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Abstract Understanding the processes that produce the major and trace element signature of igneous
materials requires quantitative models of the behavior of trace elements under the full range of natural
conditions. Such predictive models are based on the results of laboratory experiments used to calibrate
expressions via regression analysis. The predictive accuracy of those expressions depends on the number of
experiments where a specific element was measured and the analytical precision/accuracy of the measurements,
together with models that accommodate the known dependencies. A factor that has rarely been considered

in such models is the “coverage” with respect to the range of composition, pressure, and temperature in the
experimental data. The goal of this research is to evaluate how partition coefficients (D)) for clinopyroxene,
amphibole, and garnet correlate with a variety of intensive and compositional variables for minerals with
different substitution mechanisms. Our results show that the number of experimental determinations, even
within a group of elements that behave systematically (e.g., REE), may vary by as much as a factor of

five. Further, there are significant differences in the average composition, temperature, and pressure of the
experimental database for each element. In addition, the combination of database differences and analytical
precision for each element result in systematic differences in the magnitude of the controlling parameters. All
of these factors impact the predictive power of the regressions on which we rely and can produce a bias in the
predicted behavior that may be correlated with analytical error or average composition of the experiments.

1. Introduction

Much of our knowledge regarding the differentiation of the terrestrial planets is based on quantitative models that
describe the behavior of trace elements under changing magmatic conditions. Such predictive models simulate
how various differentiation processes (e.g., melting, crystallization, mixing, and diffusion) influence the trace
element composition of natural materials. The results can then be used to understand the expected impact of
different processes and create a framework with which to compare the trace element signature of naturally evolv-
ing magmatic systems.

Modeling how magmatic processes are reflected in the geochemical signature of igneous systems requires that we
know how trace elements are exchanged among coexisting phases, including melt, crystal, vapor, and fluid. This
behavior is often expressed in terms of a simple mathematical expression—the partition coefficient (mineralmelip) ),
which is equal to the ratio of the trace element abundance in the coexisting phases of interest, typically the
concentration in the mineral to that in the melt from which the mineral formed (Beattie et al., 1993; Irving, 1978;
Onuma et al., 1968). Trace elements partition into minerals by substituting for major elements (e.g., Si, Al, Mg,
and Ca in specific crystallographic sites; Goldschmidt, 1937) with the specific substitution mechanism depending
on the chemical similarity between the trace element (e.g., valence, ion radius) and the site occupied by the major
element in the crystal structure.

Interpretation of the trace element signature of any system is complicated by the fact that trace element partition-
ing behavior is dependent on a number of parameters, including pressure (P), temperature (7), and composition.
Therefore, the accuracy of predictive models is limited by the existence of a means for obtaining accurate values
of partition coefficients for the system of interest. Equally important, these parameters are not independent of one
another. Our understanding of the details of how partition coefficients are dependent on P, 7, and composition,
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and the degree of the interdependence of the controlling parameters is largely based on the results of labora-
tory experiments and limited by the degree to which they obtain equilibrium and may be analyzed precisely
(Nielsen et al., 2017; Weiser et al., 2023). The results of experiments conducted at different P, T, and composi-
tions can be used as the basis for the calculation of a numerical expression that describes how a trace element
behaves over some definable range of conditions (e.g., Bédard, 2014; Mollo et al., 2018; Nielsen, 1988; Sun &
Liang, 2012, 2013; Sun et al., 2017; Wood & Blundy, 2001; Yao et al., 2012). A complete treatment of trace
element behavior requires that such expressions, calibrated to experimental data, exist for every element of inter-
est in every phase present in the system of interest.

The accuracy and predictive power of these expressions depend on a number of factors, both analytical and
theoretical. For example, using formation reactions (e.g., REEMgAISiOg; Nielsen, 1990) for the trace element
components to calculate the partitioning behavior is rooted in the basic thermodynamics of mineral-melt phase
equilibria, mass balance, substitution mechanisms, and site occupancy (Blundy & Wood, 2003; Ghiorso &
Sack, 1995; Goldschmidt, 1937; Nielsen, 1988; Wood & Fraser, 1976). Such expressions include terms that
approximate the activity of the phase components but require assumptions for correlations between composition
and activity.

As new experimental data are generated, our ability to quantify trace element partitioning behavior should contin-
uously improve. The increase in the number of experiments and enhanced analytical precision will, theoretically,
allow us to develop quantitative models for trace element behavior appropriate for a wider range of natural
conditions. However, that is only true if the additional data set adequately covers the range of possible natu-
ral magmatic compositions and that we understand how specific trace elements substitute into specific miner-
als based on regressions that include the parameters listed above and are calibrated to experimental data (e.g.,
Nielsen & Beard, 2000; Bédard, 2006; Blundy & Wood, 2003; Nielsen, 1988) and evaluated in terms of their
ability to reproduce the calibration data set.

