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Abstract—As the number of IoT devices increases,
sustainability is becoming a bottleneck of the production
process in industrial systems. As a matter of fact, inefficient
management and scarce resources significantly impeded the
development of sustainability. In recent years, it has been
observed that the digital twin (DT) technology plays a promising
role in facilitating the interaction between the Internet of
Things (IoT) assets and digital services. However, high-fidelity
models of DTs raise the requirement of efficient data flows,
which is limited by realistic constraints, such as data collection
strategy and energy supply. We propose a sustainable data
collection and management approach to construct DTs for
physical assets. With this approach, data packets are uploaded
to the data brokers, namely, agents, by a large number of IoT
devices. The challenge lies in the balance between enduring
data collection and the information loss associated with the stale
data. In this article, we aim to optimize the metrics of data
fidelity and reveal delay while guaranteeing both sustainable
energy and sustainable information. Additionally, a shareable
and sustainable blockchain-based DT management architecture
is proposed, which does not rely on data exchanges with a
single centralized server. Our analytical and simulation results
demonstrate the applicability of our proposed architecture.

Index Terms—Blockchain, digital twin (DT), Internet of Things
(IoT), network optimization, sustainable system.

I. INTRODUCTION

I
N THE past decade, people have witnessed the expedi-

tious development of the Internet of Things (IoT), which is

cohesively integrated with artificial intelligence (AI), the new

generation wireless network technology (5G), and advanced

system architectures to serve human beings. With the prolif-

eration of IoT devices, numerous digital service applications

have been devised to meet the demands of industrial produc-

tion and social activities, such as smart grid [1], smart city [2],

smart transportation [3], and smart healthcare [4]. Our every-

day lives are immersed with a large number of IoT devices,

which build up the foundation of a variety of services. The

purpose is to collect data in the physical world, upload data

to remote servers for further processing, and make decisions

according to feedback.
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In the traditional approaches, data are stored in backlogs

of IoT devices for later diagnosis, and improvements are

then incorporated into devices. Such pipelines not only lack

timely feedback but also risk on-device testing and unveri-

fied updates, which may result in severe malfunctions. As

creating a digital avatar for a real-world object is highly in

demand in most IoT services, the digital twin (DT) technol-

ogy becomes a promising paradigm for IoT services. Often

referred to as a virtual representation of a physical asset, DT

empowers complicated modeling and immense data transmis-

sion, thus creating high-fidelity replicas of physical objects

for further prediction, monitoring, controlling, and decision

making. These digital proxies are often expected to provide

virtualization and optimization functionalities by integrating

domain knowledge from subject-matter experts as well as real-

time data collected from IoT devices [5]. DT also makes

remote testing on virtual environment possible, which is a

cost-efficient and secure alternative comparing with on-device

testing. Due to the aforementioned high-fidelity and flexibility

advantages, DT has been widely adopted in many applications,

i.e., human DT [6], DT city [7], and DT automation [8].

However, unfortunately, most previous DT-related works

have been restricted to the control of a limited number of

IoT devices [9], [10]. In the works for large-scale DT plat-

form deployment [11]–[13], it is not realistic to simultaneously

upload data all the time for all IoT devices. Since these IoT

devices are deeply integrated with various services, stringent

requirements in terms of fresh data and energy supply are

essential to robustness of an IoT system. To overcome the

above limitations, we should take sustainability of IoT systems

into consideration. Sustainability considered in this article is

twofold, which can be categorized by sustainable information

and sustainable energy.

On the one hand, data generated by an IoT device may play

different roles in different DT services. As a result, at a certain

time, the status of an IoT device might be crucial to DT but not

relevant to another device. Prioritizing different data sources

carefully is essential for DT services to receive the most crucial

data from all physical devices. One should devise a feasible

strategy of data collection to maintain information sustain-

ability and achieve better synchronization [14] in a global

perspective.

On the other hand, energy supply is another key issue for the

services aided by physical assets. To provide adequate energy

for devices in a region, an electricity storage system may

be deployed where electricity is sustainably replenished and
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Fig. 1. (a) Hierarchical and (b) Distributed data-sharing modes.

transported to IoT devices. The uninterrupted computation and

data transmission of devices are enabled by such sustainable

energy supply. However, frequent data updates at IoT devices

may deplete energy quickly, thus hampering energy sustain-

ability. Undoubtedly, a reasonable energy allocation strategy

to provide energy sustainability is desired.

A common way to realize DT services is to establish con-

stant connections and data exchanges between IoT devices and

service provider, and to upload data to a centralized server

similar to traditional IoT services. This hierarchical sensing

mode/protocol [15]–[17] has been broadly studied and applied

to many practical scenarios of dedicated services, which is

illustrated in Fig. 1(a). However, this way of data collection

is deemed to be unsustainable, since each service collects the

needed data by itself with limited resources, and the barriers

among untrustworthy services would cause unnecessary data

collection and incomplete information. Data trading mecha-

nisms [18], [19] are studied to expand the coverage of services

while preserving the privacy requirements. Motivated by the

deficiency of traditional services, we raise the question of

whether the collected data can be shared among all the DT

systems as shown in Fig. 1(b) and the queries toward mas-

sive IoT data can be processed in a distributed manner [20].

In order to ensure service sustainability, we consider main-

taining a trustable and shareable ledger, colloquially known

as blockchain, for all the DT systems. The blockchain gathers

distributed, secured, and verifiable records of information col-

lected from different entities, and links them in a single chain

with multiple blocks [21]–[23]. The information is maintained

by all the participants, and can be resistant to the failure of a

single point, which leads to a secure and convergent industrial

IoT environment [24]. As the core of blockchain, we should

devise some consensus to make sure that data can be utilized

by different DT systems securely and fairly.

In this article, we design a blockchain-based sustainable DT

management system to ensure information sustainability in DT

systems and energy sustainability in physical assets. The main

contributions are summarized as follows.

1) A DT framework, consisting of devices, agents, and

requestors, is formalized in the scenario of IoT device-

assisted services. In this framework, agents collect fresh

data from physical devices, and feed them to requestors

so as to create DT services for further uses.

2) Information sustainability and energy sustainability are

both considered to improve system performance. In

detail, we optimize delay of devices to ensure sustain-

able information and control the probability of energy

depletion to guarantee data fidelity.

3) To further enhance practicability and system

performance, we introduce the blockchain technol-

ogy to enable data sharing among agents, and improve

the efficiency of data collection while not relying on

data exchanges with a specific server.

4) Our extensive analytical and experimental results show

that our proposed blockchain-based DT management

system can achieve both information sustainability and

energy sustainability.

The remainder of this article is organized as follows.

Section II reviews some related works. In Section III, we intro-

duce the components of our DT-based IoT service system.

In Section IV, we show the optimization goal and collec-

tion method of DT system with the aid of a specific server.

In Section V, we further propose a blockchain-based system

that incorporates distributed and shareable attributes into our

design. The experiment results are illustrated in Section VI.

Finally, Section VII concludes the article.

II. RELATED WORKS

A. Digital Twin Platform

The DT concept was first introduced in 2002 and has

recently been implemented to solve different problems in the

areas of aviation, supply chain, wireless networks, and many

more. Madni et al. [25] introduced the DT concept, categorized

the types of DT systems, and provided a framework for data

exchanges between the physical twin and its DT. They also

presented a vast of applications where system performance

can be enhanced through the DT technology. Sun et al. [26]

solved the mobile offloading problem in 6G networks with

the assistance of DT, where DTs of edge servers and a mobile

edge computing system are deployed to estimate servers’ states

and provide training data for offloading decisions. In [27], a

DT bending bean test system is established by setting up DT

components, a physical twin of two actuators, and a commu-

nication interface that connects the two. These works only

considered the construction of DT with one or several physi-

cal twins and services, which cannot depict the status of many

assets. Driven by this limitation, some researchers studied DT

platforms for large-scale systems [28]–[31]. However, system

sustainability has not been well investigated in the state of

the art.

B. Information Cost and Energy Cost

To model information sustainability, Age of Information

(AoI) is an ideal performance metric that measures the loss

of information at the destination [32]. Often defined as the

elapsed time since the generation of the most recently received

data, AoI characterizes the freshness of data for a service and

suggests the potential utility that can be extracted from the

data. However, AoI, determined by the information collecting

strategy, cannot reflect the fundamental updating frequency of

information source.

