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Abstract—Distributed physical layer authentication (DPLA) is
a novel authentication framework, which not only exploits the
collaborative computing of multiple devices to enhance overall
efficiency, but also alleviates the degradation of processing perfor-
mance caused by resource-constrained terminals. It is considered
a promising architecture for solving access security issues in
future communications. Considering DPLA’s potential, in this ar-
ticle, we review existing DPLA schemes to provide a comprehen-
sive summary of the strategies and technical approaches adopted
during each implementation stage. Our simulation results show
that the voting-assisted DPLA scheme has better authentication
performance than the centralized PLA. In addition, we also
present some open research issues on DPLA, addressing new
opportunities ahead and potential research directions.

I. INTRODUCTION

A
UTHENTICATION plays a crucial role in securing wire-

less communications systems and applications as it is

the basis for most types of access control. Typically, an

authentication scheme depends on a type of authenticator

(e.g., secrets), which is a means used to confirm a claimed

identity. For example, a memorized secret (e.g., password)

is a common authenticator. Another popular authenticator

for networked systems is a secret key managed by a cryp-

tographic system (e.g. asymmetric cryptography). As new

wireless communications systems, such as the Internet of

Things (IoT), emerge with technology advancements (e.g.,

5G), these common authenticators may no longer be effective

due to expensive management or computational overhead [1].

Information-theoretic security based authenticators, there-

fore, become more attractive as they are more suitable for

resource-constrained devices and delay-sensitive applications

in IoT. This type of authenticator, called a physical layer

authenticator (PLA), exploits natural features of wireless links

such as channel reciprocity, randomness, space-time unique-

ness for authentication. PLA authenticates by comparing ex-

tracted physical layer features of a user’s signal to a previously

defined threshold of features unique to that user. The new

signal must be consistent with the features to be accepted.

In this way, PLA fulfills the integration of communications

and authentication by taking advantage of the signal itself,

effectively reducing additional network resource consumption.

Broadly speaking, there are two categories of PLA: cen-

tralized and decentralized. Centralized PLA (CPLA) relies

on a single device to accomplish the entire authentication
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process including channel information collection, processing

and identification. Thus, CPLA schemes are faced with the

risk of single-point failure at cluster-head [2], which is fairly

common in highly dynamic and unreliable communication

scenarios. Decentralized PLA (DPLA), on the other hand,

relies on several collaborative nodes, which evaluates authen-

ticity as follows: i) Share the tasks of channel sensing, data

processing or message identifying from the central node to

a group of candidate edge nodes; ii) Select non-malignant,

reliable and self-confident candidate nodes acting as real

collaborators in a micro-alliance, according to their respective

channel quality, identification ability or historical reputations,

etc; iii) Formulate a unified authentication decision in this

micro-alliance with the help of collaborative communications,

model parameter interaction and decision-level fusion among

multiple trusted edge devices. DPLA’s authentication process

has several advantages over CPLA’s process [3]. In specif-

ic, multi-directional channel sensing, regarded as distributed

acquisition, provides DPLA a more robust physical layer

dataset with spatial diversity that attackers can hardly imitate.

Multi-node aided data processing and identifying, regarded as

distributed training, brings DPLA better real-time performance

and lowers computing burden on individual device [4]. Multi-

party involved consensus formation, regarded as decision fu-

sion, offers DPLA a more comprehensive authentication result

with higher accuracy. Through personalized task assignment

of collaborators and decision fusion at a coordinator, DPLA

can make authentication decisions more accurate, robust and

efficient.

To the best of our knowledge, this is the first work that gives

a broad overview of current DPLA technology and literature.

We first review the theoretical foundations of PLA, and

summarize the limitations of CPLA to derive the motivations

for DPLA studies. Then, we explain the DPLA frameworks

in detail, expounding strategies, algorithms, and techniques

used in each stage of setting up a DPLA system. We also

present some preliminary comparison results to verify the

effectiveness of the mentioned weighted voting-assisted DPLA

scheme compared to a classical CPLA scheme. And finally,

we discuss several open research issues by considering new

perspectives and conclude the article.