Many studies adopt the empirical regression modeling approach for trace element partitioning (e.g., Bédard, 2007;
Nielsen et al., 2017) using the existing experimental database to calibrate predictive models. These investigations
typically propose a variety of substitution mechanisms, regression types (linear, multiple) as well as a more or less
formal treatment of analytical and experimental error. However, none have quantitatively evaluated the impact of
differences in data coverage on the predictive power of these models. When different trace elements are analyzed
in different numbers of experiments of varying composition, pressure, and temperature, we can reasonably expect
that the resulting model accuracy and consistency will be compromised in ways that may not be obvious (e.g.,
irregularities between predicted rare earth element partition coefficients as a function of atomic number). The
development of more accurate predictive models depends on our ability to identify how the differences between
the data sets for individual elements influence the predictive power of potential models. Therefore, rather than
developing new models for partitioning behavior, our focus is on the evaluation of the magnitude of the impact
of calibration on different experimental data sets. An important aspect of this work is its role in ongoing efforts
to develop a comprehensive and accessible trace element partitioning database (traceDs database—https://www.
earthchem.org/communities/experimental-petrology/, Nielsen et al., 2015), which is part of the EarthChem/
IEDAZ2 initiative to provide access to the results of both experimental and analytical information on natural earth
materials (Profeta et al., 2023). The objective of this research is to use and expand the traceDs experimental data
set to better understand the data characteristics for the minerals garnet, amphibole, and clinopyroxene. The data
sets for each mineral were examined to identify the dependencies (e.g., how does mireralmelt]). vary as a function
of temperature, pressure, composition, substitution mechanism). The identity and magnitude of the differences
between the partitioning behavior of each trace element in each phase can be quantified by comparing the regres-
sion parameters calculated from the data as a function of the number of experiments the compositional range of
the data available for each element in those phases and the range of measured and predicted partition coefficients.

2. Compositional and Thermodynamic Controls on Trace Element Partitioning

This investigation focuses primarily on the partitioning behavior of the rare earth elements (REE) and the high
field strength elements (HFSE) between clinopyroxene, amphibole, garnet, and melt. There are three reasons why
REE and HFSE are selected for this study. First, REE have the same charge, +3 over much of the range of natural
conditions (exceptions for Eu, Ce), but systematically decreasing ionic radii from La to Lu. Second, for HFSE,
the ionic radius stays largely the same, but the ionic charge varies from +4 to +5. Third, these elements range
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from mildly incompatible to compatible among these three phases. Therefore, these phases have a significant,
if not controlling, influence on the evolution of the trace element signature of igneous systems (Green, 1994;
Irving, 1978). Further, the behavior of these two groups of elements is systematic within the group, but their
behavior differs from one phase to another (Nielsen, 1990).

To understand how different REE or HFSE substitute into a crystal structure and how that influences composi-
tional dependence, we must first look into the characteristics of the lattice sites into which they substitute. In most
cases, the general mechanism by which different trace elements substitute is known. What is less understood are
the differences between how the substitution mechanism influences compositional, 7"and P dependences as well
as behavioral differences for different minerals (Mollo et al., 2020). Before we can evaluate how partition coef-
ficients vary by temperature, pressure, and composition, it is important that we review the structural context that
dictates the substitution mechanism, which in turn controls how partitioning behavior is correlated to (or caused
by) a given substitution pair.

Clinopyroxene is a single chain monoclinic inosilicate with the general formula of XYZ,0,. The Si,O, chains
are bonded to a layer of octahedrally coordinated cation bands, which also extend parallel to the c-axis. The
octahedral sites consist of M1 (Y site) and M2 (X site) octahedra sandwiched between two chains of tetrahedral
sites. The Y (M1) site is occupied by smaller cations Mn*2, Fe*?, Mg*2, Al*3, Cr*3, or Ti**, where the X (M2)
site properties depend on the symmetry of the crystal lattice. In monoclinic pyroxenes, the X (M2) site is a large
distorted octahedral site occupied by the larger cations including Na*, Ca*? which are in eightfold coordination.
The Z site is tetrahedrally coordinated and generally filled with Si** or Al*3. The M1 cation strip is bonded to
oxygen atoms of two oppositely oriented tetrahedral chains. Together, these form a tetrahedral-octahedral-tetra-
hedral (t-o-t) strip. Most trace elements with a charge of +1, +3, +4, or +5 substitute into M sites in pyroxene by
paired substitution, most often with Al in either the ¥ (M1) site (paired with +1 ions in the X (M2) site) or with
Al in the tetrahedral site for +3, +4, or +5 ions.