Authorized licensed use limited to: Georgia State University. Downloaded on July 05,2023 at 18:06:16 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: SUSTAINABLE BLOCKCHAIN-BASED DT MANAGEMENT ARCHITECTURE 6537

For energy cost, many works have studied energy

optimization in extensive network paradigms. However, nei-

ther information sustainability nor energy sustainability has

been well addressed for IoT services with the aid of DT.

A stochastic optimization problem of an IoT monitoring

system is studied to minimize the average AoI while satis-

fying the average energy cost constraint at the devices in [33].

To enhance the sustainability of a multinode wireless pow-

ered communication network, both energy and price-incentive

schemes are studied aiming at optimizing the per-packet AoI

performance [34]. The work in [35] investigates the data updat-

ing policy for energy-harvesting monitoring nodes so as to

minimize the average AoI. Inspired by these prior studies, we

aim to optimize system performance in terms of sustainable

information and sustainable energy for DT-aided IoT devices.

C. Blockchain-Based Digital Twin

Both DT and blockchain technologies were originally

proposed in the first decade of this century, but they have

not received much attentions until recently. The work in [36]

presents a literature-review study for the implementation

and design of blockchain-based DT. Leveraging the strength

of trustworthy blockchain, the data-driven product lifecycle

events of physical assets can be efficiently utilized by multiple

DT-based services. The study in [37] proposes a decentral-

ized ownership-centric sharing model for protecting access

control integrity and confidentiality based on DT components

and lifecycle requirements. Besides, this work [38] proposes a

DT model for additive manufacturing in the aircraft indus-

try with the aid of blockchain. To collect the data from

the physical devices, crowdsourcing has been widely adopted

in blockchain-based IoT platform [39], [40], where agents

are deployed to collect the data and contribute to the IoT

services. However, none of them consider sustainability of the

blockchain-based DT platforms.

III. SYSTEM MODEL

We consider a system that supports the construction of DT

services by collecting data from physical assets. Our proposed

system consists of multiple participants in a given region,

including requestors, agents, and devices, all of which play

important roles in the process of data exchange and deci-

sion making. The detailed definitions of these participants are

summarized as follows.

1) Devices: As physical assets, IoT devices are responsible

for generating data for DT services. Each time an IoT

device generates data, it consumes energy supplied by

a central electricity storage system. In general, devices

act as the foundations and actuators of services.

2) Agents: Due to the limited capacities of computa-

tion, communication and data storage, devices cannot

be always online/connected for a single server. In a

region, agents1 are deployed to initiate communications

to selected devices and collect data from them so as to

1The terminology of service-oriented agents may have different names in
some other scenarios such as mobile workers or data sellers.

support DT services. This means agents could strategi-

cally interact with physical devices to maintain service

quality. In general, agents perform as data brokers which

bridge DTs and physical assets and realize the expected

DT services.

3) Requestors: As customer-oriented service providers,

requestors subscribe to agents and incorporate their data

in the DTs of physical assets. Data may be collected

from a broad range of IoT devices with different func-

tionalities (e.g., speed of cars, quantity of fuel, and air

humidity). The DT services established by requestors

can be used to serve target customers.

A. Sustainable DT-Based Paradigm

To maintain a sustainable system that provides high-quality

and durable DT services, we deploy a set of IoT devices

denoted by {1, 2, . . . , N}, and a set of agents denoted by

{1, 2, . . . , M}. We simplify the requestors subscribing to agent

m by a popularity vector αm = {αm
1 , . . . , αm

N }. This repre-

sentation reflects the data demand priorities for agent m. The

popularity vectors of different agents may be significantly dif-

ferent as different agents may concentrate on different types

of services, as a result, leading to distinctive data collection

strategies of individual agents. We propose a DT-based frame-

work that benefits the DT services, which is able to retrieve

the last known status of the devices. The details about similar

functionalities are available in [5]. We assume that the system

can be divided into three components.

1) Physical devices which are deployed in a physical space

in a distributed manner to ensure the basic system

functionalities such as data sensing.

2) Agents which exert measurements on one of the devices

at a time independently. DTs are created in a virtual

space (constructed by agents) to synchronize the status

of physical devices.

3) Requestors who subscribe to the models of DTs main-

tained by agents, and run DT-based services to serve

customers. Each subscription is made through one of

the agents.

It is critical to synchronize the real-time status of phys-

ical twins. As illustrated in Fig. 2, the mapping process

between the physical space and virtual space is enabled

through agents. In our system, we assume that each IoT device

n ∈ {1, 2, . . . , N} performs the sensing task and generates a

data log of the current state independently under a Bernoulli

distribution with rate pn in each time slot. Thus, the total num-

ber of data logs generated from the sensing tasks of device n

in T time slots, i.e., Jn, follows the following distribution:

P(Jn = j, T, pn) =
(

T

j

)

pn
j(1 − pn)

T−j. (1)

With the statistic of sensing tasks, agents perform data col-

lection according to their own popularity profiles of all the

IoT devices. The popularity profiles are determined by the

subscriptions made by requestors in the given range of time.

Due to the trend of sustainability, we mainly focus on the

optimization in terms of timeliness of data and endurable

energy supply for DT systems.
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Fig. 2. DT-assisted paradigm for IoT devices.

B. Sustainable Energy Supply of Devices

We first formalize the sustainability of energy supply. We

consider that all IoT devices are supported by a central elec-

tricity storage system. To describe our proposed system, the

time horizon with stable energy supply is divided into multiple

stages {1, 2, . . . , K} with T time slots. Note that T is a rel-

atively large number. We define that the total amount of

energy supply is Sc units in each stage k ∈ {1, 2, . . . , K},
and the energy replenishment at the beginning of any stage

constantly supports the basic functionalities of all physical

devices, thus ensuring the status mapping in the DTs of

agents.

Traditional DT formulation typically concentrates on

the status mapping between a single DT and its cor-

responding physical asset, thus neglecting the impact of

energy supply for a large group of devices. We extend

traditional DT cases to industrial DT platforms with a

large-scale deployment of IoT devices (i.e., a large N)

and study the data sensing policy of devices in the

system.

For any device (∀n ∈ {1, 2, . . . , N}), it consumes a unit

energy each time to perform a sensing task and collect the

status changes of the physical world. In any stage k, the energy

consumed by device n is denoted by an(k) = Jn(k), where

Jn(k) is the total times of sensing of device n in stage k. The

distribution of Jn, denoted as P(Jn, T, pn), tends to be the

Poisson distribution with expectation λn → pnT when T → ∞
and pn → 0 [41]. In fact, λn can be treated as the expected

energy consumed by device n in any stage with T time slots.

Thus, the energy consumption process of all devices can be

depicted by

W(k) = A(k) − kSc (2)

where A(k) is the accumulated energy consumed by all devices

by the end of stage k, written as

A(k) = a(1)(k) + a(2)(k) + · · · + a(N)(k) (3)

and ∀n ∈ {1, 2, . . . , N}
a(n)(k) = an(1) + an(2) + · · · + an(k). (4)

To characterize system properties with respect to the number

of devices N, we denote Sc = NC, where C > 0 reflects the

relationship between the energy supply rate and the number of

devices. Thus, the maximum energy debt with respect to the

energy consumption process of devices can be depicted by

Q = sup
k≥0

W(k). (5)

We consider that the central electricity storage system stores

a maximum energy backup with B(0) units2 in stage k = 0

to overcome the potential energy shortage in the future. It

can be easily found that if Q is greater than B, the system will

encounter energy depletion, which may cause severe operation

problems, and devices would not be able to work correctly and

provide the expected sensing data for DT services.

Large deviation theory [42] is a useful tool for analyz-

ing rare or tail events with larger fluctuation, especially for

energy depletion in a large-scale system with a large num-

ber of devices. We aim to design a robust system that yields

sustainable energy supply for all devices.

Denote the probability of energy depletion as P(Q > B).

