0.297 0.310
0.326 0.421 0.372 0.285 0.267 0.316
45.37 45.90 45.70 46.01 45.01 45.40
V8 c6e 0.374 c6 0.392 C6 0.282 Cc6 0.245 Ce 0.297 0.311
0.325 0.413 0.370 0.289 0.270 0.316
62.98 62.30 62.20 62.50 61.6 62.61
v9 C3.5 0.343 co6 0.385 Co 0.283 c4 0.267 C4 0.300 0.311
0.321 0.407 0.369 0.300 0.287 0.316
81.10 82.30 82.05 82.23 82.76 83.60
V10 — — — — - 0.310
0.317
106.8

Because noise was rejected at the cluster level (see previous section),
we did not have a noise-rejection stage, and thus min _samples was set to
the minimum value (2); min _cluster size was set to round(Nstim * 80%).
On the rare occasion that more than one patch centroid within a group
had the same stimulus preference, we discarded the redundant patch
(Figs. S2E and $3). We omitted redundant patches by identifying those
that were far from the rest of the group.

2.15. Cortical distances between centroids of patches

The distance between similarly and differently tuned functional
patches is a critical analysis in understanding the underlying circuits in
cortex. To compute cortical distances between hues, lightnesses, and
levels of chroma, we calculated the pairwise Euclidean distance between
all centroids within each group. We then pooled these pairwise distances
across groups to determine the median distances and variability
(Figs. 2G, 3E and 4F).

2.16. Classical multidimensional scaling (cMDS) of cortical distance

The pairwise patch distance information lends itself to similarity
analyzes using cMDS; we used the Matlab function cmdscale. We
calculated ¢cMDS coordinates between patches of a single stimulus
dimension using the median distances between patches of that stimulus
type. To assess the spatial structure of patches of two or more stimulus
dimensions on the surface of V1, we compared the median distances
between all pairwise patches from various combinations.

The stress factor in the ¢cMDS analysis is computed as stress =

&—dy ) . . . i T
QWL’ where dj is the distance in the original matrix. d; thus

‘epresents the distance in the MDS constructed space. We adopted the

first two or three dimensions to compute the dij in this analysis.

2.17. Multidimensional scaling (MDS) of stimulus dissimilarity in
neuronal space

Because each visually responsive neuron could potentially have a
complex response profile to the various color stimuli we presented, we
considered each neuron as a dimension in our analysis, with the number
of dimensions of the resultant multidimensional space being the number
of neurons recorded. A given stimulus typically activated many neurons
with different strengths, and the population response profile of each
stimulus was assigned as a coordinate within this multidimensional
neuronal space. To compute the similarity between each of our 81 color
stimuli in a pairwise fashion, we calculated the correlation between
responses from all the neurons for each stimulus pair. We obtained the
MDS of color responses by first building an 81 x 81 similarity correla-
tion matrix (Ms) using the coordinate responses to the subset of 81 color
stimuli. Finally, the dissimilarity matrix was defined as 1-Ms for the
MDS calculation using the Matlab mdscale function, employing ’sam-
mon’ criterion. The stress of MDS was obtained directly from the output
of this mdscale function.

Shepard plots further visualized the goodness of the MDS within
specific dimensions by indicating how well the distance in the MDS
space reflected 1-Ms (Fig. S6).

