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Abstract—As the number of IoT devices increases,
sustainability is becoming a bottleneck of the production
process in industrial systems. As a matter of fact, inefficient
management and scarce resources significantly impeded the
development of sustainability. In recent years, it has been
observed that the digital twin (DT) technology plays a promising
role in facilitating the interaction between the Internet of
Things (IoT) assets and digital services. However, high-fidelity
models of DTs raise the requirement of efficient data flows,
which is limited by realistic constraints, such as data collection
strategy and energy supply. We propose a sustainable data
collection and management approach to construct DTs for
physical assets. With this approach, data packets are uploaded
to the data brokers, namely, agents, by a large number of IoT
devices. The challenge lies in the balance between enduring
data collection and the information loss associated with the stale
data. In this article, we aim to optimize the metrics of data
fidelity and reveal delay while guaranteeing both sustainable
energy and sustainable information. Additionally, a shareable
and sustainable blockchain-based DT management architecture
is proposed, which does not rely on data exchanges with a
single centralized server. Our analytical and simulation results
demonstrate the applicability of our proposed architecture.

Index Terms—Blockchain, digital twin (DT), Internet of Things
(IoT), network optimization, sustainable system.

I. INTRODUCTION

N THE past decade, people have witnessed the expedi-

tious development of the Internet of Things (IoT), which is
cohesively integrated with artificial intelligence (Al), the new
generation wireless network technology (5G), and advanced
system architectures to serve human beings. With the prolif-
eration of IoT devices, numerous digital service applications
have been devised to meet the demands of industrial produc-
tion and social activities, such as smart grid [1], smart city [2],
smart transportation [3], and smart healthcare [4]. Our every-
day lives are immersed with a large number of IoT devices,
which build up the foundation of a variety of services. The
purpose is to collect data in the physical world, upload data
to remote servers for further processing, and make decisions
according to feedback.
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In the traditional approaches, data are stored in backlogs
of ToT devices for later diagnosis, and improvements are
then incorporated into devices. Such pipelines not only lack
timely feedback but also risk on-device testing and unveri-
fied updates, which may result in severe malfunctions. As
creating a digital avatar for a real-world object is highly in
demand in most IoT services, the digital twin (DT) technol-
ogy becomes a promising paradigm for IoT services. Often
referred to as a virtual representation of a physical asset, DT
empowers complicated modeling and immense data transmis-
sion, thus creating high-fidelity replicas of physical objects
for further prediction, monitoring, controlling, and decision
making. These digital proxies are often expected to provide
virtualization and optimization functionalities by integrating
domain knowledge from subject-matter experts as well as real-
time data collected from IoT devices [5]. DT also makes
remote testing on virtual environment possible, which is a
cost-efficient and secure alternative comparing with on-device
testing. Due to the aforementioned high-fidelity and flexibility
advantages, DT has been widely adopted in many applications,
i.e., human DT [6], DT city [7], and DT automation [8].

However, unfortunately, most previous DT-related works
have been restricted to the control of a limited number of
IoT devices [9], [10]. In the works for large-scale DT plat-
form deployment [11]-[13], it is not realistic to simultaneously
upload data all the time for all IoT devices. Since these IoT
devices are deeply integrated with various services, stringent
requirements in terms of fresh data and energy supply are
essential to robustness of an IoT system. To overcome the
above limitations, we should take sustainability of IoT systems
into consideration. Sustainability considered in this article is
twofold, which can be categorized by sustainable information
and sustainable energy.

On the one hand, data generated by an IoT device may play
different roles in different DT services. As a result, at a certain
time, the status of an IoT device might be crucial to DT but not
relevant to another device. Prioritizing different data sources
carefully is essential for DT services to receive the most crucial
data from all physical devices. One should devise a feasible
strategy of data collection to maintain information sustain-
ability and achieve better synchronization [14] in a global
perspective.

On the other hand, energy supply is another key issue for the
services aided by physical assets. To provide adequate energy
for devices in a region, an electricity storage system may
be deployed where electricity is sustainably replenished and
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Fig. 1. (a) Hierarchical and (b) Distributed data-sharing modes.

transported to IoT devices. The uninterrupted computation and
data transmission of devices are enabled by such sustainable
energy supply. However, frequent data updates at IoT devices
may deplete energy quickly, thus hampering energy sustain-
ability. Undoubtedly, a reasonable energy allocation strategy
to provide energy sustainability is desired.

A common way to realize DT services is to establish con-
stant connections and data exchanges between IoT devices and
service provider, and to upload data to a centralized server
similar to traditional IoT services. This hierarchical sensing
mode/protocol [15]-[17] has been broadly studied and applied
to many practical scenarios of dedicated services, which is
illustrated in Fig. 1(a). However, this way of data collection
is deemed to be unsustainable, since each service collects the
needed data by itself with limited resources, and the barriers
among untrustworthy services would cause unnecessary data
collection and incomplete information. Data trading mecha-
nisms [18], [19] are studied to expand the coverage of services
while preserving the privacy requirements. Motivated by the
deficiency of traditional services, we raise the question of
whether the collected data can be shared among all the DT
systems as shown in Fig. 1(b) and the queries toward mas-
sive IoT data can be processed in a distributed manner [20].
In order to ensure service sustainability, we consider main-
taining a trustable and shareable ledger, colloquially known
as blockchain, for all the DT systems. The blockchain gathers
distributed, secured, and verifiable records of information col-
lected from different entities, and links them in a single chain
with multiple blocks [21]-[23]. The information is maintained
by all the participants, and can be resistant to the failure of a
single point, which leads to a secure and convergent industrial
IoT environment [24]. As the core of blockchain, we should
devise some consensus to make sure that data can be utilized
by different DT systems securely and fairly.

In this article, we design a blockchain-based sustainable DT
management system to ensure information sustainability in DT
systems and energy sustainability in physical assets. The main
contributions are summarized as follows.

1) A DT framework, consisting of devices, agents, and
requestors, is formalized in the scenario of IoT device-
assisted services. In this framework, agents collect fresh
data from physical devices, and feed them to requestors
so as to create DT services for further uses.

2) Information sustainability and energy sustainability are
both considered to improve system performance. In
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detail, we optimize delay of devices to ensure sustain-
able information and control the probability of energy
depletion to guarantee data fidelity.