II. OVERVIEW OF PLA

In this section, we first review the theoretical basis and most

commonly used mechanisms of PLA. Then, we summarize the

limitations faced by CPLA and conclude with the motivations

for DPLA research.
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A. PLA Basics

Considering a typical PLA system as shown in Fig. 1, Bob

receives several messages, including legitimate messages from

Alice and fabricated messages from Eve, which impersonate

Alice’s signals. Once a new message arrives, Bob authenticates

its origin by analyzing the latest extracted physical layer fea-

tures. Based on certain testing-decision mechanisms described

in the next subsection, only messages with similar physical

features to legitimate users will be received, while others will

be denied. Since Eve’s signals have different physical layer

features from Alice’s, his/her message is rejected, maintaining

the integrity of the system.

New messages

Positive response

H0: hab, nb

• Checks and analyzes 

physical layer features

• Rejects illegitimate 

messages based on testing-

decision mechanisms

Alice Bob

Eve

Fig. 1: A typical PLA framework.

In this way, PLA accomplishes light-weight authentication

by using the signal itself. This is due to the fact that physical

layer features are spatially uncorrelated between different ge-

ographic locations. Therefore, as long as the distance between

the legitimate user and the attacker is greater than a half

wavelength, PLA can effectively differentiate the signals [5].

B. Authentication-Decision Mechanisms

Two types decision mechanisms are exploited in PLA. One

method, named as the threshold-based mechanism, follows the

Neyman Pearson lemma to systematically construct a binary

hypothesis test, i.e., T(xn)
H1

≷
H0

δ∗
n

, where H0 and H1 represent

the case of messages from a legitimate user and a malicious

node, respectively. To obtain an optimal decision boundary δ∗
n

in the method, it is guaranteed to minimize the Type-2 error

(i.e., the probability of missed detection) for a given Type-1

error (i.e., the probability of false alarm). Meanwhile, the test

statistic T(xn) is formulated according to channel difference

measurements such as the likelihood ratio test.

The other method is designed based on the machine learning

(ML) technology. It models PLA as a classify issue to find

out an optimal segmentation plane for identity signatures by

training the parameters of the neural network, thus achieving

threshold-free. Different ML methods are applied in PLA

with different emphases. For example, deep neural network

(DNN) has stronger fitting and classification capabilities than

other algorithms, which can assist PLA to make decision

more accurate, while support vector machine (SVM) can

provide better authentication performance for PLA on limited

offline datasets. Unsupervised ML methods, such as K-means

clustering, k-nearest neighbor (k-NN) algorithm, etc. have

also been applied to aggregate multiple sampled instantaneous

physical layer features into clusters, which can effectively

combat estimation errors or unreliable judgment caused by

dynamic fluctuation of physical channels.

C. Limitations of CPLA

Although CPLAs have been able to guarantee the legiti-

macy of access in most cases, all of them rely on a single

device to accomplish the entire authentication process from

channel acquisition, data processing to final decision-making.

However, the emergence of new attacks, the limitation of

network resources and the highly dynamic nature of wireless

channels all lead to the fact that single-point PLA may not be

sufficient to secure the system. The limitations are summarized

as follows. Firstly, intelligent PLA-aware attackers can evade

detection through power manipulation and spatial position

optimization [6], resulting in a significant decline in CPLA’s

detection performance. Secondly, in light of the demand for

IoT massive connections, the workload of the central proces-

sor has increased dramatically, leading to higher processing

latency and difficulty in training the complex neural network

independently [4]. Thirdly, imperfect estimation of physical

layer features due to dynamic interference or user mobility

in fast changing environments will cause single-point failure

of the centralized system [1]. As a result, the robustness of

authentication is seriously reduced. Moreover, we can expect

that the security of certification solely relying on one device

is often more limited than that of cooperative authentication.

These limitations have motivated researchers to look for a

better authenticator with higher safety and credibility.

D. Motivations of DPLA

DPLA brings new opportunities to overcome the shortcom-

ings of CPLA. The idea was first introduced in [7], where

the DPLA scheme was investigated for a simple scenario con-

taining a single legitimate transmitter and a spoofing attacker.

