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Abstract—Distributed physical layer authentication (DPLA) is
a novel authentication framework, which not only exploits the
collaborative computing of multiple devices to enhance overall
efficiency, but also alleviates the degradation of processing perfor-
mance caused by resource-constrained terminals. It is considered
a promising architecture for solving access security issues in
future communications. Considering DPLA’s potential, in this ar-
ticle, we review existing DPLA schemes to provide a comprehen-
sive summary of the strategies and technical approaches adopted
during each implementation stage. Our simulation results show
that the voting-assisted DPLA scheme has better authentication
performance than the centralized PLA. In addition, we also
present some open research issues on DPLA, addressing new
opportunities ahead and potential research directions.

I. INTRODUCTION

UTHENTICATION plays a crucial role in securing wire-

less communications systems and applications as it is

the basis for most types of access control. Typically, an
authentication scheme depends on a type of authenticator
(e.g., secrets), which is a means used to confirm a claimed
identity. For example, a memorized secret (e.g., password)
is a common authenticator. Another popular authenticator
for networked systems is a secret key managed by a cryp-
tographic system (e.g. asymmetric cryptography). As new
wireless communications systems, such as the Internet of
Things (IoT), emerge with technology advancements (e.g.,
5G), these common authenticators may no longer be effective
due to expensive management or computational overhead [1].
Information-theoretic security based authenticators, there-
fore, become more attractive as they are more suitable for
resource-constrained devices and delay-sensitive applications
in IoT. This type of authenticator, called a physical layer
authenticator (PLA), exploits natural features of wireless links
such as channel reciprocity, randomness, space-time unique-
ness for authentication. PLA authenticates by comparing ex-
tracted physical layer features of a user’s signal to a previously
defined threshold of features unique to that user. The new
signal must be consistent with the features to be accepted.
In this way, PLA fulfills the integration of communications
and authentication by taking advantage of the signal itself,
effectively reducing additional network resource consumption.
Broadly speaking, there are two categories of PLA: cen-
tralized and decentralized. Centralized PLA (CPLA) relies
on a single device to accomplish the entire authentication
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process including channel information collection, processing
and identification. Thus, CPLA schemes are faced with the
risk of single-point failure at cluster-head [2], which is fairly
common in highly dynamic and unreliable communication
scenarios. Decentralized PLA (DPLA), on the other hand,
relies on several collaborative nodes, which evaluates authen-
ticity as follows: i) Share the tasks of channel sensing, data
processing or message identifying from the central node to
a group of candidate edge nodes; ii) Select non-malignant,
reliable and self-confident candidate nodes acting as real
collaborators in a micro-alliance, according to their respective
channel quality, identification ability or historical reputations,
etc; iii) Formulate a unified authentication decision in this
micro-alliance with the help of collaborative communications,
model parameter interaction and decision-level fusion among
multiple trusted edge devices. DPLA’s authentication process
has several advantages over CPLA’s process [3]. In specif-
ic, multi-directional channel sensing, regarded as distributed
acquisition, provides DPLA a more robust physical layer
dataset with spatial diversity that attackers can hardly imitate.
Multi-node aided data processing and identifying, regarded as
distributed training, brings DPLA better real-time performance
and lowers computing burden on individual device [4]. Multi-
party involved consensus formation, regarded as decision fu-
sion, offers DPLA a more comprehensive authentication result
with higher accuracy. Through personalized task assignment
of collaborators and decision fusion at a coordinator, DPLA
can make authentication decisions more accurate, robust and
efficient.

To the best of our knowledge, this is the first work that gives
a broad overview of current DPLA technology and literature.
We first review the theoretical foundations of PLA, and
summarize the limitations of CPLA to derive the motivations
for DPLA studies. Then, we explain the DPLA frameworks
in detail, expounding strategies, algorithms, and techniques
used in each stage of setting up a DPLA system. We also
present some preliminary comparison results to verify the
effectiveness of the mentioned weighted voting-assisted DPLA
scheme compared to a classical CPLA scheme. And finally,
we discuss several open research issues by considering new
perspectives and conclude the article.