3) To further enhance practicability and system
performance, we introduce the blockchain technol-
ogy to enable data sharing among agents, and improve
the efficiency of data collection while not relying on
data exchanges with a specific server.

4) Our extensive analytical and experimental results show
that our proposed blockchain-based DT management
system can achieve both information sustainability and
energy sustainability.

The remainder of this article is organized as follows.
Section II reviews some related works. In Section III, we intro-
duce the components of our DT-based IoT service system.
In Section IV, we show the optimization goal and collec-
tion method of DT system with the aid of a specific server.
In Section V, we further propose a blockchain-based system
that incorporates distributed and shareable attributes into our
design. The experiment results are illustrated in Section VI.
Finally, Section VII concludes the article.

II. RELATED WORKS
A. Digital Twin Platform

The DT concept was first introduced in 2002 and has
recently been implemented to solve different problems in the
areas of aviation, supply chain, wireless networks, and many
more. Madni ef al. [25] introduced the DT concept, categorized
the types of DT systems, and provided a framework for data
exchanges between the physical twin and its DT. They also
presented a vast of applications where system performance
can be enhanced through the DT technology. Sun et al. [26]
solved the mobile offloading problem in 6G networks with
the assistance of DT, where DTs of edge servers and a mobile
edge computing system are deployed to estimate servers’ states
and provide training data for offloading decisions. In [27], a
DT bending bean test system is established by setting up DT
components, a physical twin of two actuators, and a commu-
nication interface that connects the two. These works only
considered the construction of DT with one or several physi-
cal twins and services, which cannot depict the status of many
assets. Driven by this limitation, some researchers studied DT
platforms for large-scale systems [28]-[31]. However, system
sustainability has not been well investigated in the state of
the art.

B. Information Cost and Energy Cost

To model information sustainability, Age of Information
(Aol) is an ideal performance metric that measures the loss
of information at the destination [32]. Often defined as the
elapsed time since the generation of the most recently received
data, Aol characterizes the freshness of data for a service and
suggests the potential utility that can be extracted from the
data. However, Aol, determined by the information collecting
strategy, cannot reflect the fundamental updating frequency of
information source.
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For energy cost, many works have studied energy
optimization in extensive network paradigms. However, nei-
ther information sustainability nor energy sustainability has
been well addressed for IoT services with the aid of DT.
A stochastic optimization problem of an IoT monitoring
system is studied to minimize the average Aol while satis-
fying the average energy cost constraint at the devices in [33].
To enhance the sustainability of a multinode wireless pow-
ered communication network, both energy and price-incentive
schemes are studied aiming at optimizing the per-packet Aol
performance [34]. The work in [35] investigates the data updat-
ing policy for energy-harvesting monitoring nodes so as to
minimize the average Aol. Inspired by these prior studies, we
aim to optimize system performance in terms of sustainable
information and sustainable energy for DT-aided IoT devices.

C. Blockchain-Based Digital Twin

Both DT and blockchain technologies were originally
proposed in the first decade of this century, but they have
not received much attentions until recently. The work in [36]
presents a literature-review study for the implementation
and design of blockchain-based DT. Leveraging the strength
of trustworthy blockchain, the data-driven product lifecycle
events of physical assets can be efficiently utilized by multiple
DT-based services. The study in [37] proposes a decentral-
ized ownership-centric sharing model for protecting access
control integrity and confidentiality based on DT components
and lifecycle requirements. Besides, this work [38] proposes a
DT model for additive manufacturing in the aircraft indus-
try with the aid of blockchain. To collect the data from
the physical devices, crowdsourcing has been widely adopted
in blockchain-based IoT platform [39], [40], where agents
are deployed to collect the data and contribute to the IoT
services. However, none of them consider sustainability of the
blockchain-based DT platforms.

III. SYSTEM MODEL

We consider a system that supports the construction of DT
services by collecting data from physical assets. Our proposed
system consists of multiple participants in a given region,
including requestors, agents, and devices, all of which play
important roles in the process of data exchange and deci-
sion making. The detailed definitions of these participants are
summarized as follows.

1) Devices: As physical assets, [oT devices are responsible
for generating data for DT services. Each time an IoT
device generates data, it consumes energy supplied by
a central electricity storage system. In general, devices
act as the foundations and actuators of services.

2) Agents: Due to the limited capacities of computa-
tion, communication and data storage, devices cannot
be always online/connected for a single server. In a
region, agents' are deployed to initiate communications
to selected devices and collect data from them so as to

IThe terminology of service-oriented agents may have different names in
some other scenarios such as mobile workers or data sellers.
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support DT services. This means agents could strategi-
cally interact with physical devices to maintain service
quality. In general, agents perform as data brokers which
bridge DTs and physical assets and realize the expected
DT services.

3) Requestors: As customer-oriented service providers,
requestors subscribe to agents and incorporate their data
in the DTs of physical assets. Data may be collected
from a broad range of IoT devices with different func-
tionalities (e.g., speed of cars, quantity of fuel, and air
humidity). The DT services established by requestors
can be used to serve target customers.

A. Sustainable DT-Based Paradigm

To maintain a sustainable system that provides high-quality
and durable DT services, we deploy a set of IoT devices
denoted by {1,2,...,N}, and a set of agents denoted by
{1,2,..., M}. We simplify the requestors subscribing to agent
m by a popularity vector a™ = {af',...,ay}. This repre-
sentation reflects the data demand priorities for agent m. The
popularity vectors of different agents may be significantly dif-
ferent as different agents may concentrate on different types
of services, as a result, leading to distinctive data collection
strategies of individual agents. We propose a DT-based frame-
work that benefits the DT services, which is able to retrieve
the last known status of the devices. The details about similar
functionalities are available in [5]. We assume that the system
can be divided into three components.

1) Physical devices which are deployed in a physical space
in a distributed manner to ensure the basic system
functionalities such as data sensing.

2) Agents which exert measurements on one of the devices
at a time independently. DTs are created in a virtual
space (constructed by agents) to synchronize the status
of physical devices.

3) Requestors who subscribe to the models of DTs main-
tained by agents, and run DT-based services to serve
customers. Each subscription is made through one of
the agents.