As the number of sensing tasks in any stage could be approxi-

mated by a Poisson distribution, the expression of the cumulant

generating function (CGF) of average energy consumption

a(k) = A(k)/N is given by

�k(θ) = logE
[

eθa(k)
]

(6)

and

�(θ) = lim
k→∞

1

k
�k(θ)

= 1

N
logE

[

eθ
∑n

n=1 Jn

]

= 1

N

N
∑

n=1

λn

(

eθ − 1
)

. (7)

To achieve sustainable energy, we focus on the behavior of

P(Q > B). Since we study the system with a large N, for any

B = Nq > 0, Q follows:

lim
N→∞

1

N
logP(Q/N > q) ≈ −I(q) (8)

according to Cramér’s theorem [43], where I is the rate func-

tion of q that describes the probability decays of energy

depletion with respect to the energy backup, and

I(q) = inf
k∈N

�∗
k(q + Ck) (9)

where �∗
k is the convex conjugate of �k(θ) defined by

�∗
k(x) = sup

θ∈R+
{θx − �k(θ)}. (10)

2We omit the time stage index 0 of Bn(0) for simplicity.
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As shown in [44], the rate function I(q) can be written as

I(q) = inf
k∈N

sup
θ∈R+

θ(q + Ck) − k�(θ)

= q sup{θ > 0 : �(θ) ≤ θC} (11)

and we could define δ as a function of the process of a(k),

which is

δ(a) = sup {θ : �(θ) ≤ θC}. (12)

Hence, the probability of energy depletion of the central

electricity storage system is approximated by [45]

P(Q > B) ≈ e−δNq (13)

according to the large deviation theory. This approximation is

of great importance to guide the sensing process so that the

usage of energy in our system is controllable and sustainable.

C. Sustainable Information of Agents

To capture the time-varied information of the system and

inject the data of physical assets into their DTs, agents exert

data collection from the IoT devices.

In any stage with T time slots, each IoT device n ∈
{1, 2, . . . , N} performs the sensing task and generates logs of

data sensing independently at time slots {sn
1, sn

2, . . .}. To pur-

sue a high-fidelity digital model of the physical assets, we

expect to collect the logs as soon as possible. We assume that

the time slots of data collection at device n performed by all

agents, i.e., {cn
1, cn

2, . . .}, are randomly distributed among the

time slots of sensing tasks. To capture the utility of collected

data, we give the definition of data fidelity.

Definition 1 (Data Fidelity): The data fidelity of a given

log in a DT is characterized by the expected time spanning

from the most recent time of data generation to the delivery

of data.

For any time of data collection at device n, denoted as cn
i , it

splits the interval of any successive sensing tasks i′ and i′ + 1

into two intervals (sn
i′, cn

i ] and (cn
i , sn

i′+1
]. If data collections are

randomly distributed between the two successive sensing tasks,

data fidelity Fn of device n can be obtained [46], which is

Fn = −E
[

cn
i − sn

i′
]

= −E
[

sn
i′+1 − cn

i

]

= − T

2λn

. (14)

To ensure high quality of DT models, devices should per-

form adequate sensing tasks to fully capture the status changes,

thus improving data fidelity. However, this goal is limited by

the total energy supply.

To obtain sustainable information from the data records of

agents, a system devotes to the optimization of the overall data

fidelity of all devices and guarantees sufficient data collection

for each device, which is closely related to the status of the

current data records and the sensing statistics of devices. We

will detail the optimization process in Section IV.

IV. COLLECTION METHODS FOR DT SERVICES

In this section, we present a theoretical analysis for the

multiple-agent data collection scheme with the coordination

of a centralized server. Initially, the central electricity storage

system keeps the maximum energy backup of B = Nq units,

and at the start of any stage k, each agent m ∈ {1, 2, . . . , M}
directly uploads its individual popularity vector {αm

n (k)}N
n=1 of

all devices to the centralized server. The centralized server can

set the sensing policy of all devices at the beginning of stage

k. With the sensing policy of all devices, agents perform data

collection to optimize the quality of collected data according

to the popularity profiles. To ensure the sustainability of both

energy supply and information, we will introduce the methods,

respectively.

A. Optimal Sensing Policy of Devices

Considering the sensing policy λ = {λn}N
n=1, (12) can be

written as a function λ, i.e., δ(λ). If the parameters of energy

supply rate C and energy backup q of the central electricity

storage system are given, our goal is to explore the feasibility

of sensing policies of all devices. We explain the definition of

feasible sensing policy as the following.

Definition 2 (Feasible Sensing Policy): For given param-

eters of energy supply rate C and energy backup q of the

central electricity storage system, a feasible sensing policy

of all devices is bounded by the maximum average energy

consumption rate of sensing tasks, which ensures that the

depletion probability of the central electricity storage system

is no greater than the depletion tolerance degree ε ∈ (0, 1].

For simplicity, we denote κ as (1/N)
∑N

n=1 λn. According

to this definition, the maximum average energy consumption

rate of all feasible sensing policies, denoted as κ̂ , is given by

κ̂(ε) = max {κ : P(Q/N ≥ q) ≤ ε} (15)

and κ̂(ε) can be derived from the following theorem.

Theorem 1: Given κ < C for stability, q > 0 and ε ∈ (0, 1],

the maximum energy consumption rate of all feasible sensing

policies, denoted as κ̂(ε), follows:

κ̂(ε) = θ∗C

eθ∗ − 1
(16)

where θ∗ = −[(ln ε)/Nq].

Proof: With (12), (13), and (15), we have

κ̂(ε) = max
{

κ : e−δ(κ)Nq ≤ ε

}

. (17)

According to (12), θ should satisfy the condition of

κ ≤ θC

eθ − 1
(18)

where [θC/(eθ − 1)] is always decreasing with the increment

of θ when θ > 0. From (17), we could easily find that

δ(κ) ≥ − ln ε

Nq
. (19)

This means that θ ≥ −[(ln ε)/Nq], and the maximum

κ is obtained for θ∗ = −[(ln ε)/Nq], and κ̂(ε) =
[θ∗C/(eθ∗ − 1)].

With Theorem 1, we know that the energy supply of the

system significantly impacts the data fidelity of DT models.

We aim to derive an energy policy that can maximize the

weighted expected data fidelity while guaranteeing the stability

of the system for q > 0.
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Algorithm 1 Finding Unique Optimal Sensing Policy (λ∗, γ ∗)
of P1 With KKT Conditions

1: Set η as a real number close to 0

2: Set γ (0) as a relatively large positive number

3: λ
(0)
n ←

√

βnT

2γ (0) , ∀n

4: repeat

5: γ (l+1) ← γ (l) + η

(

∑N
n=1 λ

(l)
n − κ̂(ε)

)

6: λ
(l+1)
n ←

√

βnT

2γ (l+1)

7: until γ (l+1) converges

8: return
(

λ(l+1), γ (l+1)
)

To reduce the overall information loss, the goal of the

system is to adapt the rate of sensing tasks to maximize the

data fidelity of all devices when considering both energy sup-

ply and popularity of devices, which yields the optimization

problem P1 given as follows:

P1: min
λ

−
M

∑

m=1

N
∑

n=1

αm
n Fn(λn) (20a)

s.t. κ(λ) ≤ κ̂(ε). (20b)

In P1, the optimization goal (20a) is to minimize the neg-

ative weighted-sum data fidelity of all devices for the given

popularity profiles of all agents, and the constraint (20b) infers

that the average energy consumed during the sensing tasks can-

not exceed the maximum average energy consumption derived

from Theorem 1, which ensures that the probability of energy

depletion would not exceed ε. The unique optimal solution for

P1 could be derived according to Theorem 2.

Theorem 2: The optimal sensing strategy of all devices λ∗

from Algorithm 1 is the unique solution to P1.

Proof: Let βn =
∑M

m=1 αm
n ∀n. The optimal sensing strat-

egy of P1 could be solved by constructing the Lagrangian

function by introducing the multiplier γ ≥ 0 associated with

the energy constraint, that is

L
P1(λ, γ ) =

N
∑

n=1

βnT

2λn

+ γ

(

N
∑

n=1

λn − κ̂(ε)

)

. (21)

The optimal solution λ to P1 should satisfy the following

KKT conditions.

1) ∂LP1/∂λ ∈ 0 (stationarity).

2) γ (
∑N

n=1 λn − κ̂(ε)) = 0 (complementary slackness).

3)
∑N

n=1 λn − κ̂(ε) ≤ 0 (primal feasibility).

4) γ ≥ 0 (dual feasibility).

From the KKT conditions, the derivative of stationarity con-

dition yields that

∂LP1

∂λn

= −βnT

2λ2
n

+ γ = 0 ∀n (22)

and the optimal nonnegative γ ∗ and λ∗ should satisfy the

following conditions:

{

γ ∗ = 0, if
∑N

n=1 λ∗
n − κ̂(ε) < 0

∑N
n=1 λ∗

n − κ̂(ε) = 0, if γ ∗ > 0
(23)

along with the complementary slackness and feasibility con-

ditions.