II. OVERVIEW OF PLA

In this section, we first review the theoretical basis and most
commonly used mechanisms of PLA. Then, we summarize the
limitations faced by CPLA and conclude with the motivations
for DPLA research.
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A. PLA Basics

Considering a typical PLA system as shown in Fig. 1, Bob
receives several messages, including legitimate messages from
Alice and fabricated messages from Eve, which impersonate
Alice’s signals. Once a new message arrives, Bob authenticates
its origin by analyzing the latest extracted physical layer fea-
tures. Based on certain testing-decision mechanisms described
in the next subsection, only messages with similar physical
features to legitimate users will be received, while others will
be denied. Since Eve’s signals have different physical layer
features from Alice’s, his/her message is rejected, maintaining
the integrity of the system.
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Fig. 1: A typical PLA framework.

In this way, PLA accomplishes light-weight authentication
by using the signal itself. This is due to the fact that physical
layer features are spatially uncorrelated between different ge-
ographic locations. Therefore, as long as the distance between
the legitimate user and the attacker is greater than a half
wavelength, PLA can effectively differentiate the signals [5].

B. Authentication-Decision Mechanisms

Two types decision mechanisms are exploited in PLA. One
method, named as the threshold-based mechanism, follows the
Neyman Pearson lemma to systematically construct a binary

Hi
hypothesis test, i.e., T(x,) 2 ¢, where Ho and H; represent
H

the case of messages from aD legitimate user and a malicious
node, respectively. To obtain an optimal decision boundary §;;
in the method, it is guaranteed to minimize the Type-2 error
(i.e., the probability of missed detection) for a given Type-1
error (i.e., the probability of false alarm). Meanwhile, the test
statistic T(z,,) is formulated according to channel difference
measurements such as the likelihood ratio test.

The other method is designed based on the machine learning
(ML) technology. It models PLA as a classify issue to find
out an optimal segmentation plane for identity signatures by
training the parameters of the neural network, thus achieving
threshold-free. Different ML methods are applied in PLA
with different emphases. For example, deep neural network
(DNN) has stronger fitting and classification capabilities than
other algorithms, which can assist PLA to make decision
more accurate, while support vector machine (SVM) can
provide better authentication performance for PLA on limited
offline datasets. Unsupervised ML methods, such as K-means
clustering, k-nearest neighbor (k-NN) algorithm, etc. have
also been applied to aggregate multiple sampled instantaneous

physical layer features into clusters, which can effectively
combat estimation errors or unreliable judgment caused by
dynamic fluctuation of physical channels.

C. Limitations of CPLA

Although CPLAs have been able to guarantee the legiti-
macy of access in most cases, all of them rely on a single
device to accomplish the entire authentication process from
channel acquisition, data processing to final decision-making.
However, the emergence of new attacks, the limitation of
network resources and the highly dynamic nature of wireless
channels all lead to the fact that single-point PLA may not be
sufficient to secure the system. The limitations are summarized
as follows. Firstly, intelligent PLA-aware attackers can evade
detection through power manipulation and spatial position
optimization [6], resulting in a significant decline in CPLA’s
detection performance. Secondly, in light of the demand for
IoT massive connections, the workload of the central proces-
sor has increased dramatically, leading to higher processing
latency and difficulty in training the complex neural network
independently [4]. Thirdly, imperfect estimation of physical
layer features due to dynamic interference or user mobility
in fast changing environments will cause single-point failure
of the centralized system [1]. As a result, the robustness of
authentication is seriously reduced. Moreover, we can expect
that the security of certification solely relying on one device
is often more limited than that of cooperative authentication.
These limitations have motivated researchers to look for a
better authenticator with higher safety and credibility.