It is critical to synchronize the real-time status of phys-
ical twins. As illustrated in Fig. 2, the mapping process
between the physical space and virtual space is enabled
through agents. In our system, we assume that each IoT device
n e {1,2,..., N} performs the sensing task and generates a
data log of the current state independently under a Bernoulli
distribution with rate p, in each time slot. Thus, the total num-
ber of data logs generated from the sensing tasks of device n
in T time slots, i.e., J,, follows the following distribution:

P(Jn =j7 T»pn) = <f)pn](l —pn)Tij. (1)

With the statistic of sensing tasks, agents perform data col-
lection according to their own popularity profiles of all the
IoT devices. The popularity profiles are determined by the
subscriptions made by requestors in the given range of time.
Due to the trend of sustainability, we mainly focus on the
optimization in terms of timeliness of data and endurable
energy supply for DT systems.
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Fig. 2. DT-assisted paradigm for IoT devices.

B. Sustainable Energy Supply of Devices

We first formalize the sustainability of energy supply. We
consider that all IoT devices are supported by a central elec-
tricity storage system. To describe our proposed system, the
time horizon with stable energy supply is divided into multiple
stages {1,2,..., K} with T time slots. Note that T is a rel-
atively large number. We define that the total amount of
energy supply is S, units in each stage k € {1,2,...,K]},
and the energy replenishment at the beginning of any stage
constantly supports the basic functionalities of all physical
devices, thus ensuring the status mapping in the DTs of
agents.

Traditional DT formulation typically concentrates on
the status mapping between a single DT and its cor-
responding physical asset, thus neglecting the impact of
energy supply for a large group of devices. We extend
traditional DT cases to industrial DT platforms with a
large-scale deployment of IoT devices (i.e., a large N)
and study the data sensing policy of devices in the
system.

For any device (Vn € {1,2,...,N}), it consumes a unit
energy each time to perform a sensing task and collect the
status changes of the physical world. In any stage k, the energy
consumed by device n is denoted by a,(k) = J,(k), where
J, (k) is the total times of sensing of device n in stage k. The
distribution of J,, denoted as P(J,, T, p,), tends to be the
Poisson distribution with expectation A, — p,T when T — oo
and p, — 0 [41]. In fact, A, can be treated as the expected
energy consumed by device n in any stage with 7 time slots.
Thus, the energy consumption process of all devices can be
depicted by

W(k) = A(k) — kS, 2
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where A (k) is the accumulated energy consumed by all devices
by the end of stage k, written as

Atk = a V() +aP k) + - +a™ (%) A3)
and Vn € {1,2,...,N}
a™ (k) = ay(1) + an(2) + - - - + an(k). 4)

To characterize system properties with respect to the number
of devices N, we denote S, = NC, where C > 0 reflects the
relationship between the energy supply rate and the number of
devices. Thus, the maximum energy debt with respect to the
energy consumption process of devices can be depicted by

Q = sup W(k). 5)
k>0

We consider that the central electricity storage system stores
a maximum energy backup with B(0) units® in stage k = 0
to overcome the potential energy shortage in the future. It
can be easily found that if Q is greater than B, the system will
encounter energy depletion, which may cause severe operation
problems, and devices would not be able to work correctly and
provide the expected sensing data for DT services.

Large deviation theory [42] is a useful tool for analyz-
ing rare or tail events with larger fluctuation, especially for
energy depletion in a large-scale system with a large num-
ber of devices. We aim to design a robust system that yields
sustainable energy supply for all devices.

Denote the probability of energy depletion as P(Q > B).
As the number of sensing tasks in any stage could be approxi-
mated by a Poisson distribution, the expression of the cumulant
generating function (CGF) of average energy consumption
a(k) = A(k)/N is given by

Ar(0) = log E[eea(k)] (6)
and
o1
A@) = kl_l)n;o %Ak(e)
= %logE[ee Zﬂzlj”]
1,
=% 2k,1(e —1). (7)

To achieve sustainable energy, we focus on the behavior of
P(Q > B). Since we study the system with a large N, for any
B = Ngq > 0, Q follows:

. 1
1\}me 5 log P(Q/N > q) = —1(q) 3

according to Cramér’s theorem [43], where Z is the rate func-
tion of g that describes the probability decays of energy
depletion with respect to the energy backup, and

Z(g) = inf Af(q + Ck) )
keN
where Aj is the convex conjugate of Ay () defined by

Af(x) = sup {0x — Ar(0)}.
0eRt

(10)

2We omit the time stage index O of B, (0) for simplicity.

Authorized licensed use limited to: Georgia State University. Downloaded on July 05,2023 at 18:06:16 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: SUSTAINABLE BLOCKCHAIN-BASED DT MANAGEMENT ARCHITECTURE

As shown in [44], the rate function Z(q) can be written as
Z(g) = inf sup O(q + Ck) — kA(0)
keN g cr+

=gsup{f > 0: A@B) <0C} (11

and we could define § as a function of the process of a(k),
which is

8(a) =sup {0 : A) < 6C}. (12)

Hence, the probability of energy depletion of the central
electricity storage system is approximated by [45]

P(Q > B) ~ e M (13)

according to the large deviation theory. This approximation is
of great importance to guide the sensing process so that the
usage of energy in our system is controllable and sustainable.

C. Sustainable Information of Agents

To capture the time-varied information of the system and
inject the data of physical assets into their DTs, agents exert
data collection from the IoT devices.

In any stage with T time slots, each IoT device n €
{1,2,..., N} performs the sensing task and generates logs of
data sensing independently at time slots {s7, s5, ...}. To pur-
sue a high-fidelity digital model of the physical assets, we
expect to collect the logs as soon as possible. We assume that
the time slots of data collection at device n performed by all
agents, i.e., {c], ¢}, ...}, are randomly distributed among the
time slots of sensing tasks. To capture the utility of collected
data, we give the definition of data fidelity.

Definition 1 (Data Fidelity): The data fidelity of a given
log in a DT is characterized by the expected time spanning
from the most recent time of data generation to the delivery
of data.

For any time of data collection at device n, denoted as c?’, it
splits the interval of any successive sensing tasks i’ and i’ + 1
into two intervals (s7, ¢/'] and (¢}, s7 1l If data collections are
randomly distributed between the two successive sensing tasks,
data fidelity JF,, of device n can be obtained [46], which is

T
2hn

To ensure high quality of DT models, devices should per-
form adequate sensing tasks to fully capture the status changes,
thus improving data fidelity. However, this goal is limited by
the total energy supply.

To obtain sustainable information from the data records of
agents, a system devotes to the optimization of the overall data
fidelity of all devices and guarantees sufficient data collection
for each device, which is closely related to the status of the
current data records and the sensing statistics of devices. We
will detail the optimization process in Section IV.