When γ = 0, (22) cannot be satisfied since λn 
 T .

Consequently, we have the unique solution

λn

(

γ ∗) =
√

βnT

2γ ∗ , γ ∗ > 0 (24)

and

N
∑

n=1

λn

(

γ ∗) = κ̂(ε). (25)

Since
∑N

n=1

√
[(βnT)/2γ ] is monotonically increasing with

the decrements of γ , we can first set γ as a relatively large

value and check whether (25) holds. If not, the optimal unique

solution of λ∗ can be derived from (24) by gradually updating

γ > 0 using the subgradient method until (25) approximately

holds. We summarize the process of finding the optimal unique

solution (λ∗, γ ∗) of P1 in Algorithm 1.

The solution of λ shows the statistics of sensing policy of all

devices, which is calculated using the public information, such

as the parameters of energy supply rate C, maximum energy

backup q, depletion tolerance degree ε, and the popularity

vectors {αm(k)}M
m=1. The deterministic property of λ provides

a view of data collection for agents, which is introduced in

Section IV-B.

B. Optimal Collection Strategy of Agents

In a centralized system, the agents only concentrate on their

own benefits from the data collection. In stage k, the optimal

sensing policies {λ∗
n(k)}N

n=1 of all devices are deterministic

when popularity vectors {αm(k)}M
m=1 of all agents and other

system settings are given. Each agent should perform data

collection according to their own data records. Besides the

sensing policies of devices, data collection strategies of agents

also affect the quality of a DT model. To reveal the logs of

sensing tasks timely, we give the definition of reveal delay.

Definition 3 (Reveal Delay): The reveal delay of a time slot

is characterized by the time spanning from the generation time

of the most recent collected log to this time slot at any agent.

For any time of data collection cn
i at device n, it splits the

interval of any successive sensing tasks i′ and i′ + 1 into two

intervals (sn
i′, cn

i ] and (cn
i , sn

i′+1
]. If the data collection is ran-

domly distributed between any successive sensing tasks, the

expected reveal delay Dn in time slot cn
i can be obtained,

which is

E[Dn(c
n
i )] = E

[

cn
i − sn

i′
]

= E
[

sn
i′+1 − cn

i

]

= T

2λn

. (26)

We could easily find that (26) is similar to (14), and the length

of each time interval (cn
i , cn

i+1) with a mean of (T/un) will

have an impact on the overall reveal delay of the DT system,

where un is the expected times of data collection3 at device n.

The best method for reducing the expected reveal delay of

each time slot is to increase the number of data collections at

a device. To capture the reveal delay in each time slot more

3We omit the subscript of the agent index m for simplicity.
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precisely, we denote dn(t) ∈ {0, 1} as the transmission indica-

tor that shows whether a data collection is performed in time

slot t (dn(t) = 1 ∀t ∈ {cn
1, cn

2, . . .}). The evolution of reveal

delay regarding device n in any time slot is

Dn(t) =
{

t − max
{

sn
i |sn

i ≤ t
}

+ 1, if dn(t) = 1

Dn(t − 1) + 1, o.w.
(27)

This expression shows that if the log of device n is collected

by an agent in time slot t, the reveal delay of this device

decreases if the log of a new sensing task is generated since

the last data log has been captured; otherwise, it increases

by one. To minimize the reveal delay of a DT system, the

optimization problem of any agent can be characterized by

P2: min
u

1

T

T
∑

t=1

N
∑

n=1

αnDn(un, t) (28a)

s.t. un ≥ λ∗
n ∀n. (28b)

In P2, the optimization goal (28a) aims to minimize the

weighted-sum reveal delay of all devices in a stage, and (28b)

shows the collection throughput constraints for all devices,

where the expected collection times should be greater than

the expected number of sensing tasks in any stage. In other

words, to fully capture the log of sensing tasks, the expected

collection interval (T/un) should be set no greater than the

expected information change interval (T/λn).

P2 imposes the requirement on the data log throughput. The

optimization of AoI with the constraint of throughput has been

studied in [32], and a max-weight-AoI (MWA) policy was used

to adapt the data collection selection of devices to minimize

the weighted-sum AoI of all nodes while guaranteeing the

throughput.4 However, with a fixed arrival delay, the AoI of a

data packet in their formulation is completely determined by

the information collecting strategy of the agent, which can-

not reflect the fundamental updating frequency of information

source, i.e., the data generation process of sensing tasks.

To minimize the reveal delay, we next propose several

properties of the reveal delay.

Lemma 1: For any device n, the lower bound of the

expected reveal delay is (T/2λn), which is obtained when the

data collection at this device is performed in every time slot.

Proof: Since data collection is performed in every time

slot, the reveal delay of each slot between any successive sens-

ing tasks, i.e., [sn
i , sn

i+1 − 1], is {1, 2, . . . , sn
i+1 − sn

i }, which

yields an average value of (sn
i+1 −sn

i +1)/2. Consequently, we

have the expected reveal delay of device n, which is

E[Dn] = E

[

sn
i+1 − sn

i + 1

2

]

= T

2λn

. (29)

Lemma 2: For any device n, when the expected collection

time interval (T/un) is no more than the expected information

change interval (T/λn), the expected reveal delay is no more

than (3T/2λn).

4The AoI in [32] is different from the reveal delay in this article, where
AoI is the time interval since the last data collection while reveal delay is
the time interval since the latest sensing task that has been collected by the
agent.

Proof: For any device n, when the expected collection

time interval is set below the expected information change

interval, the expected collection times within any successive

sensing tasks should be no less than one. We assume that the

only collection at device n between sensing tasks of sn
i−1 and

sn
i , i.e., [sn

i−1+1, sn
i ], is performed in time slot sn

i −1. Thus, the

reveal delay in time interval [sn
i , sn

i+1 −1] is {sn
i −sn

i−1 +1, sn
i −

sn
i−1 +2, . . . , sn

i+1 −sn
i−1} if the next collection is performed in

time slot sn
i+1 − 1. Consequently, we have the expected reveal

delay of device n

E[Dn] = E

[

sn
i − sn

i−1 +
sn

i+1 − sn
i + 1

2

]

= 3T

2λn

. (30)

This can be treated as an extreme case of data collection, and

with more times of data collections, the expected reveal delay

can be reduced. Hence, the expected reveal delay is at most

(3T/2λn) when the expected collection time interval (T/un)

is no more than the expected information change interval

(T/λn).

To minimize the expected reveal delay with the requirement

on the times of data collections (
∑T

t=1 dn(t) ≥ λ∗
n), we lever-

age the max-weight-delay (MWD) policy to solve P2, and

the performance should satisfy Lemmas 1 and 2. Specifically,

any agent constructs the Lyapunov function of the data record

status St according to the view of any agent, which is

φ(St) =
N

∑

n=1

[

x+
n (t)

]2
(31)

where

x+
n (t) = max

{

pnt −
T

∑

t=1

dn(t), 0

}

(32)

is the throughput debt associated with device n. The agent

tends to reduce the Lyapunov drift �(St) = E[φ(St+1) −
φ(St)] between any successive time slots, which can be

written by

�(St) =
N

∑

n=1

E

{

[

x+
n (t + 1)

]2 −
[

x+
n (t)

]2
}

. (33)

According to [32], the upper bound associated with the

throughput debt is

E

{

[

x+
n (t + 1)

]2 −
[

x+
n (t)

]2
}

≤ −2x+
n (t)(E{dn(t)|St} − pn) + 1 (34)

and the throughput requirements of all devices can be satisfied,

which is E{(1/T)
∑T

t=1 dn(t)} ≥ λn/T = pn ∀n. According to

Lemma 2, we have the upper bound of E{Dn(t)|St}, which is

E{Dn(t)|St} ≤ 3T

2λn

. (35)

By substituting (34) into (33), we have an upper bound for

the value change of the Lyapunov function, which is

�(St) ≤ −
N

∑

n=1

E{dn(t)|St}�n(t) + �(t) (36)
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where �n(t) and �(t) are given as follows:

�n(t) = 2x+
n (t) (37)

and �(t) =
N

∑

n=1

[

2pnx+
n (t) + 1

]

. (38)

Since �(t) is not impacted by the choice of data collection

as shown in (36), we can derive that the selection strategy to

minimize the overall weighted-sum reveal delay is collecting

the data log from the device yielding the maximum �n(k) so

as to minimize the upper bound of �(St) in (36), i.e.,

n∗ = arg max
n

�n(t). (39)

However, data collection is performed by each individ-

ual agent, and each agent only concentrates on minimizing

their own reveal delay. Next, we will state our motivation

for incorporating the optimization introduced in this section

into a blockchain-based platform and elaborate the detailed

architecture.