Amphibole is an inosilicate with doubled Si,O,, chains running parallel to c-axis, with the general formula of
W, X,YZ,0,,(OH,F), (Leake et al., 1997). These chains are bonded to octahedral strips consisting of three
regular octahedral sites (M1, M2, M3) and one larger 6- to 8-fold X (M4) site. In addition, there is an even larger
10- to 12-fold A (W) site that is either vacant or partially filled with Na* or K*. The Z site is the tetrahedral site
typically occupied by Si** or Al*3. The relatively large X (M4) site accommodates Na*, Ca*2, Mn*2, Fe*?, Fe*3,
or Mg*2. Four important substitutions that may occur in amphiboles are Al with Si; (Mg, Fe*?) with (Al, Fe*3);
Na* with Ca*?; and Na (K) into the A site (Beard et al., 2019; Hilyard et al., 2000). Nearly complete substitution
takes place between Na* with Ca*? and among Mg*?, Fe*?, and Mn*2. There is limited substitution between
Fe*3 and Al*? and between Ti** and other Y site cations. Al*? can partially substitute for Si** in the tetrahedral
Z site. As a result of the complexity in its formula, amphiboles can be split into four groups that are depend-
ent on the cation occupying the X site. These four subgroups are as follows: (a) iron-magnesium-manganese
amphibole, (b) calcic amphibole, (c) sodic-calcic amphibole, and (d) sodic amphibole. The progression from
tremolite-hornblende-tschermakite requires the substitution in the M4 and T sites of MgSi with AlAl. Edenite and
pargasite can be derived from tremolite and hornblende by adding Na in the A site along with the substitution of
Al*3 for Sit* (Hilyard et al., 2000; Leake et al., 1997).

Garnet is a nesosilicate made up of alternating ZO, isolated tetrahedra and YO, octahedra bonded at the corners
with the general formula of X,Y,Z,0,,. The X site is usually occupied by divalent cations (Ca, Mg, Fe, Mn*?)
and the Y site by trivalent cations (Al, Fe, Cr*?) in an octahedral and tetrahedral framework, respectively, with
(Si0,)~* occupying the tetrahedra site. An important difference in the substitution mechanism between garnet
versus clinopyroxene and amphibole is the presence of octahedrally coordinated Si at high pressure (Hazen
et al., 1994). The high-pressure garnet component (majorite) accommodates Si in the site normally occupied by
Al Fe, or Cr by a paired substitution with Mg (Mg,(MgSi)Si,0,,).

As noted above, expressions used for predicting partition behavior are based on experiments conducted under
controlled conditions. Experimental determinations, as opposed to measurements based on phenocrysts/matrix,
have the advantage that we control temperature, pressure, time, and composition. There are a number of differ-
ent approaches that have been used to develop predictive models for trace element partitioning (Blundy &
Wood, 2003). These methods involve regression analysis based on experimental data done within a framework
of lattice strain, substitution mechanism together with thermodynamic constraints (Mollo et al., 2020; Wood &
Fraser, 1977).
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The development of quantitative models of trace element behavior requires that we decide which parameters
have the greatest impact in our regressions. We can begin by considering the formation reaction for the trace
element component in the mineral. Ideally, we could develop expressions that include an equilibrium constant
based on that formation reaction. However, such an analysis depends on our understanding of the activ-
ity of the mineral and melt components, the impact of the substitution mechanism and lattice strain caused
by the substitution (Blundy & Wood, 2003; Nielsen, 1988; Wood & Blundy, 1997; Wood & Fraser, 1976).
For example, one may consider the formation reaction for a possible Sm component in clinopyroxene (cpx)
(Nielsen, 1990):

SmO;.s (NM) + AlO; 5 (NM) + SiO, (NF) + FMO (NM) = SmFMAISiOg (cpx)

where NF and NM refer to network former and network modifier components, respectively, and FMO is FeO
and MgO normalized to the sum of the NM. For the purposes of this investigation, NM and NF are as defined
by Nielsen (1985), where Si, KAl, and NaAl complexes form networks with shared oxygens, and Mg, Fe, Ca, Ti,
and Al above the sum of alkalis modify those networks by bonding with oxygen. This model assumes that the
activity of components is proportional to the sum of cations with similar behavior. This reaction assumes that
Sm occupies the M2 site in clinopyroxene, paired with Al in the T site for charge balance. The activity of the
melt components was assumed to be related to the mole fraction of network formers (NF) and network modifiers
(NM) in the melt (Nielsen, 1988). For trace element components, the values for the activity coefficient, enthalpy,
and entropy are not experimentally determined. However, the equilibrium constant for the formation of samarium
clinopyroxene can be approximated by the application of any one of a number of empirical models of activity
(Nielsen, 1985) or lattice strain (Wood & Blundy, 2001) designed to accommodate aspects inherent in non-ideal
mixing (cases where the activity coefficient is not unity).

Such models are only applicable for the range of composition for which they are calibrated. Extrapolation outside
of the calibration data set can cause departure from the actual composition activity relations (e.g., will not accu-
rately simulate the activity coefficients). Further, any such analysis can be complicated by differences in the
configuration of the data set in terms of composition, experimental conditions and analytical error used to cali-
brate the models (number, range of P, T, composition of experiments). Since this investigation focuses on the
nature of the impact of differences in calibration data on regression constants, we will apply the simplest descrip-
tion of partitioning behavior, the partition coefficient (Mnerameltp) ) defined as follows:

mineral
Ci

Di=

melt
Ci

where C is concentration. We will use this approximation to develop and evaluate a set of predictive models
for trace element behavior by including terms that are based on observed dependencies of the partition coeffi-
cient on temperature, pressure, and a number of compositional parameters. The choice of compositional terms
is based on the formation reaction of components involving specific trace elements in specific minerals. This
approach can be first simplified into its most basic form that describes only a single dependence, for example, the
temperature-dependence of the partition coefficient ™D, To a first order (in temperature), the mineral-melt
partition coefficient (MirerameltD).) can be expressed in terms of reciprocal temperature (1/T) in this equation:

]nminerul—melt D = ﬂ ++b
T
where a is a proxy for enthalpy (H) and b is a proxy for entropy (S) as per the basic expression for the equilibrium
constant for the trace element component formation reaction at constant pressure.