2.18. Hue-lightness contour maps and their orthogonality

We derived two separate pixel maps from the hue-lightness prefer-
ence map (Fig. 5A and S5A), one for hue and one for lightness. These
pixel maps were smoothed by gaussian low pass filters (sigma = 35 pm)
and hue and lightness were then discretized into 5 and 11 levels
respectively and plotted as contours (isoheight lines) onto a single map
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A Cells preferring various chroma levels of hue 5R at cortical depth 80 - 250 um
B Chroma preference of cells within a vertical imaging stack C Hue 5R contours for various chroma levels at cortical depth 190 pm
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Fig. 4. Chroma is represented in V1 by the strength of neural response. (A) Cells that have the maximumni response at various chroma levels of Munsell hue 5 R are
shown on each map. The same cortical location with Fig. 2D. (B) Response heat maps from cells at the same location of Fig. 2D as a function of chroma levels for each
of the five tested hues. Most of the cells have a maximum response for the highest chroma levels. (C) Micro pixel map and contour map for various chroma levels of
Munsell hue 5 R show activation of the same cortical locations with different strengths (same cortical area as (A)). (D) Contour map for five hues at different chroma
levels (same cortical area as (A)). The thickness of the colored contours indicates the relative signal strength of pixels within each contour. (E) Contour centroids
distances between patches activated by various chroma levels to those by the maximum chroma level. At chroma levels > 6, displacements reach baseline (dashed
line). The dashed line represents the median displacement of patches activated by the same colors (five hues, Munsell Chroma = 6, Value = 5) of different trials. (F)
Response strength as a function of chroma level (mean + SEM, n = 3-29 patches in monkey A, 22-39 patches in monkey B). (G) Neural response strength was
positively correlated with the perceptual DeltaE described by various color spaces, especially in near-uniform perceptual color space (n = 25). Correlation co-
efficients were compared by a one-tailed Williams test for overlapping dependent data, with Bonfeironi coirection. Significance level: *=0.05; **
=0.01; * **=0.001.
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Fig. 5. Cortical Representations for Hue and Lightness are Orthogonal to Each Other. (A) Pixel map for hue-lightness preference of a 2 mm x 2 mm area. (B)
Smoothed pixel map for hue-lightness preference (Gaussian low pass filter, 6 = 35 um). (C) Contour map of (B) showing that hue and lightness gradients cross each
other orthogonally. Colored cuives represent hue contours, and achromatic curves represent lightness contours. (D) Histograms showing the distribution of the
intersection angle between hue and lightness map gradients at each crossing point in (C) (regions where SNRs < 3 are not included). Thick lines describe the envelope
of the histogram. Thin pale lines describe the envelope of histograms produced by 1000 times random permutation of color stimuli labels. All the peaks are sig-
nificant (p < 0.05).

(Fig. 5C and S5C). Points of crossing between the hue and lightness permutated the stimuli tags randomly and repeated the above analyzes
contours established the degree of orthogonality between lightness and with 1000 iterations. The maximum value on the left versus right halves
hue maps. We calculated the separate gradients along the hue and of the histograms were then used to test the significance level of the
lightness dimensions at the crossing-points, and the difference in the difference between peaks.

direction of each crossing gradient was calculated and plotted as a his-
togram in Fig. 5D.
To evaluate the significance of the peaks on the histogram, we

11
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2.19. Multiple linear regression analysis of cellular color responses

To quantify whether V1 cells are described better by Munsell versus
DKL color space, we fit cellular responses to color stimuli with multiple
linear regressions derived by the coordinates of the color stimuli within
each color space (Fig. 7A and Fig. S7). In Munsell color space, x and y
coordinates of a stimulus was defined by x = Chroma * cos(Anglepe),
y = Chroma * sin(Anglepy.), Z = Munsell Value, whereas in DKL color
space, x=L - M, y=S - (L + M), z=L + M. We also fit a reduced
multiple linear regression model using solely equiluminant colors (all
the color stimuli with Munsell Value =5), where only x and y
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coordinates were considered.

To determine any spatial differences between Munsell vs DKL
preferring cells, we first identified cells that were more selective to
Munsell color space than to DKL color space (R%ytumsell > R%pir, and
R?\unsen > 0.5; left panels of Fig. 7B). We compared these to the general
color-selective or orientation-selective local calcium response patch-
es—LoCa patches (see Section 3.1 for details on how LoCa patches are
determined). Munsell-encoding cells were largely confined to color se-
lective LoCa patches of cortex. We then identified those cells that
exhibited preference for DKL color space over Munsell space (R%px.
> R punsenn and R2pgp > 0.5; left panels of Fig. 7C) and compared them
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Fig. 6. The reconstructed color space by MDS using the cortical distances or neural response. (A) Classical multiple dimensional scaling (¢cMDS) analysis of median
distances between patches for each combination of hue and lightness, including achromatic lightness. The eMDS stress of the third dimension is 0.03 and 0.02 for the
two monkeys, respectively. See Fig. S6A for the Shepard plot of this reconstruction. (B) Dissimilarities between the color stimuli in the high dimensional neuronal
space were embedded in non-classical MDS space. 2127 and 1412 cells from monkeys A and B were used. Stress = 0.01 for both monkeys at the third dimension. See
Fig. S6B for the Shepard plot of this reconstruction. (C) Correlations between the cortical distances of hue-lightness patches and DeltaE in various color spaces. (D)
Correlations between stimulus dissimilarities in the high dimensional neuronal space and DeltaE in various color spaces. Correlation coefficients were compared by a
ne-tailed Williams test for overlapping dependent data, with Bonferroni correction. Significance level: ***= 0.001.
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Fig. 7. V1 color cells are better explained by near uniform color space. (A) Responses of each cell fit by multiple linear regression, using coordinates from Munsell
versus DKL color spaces. R? of the fits indicate that Munsell based models describe the data significantly better than DKL based models in both monkeys (one-tailed t-
test, p < 0.001). See Fig. 57 for further comparisons of DKL based model versus other color spaces. (B-C) Exemplar recording sites showing distribution of cells that
are best explained by Munsell versus DKL axes. LoCa maps of color versus orientation responses (right column) for comparison to the cellular data (left column).
(D-E) Functional field indices showing cellular fits to color versus orientation fields as a function of using Munsell versus DKL color spaces. Cells were sampled from 9
imaging planes in monkey A and B respectively. The p-values of t-test are shown on the top right corner.
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with color-selective or orientation-selective LoCa patches. DKL-
encoding neurons were found largely within the regions where color-
and orientation-selective LoCa patches overlap.