D. Motivations of DPLA

DPLA brings new opportunities to overcome the shortcom-
ings of CPLA. The idea was first introduced in [7], where
the DPLA scheme was investigated for a simple scenario con-
taining a single legitimate transmitter and a spoofing attacker.
Multiple supervised nodes (edge devices) located at different
spatial position are involved to complete the authentication
collaboratively. As such, the edge computing assisted DPLA
not only improves the authentication performance without
increasing the computational burden on each device, but also
allows tasks to be tailored to each node’s computing power and
properties, which complements the diversity and optimization
that newer communication scenarios require. Moreover, the
distributed architecture provides natural scalability, better anti-
attack capability and higher robustness, since the dynamic
joining, leaving or failure of a single point will not bring
significant impact on the entire authentication system. And
as confirmed in [6], DPLA effectively mitigates the degrada-
tion of detection performance when subjected to PLA-aware
attacks, thereby overcoming the vulnerability of CPLA.

E. Respective Application Scenarios

Both CPLA and DPLA are employed as aided schemes for
scenarios where traditional upper-layer protocols are hard to be
deployed or limited in efficiency. However, the choice between
them is mainly dependent on the network topology. The au-
thentication mode of CPLA is single-to-many, so only a central
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processor with powerful computing capabilities can guarantee
the reliability of identification. CPLA is more applicable for
authentication of small-scale user groups that are relatively
geographically concentrated. And such schemes often require
less extensibility and environmental adaptability. DPLA com-
pletes the authentication in a many-to-many manner, and the
security risk of the system is spread out over each collabo-
rative peers, greatly reducing the possibility of authentication
failures. Also, the parallel processing capabilities and more
efficient data sharing brought by its branch/mesh topology
enable DPLA to better cope with large-scale concurrent user
access. Scenarios such as industrial wireless edge networks
(IWENSs), wireless sensor networks (WSNs) and so on. The
common point of these networks is that the available edge
peers they contain are numerous, and the number of packets
they need to handle are tremendous. Furthermore, DPLA
can be competent for scenarios that require greater flexibility
and scalability in certification. For example, in a distributed
topology, peer nodes i, j, k have already authenticated User A,
while others still have no knowledge of him. The certification
results of 4, j,k could be passed to other neighbors if the
interaction among peers is close and based on trust. That
way, authentication may become transitive. And this potential
ability will make DPLA more competitive than CPLA in such
self-organizing networks.

IIT. DiscussiON OF A DPLA FRAMEWORK

Current DPLA frameworks can be categorized into three
types, each with a different level of distribution. The first
one can be called as a semi-distributed PLA framework. The
authentication decision is still made directly by the central
node. The framework employs collaborators only as perception
points, and the raw physical layer features are uploaded for
combination. The second one is referred to as decision-level
fusion based DPLA. This framework allows collaborators to
evaluate each incoming packet preliminary. The information
forwarded to the central node is the local outputs/opinions
gleaned from collaborative peers. Acting as a fusion center
(FC), the central node coordinates inconsistent opinions on
authentication of the same packet for final decision-making.
The third one is a fully-distributed PLA, with no coordinated
node at all. This FC-free DPLA framework is more stable
as damage to any node has minimal impact on system ca-
pability. Also, it can greatly enhance the network flexibility
and scalability [8]. With these advantages, it is believed as an
attractive model for collaborative authentication. As of now,
the only study in [9] that introduced this mode is a secure
physical layer voting scheme where each participant serves
as a decentralized leader, and independently tallies the votes
generated by other members to compute the final outcome.
The interaction continues until all participants end up with
the same voting estimate.

Next, we expound algorithms and techniques in each im-
plementation stage of DPLA, including distributed acquisition,
distributed training, collaborator selection, and final decision
formation, which are illustrated in Fig.2.

A. Distributed Acquisition

Distributed acquisition refers to a set of radio-heads e-
quipped with multiple antennas capturing channel state infor-
mation (CSI) from different geographic locations. The pioneer-
ing work of [5] proposed a logistic regression-based DPLA
strategy by taking advantage of several randomly deployed
landmarks to enhance the spatial resolution and to improve
spoofing detection rate. In view of this work, a few early
studies have been carried out focusing on the performance
enhancements brought by distributed acquisition. Yet, these
studies did not consider the fact that randomization of acqui-
sition locations would reduce the similarity of physical layer
feature, thereby increasing divergence among collaborators or
even leading to the failure to reach a consensus. Recently,
Wang et al. put forward a horizontal federated learning (FL)
aided DPLA scheme by scheduling multiple trusted edge de-
vices to jointly accomplish channel sensing and authentication
in [10]. Different from previous studies, the collaborators are
no longer randomly scattered, but closely surround the central
coordinator. This ensures more feature overlap and ultimately
facilitates cooperative learning based on sample associations.