RTInK = AH® — TAS?

Since we understand that charge balance is required for many formation reactions (Wood & Blundy, 2001), and
we are using concentration rather than activity to describe partitioning behavior, we expect that In D, will be
dependent on the concentration (as well as a number of other parameters) of the charge balancing component—Al
in the case of most REE and HFSE (Mollo et al., 2020).

Our approach will be to examine the impact of specific characteristics of the calibration data set on the regres-
sion parameters that constitute the core of predictive models. In effect, we asked “How sensitive are regression
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parameters to differences in the data set characteristics, including analytical and experimental uncertainty, the
number of experiments and the range of composition represented by these experiments?” We will examine the
patterns within the regression parameters describing known dependencies within groups of trace elements (e.g.,
REE) and what those patterns can tell us about the magnitude of difference sources of uncertainty as well as
possible pathways to improving the predictive power of models for trace element behavior. The specific patterns
can be interpreted using the trends observed within the regression parameters for each element in each phase
as well as the correlation of calculated and experimental values. For example, based on the systematic changes
in ionic radius within the REE, the regression parameters describing temperature dependence should either be
constant or change systematically. If the regression parameters that define the dependencies vary irregularly
between elements with similar ionic radius and charge, then any predictive model based on those parameters
will result in modeled behavior that is irregular (e.g., not a smooth pattern of predicted partition coefficients
across the REE).

There are a number of data characteristics that may result in deviation from predicted patterns. The specific
differences in experimental data include the number of experimental determinations for each element in each
mineral, analytical uncertainty based on count rate, analytical uncertainty related to analytical volume, exper-
imental error (disequilibrium, errors in method) and the average phase composition for the data available for
each element in each phase (e.g., average SiO, of the liquids in all experiments where Sr was determined for
clinopyroxene and co-existing melt; Nielsen et al., 2020). Finally, the efficacy of the model used to describe
the dependencies (melt component activity model, elastic strain, assumed substitution mechanism, etc.) can
produce bias in the predictive models (Nielsen et al., 2017). Each of these sources of uncertainty will impact
the predictive characteristics of the regression constants and the patterns of calculated/experimental values
exhibited using the calibration data.

Analytical error related to counting statistics will result in symmetrically distributed error about the average
value, not in irregularity of the patterns within a group of elements where there is expectation of systematic
behavior (e.g., REE, HFSE, LILE). In contrast, analytical error related to the presence of multiple phases in the
analytical volume (e.g., caused by inclusions of more than one phase—typically glass in this context) represents
an unmodeled source of variation. Analysis of different points by electron microprobe (EMP) versus laser abla-
tion inductively coupled plasma mass spectrometry (laser ICP-MS) or secondary ion mass spectrometry (SIMS)
will cause the trend of calculated versus experimental values for incompatible elements to exhibit a slope less
than 1:1 because the experimental values are elevated by the inclusion of glass. Further, both types of uncertainty
would result in more scatter for elements with lower average partition coefficients (assuming that concentration
is related to analytical accuracy/precision; Nielsen et al., 2017).

Compositional dependencies are accommodated in trace element models by the application of constraints
ranging from melt component activity models to elastic strain models (Blundy & Wood, 2003; Nielsen
et al., 2017). If there is a systematic compositional dependence on the partition coefficients that is not
accounted for by the parameters in the regression, the result will scatter in the distribution of calculated
versus experimental values, which will also manifest in the form of a correlation of calculated versus experi-
mental values with slopes less than 1, underestimating the values from experiments with high partition coeffi-
cients and overestimating values from experiments with low partition coefficients. However, unlike the scatter
generated by analytical error, the magnitude of the scatter, and the average ability of the model to reproduce
the calibration data, will not increase as the average partition coefficient decreases. This is because the uncer-
tainty in the model will not be a function of the concentration of the trace element but rather a function of
the character of the substitution mechanism, crystal lattice strain structure and melt component activity—all
of which should be similar within groups of elements such as the REE for partition coefficient between any
specific phase and melt.

The impact of this research lies in two areas. First, the systematic analysis of the existing database for each
element in each phase will identify where the differences lie in the experimental data for each element in each
phase. Second, the comparison of the regression parameters and basic predictive models for each element in
each phase will inform our understanding of the influence of the different data set characteristics, including
analytical error, on the accuracy and precision of such models, and how our collective choices on what systems
we work on and the selection of elements we measure may influence the outcomes of different types of predictive
modeling.
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3. Methodology

To address the question above, we updated the LEPR/traceDs database to include experimental data published
since the last major revision (Nielsen et al., 2017). Once the compilation was updated, the data characteristics
for the trace element partitioning experiments involving clinopyroxene, garnet, and amphibole were calculated
and assessed for a range of trace elements, including the REE and HFSE. Those data characteristics include the
number of experimental determinations for each trace element in each phase (melt and mineral of interest), as
well as the average and standard deviation of the major element composition of the phases present in each trace
element's database. A major challenge in conducting the tests described above is the variety of analytical tools
and methods used to analyze trace element experimental charges, as well as the lack of a consistent method for
presentation of error estimates in the literature.