To quantify these findings, we converted the pixel values to z-scores
for a large cortical area of LoCa maps representing color or orientation
fields. Then z-score values at the positions of specific subpopulation of
cells were collected and shown as histogram (Fig. 7D-E). At last, z-scores
collected from the color field maps were compared with those collected
from the orientation field maps, mean values of these z-scores collected
from different maps were tested by Student’s t-test.

2.20. Statistical analysis

We employed the Student’s t-test to determine significant responses
in pixels by comparing fluorescent intensity before and after stimulus
onset. We compared medians with a Wilcoxon rank-sum test. We
quantified correlations using Pearson’s correlation, and compared the
correlation coefficients using Williams® t-test (Williams, 1959). We
corrected multiple testing using Bonferroni correction.

3. Results

3.1. Visual stimuli and recording procedures

Due to the vast size of Munsell color space, and because we needed to
run multiple trials of each stimulus to achieve sufficient SNR in our
responses, we could not test every combination of hue, chroma, and
lightness. Instead, we reduced the number of stimuli to cover all three
dimensions (Fig. 1A) and we focused our studies on: 1) 11 achromatic
lightness levels along the central axis of Munsell color space (NO to N10);
2) five hues that are roughly evenly spaced around the color wheel of
perception (Munsell 5 R, 5Y, 5G, 5B, and 5P) as a function of four to
seven chroma levels (in which lightness was held constant at level 5);
and 3) the same five Munsell hues as a function of nine lightness levels
(in which chroma was held constant at level 6). The implementation of
iso-chroma levels is an advance over previous color recordings in V1
(Garg et al., 2019; Xiao et al., 2007). In addition, we presented achro-
matic drifting gratings in six different orientations and two directions
(Fig. 1B) to assess orientation selectivity. There were thus 12 oriented
gratings + 11 achromatic Munsell stimuli + 25 Hue/Chroma Munsell
stimuli + 45 Hue/Lightness Munsell stimuli = 93 stimuli in total.

Our imaging methods follow our previous studies (Ju et al., 2018,
2020; Lietal., 2017a; Liu et al., 2020). Fluorescence responses to stimuli
were defined as (F1-F0)/FO—AF/F—where FO and F1 were fluorescence
signals averaged over a period of one second before versus after stimulus
onset, respectively. The presentation of one stimulus constituted a trial,
and each of 93 stimuli was presented 10-11 times at each cortical im-
aging location. We used a 16X or 25X objective lens, and after motion
correction (Li et al., 2017a), the images were stable within a given
recording session (Fig. S1). Over the course of the entire experiment, we
recorded approximately 1000 successful trials for a single imaging plane
on each cortical location. Individual cells varied in their preferences
within different dimensions of our stimulus set (Fig. 1E). We identified
color-tuned patches (Fig. 1F, averaging of 5 hues) by the AF/F Ca re-
sponses from cellular neuropil and somas—we refer to these maps as
"local cortical calcium responses” (LoCa maps). The cortical surface area
of the LoCa patches ranged from tens to hundreds of square millimeters.
By comparing F1 with FO pixel-by-pixel across 10-11 repeat trials for
each stimulus (Fig. 1G, one-tailed paired-sample t-test, p < 0.01), we
identified significantly activated pixels and clustered them into patches
using the OPTICS algorithm (Ankerst et al., 1999). We created convex
hulls around these identified clusters to indicate specific LoCa patches,
following the analyzes described in the Materials and Methods. Different
hue stimuli activated patches located at different positions of the cortex
‘Figs. 1H and 1D).
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3.2. Pinwheels and linear zones of hue-selectivity in V1