Fo = =Blel = ] = ~Blsk, ~ ] = -

1

(14)

IV. COLLECTION METHODS FOR DT SERVICES

In this section, we present a theoretical analysis for the
multiple-agent data collection scheme with the coordination
of a centralized server. Initially, the central electricity storage
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system keeps the maximum energy backup of B = Ng units,
and at the start of any stage k, each agent m € {1,2, ..., M}
directly uploads its individual popularity vector {&}' (k)}g:1 of
all devices to the centralized server. The centralized server can
set the sensing policy of all devices at the beginning of stage
k. With the sensing policy of all devices, agents perform data
collection to optimize the quality of collected data according
to the popularity profiles. To ensure the sustainability of both
energy supply and information, we will introduce the methods,

respectively.

A. Optimal Sensing Policy of Devices
Considering the sensing policy A = {A,}_,, (12) can be

written as a function A, i.e., (). If the para,;néters of energy
supply rate C and energy backup g of the central electricity
storage system are given, our goal is to explore the feasibility
of sensing policies of all devices. We explain the definition of
feasible sensing policy as the following.

Definition 2 (Feasible Sensing Policy): For given param-
eters of energy supply rate C and energy backup g of the
central electricity storage system, a feasible sensing policy
of all devices is bounded by the maximum average energy
consumption rate of sensing tasks, which ensures that the
depletion probability of the central electricity storage system
is no greater than the depletion tolerance degree € € (0, 1].

For simplicity, we denote « as (1/N) Zﬁlvzl An. According
to this definition, the maximum average energy consumption
rate of all feasible sensing policies, denoted as &, is given by

k(e) =max{x : P(Q/N = q) < €} (15)

and k(¢) can be derived from the following theorem.

Theorem 1: Given k < C for stability, g > O and € € (0, 1],
the maximum energy consumption rate of all feasible sensing
policies, denoted as & (¢), follows:

0*C

k(€) = 16
{0 = 5 (16)
where 6* = —[(In€)/Ngq].
Proof: With (12), (13), and (15), we have

K(e) = max{/c e 0Ng < e}. a7

According to (12), # should satisfy the condition of

ocC

< - 18
C=w (18)

where [C/(e? — 1)] is always decreasing with the increment
of 8 when 6 > 0. From (17), we could easily find that

3(k) > _1n_e

= Ng

This means that 6§ > —[(In€)/Ng], and the maximum

k is obtained for 6* = —[(In€)/Ng], and k(¢) =

[0*C/ (" — 1)]. ]

With Theorem 1, we know that the energy supply of the

system significantly impacts the data fidelity of DT models.

We aim to derive an energy policy that can maximize the

weighted expected data fidelity while guaranteeing the stability
of the system for ¢ > 0.

19)
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Algorithm 1 Finding Unique Optimal Sensing Policy (A*, y*)
of P1 With KKT Conditions
1: Set n as a real number close to 0
2: Set y© as a relatively large positive number
0 T
3: kfl) <~ 2‘?/(0), Vn
4: repeat
D A
5 p D 0 4 H(Z’nv:] A0 K(E))

A(l+1) B.T
n 2)/(1"'1)

7. until y 1 converges
8: return (A(+D » D)

6:

To reduce the overall information loss, the goal of the
system is to adapt the rate of sensing tasks to maximize the
data fidelity of all devices when considering both energy sup-
ply and popularity of devices, which yields the optimization
problem P1 given as follows:

M N

Pl: min — D) al Fulia) (20a)
m=1 n=1

st k(L) < K(e). (20b)

In P1, the optimization goal (20a) is to minimize the neg-
ative weighted-sum data fidelity of all devices for the given
popularity profiles of all agents, and the constraint (20b) infers
that the average energy consumed during the sensing tasks can-
not exceed the maximum average energy consumption derived
from Theorem 1, which ensures that the probability of energy
depletion would not exceed €. The unique optimal solution for
P1 could be derived according to Theorem 2.

Theorem 2: The optimal sensing strategy of all devices A*
from Algorithm 1 is the unique solution to P1.

Proof: Let B,, = Z%:] o' Vn. The optimal sensing strat-
egy of P1 could be solved by constructing the Lagrangian
function by introducing the multiplier y > 0 associated with
the energy constraint, that is

N

£ y)=Z'BnT~I-J/ i}\ —R(e) Q1)
’ 22 P " '

n=1

The optimal solution A to P1 should satisfy the following
KKT conditions.

1) aLP1/3x € 0 (stationarity).

2) y(Zﬁlvzl An — k(€)) = 0 (complementary slackness).

3) Zﬁlv: | An — k(€) < 0 (primal feasibility).

4) y > 0 (dual feasibility).
From the KKT conditions, the derivative of stationarity con-
dition yields that

Lt BT
g 222

+y =0 Vn (22)
and the optimal nonnegative y* and A* should satisfy the
following conditions:

{y*:O, if YN Ak —k(e) <0

23
SN A —k(e)=0, if y*>0 23)
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along with the complementary slackness and feasibility con-
ditions.

When y = 0, (22) cannot be satisfied since A, K T.
Consequently, we have the unique solution

nl
Jnly®) = //23)/*, v >0 (24)
and
N
D ha(v) = k(o). (25)
n=1

Since ZnN=1 J1(B,T)/2y] is monotonically increasing with

the decrements of y, we can first set y as a relatively large
value and check whether (25) holds. If not, the optimal unique
solution of A* can be derived from (24) by gradually updating
y > 0 using the subgradient method until (25) approximately
holds. We summarize the process of finding the optimal unique
solution (A*, y*) of P1 in Algorithm 1. [ ]

The solution of A shows the statistics of sensing policy of all
devices, which is calculated using the public information, such
as the parameters of energy supply rate C, maximum energy
backup ¢, depletion tolerance degree €, and the popularity
vectors {am(k)}Am’I: |- The deterministic property of A provides
a view of data collection for agents, which is introduced in
Section IV-B.

B. Optimal Collection Strategy of Agents

In a centralized system, the agents only concentrate on their
own benefits from the data collection. In stage k, the optimal
sensing policies {Aﬁ(k)}ﬁf:l of all devices are deterministic
when popularity vectors {oc”’(k)}%=1 of all agents and other
system settings are given. Each agent should perform data
collection according to their own data records. Besides the
sensing policies of devices, data collection strategies of agents
also affect the quality of a DT model. To reveal the logs of
sensing tasks timely, we give the definition of reveal delay.