The initial phase of the interpretation was based on the correlation of the calculated natural logarithm of partition
coefficients for each element of interest (In ™nera-meltp,) for all three phases, which are the focus of this investiga-
tion. We then calculated the correlation of (In ™irera-met]).) with a range of compositional and experimental param-
eters. The results of that analysis were applied to understand the systematic behavior within two groups of trace
elements, REE and HFSE, by investigating whether the regression parameters increase or decrease systematically
within the REE as a function of ionic radius, and whether there is a difference in the regression coefficients
within the HFSE and between the HFSE and REE that might be attributable to how the different charge balance
requirements for +3, +4, and +5 ions manifest, and how they may differ for trace elements with +1 or +2 valence.

Finally, in addition to studying the temperature dependencies and single term linear regression (LR) of the data, we
calculated multiple linear regression (MLR) parameters by including the dependencies proposed by earlier investi-
gators as well as those observed in the linear regression analysis described below. We then compared the predictive
power of each approach for each element in each of the three phases of interest using the calibration data as unknowns
and comparing the patterns exhibited in the correlation of calculated In D versus experimental determinations.

4. Results
4.1. Database Characteristics

Under ideal circumstances, the calibration data set from which we calculate constraints on trace element behav-
ior would be similar for each element of interest in terms of the range of composition, experimental conditions,
number of experimental determinations, and analytical methods applied. For example, the number of experiments
in the literature, the average phase composition and the range of conditions where REE were determined in clino-
pyroxene and melt would be the same for all the REE (e.g., the amount of data for La and Lu would be equal).
However, for each set of experiments, the investigator has different goals, and their experimental conditions
and analytical protocols for run products are designed to serve these goals. This has resulted in a heterogenous
experimental database where the number of experiments for any specific element is highly variable (Nielsen
etal., 2017). What is not known is whether this heterogenous data set characteristic impacts our ability to develop
models that can “see through” any element-to-element differences in the experimental data.

Before we attempt to understand this potential source of bias, we must first quantitatively characterize the data-
base. It is generally presumed (Nielsen, 1990) that to calibrate predictive models, we must use a database that
covers the range of 7, P, and major and minor element composition to which we plan to apply the model. Due
to the distinct focus of each experimental study, the database presents highly uneven coverage of the range of
conditions we wish to model. This can be demonstrated by examining the experimental database characteristics
for each trace element (Figures 1a—1f; Table 1). For example, the average total alkali content in liquids for which
Ta has been determined in clinopyroxene and coexisting glass (Figures 1a and 1b; Table 1a) is half of the value
for Er (Table 1a). Further, the average temperature for experiments with measured Ta is 100°C lower than that
for Er. Even though the number of experimental determinations for Ta and Er cpx/liquid partitioning is roughly
equal (74 and 85, respectively), this is not true for all commonly analyzed trace elements, with the number of cpx/
liquid experiments ranging from 35 to over 300 (Table 1a). It is important to note at this point that our focus is on
the number of reported experimental determinations, not the number of analyses obtained from each experiment.
The convention has been to report averages based on multiple measurements from each phase present in each
experimental charge. That number combines the uncertainties related to disequilibrium, counting statistics, and
calibration-related error (Nielsen et al., 2017).
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Figure 1. The average melt silica vs. total alkali content and average temperature vs. pressure range for mineral/melt trace element partitioning experiments where trace

elements were measured in (a, b) clinopyroxene, (c, d) amphibole, and (e, ) garnet. Each symbol represents the average liquid composition or P/T condition specific
to a particular element as determined from the LEPR/traceDs database. For example, the average liquid composition for all experiments where Gd was measured in
clinopyroxene, and co-existing melt is 49 wt. % SiO, and 5 wt. % Na,O + K,O. These values are reported in Table 1 along with the 1 sigma (s) standard deviation on

the average.

The amphibole/melt partitioning data (Figures 1c and 1d; Table 1b) exhibit an equivalent but slightly narrower

range of average glass composition and experimental conditions compared to that for clinopyroxene. This

difference is attributable to the relatively small field of phase stability for amphibole versus clinopyroxene. In

addition, the comparative position in compositional space and experimental conditions for specific elements is

different. For example, the average glass composition for amphibole-melt Sc partitioning data is near the highest

alkali and SiO, end of the distribution, while the equivalent value for clinopyroxene is near the lowest.