Using a 4X objective lens (3.2 mm x 3.2 mm field of view), we
recorded robust mesoscale calcium signals and obtained high-resolution
ocular dominance (OD) maps (white lines in Fig. 2A). We obtained both
color and orientation pixel maps (Fig. 2 and S2, see Materials and
Methods) by mapping responses to either the five Munsell hues (Value
=5, Chroma = 6) or the orientated gratings. Although there was over-
lap, the peak color-selective regions were negatively correlated to the
peak orientation-selective regions (r < —0.55 across both monkeys,
Fig. S1E). This corroborates previous studies showing that color-
sensitive cortical regions are segregated from orientation-selective re-
gions in V1 (Garg et al., 2019; Livingstone and Hubel, 1988). We tended
to find that hue-selective patches, rather than being isolated, were
grouped with patches selective to many other hues. Groups of
hue-selective patches formed either pinwheel-like patterns (for example,
Fig. 2A site 1) or linear zones (for example, Fig. 2A site 2). Both in hue
pinwheels and linear-zones, hues were typically arranged in spectral
order, with patches selective to a given color generally abutting patches
selective to cooler chromatic hues on one side and to warmer hues on the
other. The centers of the pinwheels were identified with a vortex
detection algorithm ((Graftieaux et al., 2001), see Materials and
Methods). Just as peak hue-selectivity was anti-correlated with peak
orientation-selectivity, hue-pinwheel centers did not overlap with
orientation-pinwheel centers (Fig. 2C and 52C).

Our analyzes included three different mapping procedures, each of
which with a different set of advantages. First, pixel maps are highly
informative about patterns of activity across the surface of the cortex,
but they have relatively low SNR and are potentially susceptible to
image processing artifacts (i.e., pinwheels can be found in noise). Sec-
ond, whereas cellular maps represent the ground truth of neuronal
response selectivities in two-photon imaging, the number of cells in a
imaging plane is sparse, making cellular maps relatively poor for the
study of patterns of activity across large circuits. Third, LoCa maps
(contour maps) have the advantage of identifying regions of similar
activity across the cortical surface for large pattern analyzes, but they
are not informative as to the specific source of the signals. To ensure the
validity of our pixel and contour maps, we compared them to the cellular
responses from a volume having 7 imaging planes. We found that,
irrespective of the analysis approach, hue maps did not differ
(Fig. 2D-F). This verified that our novel pixel and contour mapping
methods faithfully represent neuronal selectivities made with tradi-
tional cellular mapping techniques.

Pinwheel like structures were consistent with perceptual color-
wheels. We also noticed that patches at the terminals of the linear
zones were selective to random hues. Instead, the internal structure of
the linear zones otherwise obeyed perceptual relationships. To test the
overall relationship of these hue representation structures, we grouped
the patches by OPTICS clustering (Fig. S2D and S2E) and analyzed the
distance between patches of different hues (see Materials and Methods).
For monkey A, the median distance was 69.39 4+ 4.99 ym (n = 126,
median + 1.57% IQR / sqrt(n)) between adjacent hues and 106.45
4+ 7.82 um (n = 124, median + 1.57* IQR / sqrt(n)) for non-adjacent
hues. For monkey B, those distances were 41.31 + 6.43 pm (n = 130)
and 79.62 + 7.8 um (n = 130), respectively. In both monkeys, the dis-
tances between non-adjacent hues were significantly larger than be-
tween adjacent hues (one-tailed Wilcoxon rank-sum test, p < 0.05).

We used classical multidimensional scaling (cMDS) to reconstruct
the positions of 5 hues according to their distance (Fig. 2H, see Materials
and methods). Stress at dimension 2 was 0.06 and 0.13 for monkeys A
and B respectively, meaning that the distances between patches within
the first two dimensions of ¢cMDS were highly coincident with the
physical cortical distances between patches. Because cMDS optimizes
the geometry of a specified set of related distance vectors, this outcome
suggests that V1 optimally represents the perceptual similarity of hues in
its cortical map. Specifically, the reconstructions showed that the 5 hues



M. Li et al

tested were distributed in rough accordance to their perceptual rela-
tionship to each other. That is, whereas the outcome might have been
any order combination of the 5 hues, we found that the relationship
generally followed spectral order, which may explain why perceptual
relationships follow spectral (physical) wavelength order. To quantify
this relationship we computed the linear correlation coefficient between
the median cortical distances of the 5 hues and their perceptual DeltaE in
various color spaces (Fig. 2I). In both monkeys, the distances were
highly correlated with the near-uniform perceptual color spaces we
tested, including Munsell, CIELUV and CIELAB. The correlation was also
significant with CIExyY color space in monkey B, but not in monkey A,
perhaps due to the limited number of hues we used in our stimulus set, or
because of the poor perceptual uniformity of CIExyY color space. The
correlation was not significant for DKL color space, suggesting that
whereas the retina may organize color along dimensions of cone sensi-
tivities (central to the organization of DKL color space), V1 cortical
circuits may not.