In essential, the utilization of multi-directional perception
would enhance the robustness of authentication to perturba-
tions, since sharing of observations among collaborators will
compensate for uncertainties or imperfect measurements on
a single isolated node. Also, it greatly increases the difficulty
for an attacker to successfully replicate channel information of
legal users. Thus, DPLA realizes improved security compared
to CPLA.

B. Distributed Training

Distributed training aims to relieve the excessive computa-
tional load of a centralized control system. Its studies focus
on sample segmentation and information interaction/parameter
exchange among collaborative peers. Sample segmentation is
to find an optimal strategy for appropriately splitting large
amounts of datasets into sub-samples. A modified group-
ing method based on downsampling proposed in [4] has
been proved to display better sub-classification results while
reducing the data volume. Efficient information exchange
is for immediate updates, accelerated model convergence,
and to complement each other. Xiao et al. constructed a
DPLA scheme in [11] applying distributed Frank-Wolfe (d-
FW) algorithm to solve the coefficient estimation problem
of the complex ML-based model. The main contribution lies
in the introduction of a data sharing mechanism between
collaborators. It reduces communication and computational
costs of the distributed architecture, thereby enabling online
authentication. In [12], the authors presented an autonomous
collaborative PLA framework compatible with FL technol-
ogy. This approach is more privacy-preserving that allows
multiple independent collaborators with individual physical
layer observations to establish a shared authentication model,
without leaking their underlying data among peers. In this way,
malicious behaviors of stealing and abusing sensitive physical
data will be completely eradicated.
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Fig. 2: A DPLA framework.

In brief, distributed training can handle large amounts of
training data that is formidable for a single resource-limited
device in a parallel manner. Moreover, it achieves substan-
tial enhancements on identification accuracy. Note that the
extra communication overhead due to frequent information
exchange may cause spectrum shortage and high latency.
Hence, how to improve efficiency through the optimal design
of data sharing policy calling for further exploration.

C. Collaborator Selection

Collaborator selection is to filter non-malicious devices,
with adequate channel quality, strong computing power, and
good reputation, as candidates for use. Specifically, the fil-
tering mechanism includes unreliable features elimination and
unconfident collaborators cancellation.

For one thing, some physical layer features are sensitive
to changeable topology, especially in high-speed mobile sce-
narios. These features are considered unreliable since authen-
tication based on variable features may lead to unexpected
errors. In [2], Wang et al. constructed a situation-aware DPLA
customization algorithm in a UAV scenario. In the algorithm,
they utilized Gini impurity as an evaluation indicator to
measure the reliability of different physical layer features.
Accordingly, only the UAVs with reliable feature observations
are eligible to participate in following authentication. For
another, some malicious or hostile nodes may interfere with
authentication progress by injecting misleading information.
An effective solution is to introduce authority constraints
by computing trust degree and node credibility. In [13], the
authors presented a novel DPLA strategy with cluster-head
safeguarding mechanism. In the strategy, each UAV is assigned
a trust value weighted by detection error level and sensitivity
level to represent its own identification capability. The node
will be graded as an unconfident/untrustworthy collaborator
and removed from the network when its trust does not reach
the desired threshold.

In short, a collaborator selection mechanism can customize
the suitable feature combination on each trusted node, increase
the overall system stability, and further minimize the compu-
tation overhead of DPLA.

D. Final Decision Formation

Final decision provides the certification result. For the sec-
ond and third DPLA frameworks, a voting fusion mechanism
can be introduced as an effective means to integrate the outputs
of different collaborators for more robust decision results. The
goal of it is to maximize the contribution of high-quality local
outputs while minimizing the negative impact of erroneous
local outputs on the final decision. Existing voting fusion
mechanisms include unweighted voting and weighted voting.