Definition 3 (Reveal Delay): The reveal delay of a time slot
is characterized by the time spanning from the generation time
of the most recent collected log to this time slot at any agent.

For any time of data collection ¢} at device n, it splits the
interval of any successive sensing tasks i and i + 1 into two
intervals (s}, ¢/'] and (c}, s il If the data collection is ran-
domly distributed between any successive sensing tasks, the
expected reveal delay D, in time slot ¢ can be obtained,
which is

EIDa(c)] = E[e? — 2] = B[st,, — ] = ——

a-dl= g 9

We could easily find that (26) is similar to (14), and the length
of each time interval (c7, C?H) with a mean of (T/uy,) will
have an impact on the overall reveal delay of the DT system,
where u,, is the expected times of data collection® at device 7.

The best method for reducing the expected reveal delay of
each time slot is to increase the number of data collections at
a device. To capture the reveal delay in each time slot more

3We omit the subscript of the agent index m for simplicity.
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precisely, we denote d,(r) € {0, 1} as the transmission indica-
tor that shows whether a data collection is performed in time
slot ¢ (d,(t) = 1 Vt € {c],c5,...}). The evolution of reveal
delay regarding device n in any time slot is

_ max{s}|s? <t} +1, if d,() =1
Dult) = {D(r—l)—i—l o.w.

This expression shows that if the log of device #n is collected
by an agent in time slot ¢, the reveal delay of this device
decreases if the log of a new sensing task is generated since
the last data log has been captured; otherwise, it increases
by one. To minimize the reveal delay of a DT system, the
optimization problem of any agent can be characterized by

27)

P2 min Zzam (U, 1) (28a)
t—] n=1
s.t. up > A5 Vn. (28b)

In P2, the optimization goal (28a) aims to minimize the
weighted-sum reveal delay of all devices in a stage, and (28b)
shows the collection throughput constraints for all devices,
where the expected collection times should be greater than
the expected number of sensing tasks in any stage. In other
words, to fully capture the log of sensing tasks, the expected
collection interval (7'/u,) should be set no greater than the
expected information change interval (T'/X;).

P2 imposes the requirement on the data log throughput. The
optimization of Aol with the constraint of throughput has been
studied in [32], and a max-weight-Aol (MWA) policy was used
to adapt the data collection selection of devices to minimize
the weighted-sum Aol of all nodes while guaranteeing the
throughput.4 However, with a fixed arrival delay, the Aol of a
data packet in their formulation is completely determined by
the information collecting strategy of the agent, which can-
not reflect the fundamental updating frequency of information
source, i.e., the data generation process of sensing tasks.

To minimize the reveal delay, we next propose several
properties of the reveal delay.

Lemma 1: For any device n, the lower bound of the
expected reveal delay is (7/2X,), which is obtained when the
data collection at this device is performed in every time slot.

Proof: Since data collection is performed in every time
slot, the reveal delay of each slot between any successive sens-
ing tasks, i.e., [s7, s? it — 1 s {1, 2, ""S?H — s}, which
yields an average value of (s, | —s +1)/2. Consequently, we
have the expected reveal delay of device n, which is

i+1 S +1 T
E[D,] = E[ > i| =5 (29)
|

Lemma 2: For any device n, when the expected collection
time interval (7'/u,) is no more than the expected information
change interval (7'/,), the expected reveal delay is no more
than (37'/2A,).

4The Aol in [32] is different from the reveal delay in this article, where
Aol is the time interval since the last data collection while reveal delay is
the time interval since the latest sensing task that has been collected by the
agent.
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Proof: For any device n, when the expected collection
time interval is set below the expected information change
interval, the expected collection times within any successive
sensing tasks should be no less than one. We assume that the
only collection at device n between sensing tasks of s} ; and
st ie., [s;’f1 +1, s%], is performed in time slot s7 —1. Thus, the
reveal delay in time interval [s7, si | — 1] is {sj —s_; +1, 5] —

si_1+2,..., 87 —si_} if the next collection is performed in
time slot 7, | — 1. Consequently, we have the expected reveal

delay of device n

st —st 41 3T
i+1 i i| (30)

E[D,] = ]E[sf‘ -5t + 5 = o
This can be treated as an extreme case of data collection, and
with more times of data collections, the expected reveal delay
can be reduced. Hence, the expected reveal delay is at most
(3T /2A,) when the expected collection time interval (T/uy,)
is no more than the expected information change interval
(T/An)- u

To minimize the expected reveal delay with the requirement
on the times of data collections (ZLI dy(t) = X)), we lever-
age the max-weight-delay (MWD) policy to solve P2, and
the performance should satisfy Lemmas 1 and 2. Specifically,
any agent constructs the Lyapunov function of the data record
status S; according to the view of any agent, which is

N
¢Sy =Y [xo] (31)
n=1
where
T
xF = max{pnt =Y " du(0), o} (32)
=1

is the throughput debt associated with device n. The agent
tends to reduce the Lyapunov drift A(S)) = E[¢(Siy1) —
¢(S;)] between any successive time slots, which can be
written by

A(&)—ZE[ [re+ 0P - [l 63

According to [32], the upper bound associated with the

throughput debt is

B[ ¢+ D = [ o]

< =257 (N (E{dy (IS} — pa) + 1 (34)

and the throughput requirements of all devices can be satisfied,
which is E{(1/T) ZLI dy(1)} = A,/T = p, Vn. According to
Lemma 2, we have the upper bound of E{D,(¢)|S;}, which is

= (35)

By substituting (34) into (33), we have an upper bound for
the value change of the Lyapunov function, which is

N
AS) < =Y Eldu (IS} 2u(1) + D (1)

n=1

(36)
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where 2,(7) and ®(r) are given as follows:

Q,(1) = 2xF (1)
N
and (1) =Y [2puxf () +1].

n=1

(37
(38)

Since ®(7) is not impacted by the choice of data collection
as shown in (36), we can derive that the selection strategy to
minimize the overall weighted-sum reveal delay is collecting
the data log from the device yielding the maximum 2,(k) so
as to minimize the upper bound of A(S;) in (36), i.e.,

n* = arg max ,(f). (39)
n

However, data collection is performed by each individ-
ual agent, and each agent only concentrates on minimizing
their own reveal delay. Next, we will state our motivation
for incorporating the optimization introduced in this section
into a blockchain-based platform and elaborate the detailed
architecture.