Together, our combined results indicate that primate hue perception
is consistent with V1 hue representations as a function of cortical
distance.

3.3. The map of Munsell lightness in V1

Lightness is a primary dimension in color space. The background
lightness adaptation state significantly affects the neural response to
various relative luminance levels (relative to lightness) (Peng and Van
Essen, 2005). We investigated the effect of local versus average back-
ground contrast by using two different background configurations: a
homogeneous gray field (Munsell color N5) versus a mosaic background
composed of small achromatic squares (0.13° x 0.13°) having randomly
varied lightness levels (Munsell colors NO to N10), with an average
lightness equivalent Munsell color N5. The background configuration
had a significant effect on the distribution of achromatic patches on the
cortical surface (Fig. 3 A—C). With the gray background, the stimuli that
were lighter than the background produced cortical patches gathered
into a bright grouping, whereas the stimuli that were darker than the
background produced cortical patches gathered into a separate dark
grouping (upper row of Fig. 3A and C, Fig. S3A). These groupings are
reminiscent of the ON and OFF columns previously reported in cat and
monkey V1 with electrophysiological (Kremkow et al., 2016) and
two-photon imaging (Lee et al., 2016) methods. Under the mosaic
background, achromatic lightness was represented by a systematic and
graded displacement of cortical patches (lower row of Fig. 3A and C,
Fig. S3B), forming linear zones of achromatic lightness. This suggests
that local and average background contrasts have different effects on
achromatic color processing.

Local versus average background contrast stimuli did not, however,
have different effects on cortical representations of chromatic lightness.
We moreover did not observe a pattern such as ON and OFF columns
arise to represent chromatic lightness while using either homogenous or
mosaic backgrounds (Fig. S3C). Instead, we found that patches repre-
senting different chromatic lightnesses formed linear zones irrespective
of the background (Fig. 3D and S3D). These color lightness representa-
tions were consistent with the cellular and pixel maps we found through
different analysis methods (Fig. 3E and S3E). To establish the relation-
ship between these cortical locations quantitatively, we pooled together
the cortical pairwise displacements found for each patch (see Materials
and Methods). We found that as the lightness level decreased, the acti-
vated patches moved gradually from white patches to dark patches
(Fig. 3F). For a specific group of lightness patches, the linear zones of
lightness were rooted either between the achromatic white and black
preferring regions of cortex or with at least one white/black region at
one end of the chromatic lightness patch grouping.

To quantify the relationship of lightness-tuned regions of the cortex
to perception, we computed the correlation coefficient between cortical
listances of lightness patches and DeltaE in various color spaces (see
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Materials and Methods). The correlations with near-uniform perceptual
color spaces, including Munsell, CIELUV and CIELAB, were significantly
larger than with DKL and CIExyY color spaces (Fig. 3G). This suggests
that the representation of lightness across the surface of the cortex is
mapped consistently with perception.

We also note that the lightness linear zones aligned well across pixel
maps, LoCa maps, and cellular maps (Fig. 3E and S3E). This finding
shows that the lightness results are robust to the mode of analysis, even
the pinwheel-like hue structures are stable across different lightness
levels (Fig. S3F).

Macroscopic chromatically-tuned lightness representations have not
been reported previously, to the best of our knowledge. To establish
reproducibility, we compared the pixel maps created from data acquired
in different experimental sessions across many days. The maps remained
stable even when the recordings were obtained weeks apart (Fig. S3G).

3.4. Chroma is represented by the strength of the neural response

We tested whether chroma levels were represented by tuned patches
at different cortical locations. We analyzed responses to chroma stimuli
while holding the background lightness stable (homogenous gray
backgrounds in monkey A and mosaic backgrounds of the same average
lightness in monkey B). However, we did not find a significant number
of chroma-tuned cells or hue patches that systematically varied in
cortical location as a function of chroma. Instead, the signal strength of
the neuronal response increased as chroma level increased (Fig. 4A-C).
Most cells moreover preferred the saturated chroma levels (Fig. 4B).
Only 1.97% of the cells (19/966, two-tailed Student’s t-test, p < 0.05)
preferred submaximal chroma levels. Therefore, few cells were selective
for unsaturated colors in layers II/III of V1, consistent with previous
findings (Hanazawa et al., 2000).