For the unweighted voting mechanism, the most straightfor-
ward idea is the all-accept/-reject method, which denotes that
a message is either accepted if all collaborators outputs are
legitimate or rejected if all are illegitimate. Another method
is plurality voting. It accepts or rejects messages based on
popular votes. However, plurality voting ignores gaps of
authentication capacity among collaborators. Even those with
less identifying capability have the same voting power as more
engaged collaborators. To address this challenge, the authors
in [14] predefined appropriate weights for each voter, named
as the weighted voting mechanism, which encompasses a
variety of forms. For example, simple weighted voting (SWV)
requires outputs of all voters to be weighted according to their
estimated authentication accuracy. Weighted majority voting
(WMV) maximizes the overall accuracy of decision-making
by assigning weights in the form of Logit. Re-scale weighted
voting removes the ineligible nodes and scales weight values
of qualified nodes proportionally. Best-worst weighted voting
(BWWYV) defines the authorities of the best and worst classifier
as 1 and 0, and linearly grades the weights of others.

In a word, decision-level fusion can obtain a more compre-
hensive certification result by coordinating multi-party opin-
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ions, while reducing the additional communication overhead
caused by frequent parameter exchange.

IV. CASE STUDIES

This section validates the effectiveness of the distributed
framework by comparing the authentication performance of
the single-point CPLA and the voting-assisted DPLA.

We consider a DPLA system composed of seven edge
collaborative devices (C; ~ C7) that placed around the
central receiver (Bob). The legitimate user (Alice) intends to
communicate with Bob, while the coexisting spoofer (Eve)
who impersonates Alice’s identity also attempts to muddle
through. To be more realistic, we assume that the collab-
orators are not completely credible/confident. For example,
Cy is suffered from severe extra noise, and C5 is a hidden
internal attacker that seeks to disrupt the decision formation
by arbitrarily flipping its local outputs. Based on this, a
collaborator selection (CS) strategy is adopted to cancel poorly
performing or malicious collaborators, thereby retaining those
that yield positive contributions. Specifically, each collaborator
is assigned a trust value weighted by false alarm rate and
missed detection rate. If the trust is lower than a predefined
threshold, the node will be considered invalid and discarded
from the micro-alliance. The outputs of selected collaborators
are eligible for fusion. Both plurality voting and weighted
majority voting are applied for performance analysis.

The CSI is used as the identifying signature for PLA. We
build a typical Rayleigh fading channel to simulate indoor
communications, which may contain a large open space with
a few scattered obstacles. The channel coefficient is affected by
both the large-scale and small-scale propagation effects, which
are modeled as the log-normal shadow fading and the multi-
path flat Rayleigh fading, respectively. Then, the static phys-
ical datasets are generated on a single-input-multiple-output
(SIMO) orthogonal-frequency-division-multiplexing (OFDM)
transmission system, where least squares (LS) algorithm is
applied for channel measurements. Detailed communication
parameter settings follow the IEEE 802.11a WLAN standard
mentioned in [10]. Besides, collaborators do not assume
the responsibility for making final decisions, so the system
has no strict requirements on their precision. The ML-based
network structure at the collaborative devices can be relatively
simplified to ensure that their computational burden is not
overwhelming. Therefore, the back propagation (BP) neural
network, which has faster learning speed, less computation and
higher parallelism, is employed as the sub-classifier. It consists
of 3 hidden layers with 20, 20 and 10 neurons, sequentially.

Fig.3 shows the authentication performance of the seven
local collaborators and their corresponding geographical loca-
tions. To be specific, the final accuracy rates they achieved
are 98.17%, 94.71%, 92.58%, 75.46%, 51.45%, 98.09% and
99.14%. Note that the gaps in identification capacities are
due to the fact that the location-aware sensitivity of each
collaborator are quite different. The location-aware sensitivity
can be defined as the distance difference between Alice to
a collaborator and Eve to it. The greater it is, the higher
the resolution of channel characteristics will be, therefore,
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more accurate identification could be realized. Besides, the
performance of C4 and C' is significantly inferior, resulting
in poor trust values assigned by Bob. That way, unconfident
collaborators with unreliable channel observations and internal
attackers can be detected effectively.