V. SUSTAINABLE BLOCKCHAIN-BASED
TWIN MANAGEMENT

The method introduced in Section IV provides a direction
to realize a DT-based system that guides devices and agents to
perform the sensing task and data collection optimizing both
weighted-sum data fidelity and reveal delay. A naive archi-
tecture of such a DT-based system can be that each agent
owns a single server that records data logs of devices, and per-
forms data collection independently. However, this approach
is not appropriate for the multiagent and large-scale-device
deployment case. The reasons are explained as follows.

1) First, DT on a single server is acceptable for the
IoT ecosystem with a limited number of devices and
requestors. However, the communication of all devices
and requestors heavily relies on a single server, which
incurs significant risks to the security of the DT-based
system. The high-fidelity property of services may not
be satisfied once the server has undermined faulty.

2) Second, in the aforementioned architecture, all data logs
of devices at a server are collected by a single agent.
In fact, in the industrial environment, agents are not
always available to collect data from all devices, e.g.,
an agent is out of the communication range of a spe-
cific device. With the contributions of more agents, the
status of devices can be likely renewed more frequently,
thus leading to less information loss.

3) Finally, the resources of wireless channels are lim-
ited to be allocated for the communication between
agents and devices. The simultaneous data collection at
a device by multiple agents may trigger severe problems
of interference.

Considering the previously mentioned disadvantages, we
are motivated to incorporate more agents to participate in a
shareable architecture for DT services. We will introduce the
blockchain technology, widely acknowledged for trustworthy
and shareable properties, as the backbone of our proposed
architecture.

IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 8, 15 APRIL 2023

A. Architecture Overview

In our blockchain design, we use the consensus of practical
byzantine fault tolerance (PBFT) [47] to process the requests
of subscriptions and a modified consensus of PBFT, namely,
MWD consensus, to derive the sensing policy of devices and
motivate the data collection of agents. A commonly used
assumption in a distributed system is that any message can
be received with a bounded delay, which guarantees weak
synchrony. With the weak synchrony assumption and incor-
porating the functionalities of the original PBFT system, we
characterize the agents as the following different roles for data
collection.

1) Task Leader: An agent whose local ledger serves as the
primary view of the system is the task leader. Once a
change needs to be applied to the system, it should be
initiated by the task leader, and the records of the other
agents serve as the backups of the primary view. All
other agents vote for the assignments of data collection
and acceptances of the data record changes, and then
synchronize the ledger with all others.

2) Task Executor: A task executor is an agent who per-
forms the assigned data collection task. A data collection
executor should be chosen from the participants who
prefer to collect data of the selected device (an agent
may not be able to perform data collection considering
the availability). The agent who contributes more data
logs to the open ledger (blockchain) should be awarded
with more credits, which encourages participations and
contributions of all the agents.

The ledger that records the subscription of requestors and
the parameters of the system (e.g., depletion tolerance and
energy supply rate) is the request chain, and the ledger that
records the shared data of agents is the data chain. The imple-
mentation of the request chain simply follows the consensus
of PBFT. For PBFT-based systems, a fundamental assumption
is that the system should contains at least 3f + 1 agents to
tolerate [ faulty agents. Thus, the blocks in both the request
chain and data chain can be only accepted if receiving at least
2f + 1 confirmations from agents, where f = |[(M — 1)/3].

All the system changes in a stage will only take effect in
the next stage. That means the popularity profiles of all agents
and some other policies in any stage are fixed and open for all
agents, and they will not change until the end the current stage.
For example, the requests of any popularity change records in
stage k — 1 only updates at the beginning of stage k, i.e.,
t=0Vke({l,2,...,K}.

In time slot = 0, according to the popularity profiles and
the energy policy of the system from the request chain, the
sensing policies of devices are set to improve the weighted
data fidelity while guaranteeing the sustainable energy sup-
ply. The maintenance of the request blocks has multiphases of
consensus including pre-prepare, prepare, commit and reply
as shown in Fig. 3(a).

Based on the sensing policies of devices from the request
chain and historical data collection records, in each time slot of
a stage, an agent is chosen to execute the data collection task
via the MWD consensus and updates the data records in the
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Fig. 3. Phases of (a) Request chain [47] and (b) Data chain.

data chain. The selection of device is to optimize the weighted
reveal delay and improve the information sustainability of DT-
based models. We will next introduce the data updates of data
chain under the MWD consensus.

B. Data Updates of Data Chain

Considering the subscription information is continuously
updated in the request chain, as we declared in the system for-
mulation, the popularity profiles are fixed until the stage ends.
Since the goal of the MWD consensus is to optimize the sum-
valuation of all devices, we use (k) = {B1(k), ..., By(k)} as
the new weights of devices in stage k. In a stage, the consen-
sus of data chain is based on the consensus obtained from the
request chain. The execution steps for maintaining blocks in
the data chain are characterized as follows.

1) According to agents’ historical data collection
performance shown in the current committed ledger,
the agent with the highest reputation R is selected
as the rask leader. Without loss of generality, we can
let the task leader be any agent with good reputation at
the beginning.

2) In any time slot ¢, based on the state of the current open
ledger S;, the task of data collection should be deter-
ministic and associated with the decision in (39). Since
the views of agents are consistent under the consensus,
each agent could calculate the same best device selec-
tion n*, and decide whether to bid the data collection
for device n* considering the availability. If an agent m
decides to bid for collection task of n*, it broadcasts the
biding price C;' to all the other agents.

3) By receiving the biding prices of all the biding agents
within a bounded delay, the fask leader packs the biding
information into a bidding block that indicates the agent
m* to perform the task with the consideration of both
biding price and reputation, i.e.,

m* = arg n}gnN(C,’,”, Rom) (40)
where A can be any normalization function such as
min-max technology [48]. The rask leader then broad-
casts the biding block to all other agents.

4) The biding block in the previous step that has
been committed by the system shows the next fask

5)

6)

7)

8)

M -- \i
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executor. This task executor starts to perform the
data collection task, and broadcasts the transaction
including the collected data log to all the other
agents after the confirmation of the biding block is
acknowledged.