V. SUSTAINABLE BLOCKCHAIN-BASED

TWIN MANAGEMENT

The method introduced in Section IV provides a direction

to realize a DT-based system that guides devices and agents to

perform the sensing task and data collection optimizing both

weighted-sum data fidelity and reveal delay. A naive archi-

tecture of such a DT-based system can be that each agent

owns a single server that records data logs of devices, and per-

forms data collection independently. However, this approach

is not appropriate for the multiagent and large-scale-device

deployment case. The reasons are explained as follows.

1) First, DT on a single server is acceptable for the

IoT ecosystem with a limited number of devices and

requestors. However, the communication of all devices

and requestors heavily relies on a single server, which

incurs significant risks to the security of the DT-based

system. The high-fidelity property of services may not

be satisfied once the server has undermined faulty.

2) Second, in the aforementioned architecture, all data logs

of devices at a server are collected by a single agent.

In fact, in the industrial environment, agents are not

always available to collect data from all devices, e.g.,

an agent is out of the communication range of a spe-

cific device. With the contributions of more agents, the

status of devices can be likely renewed more frequently,

thus leading to less information loss.

3) Finally, the resources of wireless channels are lim-

ited to be allocated for the communication between

agents and devices. The simultaneous data collection at

a device by multiple agents may trigger severe problems

of interference.

Considering the previously mentioned disadvantages, we

are motivated to incorporate more agents to participate in a

shareable architecture for DT services. We will introduce the

blockchain technology, widely acknowledged for trustworthy

and shareable properties, as the backbone of our proposed

architecture.

A. Architecture Overview

In our blockchain design, we use the consensus of practical

byzantine fault tolerance (PBFT) [47] to process the requests

of subscriptions and a modified consensus of PBFT, namely,

MWD consensus, to derive the sensing policy of devices and

motivate the data collection of agents. A commonly used

assumption in a distributed system is that any message can

be received with a bounded delay, which guarantees weak

synchrony. With the weak synchrony assumption and incor-

porating the functionalities of the original PBFT system, we

characterize the agents as the following different roles for data

collection.

1) Task Leader: An agent whose local ledger serves as the

primary view of the system is the task leader. Once a

change needs to be applied to the system, it should be

initiated by the task leader, and the records of the other

agents serve as the backups of the primary view. All

other agents vote for the assignments of data collection

and acceptances of the data record changes, and then

synchronize the ledger with all others.

2) Task Executor: A task executor is an agent who per-

forms the assigned data collection task. A data collection

executor should be chosen from the participants who

prefer to collect data of the selected device (an agent

may not be able to perform data collection considering

the availability). The agent who contributes more data

logs to the open ledger (blockchain) should be awarded

with more credits, which encourages participations and

contributions of all the agents.

The ledger that records the subscription of requestors and

the parameters of the system (e.g., depletion tolerance and

energy supply rate) is the request chain, and the ledger that

records the shared data of agents is the data chain. The imple-

mentation of the request chain simply follows the consensus

of PBFT. For PBFT-based systems, a fundamental assumption

is that the system should contains at least 3f + 1 agents to

tolerate f faulty agents. Thus, the blocks in both the request

chain and data chain can be only accepted if receiving at least

2f + 1 confirmations from agents, where f = �(M − 1)/3�.

All the system changes in a stage will only take effect in

the next stage. That means the popularity profiles of all agents

and some other policies in any stage are fixed and open for all

agents, and they will not change until the end the current stage.

For example, the requests of any popularity change records in

stage k − 1 only updates at the beginning of stage k, i.e.,

t = 0 ∀k ∈ {1, 2, . . . , K}.
In time slot t = 0, according to the popularity profiles and

the energy policy of the system from the request chain, the

sensing policies of devices are set to improve the weighted

data fidelity while guaranteeing the sustainable energy sup-

ply. The maintenance of the request blocks has multiphases of

consensus including pre-prepare, prepare, commit and reply

as shown in Fig. 3(a).

Based on the sensing policies of devices from the request

chain and historical data collection records, in each time slot of

a stage, an agent is chosen to execute the data collection task

via the MWD consensus and updates the data records in the
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(a) (b)

Fig. 3. Phases of (a) Request chain [47] and (b) Data chain.

data chain. The selection of device is to optimize the weighted

reveal delay and improve the information sustainability of DT-

based models. We will next introduce the data updates of data

chain under the MWD consensus.

B. Data Updates of Data Chain

Considering the subscription information is continuously

updated in the request chain, as we declared in the system for-

mulation, the popularity profiles are fixed until the stage ends.

Since the goal of the MWD consensus is to optimize the sum-

valuation of all devices, we use β(k) = {β1(k), . . . , βN(k)} as

the new weights of devices in stage k. In a stage, the consen-

sus of data chain is based on the consensus obtained from the

request chain. The execution steps for maintaining blocks in

the data chain are characterized as follows.

1) According to agents’ historical data collection

performance shown in the current committed ledger,

the agent with the highest reputation R is selected

as the task leader. Without loss of generality, we can

let the task leader be any agent with good reputation at

the beginning.

2) In any time slot t, based on the state of the current open

ledger St, the task of data collection should be deter-

ministic and associated with the decision in (39). Since

the views of agents are consistent under the consensus,

each agent could calculate the same best device selec-

tion n∗, and decide whether to bid the data collection

for device n∗ considering the availability. If an agent m

decides to bid for collection task of n∗, it broadcasts the

biding price Cm
b to all the other agents.

3) By receiving the biding prices of all the biding agents

within a bounded delay, the task leader packs the biding

information into a bidding block that indicates the agent

m∗ to perform the task with the consideration of both

biding price and reputation, i.e.,

m∗ = arg min
m

N
(

C
m
b ,Rm

)

(40)

where N can be any normalization function such as

min–max technology [48]. The task leader then broad-

casts the biding block to all other agents.

4) The biding block in the previous step that has

been committed by the system shows the next task

executor. This task executor starts to perform the

data collection task, and broadcasts the transaction

including the collected data log to all the other

agents after the confirmation of the biding block is

acknowledged.

5) Upon receiving the collected data from the

task executor, the task leader creates a data block,

packs the transaction into the block, and further broad-

casts this block to be confirmed by all the other agents.

If the task leader does not receive the data from the

task executor within a tolerant delay, she will issue a

transaction that indicates a failure for this time of data

collection instead of the transaction of the collected

data.

6) Any agent who receives a biding/data block from the

task leader should broadcast the prepare message of

this block to all the other agents if the validation has

passed; any agent who receives more than 2f prepare

messages of the block with the same result from other

agents should broadcast the commit message to all the

other agents. An agent, who is in the prepare state and

receives more than 2f commit messages of the block,

should formally commit this block and add this block

to its local ledger.

7) Once both the biding block and data block are for-

mally committed, the task leader receives fixed credits

Ccr/(M − 1) from each of the other agents for creating

the committed block, where Ccr is the total credit reward

for creating a biding block or a data block. If the data log

of device n∗ collected by task executor m∗ has been suc-

cessfully written into the open ledger, agent m∗ receives

credits (1 + τ)Cm∗
b αm

n∗/βn from agent m, where τ is the

ratio of extra credit reward for the data collection; oth-

erwise, agent m∗ transfers Cm∗
b αm

n∗/βn credits to agent

m as a penalty. An agent whose credit is lower than a

threshold will be excluded from the system in the next

stage.

8) With the confirmation of a new data block with vali-

dated data, the reputation R of the task executor m∗

increases according to its contribution of data collec-

tion. The reputation decays with time according to a

widely used exponential moving average (EMA) tech-

nique that highlights their most recent effort of task
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execution [48], e.g.,

Rm(t + 1) =
{

ωRm(t), m �= m∗

ωRm(t) + (1 − ω)Cm∗
b , m = m∗ (41)

where ω ∈ [0, 1] is a decay parameter and Rm(0) =
0. The sustainable blockchain-based DT management

system will turn to step 1 for a new task leader election

process.