After generating local outputs and experiencing the CS,
the final decision is made among selected edge devices by
voting. To evaluate the effect of authenticators, the receiver
operating characteristic (ROC) curve with the area under the
curve (AUC) is introduced as a measure. The ROC plots the
true positive rate (TPR) against the false positive rate (FPR)
to illustrate the performance of a binary classier with different
thresholds, which graphically reflects the correlation between
sensitivity and specificity.

Fig.4 demonstrates the comparison results between CPLA
and DPLA. It can be found that the AUC difference of the
WM V-assisted DPLA and the CPLA is 0.0251, which veri-
fies the superiority of distributed cooperative authentication.
Moreover, the performance gain introduced by collaborator
selection is discussed. We can observe that the WM V-assisted
DPLA maintains excellent performance in terms of AUC
even without CS, while that of plurality voting decreases
dramatically to a worse level than the CPLA. The reason is
that the WMV mechanism can weaken the authority of poorly
performing collaborators by adaptively lowering their weights,
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thereby mitigating the negative impact of internal attackers on
decision-making. This provides DPLA with performance gains
similar to collaborator selection. By contrast, the plurality
voting mechanism requires CS more to ensure its reliability.
Fig.5 depicts the time cost of executing DPLA and CPLA.
Delays among collaborators in each stage of distributed ac-
quisition, training and decision/authentication are considered.
For channel acquisition, the time consumption for them is
almost the same. This is because the pilot signal is sent as
a broadcast, collaborators can capture it simultaneously with
Bob. Note that the distributed acquisition inevitably increases
the overhead of signature extraction in exchange for enhanced
spatial resolution of physical layer features. This concern may
be alleviated by striking a balance between performance and
cost. For instance, we can set an appropriate budget on the
number of participating collaborators, or distribute rewards
(e.g. communication resources) to collaborators to compensate
their costs. For each iteration, 1200 CSI samples are fed for
model updates, and 200 packets are randomly selected from
the validation set for identification. As can be seen, the training
time of CPLA takes about three times longer than DPLA,
which proves the efficiency of distributed training. The latency
is significantly reduced because the complexity of neural
network and the data volume processed on the cooperative
devices are much lower than that of CPLA, while the parallel
processing of CPUs applied on edge devices also plays a
great role. In addition, it is noted that the single-point CPLA
accomplishes authentication faster in milliseconds, while the
WM V-assisted DPLA performs slightly poorly. The reason
is that the DPLA scheme takes more time to evaluate and
assign weights to the local outputs of the sub-classifiers for
attaining a unified decision, whereas the CPLA scheme can
make judgements directly via an established authenticator.
The results demonstrate that CPLA can achieve faster
authentication when the model completes offline training.
However, the shortcoming is once the environment changes,
the retraining at the central authenticator may be quite time-
consuming. It is believed that edge intelligence enabled D-
PLAs will be more efficient for relearning, since each node
is not heavily burdened. And the little time spent on decision

fusion is acceptable in exchange for a higher detection rate of
external spoofers.

V. OPEN RESEARCH ISSUES

In this section, we discuss a few open issues in DPLA with
consideration of novel techniques and innovative concepts.

A. Fully-distributed PLA based on Gossip protocols

Introducing consensus-based gossip learning (GL) to the
authentication procedure is one of the possible methods to
achieve fully-distributed PLA. GL, originated from FL, is one
of state-of-the-art decentralized machine learning protocols
[8]. Different from traditional FL, GL requires no aggregation
server or any central component. It addresses the challenges of
single point of failure, poor scalability, and weak connectivity
in FL, thus enabling higher fault-tolerance and robustness
for DPLA systems. Specifically, collaborators in GL collect
physical layer features for local training. The collaborators
then transmit their model updates to one-hop neighbors and
aggregate the parameters received from these neighbors until
the network converges to an average consensus state. That way,
each collaborator acts as both server and client simultaneously,
enabling peer-to-peer communication without infrastructure.
In a GL network, any collaborator can make the final de-
cision on authentication, preventing over-dependence on any
point. However, this structure may involve extensive model
parameters/data exchange among peers, resulting in reduced
communication efficiency of the GL protocol. To address
this concern, model sparsification technologies and adaptive
peer selection mechanisms should be introduced. By removing
redundant information and constructing the communication
topology adaptively, consensus formation will be accelerated.