We analyzed hue patches more extensively to determine if there was
an internal cortical microstructure within patches that mapped chroma
at a level not identified with our previous analyzes. We found that
varying chroma levels did not alter the center of gravity of hue patches
and did not result in subclusters of chroma-tuned responses positioned at
different cortical locations (Fig. 4D). The cortical locations of hue
patches were stable across chroma levels larger than 6 (Fig. 4E). Any
displacements found with low chroma levels were accounted for by
decreased signal-to-noise, which inevitably reduced the size of contours,
thus affecting the precision of the patch locations (Fig. 4C).

To determine the relationship between chroma signal strength and
perception, we compared the LoCa response strength (Fig. 4F) to the
distance (DeltaE) in various color spaces (see Materials and Methods)
and found them to be positively correlated (Fig. 4G). In addition, signal
strength was more highly correlated to DeltaE of human perception-
based color spaces than to the antagonistic-mechanism-based DKL
color space (Fig. 4G).

These analyzes indicate that the perception of chroma is represented
in V1 layers II/II1 by neural response magnitude rather than by cortical
location.

3.5. Cortical representations of hue and lightness are orthogonal to each
other

To investigate how hue and lightness maps interact spatially across
V1's cortical surface, we generated mesoscale pixel maps of hue and
lightness preference (Fig. 5A and S5A). After applying a low-pass
Gaussian filter (¢ = 35 um) and using iso-contours to view the data,
the orthogonality of the hue versus lightness interactions were evident
(Fig. 5B-C and S5B-C). We quantified their spatial relationship as the
angle difference at each hue/lightness contour crossing point on the map
(see Materials and methods). This procedure revealed clear peaks at
about + /— 90 degrees (Fig. 5D).

We also assessed the orthogonality of the hue and lightness maps
using cMDS. We created the ¢cMDS space using the lightness patches,
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including both chromatic and achromatic lightness patches (excluding
achromatic N5) and removed noise by excluding outlying patches in the
lightness dimension identified by the OPTICS algorithm (see Materials
and methods). We created a distance matrix by finding the distances
between the centers of gravity of these patches (see Materials and
methods). We further analyzed the first three cMDS dimensions (stress =
0.03 in monkey A, 0.02 in monkey B at the third dimension) to deter-
mine the orthogonality of the hue versus lightness axes (Fig. 6A). She-
pard plots revealed that the first three dimensions of ¢cMDS space
corresponded well to the patch distances found on the cortical surface
(Fig. S6A). We fit lines along the lightness axis for each individual hue
(including the achromatic lightness axis). We fit a plane to the line-
centers of these lightness axes, defining the hue plane. We determined
the angles between each lightness line to the normal vector of the hue
plane: 0.75 + 10.32 and 8.95 + 11.65 degrees (mean + SEM, n = 12) in
the two monkeys, respectively. The lightness axes were very close to the
normal vector, indicating that the hue and lightness dimensions are
orthogonal in high-dimensional space.

A non-classical MDS analysis also revealed orthogonality between
the hue and lightness dimensions of color representation on V1. Here,
we embedded the response dissimilarity between cells—as a function of
all color stimuli tested—into the first three MDS dimensions and found
the relationship between hue and lightness to form a spherical surface
(Bohon et al., 2016). Hues distributed themselves along the equator of
the sphere, whereas lightness was distributed along the meridians,
indicating orthogonality (Fig. 6B, see Materials and methods, Shepard
plot on Fig. S6B). Previous studies revealed similar results in area PIT
(Bohon et al., 2016).

We conclude from all the above analyzes that the V1 representations
of hue and lightness are orthogonal to each other, similarly to the V1
representations of orientation and spatial frequency (Nauhaus et al.,
2012).

3.6. The overall representation of perceptual color space in V1

We next determined whether the cortical representation of hue and
lightness reflected the perceptual relationships of color vision. To do
this, we computed the correlation between the cortical distances of hue
and lightness patches versus perceptual DeltaEs in various color spaces.
The correlation coefficients were significant (Fig. 6C). Further, the co-
efficients of near-uniform color spaces were significantly higher than
DKL or CIExyY color spaces (Fig. 6D), indicating that V1 represents color
perception much better than previously thought (Conway, 2014).

The dissimilarities-based MDS space created by our dissimilarity
analyzes of the hue, lightness, and achromatic lightness dimensions, also
parallels the MDS space found previously in the PIT cortex (Bohon et al.,
2016). This further suggests that the hue and lightness dimensions of
color perception are already well represented in V1. We note that our
results have a more apparent hue-lightness structure than the previous
PIT results, perhaps due to our chosen stimulus set or to the increased
cell numbers in our study.