The garnet partitioning data also exhibit a distinct range of glass composition and experimental conditions (Figures le

and 1f; Table 1c). The average experimental pressure and temperature are higher than for either clinopyroxene or

amphibole, as one would predict based on our understanding of garnet phase stability. Again, the distribution of
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Figure 2. Correlation of the natural log of the clinopyroxene/melt partition coefficient and (a) reciprocal temperature, (b) the mole fraction of Al in tetrahedral

coordination in clinopyroxene, and (c) the natural log of the clinopyroxene/melt Ti partition coefficient. Each symbol represents a single experiment. Linear regression
was calculated for each correlated parameter and reported in Table 2. Such regressions were calculated independently for clinopyroxene, amphibole and garnet for each
trace element shown in Table 1.

5. Discussion
5.1. Predictive Accuracy of Expressions Based on a Single Dependence

We can begin to evaluate the degree to which different models calibrated to a heterogeneous data set can predict
partitioning behavior by using the expressions based on a single parameter, in this initial test, the case of temper-
ature dependence. Using the linear expressions (Table 2) one can attempt to reproduce the experimental values
used to calibrate the expressions for clinopyroxene (Figure 3), amphibole (Figure 4), and garnet (Figure 5). Each
point represents a single experimental determination for that element for the selected mineral, typically presented
in the literature as the average of several individual determinations from a single experimental charge. We assess
the single term linear temperature regression models for each mineral by comparing experimentally observed
values with the model-calculated partition coefficients, visualizing their correspondence as the degree to which
data points align with the 1:1 correlation line as measured by the slope and R? for the distribution of calculated
and experimental values.

Examining the results for the three phases we modeled (Figures 3-5), the overall pattern for the average results
calculated for all elements collectively fall on a line with a slope of 1. However, if we consider the results for each
element individually, the slope is less than 1 for all elements in all three minerals studied. The extent to which the
slope of the calculated versus experimental correlation departs from 1 (colored trendlines in Figures 3-5) varies
extensively, and can be used to explore the contribution of different sources of uncertainty.

Measurement errors introduce further noise into the experimental determinations of the partition coefficients and
thus cause additional scatter that, given the variety of analytical tools and methods used, it becomes difficult to
quantify if one is restricted to the reported error. Model deficiencies related to unaccounted for dependencies or
interdependency of the modeled parameters reflect a model's inability to capture some of the observed variability
in the data. Yet, discerning between sources of variability can be aided by examining the systematics of the corre-
lation of the calculated and experimental values as a function of specific data characteristics.
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Table 3

Multiple Linear Regression Constants Calculated for the Experimental Mineral/Melt Partitioning Data for (a)
Clinopyroxene, (b) Amphibole, and (c) Garnet