The different consensus phases of the data chain are

explained in Fig. 3(b). As shown in Fig. 3(b), in any time slot

t, all the available agents bid for the collection task according

to the committed ledger at the end of time slot t − 1. As the

primary view of all agents, the task leader performs the block

creation tasks twice to assure all the other agents can receive

a same referenced view of the biding and collecting results,

respectively. The agent with the lowest data collection cost is

selected to perform the data collection task. By receiving the

referenced view of biding price and the collected data, all the

agents broadcast two rounds of prepare and commit messages

in the phases of prepare & commit, respectively. After the

confirmation, the same process is repeated in time slot t + 1.

C. Complexity Analysis

For the request chain, according to the change request made

by a requestor, a task leader should broadcast M −1 messages

to other agents to indicate the primary view. After that, it

requires two round-trip decisions of prepare and commit with

O(M2) communication complexity to achieve consensus.

For the data chain, in phases of prepare and commit, the

communication complexities are the same as those in the

request chain. In the phase of biding, all biding agents should

broadcast their own prices to other agents, thus needing at

most M ∗ (M − 1) messages. In the phase of collection, the

task executor should send the collected data to all the other

agents, which requires at most M−1 messages. Therefore, the

overall communication complexity of both the request chain

and data chain is O(M2).

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate the extensive experiment

results to verify our proposed architecture.

A. Energy Sustainability

We first verify the sustainability of energy supply of our

system. Considering a DT-based IoT platform with N devices,

we explore the sensing strategies of devices with different

predefined parameters of depletion tolerance degree ε, energy

backup q, and energy supply rate C.

First, we explore the maximum energy consumption rate κ̂

of all feasible sensing policies in terms of both ε and q for

a given N and C. Figs. 4 and 5 plot the impacts of ε and

q on the feasible sensing policy that yields the maximum κ

when N = 100, C = 10 and N = 50, C = 20. It can be found

that the increase of both ε and q triggers a more aggressive

sensing rate. As can be seen in Figs. 4 and 5, when q is large

enough, we can employ a more stringent depletion tolerance

setting, which still yields a relatively larger maximum energy

Fig. 4. Maximum energy consumption rate of all the feasible collection
policies for different q’s and ε’s when C = 10 and N = 100.

Fig. 5. Maximum energy consumption rate of all the feasible collection
policies for different q’s and ε’s when C = 20 and N = 50.

Fig. 6. Comparison of average depletion rate with the setting of κ̂(ε),
where ε ∈ [0.001, 0.1] with step size 0.001 and q = 1; N and C are chosen
differently.

consumption rate. However, when q is small, the maximum

average energy consumption rate is sensitive to the change of

ε as shown in Figs. 4(a) and 5(a). As a result, for a DT system,

it is important to precisely regulate the sensing policies of

devices based on the conditions of energy backup and energy

supply so as to meet the requirement of depletion tolerance

degree.

To verify our analytical results in terms of depletion proba-

bility, we perform the experiments under a variety of depletion

tolerance degrees. With q = 1 and K = 300, we run the energy

consumption experiments 2000 times under different ε’s with

N = 50, C = 20, N = 100, and C = 10. As shown in Fig. 6,

Authorized licensed use limited to: Georgia State University. Downloaded on July 05,2023 at 18:06:16 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: SUSTAINABLE BLOCKCHAIN-BASED DT MANAGEMENT ARCHITECTURE 6545

(a) (b)

Fig. 7. Impact of N on the overall energy consumption Nκ̂ . (a) q = 1.
(b) ε = 0.01.

the depletion rate is lower than the corresponding ε shown by

the black dashed line. We can find that the changes of depletion

rate basically are consistent with the changes of ε. In practice,

we can slightly relax the maximum average energy consump-

tion rate constraint to achieve better system performance for

a given ε.

In addition, we explore the relationship between the number

of devices N and the overall maximum energy consumption

Nκ̂ . From Fig. 7, we observe that for a fixed amount of energy

supply, e.g., NC = 1000, in any stage, the maximum overall

energy consumption for any feasible sensing policy increases

with the increase of N. As shown in both Fig. 7(a) and (b), it is

clear that Nκ̂ is the largest one in the case when N = 200 and

C = 5. Since the total incoming energy is fixed, the energy

to be allocated to each device decreases with an increasing

N. As a result, the fluctuation of energy consumption of each

device is restrained, and the average fluctuation of the overall

energy consumption is reduced. That means, the system can

exert more aggressive sensing policy on each device without

depleting the energy storage when N is large. Moreover, as

shown in Fig. 7(a), the differences of Nκ̂ in the three cases

gradually diminish with the increment of ε when q is equal

to 1. Similarly, when ε is 0.01, Nκ̂ is limited when q is small

as shown in Fig. 7(b). As q grows, Nκ̂ in all the cases finally

converges to NC, which means nearly all the incoming energy

can be allocated to all the devices for performing sensing tasks.

B. Weighted Data Fidelity

To verify the optimality of data fidelity of the system,

we first establish a system with N IoT devices and M = 1

agent. Without loss of generality, we normalize the popularity

values of devices between 0 and 1. Considering any stage

with T slots, the parameters of the system are set as fol-

lows: ε = 0.0001 and q = 1. According to the status of the

DT system, the sensing policies of IoT devices λ are calcu-

lated by Algorithm 1. The analytical and experiment results of

the optimal weighted data fidelity are explored with different

settings of N and T .

First, we elaborate the relationship between the weighted

data fidelity and the number of devices N. We set T = 10000

and NC = 5000. Fig. 8(a) plots both the analytical and the

experiment results of the averaged weighted data fidelity of

all devices when we vary N = {40, 80, 120, 160, 200}. We

assume that all devices have the same popularity, which is

randomly sampled. As the energy supply is fixed in all the

(a) (b)

Fig. 8. Impacts of N and T on the weighted data fidelity. (a) T = 10000.
(b) N = 100.

(a) (b)

Fig. 9. Impacts of N and T on the weighted reveal delay. (a) T = 10000.
(b) N = 100.

cases, the energy to be allocated to each device decreases with

the increment of N. Thus, the sensing intervals also increase

for energy saving, as a result, leading to the decrease of data

fidelity of all devices.

Next, we discuss the relationship between the weighted data

fidelity and the number of time slots T . We set N = 100 and

C = 50. As shown in Fig. 8(b), the average weighted data

fidelity of all devices also decreases with the increase of T ,

where T is chosen from {3000, 6000, 9000, 12000, 15000}. In

this case, since the optimality of P1 does not change with T ,

the optimal sensing policy of each device, i.e., λ∗
n ∀n, remains

unchanged. That means, the total number of sensing tasks per-

formed by a device is fixed in any T . However, the increasing

T would lead to an increasing expected intervals between any

two successive sensing tasks, i.e., T/λn, which leads to the

decrements of weighted data fidelity of all devices. From both

Fig. 8(a) and (b), we can observe that the analytical results

are consistent with the experiment results.

C. Weighted Reveal Delay

To test the weighted reveal delay performance of our

proposed MWD policy, a simulation system consisting of M

agents and N devices is constructed. The settings are the

same as those in Section VI-B. The following data collec-

tion schemes are adopted to compare with the MWD policy:

1) MWA policy [32], a max-weight policy aiming at min-

imizing the weighted AoI of all devices while considering

the throughput and 2) random selection, a randomized data

collection strategy to choose devices.

Fig. 9(a) plots the results of the average weighted reveal

delay of all devices when we vary the number of devices

N = {40, 80, 120, 160, 200} under the three collection

schemes. As the energy supply is fixed in all the cases, the

energy to be allocated to each device decreases with the
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(a) (b)

Fig. 10. Performance comparison between MWD Consensus and Centralized MWD in terms of (a) average reveal delay and (b) spent credits.

increase of N, thus increasing the reveal delay. As shown in

Fig. 9(b), the average weighted reveal delay of all devices

also increases with an increasing T , where T is chosen from

{3000, 6000, 9000, 12000, 15000}, since the average interval

of any two successive sensing tasks increases when T is large.

Notably, the performance of MWD and MWA is compatible,

which reflects that the AoI metric does not have an impact

on reveal delay once the throughput constraint is satisfied.

The reason is that the AoI neglecting the execution of sensing

tasks does not reflect the intrinsic property of the information

source, and it does not have a direct relationship with the

sustainability of the information.