In our dissimilarities-based MDS space analyzes, we found that
various chroma did not change the position within the first three di-
mensions (Fig. 6B), indicating that chroma varies the response intensity,
but not the position (see also Fig. 4), within higher-dimensional space.

The comparison of the distance versus dissimilarity MDS analyzes
(Fig. 6A versus Fig. 6B, respectively) reveals that the distances between
cortical patches recreates the barrel-like perceptual Munsell space,
whereas the dissimilarity analyzes revealed a spherical relationship.
This suggests that Munsell color space are appropriate to the study of the
cortical representation of color perception in V1.

3.7. Colorresponses of V1 cells are better explained by near uniform color
spaces

We statistically determined that V1 cortical color space
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representations were better represented by Munsell than DKL color
space by fitting each cell’s response to color stimuli to each color space’s
characteristic variable, using multiple linear regression. This resulted in
R? goodness-of-fit measures of DKL-based versus Munsel-based models,
as well as additional fits to other color space models as well: CIExyY,
CIELUV and CIELAB (Fig. 7A and Fig S7). All tested color spaces perform
significantly better than DKL color space (one-tailed t-test, p < 0.001).
This was especially robust for near uniform color spaces performs better
than CIExyY color space, which follows from the correlations we found
between cortical distances and neural signal similarities and DeltaE in
various color spaces (Fig. 6C and D). When we performed these same
linear regression analyzes using only the equiluminant color plane,
Munsell color space performed as well as DKL color space, and indeed
was slightly, but significantly, superior to DKL (Fig. S7D).

We further examined the spatial distribution of those cells that are
better explained by Munsell colors space or DKL color space (Fig. 7B, see
Materials and methods). Whereas most cells are better explained by
Munsell color space (84% and 92.7% in monkey A and B), we did find
that when cells were better fit to DKL space, they were generally
confined to cortical regions in which color or orientation tuned fields
overlap on the maps (Fig. 7. B-D), whereas Munsell-preferring cells were
largely confined to color-tuned regions.

4, Discussion

The present study reveals a cortical representation of perceptual
color space in V1. This representation not only includes the basic di-
mensions of color perception (hue, lightness, and chroma), but it also
reflects the orthogonal relationships between hue and lightness
perception. Our results provide the first evidence of a cortical map
representing perceptual color space at processing stages earlier than the
higher brain regions (Bohon et al., 2016; Conway, 2009; Liu et al.,
2020), and thus our findings enhance our understanding of the chro-
matic information processing abilities of V1 (Ng et al., 2007). The sur-
prisingly perceptual-correspondence of V1 color representations may
serve to provide the higher cortical areas with the initial organizing
principles necessary to achieve even more advanced perceptual chro-
matic analyzes, such as the lightness-invariant hue-selectivity found in
PIT (Sanada et al., 2016). In addition, V1's contribution to color vision
may help to explain how color is integrated with other types of visual
information in the extrastriate cortex.

Local cortical signals from calcium dyes were previously used to
study functional maps in NHP V1 (Nauhaus et al., 2012), though SNR
was improved in the current study due to our lower background calcium
signals. Local cortical GCaMP signals have been used to study ferret V1
with widefield epifluorescence, though with lower spatial resolution
(Smith et al., 2015) than our mesoscale two-photon signals. The LoCa
signals we employed here at micrometer resolution have high SNR,
enhancing the quality of functional studies compared to previous
methods. When used to map functional columns in V1, LoCa signals
from a single imaging plane have higher utility than cellular imaging
volumes (Figs. 2D-F, 3C and 4B) in two ways: (i) LoCa signal maps are
more fine-grained than cellular maps; and (ii) LoCa signal imaging in-
creases experimental efficacy more than 10 times when imaging stacks
of more than 10 imaging planes. This high SNR also limits adaptation
effects (Tailby et al., 2008) because stimuli do not need to be presented
multiple times for each traditional imaging plane.

Chroma tuning has rarely been studied in V1, though a relationship
between chroma and neuronal response magnitude was found previ-
ously in PIT (Conway, 2014). Using LoCa imaging, we found that V1
signal strength is also highly correlated to the perception of chroma
(Fig. 3), in line with the results of a previous 14C-deoxy-p-glucose up-
take study using color stimuli of different saturation levels (Tootell et al.,
1988). We found a few neurons in our single-cell results that appeared to
be selective for chroma, consistent with previous reports (Hanazawa
et al., 2000). However, the proportion of cells exhibiting apparent
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chroma selectivity was very small and thus we cannot rule out a spurious
correlation.