Reciprocal Melt Tetrahedral Ca mole fraction
Element Z  Inmirerabmelpy temperature Pressure component  aluminum (Aly,) (mineral)
(a) Clinopyroxene
Sc 21 0.806 (0.03) 0.449 (0.069) -0.017 (0.03) 0.412 (0.079) 9.724 (1.498) 5.147 (0.957)
Ti 22 —0.844 (0.016) 0.276 (0.035) 0.002 (0.017) 0.566 (0.039) 12.356 (0.77) 2.997 (0.441)
v 23 0.259 (0.098) 0.426 (0.22)  —-0.002 (0.097) 0.109 (0.254) —27.108 (5.282) —12.792 (3.27)
Sr 38 —2.257(0.027) —0.011 (0.054) 0.008 (0.025) 0.457 (0.064) 3.752 (1.307) 3.259 (0.931)
Y 39 —0.692 (0.027) 0.107 (0.057) —0.091 (0.027) 0.668 (0.07) 10.189 (1.319) 3.764 (0.835)
Zr 40 —1.926 (0.032) 0.126 (0.064) —0.017 (0.029) 0.552 (0.069) 24.035 (1.532) 8.543 (0.879)
Nb 41 —4.461 (0.056) 0296 (0.115) —0.071(0.06) 0.964 (0.135)  17.815 (2.533) 2.891 (1.461)
La 57 —-2.67(0.03) 0.086 (0.065) —0.184 (0.029) 0.717 (0.066) 9.628 (1.5) 6.625 (0.968)
Ce 58 —2.225 (0.04) 0.22 (0.088) —0.147 (0.035) 0.521 (0.095) 10.361 (2.06) 6.774 (1.308)
Pr 59 —1.799 (0.039) 0.142 (0.092) —0.118 (0.032) 0.621 (0.108)  13.659 (2.031) 5.464 (1.42)
Nd 60 —1.472(0.034) 0.161 (0.069) —0.144 (0.03) 0.714 (0.067) 13.18 (1.686) 5.978 (1.052)
Sm 62 —0.982 (0.024) 0.133 (0.05) —0.137 (0.023) 0.705 (0.052) 13.936 (1.203) 4.898 (0.713)
Eu 63 —1.034(0.033) 0.137 (0.069) —0.104 (0.029) 0.636 (0.065)  15.382 (1.733) 6.323 (1.13)
Gd 64 —0.872(0.029) 0.021 (0.061) —0.156 (0.025) 0.449 (0.068) 13.869 (1.572) 3.192 (0.885)
Tb 65 —0.702 (0.041) 0.174 (0.099) —0.109 (0.034) 0.617 (0.096) 14.015 (2.171) 3.339 (1.519)
Dy 66 —0.723 (0.033)  0.104 (0.067) —0.105 (0.029) 0.522 (0.076)  13.433 (1.725) 3.006 (1.158)
Ho 67 —0.579 (0.03) 0.056 (0.066) —0.15 (0.025) 0.599 (0.085) 11.178 (1.553) 1.704 (0.985)
Er 68 —0.62 (0.038) 0.269 (0.086) —0.106 (0.031) 0.646 (0.073) 12.718 (2.051) 1.471 (1.175)
Tm 69 —0.633(0.047)  0.086 (0.093) —0.128 (0.038) 0.53 (0.117)  11.553 (2.484) 2.552 (1.718)
Yb 70 —0.675 (0.028) 0.097 (0.058) —0.111 (0.025) 0.667 (0.058) 15.14 (1.397) —0.403 (0.918)
Lu 71 —0.639 (0.025) 0.06 (0.054) —0.128 (0.022) 0.568 (0.075) 13.198 (1.223) —0.79 (0.768)
Hf 72 —1.295(0.035)  0.147(0.072) —0.14(0.032) 0.506 (0.09)  19.284 (1.653) 4.586 (1.219)
Ta 73 —3.481 (0.071) 0.371 (0.161) —0.083 (0.074)  1.06 (0.169) 21.05 (3.19) —1.834 (1.888)
(b) Amphibole
Sc 21 2.102 (0.074) 0.142 (0.24)  —0.129 (0.191) 0.448 (0.221) 2.978 (4.587) —16.512 (12.582)
Ti 22 1.04 (0.022) 0.389 (0.077) —0.308 (0.05)  0.944 (0.067) 10.928 (1.197) —4.459 (2.912)
\% 23 1.658(0.099)  0.005(0.32)  0.188(0.255) 0.733(0.295) 11757 (6.115) —40.085 (16.773)
Sr 38 —1.05(0.039) 0.079 (0.138) —0.166 (0.103) 0.334 (0.115) 13.921 (2.687) —10.854 (6.676)
Y 39 0.467 (0.029) 0.366 (0.106) —0.201 (0.076) 0.779 (0.085) 4.37 (1.861) —14.735 (4.602)
Zr 40 —0.818(0.034) 0359 (0.121) —0.332(0.082) 0.732(0.1) 8.157(2.277)  —6.743 (5.821)
Nb 41 —-0.935(0.031) 0.282 (0.115) —0.322 (0.085) 0.898 (0.097) 10.313 (2.046) —19.409 (5.108)
La 57 —1.684 (0.027) 0.336 (0.1) —0.261 (0.069) 0.814 (0.076) 11.293 (1.608) —12.946 (3.95)
Ce 58 —1.16 (0.027) 0.357 (0.097) —0.292 (0.073) 0.805 (0.074) 10.73 (1.641) —10.915 (4.319)
Pr 59 -1.156 (0.031)  0.284 (0.113) —0.201 (0.078) 0.721 (0.083)  13.082 (2.129) 0.491 (5.921)
Nd 60 —0.346 (0.031) 0.377 (0.113) —0.301 (0.085) 0.797 (0.087) 9.253 (1.919) —12.249 (5.051)
Sm 62 0.151 (0.031) 0.417 (0.118) —0.358 (0.079) 0.783 (0.092) 7.153 (1.956) —11.326 (5.03)
Eu 63  0.109 (0.036)  0.391 (0.13) —0.307 (0.094) 0.707 (0.098) 6.959 (2.187) —12.967 (5.833)
Gd 64 0.395 (0.032) 0.407 (0.121) —0.335(0.079) 0.756 (0.091) 6.524 (1.959) —12.144 (5.205)
Tb 65 0.287 (0.049) 0.508 (0.181) —0.243 (0.124) 0.715 (0.138) 3.605 (3.196) —3.848 (9.618)
Dy 66  0.357(0.037)  0.425(0.136) —0.262 (0.099) 0.75 (0.103) 5.827 (2.286) —17.068 (6.011)
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Table 3
Continued