Upon receiving the collected data from the
task executor, the task leader creates a data block,
packs the transaction into the block, and further broad-
casts this block to be confirmed by all the other agents.
If the rask leader does not receive the data from the
task executor within a tolerant delay, she will issue a
transaction that indicates a failure for this time of data
collection instead of the transaction of the collected
data.

Any agent who receives a biding/data block from the
task leader should broadcast the prepare message of
this block to all the other agents if the validation has
passed; any agent who receives more than 2f prepare
messages of the block with the same result from other
agents should broadcast the commit message to all the
other agents. An agent, who is in the prepare state and
receives more than 2f commit messages of the block,
should formally commit this block and add this block
to its local ledger.

Once both the biding block and data block are for-
mally committed, the fask leader receives fixed credits
Cer/(M — 1) from each of the other agents for creating
the committed block, where C,, is the total credit reward
for creating a biding block or a data block. If the data log
of device n* collected by task executor m* has been suc-
cessfully written into the open ledger, agent m* receives
credits (1 + t)Cl;"*ozZi /B, from agent m, where t is the
ratio of extra credit reward for the data collection; oth-
erwise, agent m* transfers C,’f*oz,’fi /B, credits to agent
m as a penalty. An agent whose credit is lower than a
threshold will be excluded from the system in the next
stage.

With the confirmation of a new data block with vali-
dated data, the reputation R of the task executor m*
increases according to its contribution of data collec-
tion. The reputation decays with time according to a
widely used exponential moving average (EMA) tech-
nique that highlights their most recent effort of task
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execution [48], e.g.,

@Ry (1), m# m
R + (1 — ), m = m*

where w € [0, 1] is a decay parameter and R,,(0) =
0. The sustainable blockchain-based DT management
system will turn to step 1 for a new fask leader election
process.

The different consensus phases of the data chain are
explained in Fig. 3(b). As shown in Fig. 3(b), in any time slot
t, all the available agents bid for the collection task according
to the committed ledger at the end of time slot # — 1. As the
primary view of all agents, the task leader performs the block
creation tasks twice to assure all the other agents can receive
a same referenced view of the biding and collecting results,
respectively. The agent with the lowest data collection cost is
selected to perform the data collection task. By receiving the
referenced view of biding price and the collected data, all the
agents broadcast two rounds of prepare and commit messages
in the phases of prepare & commit, respectively. After the
confirmation, the same process is repeated in time slot # + 1.

*

Rm(t+1) = { (41)

C. Complexity Analysis

For the request chain, according to the change request made
by a requestor, a task leader should broadcast M — 1 messages
to other agents to indicate the primary view. After that, it
requires two round-trip decisions of prepare and commit with
O(M?) communication complexity to achieve consensus.

For the data chain, in phases of prepare and commit, the
communication complexities are the same as those in the
request chain. In the phase of biding, all biding agents should
broadcast their own prices to other agents, thus needing at
most M * (M — 1) messages. In the phase of collection, the
task executor should send the collected data to all the other
agents, which requires at most M — 1 messages. Therefore, the
overall communication complexity of both the request chain
and data chain is O(M?).

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate the extensive experiment
results to verify our proposed architecture.

A. Energy Sustainability

We first verify the sustainability of energy supply of our
system. Considering a DT-based IoT platform with N devices,
we explore the sensing strategies of devices with different
predefined parameters of depletion tolerance degree €, energy
backup ¢, and energy supply rate C.

First, we explore the maximum energy consumption rate &
of all feasible sensing policies in terms of both ¢ and ¢ for
a given N and C. Figs. 4 and 5 plot the impacts of € and
q on the feasible sensing policy that yields the maximum «
when N = 100, C = 10 and N = 50, C = 20. It can be found
that the increase of both € and ¢ triggers a more aggressive
sensing rate. As can be seen in Figs. 4 and 5, when ¢ is large
enough, we can employ a more stringent depletion tolerance
setting, which still yields a relatively larger maximum energy
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Fig. 4. Maximum energy consumption rate of all the feasible collection
policies for different ¢’s and €’s when C = 10 and N = 100.
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policies for different ¢’s and €’s when C = 20 and N = 50.
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Fig. 6. Comparison of average depletion rate with the setting of & (e),
where € € [0.001, 0.1] with step size 0.001 and ¢ = 1; N and C are chosen
differently.

consumption rate. However, when ¢ is small, the maximum
average energy consumption rate is sensitive to the change of
€ as shown in Figs. 4(a) and 5(a). As a result, for a DT system,
it is important to precisely regulate the sensing policies of
devices based on the conditions of energy backup and energy
supply so as to meet the requirement of depletion tolerance
degree.

To verify our analytical results in terms of depletion proba-
bility, we perform the experiments under a variety of depletion
tolerance degrees. With ¢ = 1 and K = 300, we run the energy
consumption experiments 2000 times under different €’s with
N =50, C =20, N =100, and C = 10. As shown in Fig. 6,
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Fig. 7. Impact of N on the overall energy consumption Nk. (a) ¢ = 1.

(b) e =0.01.

the depletion rate is lower than the corresponding € shown by
the black dashed line. We can find that the changes of depletion
rate basically are consistent with the changes of €. In practice,
we can slightly relax the maximum average energy consump-
tion rate constraint to achieve better system performance for
a given €.

In addition, we explore the relationship between the number
of devices N and the overall maximum energy consumption
Nk . From Fig. 7, we observe that for a fixed amount of energy
supply, e.g., NC = 1000, in any stage, the maximum overall
energy consumption for any feasible sensing policy increases
with the increase of N. As shown in both Fig. 7(a) and (b), it is
clear that Nk is the largest one in the case when N = 200 and
C = 5. Since the total incoming energy is fixed, the energy
to be allocated to each device decreases with an increasing
N. As a result, the fluctuation of energy consumption of each
device is restrained, and the average fluctuation of the overall
energy consumption is reduced. That means, the system can
exert more aggressive sensing policy on each device without
depleting the energy storage when N is large. Moreover, as
shown in Fig. 7(a), the differences of Nk in the three cases
gradually diminish with the increment of € when ¢ is equal
to 1. Similarly, when € is 0.01, Nk is limited when ¢ is small
as shown in Fig. 7(b). As g grows, Nk in all the cases finally
converges to NC, which means nearly all the incoming energy
can be allocated to all the devices for performing sensing tasks.