D. MWD Consensus

We evaluate MWD consensus with N = 100, M = 20,

C = 50, ε = 0.0001, q = 1 and T = 10000. The popu-

larity of each agent is generated randomly from [0, 1]. We

consider two system architectures: 1) MWD Consensus and

2) Centralized MWD. For MWD Consensus, the system is built

based on the PBFT-blockchain, where all the agents observe

the collection history, bid for the assignment, and share the col-

lected data with all the other agents. For Centralized MWD, the

agents’ collection behaviors are coordinated by a centralized

server, and they are randomly authorized to collect data with

the MWD policy according to their own collection history. To

ensure fairness, the centralized server can simply adopt round-

robin scheduling where each agent performs data collection in

a circular manner. Supposing that each time of collection costs

the executing agent with normalized credits sampled from a

uniform distribution [0, 1]. Fig. 10 plots the performance com-

parison between MWD Consensus and Centralized MWD in

terms of average reveal delay and spent credits.

As can be seen in Fig. 10(a), the average reveal delay for all

the agents in MWD Consensus is significantly reduced due to

data sharing compared with those in Centralized MWD. With

distributed data sharing, the time span for receiving two suc-

cessive data logs is shortened, which leads to a smaller average

reveal delay. In addition, the spent credits by the agents in

MWD consensus are much fewer than those in Fig. 10(b) com-

pared with Centralized MWD due to the biding process. For a

sharing mode, except for the collected information, the lower

prices of collection are also shared by all participants, thus

reducing the cost in a global view.

Fig. 11. Performance of the incentive mechanism.

We also introduce the reward mechanism of data collection

and creating blocks, which aims to motivate the data sharing

behaviors of agents. We randomly set the availability proba-

bility of all the agents from [0, 1], which is the probability

that an agent could provide a biding price (cost) for collecting

data. The ratio of extra credit reward for the data collection τ

is set as 0.1, and the reputation decay factor ω is set as 0.95.

As shown in Section V-B, the income source of each agent is

the reward of data collection and block creation. In Fig. 11,

both the earned credits and the number of generated blocks

of all the agents with respect to their availability probabilities

are plotted. It is clear that the credits for data collection and

creating blocks of an agent increase with its increasing avail-

ability probability. In fact, an agent can earn more and improve

reputation by actively collecting data. To do this, agents must

continuously improve their connections with devices to reduce

the cost of data collection. With a higher reputation, an agent

can also gain more chances for serving as the primary view

of all the agents and earn more credits from creating blocks

in a blockchain-based DT system. The incentive effectiveness

is therefore validated.

VII. CONCLUSION

In this article, we considered a sustainable blockchain-

based DT management architecture for IoT devices. This is

to address the sustainability issue for large-scale DT service

management. The blockchain technology, as a shareable and

distributed paradigm, is promising to improve and reform

future DT systems. We expected to explore more practical
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applications of blockchain-based DT design. For example, DT

visualization for real-time monitoring is critical to guiding

industrial processes and improving production efficiency. We

will explore the visualization of DTs in different entities using

shared data from a blockchain. The method presented in this

article will be beneficial to the construction of DT visualization

for multiple entities with customized needs.

REFERENCES

[1] F. Al-Turjman and M. Abujubbeh, “IoT-enabled smart grid via SM: An
overview,” Future Gener. Comput. Syst., vol. 96, pp. 579–590, Jul. 2019.

[2] T. H. Kim, C. Ramos, and S. Mohammed, “Smart city and IoT,” Future

Gener. Comput. Syst., vol. 76, pp. 159–162, Nov. 2017.

[3] B. Jan, H. Farman, M. Khan, M. Talha, and I. U. Din, “Designing a smart
transportation system: An Internet of Things and big data approach,”
IEEE Wireless Commun., vol. 26, no. 4, pp. 73–79, Aug. 2019.

[4] A. Ahad, M. Tahir, M. A. Sheikh, K. I. Ahmed, A. Mughees, and
A. Numani, “Technologies trend towards 5G network for smart health-
care using IoT: A review,” Sensors, vol. 20, no. 14, p. 4047, 2020.

[5] “About the Oracle IoT Digital Twin Implementation.” Oracle. Sep. 15,
2021. [Online]. Available: https://docs.oracle.com/en/cloud/paas/IoT-
cloud/IoTgs/oracle-IoT-digital-twin-implementation.html

[6] B. R. Barricelli, E. Casiraghi, J. Gliozzo, A. Petrini, and S. Valtolina,
“Human digital twin for fitness management,” IEEE Access, vol. 8,
pp. 26637–26664, 2020.

[7] Q. Lu et al., “Developing a digital twin at building and city levels: Case
study of west cambridge campus,” J. Manage. Eng., vol. 36, no. 3, 2020,
Art. no. 5020004.

[8] “Comos—Making Data Work.” Siemens. Sep. 15, 2021. [Online].
Available: https://cache.industry.siemens.com/dl/files/354/109765354/
att_978457/v1/COMOS_Imagebroschuere_EN.pdf

[9] M. Matulis and C. Harvey, “A robot arm digital twin utilising reinforce-
ment learning,” Comput. Graph., vol. 95, pp. 106–114, Apr. 2021.

[10] M. G. Kapteyn, J. V. Pretorius, and K. E. Willcox, “A probabilis-
tic graphical model foundation for enabling predictive digital twins at
scale,” Nat. Comput. Sci., vol. 1, no. 5, pp. 337–347, 2021.

[11] A. Saad, S. Faddel, T. Youssef, and O. A. Mohammed, “On the
implementation of IoT-based digital twin for networked microgrids
resiliency against cyber attacks,” IEEE Trans. Smart Grid, vol. 11, no. 6,
pp. 5138–5150, Nov. 2020.

[12] S. H. Khajavi, N. H. Motlagh, A. Jaribion, L. C. Werner, and
J. Holmström, “Digital twin: Vision, benefits, boundaries, and creation
for buildings,” IEEE Access, vol. 7, pp. 147406–147419, 2019.

[13] H. Wang, Y. Wu, G. Min, and W. Miao, “A graph neural network-
based digital twin for network slicing management,” IEEE Trans. Ind.

Informat., vol. 18, no. 2, pp. 1367–1376, Feb. 2022.

[14] L. Corneo, C. Rohner, and P. Gunningberg, “Age of information-aware
scheduling for timely and scalable Internet of Things applications,” in
Proc. IEEE INFOCOM Conf. Comput. Commun., 2019, pp. 2476–2484.

[15] H. El Alami and A. Najid, “ECH: An enhanced clustering hierar-
chy approach to maximize lifetime of wireless sensor networks,” IEEE

Access, vol. 7, pp. 107142–107153, 2019.

[16] X. Jin et al., “A hierarchical data transmission framework for indus-
trial wireless sensor and actuator networks,” IEEE Trans. Ind. Informat.,
vol. 13, no. 4, pp. 2019–2029, Aug. 2017.

[17] Y. Wu, “Cloud-edge orchestration for the Internet-of-Things:
Architecture and AI-powered data processing,” IEEE Internet Things

J., vol. 8, no. 16, pp. 12792–12805, Aug. 2021.

[18] Z. Cai and Z. He, “Trading private range counting over big IoT data,”
in Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst. (ICDCS), 2019,
pp. 144–153.

[19] J. Du, C. Jiang, E. Gelenbe, L. Xu, J. Li, and Y. Ren, “Distributed
data privacy preservation in IoT applications,” IEEE Wireless Commun.,
vol. 25, no. 6, pp. 68–76, Dec. 2018.

[20] Z. Cai and T. Shi, “Distributed query processing in the edge assisted
IoT data monitoring system,” IEEE Internet Things J., vol. 8, no. 16,
pp. 12679–12693, Aug. 2021.

[21] S. Suhail, R. Hussain, R. Jurdak, and C. S. Hong, “Trustworthy digital
twins in the Industrial Internet of Things with blockchain,” IEEE Internet

Comput., early access, Feb. 18, 2021, doi: 10.1109/MIC.2021.3059320.

[22] Y. Wu, H.-N. Dai, H. Wang, and K.-K. R. Choo, “Blockchain-based pri-
vacy preservation for 5G-enabled drone communications,” IEEE Netw.,
vol. 35, no. 1, pp. 50–56, Jan./Feb. 2021.