Multiple supervised nodes (edge devices) located at different

spatial position are involved to complete the authentication

collaboratively. As such, the edge computing assisted DPLA

not only improves the authentication performance without

increasing the computational burden on each device, but also

allows tasks to be tailored to each node’s computing power and

properties, which complements the diversity and optimization

that newer communication scenarios require. Moreover, the

distributed architecture provides natural scalability, better anti-

attack capability and higher robustness, since the dynamic

joining, leaving or failure of a single point will not bring

significant impact on the entire authentication system. And

as confirmed in [6], DPLA effectively mitigates the degrada-

tion of detection performance when subjected to PLA-aware

attacks, thereby overcoming the vulnerability of CPLA.

E. Respective Application Scenarios

Both CPLA and DPLA are employed as aided schemes for

scenarios where traditional upper-layer protocols are hard to be

deployed or limited in efficiency. However, the choice between

them is mainly dependent on the network topology. The au-

thentication mode of CPLA is single-to-many, so only a central
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processor with powerful computing capabilities can guarantee 
the reliability of identification. CPLA is more applicable for 
authentication of small-scale user groups that are relatively 
geographically concentrated. And such schemes often require 
less extensibility and environmental adaptability. DPLA com-

pletes the authentication in a many-to-many manner, and the 
security risk of the system is spread out over each collabo-

rative peers, greatly reducing the possibility of authentication 
failures. Also, the parallel processing capabilities and more 
efficient data sharing brought by its branch/mesh topology 
enable DPLA to better cope with large-scale concurrent user 
access. Scenarios such as industrial wireless edge networks 
(IWENs), wireless sensor networks (WSNs) and so on. The 
common point of these networks is that the available edge 
peers they contain are numerous, and the number of packets 
they need to handle are tremendous. Furthermore, DPLA 
can be competent for scenarios that require greater flexibility 
and scalability in certification. For example, in a distributed 
topology, peer nodes i, j, k have already authenticated User A, 
while others still have no knowledge of him. The certification 
results of i, j, k could be passed to other neighbors if the 
interaction among peers is close and based on trust. That 
way, authentication may become transitive. And this potential 
ability will make DPLA more competitive than CPLA in such 
self-organizing networks.

III. DISCUSSION OF A DPLA FRAMEWORK

Current DPLA frameworks can be categorized into three 
types, each with a different level of distribution. The first 
one can be called as a semi-distributed PLA framework. The 
authentication decision is still made directly by the central 
node. The framework employs collaborators only as perception 
points, and the raw physical layer features are uploaded for 
combination. The second one is referred to as decision-level 
fusion based DPLA. This framework allows collaborators to 
evaluate each incoming packet preliminary. The information 
forwarded to the central node is the local outputs/opinions 
gleaned from collaborative peers. Acting as a fusion center 
(FC), the central node coordinates inconsistent opinions on 
authentication of the same packet for final decision-making. 
The third one is a fully-distributed PLA, with no coordinated 
node at all. This FC-free DPLA framework is more stable 
as damage to any node has minimal impact on system ca-

pability. Also, it can greatly enhance the network flexibility 
and scalability [8]. With these advantages, it is believed as an 
attractive model for collaborative authentication. As of now, 
the only study in [9] that introduced this mode is a secure 
physical layer voting scheme where each participant serves 
as a decentralized leader, and independently tallies the votes 
generated by other members to compute the final outcome. 
The interaction continues until all participants end up with 
the same voting estimate.

Next, we expound algorithms and techniques in each im-

plementation stage of DPLA, including distributed acquisition, 
distributed training, collaborator selection, and final decision 
formation, which are illustrated in Fig.2.

A. Distributed Acquisition

Distributed acquisition refers to a set of radio-heads e-

quipped with multiple antennas capturing channel state infor-

mation (CSI) from different geographic locations. The pioneer-

ing work of [5] proposed a logistic regression-based DPLA

strategy by taking advantage of several randomly deployed

landmarks to enhance the spatial resolution and to improve

spoofing detection rate. In view of this work, a few early

studies have been carried out focusing on the performance

enhancements brought by distributed acquisition. Yet, these

studies did not consider the fact that randomization of acqui-

sition locations would reduce the similarity of physical layer

feature, thereby increasing divergence among collaborators or

even leading to the failure to reach a consensus. Recently,

Wang et al. put forward a horizontal federated learning (FL)

aided DPLA scheme by scheduling multiple trusted edge de-

vices to jointly accomplish channel sensing and authentication

in [10]. Different from previous studies, the collaborators are

no longer randomly scattered, but closely surround the central

coordinator. This ensures more feature overlap and ultimately

facilitates cooperative learning based on sample associations.