B. Weighted Data Fidelity

To verify the optimality of data fidelity of the system,
we first establish a system with N IoT devices and M = 1
agent. Without loss of generality, we normalize the popularity
values of devices between 0 and 1. Considering any stage
with T slots, the parameters of the system are set as fol-
lows: € = 0.0001 and ¢ = 1. According to the status of the
DT system, the sensing policies of IoT devices A are calcu-
lated by Algorithm 1. The analytical and experiment results of
the optimal weighted data fidelity are explored with different
settings of N and 7.

First, we elaborate the relationship between the weighted
data fidelity and the number of devices N. We set T = 10000
and NC = 5000. Fig. 8(a) plots both the analytical and the
experiment results of the averaged weighted data fidelity of
all devices when we vary N = {40, 80, 120, 160, 200}. We
assume that all devices have the same popularity, which is
randomly sampled. As the energy supply is fixed in all the
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Fig. 8. Impacts of N and T on the weighted data fidelity. (a) T = 10000.
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Fig. 9. Impacts of N and 7 on the weighted reveal delay. (a) 7 = 10000.
(b) N = 100.

cases, the energy to be allocated to each device decreases with
the increment of N. Thus, the sensing intervals also increase
for energy saving, as a result, leading to the decrease of data
fidelity of all devices.

Next, we discuss the relationship between the weighted data
fidelity and the number of time slots 7. We set N = 100 and
C = 50. As shown in Fig. 8(b), the average weighted data
fidelity of all devices also decreases with the increase of T,
where T is chosen from {3000, 6000, 9000, 12000, 15000}. In
this case, since the optimality of P1 does not change with T,
the optimal sensing policy of each device, i.e., A} Vn, remains
unchanged. That means, the total number of sensing tasks per-
formed by a device is fixed in any 7. However, the increasing
T would lead to an increasing expected intervals between any
two successive sensing tasks, i.e., T/A,, which leads to the
decrements of weighted data fidelity of all devices. From both
Fig. 8(a) and (b), we can observe that the analytical results
are consistent with the experiment results.

C. Weighted Reveal Delay

To test the weighted reveal delay performance of our
proposed MWD policy, a simulation system consisting of M
agents and N devices is constructed. The settings are the
same as those in Section VI-B. The following data collec-
tion schemes are adopted to compare with the MWD policy:
1) MWA policy [32], a max-weight policy aiming at min-
imizing the weighted Aol of all devices while considering
the throughput and 2) random selection, a randomized data
collection strategy to choose devices.

Fig. 9(a) plots the results of the average weighted reveal
delay of all devices when we vary the number of devices
N = {40,380, 120, 160,200} under the three collection
schemes. As the energy supply is fixed in all the cases, the
energy to be allocated to each device decreases with the
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Fig. 10.

increase of N, thus increasing the reveal delay. As shown in
Fig. 9(b), the average weighted reveal delay of all devices
also increases with an increasing 7, where T is chosen from
{3000, 6000, 9000, 12000, 15000}, since the average interval
of any two successive sensing tasks increases when T is large.
Notably, the performance of MWD and MWA is compatible,
which reflects that the Aol metric does not have an impact
on reveal delay once the throughput constraint is satisfied.
The reason is that the Aol neglecting the execution of sensing
tasks does not reflect the intrinsic property of the information
source, and it does not have a direct relationship with the
sustainability of the information.

D. MWD Consensus

We evaluate MWD consensus with N = 100, M = 20,
C =50, ¢ = 0.0001, g =1 and T = 10000. The popu-
larity of each agent is generated randomly from [0, 1]. We
consider two system architectures: 1) MWD Consensus and
2) Centralized MWD. For MWD Consensus, the system is built
based on the PBFT-blockchain, where all the agents observe
the collection history, bid for the assignment, and share the col-
lected data with all the other agents. For Centralized MWD, the
agents’ collection behaviors are coordinated by a centralized
server, and they are randomly authorized to collect data with
the MWD policy according to their own collection history. To
ensure fairness, the centralized server can simply adopt round-
robin scheduling where each agent performs data collection in
a circular manner. Supposing that each time of collection costs
the executing agent with normalized credits sampled from a
uniform distribution [0, 1]. Fig. 10 plots the performance com-
parison between MWD Consensus and Centralized MWD in
terms of average reveal delay and spent credits.

As can be seen in Fig. 10(a), the average reveal delay for all
the agents in MWD Consensus is significantly reduced due to
data sharing compared with those in Centralized MWD. With
distributed data sharing, the time span for receiving two suc-
cessive data logs is shortened, which leads to a smaller average
reveal delay. In addition, the spent credits by the agents in
MWD consensus are much fewer than those in Fig. 10(b) com-
pared with Centralized MWD due to the biding process. For a
sharing mode, except for the collected information, the lower
prices of collection are also shared by all participants, thus
reducing the cost in a global view.

Spent Credits
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Fig. 11. Performance of the incentive mechanism.

We also introduce the reward mechanism of data collection
and creating blocks, which aims to motivate the data sharing
behaviors of agents. We randomly set the availability proba-
bility of all the agents from [0, 1], which is the probability
that an agent could provide a biding price (cost) for collecting
data. The ratio of extra credit reward for the data collection t
is set as 0.1, and the reputation decay factor w is set as 0.95.
As shown in Section V-B, the income source of each agent is
the reward of data collection and block creation. In Fig. 11,
both the earned credits and the number of generated blocks
of all the agents with respect to their availability probabilities
are plotted. It is clear that the credits for data collection and
creating blocks of an agent increase with its increasing avail-
ability probability. In fact, an agent can earn more and improve
reputation by actively collecting data. To do this, agents must
continuously improve their connections with devices to reduce
the cost of data collection. With a higher reputation, an agent
can also gain more chances for serving as the primary view
of all the agents and earn more credits from creating blocks
in a blockchain-based DT system. The incentive effectiveness
is therefore validated.

VII. CONCLUSION

In this article, we considered a sustainable blockchain-
based DT management architecture for IoT devices. This is
to address the sustainability issue for large-scale DT service
management. The blockchain technology, as a shareable and
distributed paradigm, is promising to improve and reform
future DT systems. We expected to explore more practical
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applications of blockchain-based DT design. For example, DT
visualization for real-time monitoring is critical to guiding
industrial processes and improving production efficiency. We
will explore the visualization of DTs in different entities using
shared data from a blockchain. The method presented in this
article will be beneficial to the construction of DT visualization
for multiple entities with customized needs.
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