We discovered that V1 responses were more strongly correlated with
color perceptual models of all three primary axes of color percep-
tion—hue, brightness, and chroma—than with the DKL color model.
This suggests that the primary organizing principles of perceptual color
space are established within V1, and that perceptual color spaces are
best suited for color studies in V1.

Hue clusters have been reported previously within V1 using ISOI
(Xiao et al., 2007). Our two-photon imaging data built on these results
and revealed that hue representation in V1 forms pinwheel like and
linear-zone patterns. Hue clusters had a circular organization (Fig. 2)
that followed from Munsell perceptual space color wheels (as well as
other similar color spaces that have been used to describe human color
perception). Complementing our high-resolution two-photon imaging,
we employed evenly distributed colors from the color wheel of human
perception, while holding chroma level stable. In previous studies, color
stimuli were typically based on cone contrast, (Shapley, 2019) color
spaces or the DKL system (Cottaris and De Valois, 1998), or they
employed stimuli at the CRT’s gamut boundary (Garg et al., 2019; Xiao
et al., 2007), which limited experimental control of the chroma
dimension. Our results show that high saturation hues (such as the high
chroma blues and reds that can be achieved by many CRTs) can produce
saturated responses even in neurons that prefer other colors. Thus use of
maximally saturated chroma levels leads to underestimation of the
selectivity that a hue patch has with respect to other hues. It is therefore
more conducive to use mid-level and carefully calibrated chroma levels
to determine fine structures within hue preference and selectivity
measures.

A previous study concluded that lightness level does not affect hue
tuning in V1 cells (Thorell et al., 1984). Other research has instead found
that hue and lightness are jointly encoded in V1 (Hass and Horwitz,
2013; Johnson et al., 2001; Lennie et al., 1990; Peng and Van Essen,
2005; Yoshioka et al., 1996). However, these prior studies used limited
numbers of lightness levels and neuronal samples relative to our study.
Our results may explain the previous discrepancy because we found that
the maps for lightness encoding and hue encoding interact in orthogonal
gradients on the cortex; thus, some hue-selective neurons will be unaf-
fected by limited lightness levels whereas others will entangle hue with
lightness, where the two gradients closely interact and cross. This coding
strategy may facilitate the eventual appearance of hue-selective light-
ness invariant cells downstream of V1, such as those found in PIT
(Conway et al., 2007).

In terms of the spatial relationship between hue and lightness
patches, their relative cortical distances—together with chroma’s effect
on response strength—largely account for the three dimensions of
perceptual color space enjoyed by old-world primates (Fig. 6A). This
explanation potentially resolves the long-standing mystery of how a
two-dimensional cortical map can represent three dimensions of color
perception. Indeed, distance-based MDS analyzes reveal a barrel-like
color space in V1 that matches the shape of Munsell color space. Our
dissimilarity based MDS results also support these conclusions, revealing
a spherical shape to higher dimensional neuronal representations of
color space.

Color and orientation maps are processed in parallel in V1 and share
similar organizing principles in that they jointly encode multiple di-
mensions (Garg et al., 2019). Our discoveries suggest several new
principles underlying the cortical organization of color and orientation
in V1: (i) Color-selective fields are largely interdigitated with
orientation-selective fields. Whereas orientation-selective fields were
often aligned with the ocular dominance (OD) borders, color-selective
fields tended to be aligned at the centers of OD columns. These find-
ings were not reported in previous studies, perhaps because only
two-photon imaging provides the high SNR and spatial resolution
required to identify the specific hue-preferences at play on a
ub-hypercolumn scale; (ii) The orthogonality of hue versus lightness
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representations in V1 is similar in nature to the orthogonal representa-
tions found previously between orientation and spatial frequency
(Nauhaus et al., 2012); (iii) The contiguously spectral nature of
perceptual color wheels was recapitulated by our hue pinwheels, just as
the geometry of different orientations is systematically recapitulated in
V1 according to the patterns found within orientation pinwheels. These
organizing principles may contribute eventually to a universal theory of
cortical information processing in V1 and beyond.

Although the advantages of two-photon imaging facilitated many of
this study’s discoveries, limitations remain. For example, the depth of
recording with two-photon imaging remains constrained, challenging
the experimenter’s ability to precisely survey the functional structure
throughout the cortical layers. The SNR with two-photon imaging is
high but also remains limited, requiring many repeated presentations
(—10) at each cortical location to obtain replicable functional results.
This limitation prevents the use of the much larger stimulus sets that
would permit finer grain analyzes of the relationship between human
perceptual color space and the maps in V1.
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