In essential, the utilization of multi-directional perception

would enhance the robustness of authentication to perturba-

tions, since sharing of observations among collaborators will

compensate for uncertainties or imperfect measurements on

a single isolated node. Also, it greatly increases the difficulty

for an attacker to successfully replicate channel information of

legal users. Thus, DPLA realizes improved security compared

to CPLA.

B. Distributed Training

Distributed training aims to relieve the excessive computa-

tional load of a centralized control system. Its studies focus

on sample segmentation and information interaction/parameter

exchange among collaborative peers. Sample segmentation is

to find an optimal strategy for appropriately splitting large

amounts of datasets into sub-samples. A modified group-

ing method based on downsampling proposed in [4] has

been proved to display better sub-classification results while

reducing the data volume. Efficient information exchange

is for immediate updates, accelerated model convergence,

and to complement each other. Xiao et al. constructed a

DPLA scheme in [11] applying distributed Frank-Wolfe (d-

FW) algorithm to solve the coefficient estimation problem

of the complex ML-based model. The main contribution lies

in the introduction of a data sharing mechanism between

collaborators. It reduces communication and computational

costs of the distributed architecture, thereby enabling online

authentication. In [12], the authors presented an autonomous

collaborative PLA framework compatible with FL technol-

ogy. This approach is more privacy-preserving that allows

multiple independent collaborators with individual physical

layer observations to establish a shared authentication model,

without leaking their underlying data among peers. In this way,

malicious behaviors of stealing and abusing sensitive physical

data will be completely eradicated.
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Fig. 2: A DPLA framework.

In brief, distributed training can handle large amounts of

training data that is formidable for a single resource-limited

device in a parallel manner. Moreover, it achieves substan-

tial enhancements on identification accuracy. Note that the

extra communication overhead due to frequent information

exchange may cause spectrum shortage and high latency.

Hence, how to improve efficiency through the optimal design

of data sharing policy calling for further exploration.

C. Collaborator Selection

Collaborator selection is to filter non-malicious devices,

with adequate channel quality, strong computing power, and

good reputation, as candidates for use. Specifically, the fil-

tering mechanism includes unreliable features elimination and

unconfident collaborators cancellation.

For one thing, some physical layer features are sensitive

to changeable topology, especially in high-speed mobile sce-

narios. These features are considered unreliable since authen-

tication based on variable features may lead to unexpected

errors. In [2], Wang et al. constructed a situation-aware DPLA

customization algorithm in a UAV scenario. In the algorithm,

they utilized Gini impurity as an evaluation indicator to

measure the reliability of different physical layer features.

Accordingly, only the UAVs with reliable feature observations

are eligible to participate in following authentication. For

another, some malicious or hostile nodes may interfere with

authentication progress by injecting misleading information.

An effective solution is to introduce authority constraints

by computing trust degree and node credibility. In [13], the

authors presented a novel DPLA strategy with cluster-head

safeguarding mechanism. In the strategy, each UAV is assigned

a trust value weighted by detection error level and sensitivity

level to represent its own identification capability. The node

will be graded as an unconfident/untrustworthy collaborator

and removed from the network when its trust does not reach

the desired threshold.

In short, a collaborator selection mechanism can customize

the suitable feature combination on each trusted node, increase

the overall system stability, and further minimize the compu-

tation overhead of DPLA.

D. Final Decision Formation

Final decision provides the certification result. For the sec-

ond and third DPLA frameworks, a voting fusion mechanism

can be introduced as an effective means to integrate the outputs

of different collaborators for more robust decision results. The

goal of it is to maximize the contribution of high-quality local

outputs while minimizing the negative impact of erroneous

local outputs on the final decision. Existing voting fusion

mechanisms include unweighted voting and weighted voting.