[23] S. Zhu, W. Li, H. Li, L. Tian, G. Luo, and Z. Cai, “Coin hopping
attack in blockchain-based IoT,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4614–4626, Jun. 2019.

[24] Y. Wu, H.-N. Dai, and H. Wang, “Convergence of blockchain and edge
computing for secure and scalable IIoT critical infrastructures in industry
4.0,” IEEE Internet Things J., vol. 8, no. 4, pp. 2300–2317, Feb. 2021.

[25] A. M. Madni, C. C. Madni, and S. D. Lucero, “Leveraging digital twin
technology in model-based systems engineering,” Systems, vol. 7, no. 1,
p. 7, 2019.

[26] W. Sun, H. Zhang, R. Wang, and Y. Zhang, “Reducing offloading latency
for digital twin edge networks in 6G,” IEEE Trans. Veh. Technol., vol. 69,
no. 10, pp. 12240–12251, Oct. 2020.

[27] S. Haag and R. Anderl, “Digital twin—Proof of concept,” Manuf. Lett.,
vol. 15, pp. 64–66, Jan. 2018.

[28] J. Leng et al., “Digital twin-driven rapid reconfiguration of the auto-
mated manufacturing system via an open architecture model,” Robot.

Comput. Integr. Manuf., vol. 63, Jun. 2020, Art. no. 101895.
[29] X. Tong, Q. Liu, S. Pi, and Y. Xiao, “Real-time machining data appli-

cation and service based on imt digital twin,” J. Intell. Manuf., vol. 31,
no. 5, pp. 1113–1132, 2020.

[30] Q. Qi, F. Tao, Y. Zuo, and D. Zhao, “Digital twin service towards smart
manufacturing,” Procedia CIRP, vol. 72, pp. 237–242, Jun. 2018.

[31] J. Leng, H. Zhang, D. Yan, Q. Liu, X. Chen, and D. Zhang, “Digital
twin-driven manufacturing cyber-physical system for parallel controlling
of smart workshop,” J. Ambient Intell. Humanized Comput., vol. 10,
no. 3, pp. 1155–1166, 2019.

[32] I. Kadota, A. Sinha, and E. Modiano, “Optimizing age of information
in wireless networks with throughput constraints,” in Proc. IEEE

INFOCOM Conf. Comput. Commun., 2018, pp. 1844–1852.
[33] B. Zhou and W. Saad, “Optimal sampling and updating for minimizing

age of information in the Internet of Things,” in Proc. IEEE Global

Commun. Conf. (GLOBECOM), 2018, pp. 1–6.
[34] H. Zheng, K. Xiong, P. Fan, Z. Zhong, and K. B. Letaief, “Age of

information-based wireless powered communication networks with self-
ish charging nodes,” IEEE J. Sel. Areas Commun., vol. 39, no. 5,
pp. 1393–1411, May 2021.

[35] E. Gindullina, L. Badia, and D. Gündüz, “Age-of-information
with information source diversity in an energy harvesting system,”
IEEE Trans. Green Commun. Netw., vol. 5, no. 3, pp. 1529–1540,
Sep. 2021.

[36] S. Suhail, R. Hussain, R. Jurdak, A. Oracevic, K. Salah, and C. S. Hong,
“Blockchain-based digital twins: Research trends, issues, and future
challenges,” 2021, arxiv:2103.11585.

[37] B. Putz, M. Dietz, P. Empl, and G. Pernul, “EtherTwin: Blockchain-
based secure digital twin information management,” Inf. Process.

Manage., vol. 58, no. 1, 2021, Art. no. 102425.
[38] C. Mandolla, A. M. Petruzzelli, G. Percoco, and A. Urbinati, “Building

a digital twin for additive manufacturing through the exploitation of
blockchain: A case analysis of the aircraft industry,” Comput. Ind.,
vol. 109, pp. 134–152, Aug. 2019.

[39] Z. Sun, Y. Wang, Z. Cai, T. Liu, X. Tong, and N. Jiang, “A two-
stage privacy protection mechanism based on blockchain in mobile
crowdsourcing,” Int. J. Intell. Syst., vol. 36, no. 5, pp. 2058–2080,
2021.

[40] S. Zhu, Z. Cai, H. Hu, Y. Li, and W. Li, “zkCrowd: A hybrid blockchain-
based crowdsourcing platform,” IEEE Trans. Ind. Informat., vol. 16,
no. 6, pp. 4196–4205, Jun. 2020.

[41] J. L. Hodges and L. Le Cam, “The Poisson approximation to the Poisson
binomial distribution,” Ann. Mathe. Stat., vol. 31, no. 3, pp. 737–740,
1960.

[42] H. Touchette, “The large deviation approach to statistical mechanics,”
Phys. Rep., vol. 478, nos. 1–3, pp. 1–69, 2009.

[43] D. W. Stroock, Probability Theory: An Analytic View. Cambridge, U.K.:
Cambridge Univ. Press, 2010.

[44] A. J. Ganesh, N. O’Connell, and D. J. Wischik, Big

Queues. London, U.K.: Springer, 2004. [Online]. Available:
https://link.springer.com/book/10.1007/978-3-540-39889-9#about

[45] J. T. Lewis and R. Russell, An Introduction to Large Deviations for

Teletraffic Engineers, Dublin Inst. Adv. Stud., Dublin, Ireland, 1997,
pp. 1–45.

[46] A. Rovira-Sugranes and A. Razi, “Optimizing the age of information for
blockchain technology with applications to IoT sensors,” IEEE Commun.

Lett., vol. 24, no. 1, pp. 183–187, Jan. 2020.
[47] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in Proc.

OSDI, 1999, pp. 173–186.
[48] L. Yuan et al., “CoopEdge: A decentralized blockchain-based plat-

form for cooperative edge computing,” in Proc. Web Conf., 2021,
pp. 2245–2257.

Authorized licensed use limited to: Georgia State University. Downloaded on July 05,2023 at 18:06:16 UTC from IEEE Xplore.  Restrictions apply. 



6548 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 8, 15 APRIL 2023

Chenyu Wang (Graduate Student Member, IEEE)
received the B.S. degree from Xiangtan University,
Xiangtan, Hunan, China, in 2016, and the M.S.
degree from Beijing Normal University, Beijing,
China, in 2019. He is currently pursuing the Ph.D.
degree with the Department of Computer Science,
Georgia State University, Atlanta, GA, USA.

His research interests include network
optimization and machine learning.

Zhipeng Cai (Senior Member, IEEE) received the
B.S. degree from Beijing Institute of Technology,
Beijing, China, in 2001, and the M.S. and Ph.D.
degrees from the University of Alberta, Edmonton,
AB, Canada, in 2004 and 2008, respectively.

He is currently an Associate Professor with the
Department of Computer Science, Georgia State
University (GSU), Atlanta, GA, USA. Prior to join-
ing GSU, he was a Research Faculty with the School
of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta. His research areas

focus on networking and big data.
Dr. Cai is the recipient of the NSF CAREER Award. He served/is serving

on the editorial boards of several technical journals, such as IEEE INTERNET

OF THINGS JOURNAL, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, and IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY.
He also chaired several international conferences, such as IEEE ICDCS 2019
and IEEE IPCCC18. He is the Steering Committee Chair of the International
Conference on Wireless Algorithms, Systems, and Applications.

Yingshu Li (Senior Member, IEEE) received the
B.S. degree from Beijing Institute of Technology,
Beijing, China, in 2001, and the M.S. and Ph.D.
degrees from the University of Minnesota-Twin
Cities, Minneapolis, MN, USA, in 2003 and 2005,
respectively.

She is currently a Professor with the Department
of Computer Science, Georgia State University,
Atlanta, GA, USA. Her research interests include
privacy-aware computing, management of big sen-
sory data, Internet of Things, social networks, and

wireless networking.
Dr. Li is the recipient of the NSF CAREER Award. She has served as an

Associate Editor or a Guest Editor for some prestigious journals, such as ACM

Transactions on Sensor Networks, IEEE TRANSACTIONS ON COMPUTERS,
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, and
IEEE INTERNET OF THINGS JOURNAL. She has also served as a steer-
ing committee chair, general chair, program chair, and technical program
committee member for many international conferences.

Authorized licensed use limited to: Georgia State University. Downloaded on July 05,2023 at 18:06:16 UTC from IEEE Xplore.  Restrictions apply. 