B. Node reputation management against internal attacks

While DPLA can achieve better security against outer
attacks, the utilization of collaborative devices may introduce
new security challenges. The faulty or malicious nodes (e.g.,
vote tampering attacks and Byzantine attacks) hidden in them
may inject falsified reports, which will adversely affect the
reliability of final decisions, or even lead to a failure to
reach consensus. To guard against such internal attacks, node
reputation-rating can be introduced into the DPLA design.
This will have a positive impact on the confidence of the
interactive information. Reputation measures the reliability
or credibility of an entity in view of its past behaviors and
current performance, thereby eliminating fluctuations caused
by a single observation. Numerous reputation models studied
in mobile Ad-hoc networks can be naturally migrated to
DPLA. For example, the authors in [15] build a Beta reputation
system and evaluates the node reputation through clustering-
based and distance-based decision rules. The evaluation result
is then used as a reference for weighted value of model
aggregation in the subsequent P2P communications. Moreover,
node reputation should be dynamically updated according to
the performance of different time slots, combined with certain
accountability mechanisms. Collaborators with low reputation
scores need to be punished, while those with good reputation
need to be rewarded.
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C. Trade-off between security performance and cost

Previous studies on DPLA have lacked a comprehensive
analysis of system-level costs, such as total latency, com-
munication overhead, and so on. Although the enhanced
detection performance is an attractive benefit of DPLA, it
requires additional edge devices for channel acquisition and
computing, bringing about extra costs (e.g. bandwidth, energy)
to incentivize or pay collaborators. As pointed out in [3],
the balance between performance and costs is strongly rely
on the deployment scenario, processing architecture, resource
allocation and the number of participants involved. To find
which deployment framework is a more preferable option,
we should compare different DPLA frameworks with varying
degrees of distribution, ranging from completely centralized to
fully-distributed processing. In addition, jointly optimization
issues can be formulated by considering both the resource
management and the collaborator selection, such that better
a trade-off between authentication performance and consump-
tion can be realized.

D. Deployment challenges for DPLA in practical networks

For the semi-distributed PLA framework, many critical
factors need to be considered in the actual implementation,
including the optimal design of acquisition locations and
the heterogeneity of collaborative devices. By exploring the
channel-to-location mapping relations and quantifying the
quality of channel observations at different devices, the per-
formance of the DPLA framework can be further improved.
For the decision-level fusion based DPLA framework, good
coordination of sensing and computing among collaborators is
of paramount importance. The difficulty lies in the joint design
of communication resource and computation performance,
i.e. integrated sensing and computation (ISAC), to schedule
collaborators more flexibly, improve resource utilization, and
achieve more accurate certification. For the fully-distributed
PLA framework, how to organically combine a reputation
calculation/delivery mechanism with the interactive authenti-
cation process of the GL-based framework is a tricky issue
in deployment. Moreover, in real communication networks
with frequent data interactions, once malicious nodes occupy
a certain proportion or there is a concealed Byzantine data
cooperative attack, the results of GL may deviate from the
theoretical eventual consistency. In this case, additional secu-
rity measures other than reputation need to be introduced.

VI. CONCLUSION

The advantages of DPLA lie in the high robustness brought
by distributed acquisition and the efficiency and flexibility
brought by distributed training. In this article, we present
a DPLA framework, survey various technologies used in
each stage of DPLA, and compare authentication performance
and time efficiency between CPLA and DPLAs. Finally, we
discussed a few open research issues on addressing new
perspective and opportunities of feasible DPLA designs.
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