For the unweighted voting mechanism, the most straightfor-

ward idea is the all-accept/-reject method, which denotes that

a message is either accepted if all collaborators outputs are

legitimate or rejected if all are illegitimate. Another method

is plurality voting. It accepts or rejects messages based on

popular votes. However, plurality voting ignores gaps of

authentication capacity among collaborators. Even those with

less identifying capability have the same voting power as more

engaged collaborators. To address this challenge, the authors

in [14] predefined appropriate weights for each voter, named

as the weighted voting mechanism, which encompasses a

variety of forms. For example, simple weighted voting (SWV)

requires outputs of all voters to be weighted according to their

estimated authentication accuracy. Weighted majority voting

(WMV) maximizes the overall accuracy of decision-making

by assigning weights in the form of Logit. Re-scale weighted

voting removes the ineligible nodes and scales weight values

of qualified nodes proportionally. Best-worst weighted voting

(BWWV) defines the authorities of the best and worst classifier

as 1 and 0, and linearly grades the weights of others.

In a word, decision-level fusion can obtain a more compre-

hensive certification result by coordinating multi-party opin-
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ions, while reducing the additional communication overhead 
caused by frequent parameter exchange.

IV. CASE STUDIES

This section validates the effectiveness of the distributed 
framework by comparing the authentication performance of 
the single-point CPLA and the voting-assisted DPLA.

We consider a DPLA system composed of seven edge 
collaborative devices (C1 ∼ C7) that placed around the 
central receiver (Bob). The legitimate user (Alice) intends to 
communicate with Bob, while the coexisting spoofer (Eve) 
who impersonates Alice’s identity also attempts to muddle 
through. To be more realistic, we assume that the collab-

orators are not completely credible/confident. For example, 
C4 is suffered from severe extra noise, and C5 is a hidden 
internal attacker that seeks to disrupt the decision formation 
by arbitrarily flipping its local outputs. Based on this, a 
collaborator selection (CS) strategy is adopted to cancel poorly 
performing or malicious collaborators, thereby retaining those 
that yield positive contributions. Specifically, each collaborator 
is assigned a trust value weighted by false alarm rate and 
missed detection rate. If the trust is lower than a predefined 
threshold, the node will be considered invalid and discarded 
from the micro-alliance. The outputs of selected collaborators 
are eligible for fusion. Both plurality voting and weighted 
majority voting are applied for performance analysis.

The CSI is used as the identifying signature for PLA. We 
build a typical Rayleigh fading channel to simulate indoor 
communications, which may contain a large open space with 
a few scattered obstacles. The channel coefficient is affected by 
both the large-scale and small-scale propagation effects, which 
are modeled as the log-normal shadow fading and the multi-

path flat Rayleigh fading, respectively. Then, the static phys-

ical datasets are generated on a single-input-multiple-output 
(SIMO) orthogonal-frequency-division-multiplexing (OFDM) 
transmission system, where least squares (LS) algorithm is 
applied for channel measurements. Detailed communication 
parameter settings follow the IEEE 802.11a WLAN standard 
mentioned in [10]. Besides, collaborators do not assume 
the responsibility for making final decisions, so the system 
has no strict requirements on their precision. The ML-based 
network structure at the collaborative devices can be relatively 
simplified to ensure that their computational burden is not 
overwhelming. Therefore, the back propagation (BP) neural 
network, which has faster learning speed, less computation and 
higher parallelism, is employed as the sub-classifier. It consists 
of 3 hidden layers with 20, 20 and 10 neurons, sequentially.

Fig.3 shows the authentication performance of the seven 
local collaborators and their corresponding geographical loca-

tions. To be specific, the final accuracy rates they achieved 
are 98.17%, 94.71%, 92.58%, 75.46%, 51.45%, 98.09% and 
99.14%. Note that the gaps in identification capacities are 
due to the fact that the location-aware sensitivity of each 
collaborator are quite different. The location-aware sensitivity 
can be defined as the distance difference between Alice to 
a collaborator and Eve to it. The greater it is, the higher 
the resolution of channel characteristics will be, therefore,
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more accurate identification could be realized. Besides, the

performance of C4 and C5 is significantly inferior, resulting

in poor trust values assigned by Bob. That way, unconfident

collaborators with unreliable channel observations and internal

attackers can be detected effectively.

After generating local outputs and experiencing the CS,

the final decision is made among selected edge devices by

voting. To evaluate the effect of authenticators, the receiver

operating characteristic (ROC) curve with the area under the

curve (AUC) is introduced as a measure. The ROC plots the

true positive rate (TPR) against the false positive rate (FPR)

to illustrate the performance of a binary classier with different

thresholds, which graphically reflects the correlation between

sensitivity and specificity.

Fig.4 demonstrates the comparison results between CPLA

and DPLA. It can be found that the AUC difference of the

WMV-assisted DPLA and the CPLA is 0.0251, which veri-

fies the superiority of distributed cooperative authentication.

Moreover, the performance gain introduced by collaborator

selection is discussed. We can observe that the WMV-assisted

DPLA maintains excellent performance in terms of AUC

even without CS, while that of plurality voting decreases

dramatically to a worse level than the CPLA. The reason is

that the WMV mechanism can weaken the authority of poorly

performing collaborators by adaptively lowering their weights,
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thereby mitigating the negative impact of internal attackers on

decision-making. This provides DPLA with performance gains

similar to collaborator selection. By contrast, the plurality

voting mechanism requires CS more to ensure its reliability.

Fig.5 depicts the time cost of executing DPLA and CPLA.

Delays among collaborators in each stage of distributed ac-

quisition, training and decision/authentication are considered.

For channel acquisition, the time consumption for them is

almost the same. This is because the pilot signal is sent as

a broadcast, collaborators can capture it simultaneously with

Bob. Note that the distributed acquisition inevitably increases

the overhead of signature extraction in exchange for enhanced

spatial resolution of physical layer features. This concern may

be alleviated by striking a balance between performance and

cost. For instance, we can set an appropriate budget on the

number of participating collaborators, or distribute rewards

(e.g. communication resources) to collaborators to compensate

their costs. For each iteration, 1200 CSI samples are fed for

model updates, and 200 packets are randomly selected from

the validation set for identification. As can be seen, the training

time of CPLA takes about three times longer than DPLA,

which proves the efficiency of distributed training. The latency

is significantly reduced because the complexity of neural

network and the data volume processed on the cooperative

devices are much lower than that of CPLA, while the parallel

processing of CPUs applied on edge devices also plays a

great role. In addition, it is noted that the single-point CPLA

accomplishes authentication faster in milliseconds, while the

WMV-assisted DPLA performs slightly poorly. The reason

is that the DPLA scheme takes more time to evaluate and

assign weights to the local outputs of the sub-classifiers for

attaining a unified decision, whereas the CPLA scheme can

make judgements directly via an established authenticator.

The results demonstrate that CPLA can achieve faster

authentication when the model completes offline training.

However, the shortcoming is once the environment changes,

the retraining at the central authenticator may be quite time-

consuming. It is believed that edge intelligence enabled D-

PLAs will be more efficient for relearning, since each node

is not heavily burdened. And the little time spent on decision

fusion is acceptable in exchange for a higher detection rate of

external spoofers.

V. OPEN RESEARCH ISSUES

In this section, we discuss a few open issues in DPLA with

consideration of novel techniques and innovative concepts.

A. Fully-distributed PLA based on Gossip protocols

Introducing consensus-based gossip learning (GL) to the

authentication procedure is one of the possible methods to

achieve fully-distributed PLA. GL, originated from FL, is one

of state-of-the-art decentralized machine learning protocols

[8]. Different from traditional FL, GL requires no aggregation

server or any central component. It addresses the challenges of

single point of failure, poor scalability, and weak connectivity

in FL, thus enabling higher fault-tolerance and robustness

for DPLA systems. Specifically, collaborators in GL collect

physical layer features for local training. The collaborators

then transmit their model updates to one-hop neighbors and

aggregate the parameters received from these neighbors until

the network converges to an average consensus state. That way,

each collaborator acts as both server and client simultaneously,

enabling peer-to-peer communication without infrastructure.

In a GL network, any collaborator can make the final de-

cision on authentication, preventing over-dependence on any

point. However, this structure may involve extensive model

parameters/data exchange among peers, resulting in reduced

communication efficiency of the GL protocol. To address

this concern, model sparsification technologies and adaptive

peer selection mechanisms should be introduced. By removing

redundant information and constructing the communication

topology adaptively, consensus formation will be accelerated.

B. Node reputation management against internal attacks

While DPLA can achieve better security against outer

attacks, the utilization of collaborative devices may introduce

new security challenges. The faulty or malicious nodes (e.g.,

vote tampering attacks and Byzantine attacks) hidden in them

may inject falsified reports, which will adversely affect the

reliability of final decisions, or even lead to a failure to

reach consensus. To guard against such internal attacks, node

reputation-rating can be introduced into the DPLA design.

This will have a positive impact on the confidence of the

interactive information. Reputation measures the reliability

or credibility of an entity in view of its past behaviors and

current performance, thereby eliminating fluctuations caused

by a single observation. Numerous reputation models studied

in mobile Ad-hoc networks can be naturally migrated to

DPLA. For example, the authors in [15] build a Beta reputation

system and evaluates the node reputation through clustering-

based and distance-based decision rules. The evaluation result

is then used as a reference for weighted value of model

aggregation in the subsequent P2P communications. Moreover,

node reputation should be dynamically updated according to

the performance of different time slots, combined with certain

accountability mechanisms. Collaborators with low reputation

scores need to be punished, while those with good reputation

need to be rewarded.

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: TEXAS CHRISTIAN UNIVERSITY. Downloaded on July 05,2023 at 17:54:27 UTC from IEEE Xplore.  Restrictions apply. 



7

C. Trade-off between security performance and cost

Previous studies on DPLA have lacked a comprehensive

analysis of system-level costs, such as total latency, com-

munication overhead, and so on. Although the enhanced

detection performance is an attractive benefit of DPLA, it

requires additional edge devices for channel acquisition and

computing, bringing about extra costs (e.g. bandwidth, energy)

to incentivize or pay collaborators. As pointed out in [3],

the balance between performance and costs is strongly rely

on the deployment scenario, processing architecture, resource

allocation and the number of participants involved. To find

which deployment framework is a more preferable option,

we should compare different DPLA frameworks with varying

degrees of distribution, ranging from completely centralized to

fully-distributed processing. In addition, jointly optimization

issues can be formulated by considering both the resource

management and the collaborator selection, such that better

a trade-off between authentication performance and consump-

tion can be realized.

D. Deployment challenges for DPLA in practical networks

For the semi-distributed PLA framework, many critical

factors need to be considered in the actual implementation,

including the optimal design of acquisition locations and

the heterogeneity of collaborative devices. By exploring the

channel-to-location mapping relations and quantifying the

quality of channel observations at different devices, the per-

formance of the DPLA framework can be further improved.

For the decision-level fusion based DPLA framework, good

coordination of sensing and computing among collaborators is

of paramount importance. The difficulty lies in the joint design

of communication resource and computation performance,

i.e. integrated sensing and computation (ISAC), to schedule

collaborators more flexibly, improve resource utilization, and

achieve more accurate certification. For the fully-distributed

PLA framework, how to organically combine a reputation

calculation/delivery mechanism with the interactive authenti-

cation process of the GL-based framework is a tricky issue

in deployment. Moreover, in real communication networks

with frequent data interactions, once malicious nodes occupy

a certain proportion or there is a concealed Byzantine data

cooperative attack, the results of GL may deviate from the

theoretical eventual consistency. In this case, additional secu-

rity measures other than reputation need to be introduced.

VI. CONCLUSION

The advantages of DPLA lie in the high robustness brought

by distributed acquisition and the efficiency and flexibility

brought by distributed training. In this article, we present

a DPLA framework, survey various technologies used in

each stage of DPLA, and compare authentication performance

and time efficiency between CPLA and DPLAs. Finally, we

discussed a few open research issues on addressing new

perspective and opportunities of feasible DPLA designs.
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