Reciprocal Melt Tetrahedral Ca mole fraction
Element Z  Ipminerakmelpy temperature Pressure component  aluminum (Al) (mineral)
Ho 67 0228 (0.042)  0.577 (0.15) —0.264 (0.105) 0.687 (0.12) 3.68 (2.807)  —5.079 (7.783)
Er 68  0.264 (0.041)  0.494 (0.146) —0.252 (0.107) 0.705 (0.111) 5.667 2.476)  —12.22 (6.535)
Tm 69  0.289 (0.054)  0.505 (0.194) —0.368 (0.142) 0.733 (0.161) 2.661 3.481) —2.485(10.207)
Yb 70 0.137 (0.039)  0.489 (0.141) —0.261 (0.105) 0.725 (0.107) 5.135 (2.395) —12.808 (6.288)
Lu 71  0.052(0.039) 0.531 (0.145) —0.289 (0.095) 0.672 (0.12) 2.012 2.608)  —6.554 (7.098)
Hf 72 -0.472(0.034)  0.354 (0.122) —0.403 (0.081) 0.638 (0.102) 6.397 (2.3) —5.962 (5.745)
Ta 73 —1.098 (0.031) 0.394 (0.12) —0.448 (0.08)  0.849 (0.094) 11.187 (1.946) —6.483 (5.232)
(c) Garnet
Sc 21 1.545 (0.04) 0.298 (0.059) —0.018 (0.013) 0.397 (0.054) —1.043 (1.239) 1.647 (1.134)
Ti 22 —0.728 (0.039)  0.231 (0.064) 0.055 (0.014) 0.481 (0.059) 1.171 (1.219) 6.982 (1.305)
\% 23 0.813(0.067) 0.173 (0.104) —0.002 (0.023) 0.422(0.103) —0.213 (2.154) —1.129 (3.315)
Sr 38 —4.909 (0.092) 0.24 (0.134) 0.058 (0.029) 0.117 (0.126) 3.477 (2.944) 13.611 (2.726)
Y 39  1.228 (0.041)  0.536 (0.059) —0.03 (0.013) 0.425(0.056) —0.197 (1.418) 6.742 (1.249)
Zr 40 -0.927 (0.055) 0.35 (0.078) —0.013 (0.018) 0.166 (0.075) 1.795 (1.922) 6.262 (1.689)
Nb 41  —4.35(0.135)  0.269 (0.203) 0.014 (0.045) 0.386 (0.179) 2.888 (4.319) 17.45 (4.223)
La 57 -5.072(0.15) 0.574 (0.21) 0.054 (0.047) 0.396 (0.213) 6.965 (4.925) 16.049 (4.154)
Ce 58 —4.146 (0.151)  0.513 (0.208) —0.006 (0.049) 0.247 (0.209) 3.652 (5.085) 13.945 (5.315)
Pr 59 -3.611(0.105)  0.579 (0.139) —0.005 (0.036) 0.103 (0.19) 8.665 (6.669) 12.534 (3.178)
Nd 60 —2.531(0.07) 0.559 (0.098) —0.01 (0.023) 0.177 (0.098) 1.922 (2.438) 8.076 (2.409)
Sm 62 —0.925(0.055)  0.606 (0.078) —0.031 (0.018) 0.1 (0.079) 2.428 (1.978) 7.154 (1.57)
Eu 63 —0.77 (0.067)  0.575 (0.087) —0.026 (0.021) 0.264 (0.088) 1.579 (2.123) 9.878 (2.224)
Gd 64 —0.181 (0.06) 0.665 (0.08)  —0.024 (0.021) 0.435 (0.105) 4.619 (3.817) 7.008 (2.342)
Tb 65  0.127 (0.085)  0.553 (0.119) —0.072 (0.034) 0.27 (0.147) 0.523 (5.508) 3.088 (2.327)
Dy 66 0928 (0.054)  0.652 (0.072) —0.061 (0.021) 0.42 (0.097) 1.309 (3.701) 6.306 (2.202)
Ho 67 0982 (0.077)  0.669 (0.105) —0.038 (0.028) 0.536 (0.153) 1.34 (4.774) 4.173 (2.991)
Er 68  1.464 (0.048)  0.552 (0.067) —0.054 (0.018) 0.438 (0.084) 0.308 (3.342) 2.941 (1.54)
Tm 69  1.393(0.085) 0.617 (0.116) —0.05 (0.033) 0.584 (0.164) —0.508 (5.127) 3.168 (3.437)
Yb 70  2.054 (0.039) 0.531(0.058) —0.046 (0.014) 0.585(0.058) —0.685 (1.475) 3.923 (1.188)
Lu 71 2117 (0.057)  0.504 (0.081) —0.032 (0.018) 0.592 (0.083) —0.89 (1.901) 3.786 (1.54)
Hf 72 —1.033 (0.054)  0.181 (0.076) —0.021 (0.018) 0.047 (0.075) 1.85 (1.875) 4.619 (1.623)
Ta 73 -3.676 (0.121)  0.561 (0.182) 0.055 (0.048) 0.221 (0.161) 2.814 (3.835) 16.911 (3.796)

Note. The trace elements are listed in order of atomic number (Z). Y and the REE are highlighted in yellow and given in bold.
Ti and the HFSE are highlighted in blue. Italic fonts refer to 1o standard deviation.

If predictive models use experimental calibration databases that have a wide range of melt composition, and
they do not accommodate compositional dependencies for partition coefficients, the result will be horizontal
scatter—a greater range in experimental values compared to values calculated by applying the regressions to
the calibration data set, and thus a slope that is less than 1:1 as a function of analytical/experimental error and
uncompensated dependencies. Note that these sources of uncertainty will have different effects on the correla-
tion of calculated values with experimental ones. Inclusion of two phases into the analytical volume will have a
greater effect on the experimental uncertainty (scatter) at low partition coefficient values (Nielsen et al., 2017).
However, the differences in the compositional range of the experiments (calibration data set) will have a more
systematic effect, which is independent of the partition coefficient, affecting both compatible and incompatible
elements equally.
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Figure 3. Correlation of partition coefficients calculated for clinopyroxene using the single term linear regressions for temperature dependence (Table 2) with
experimentally determined values (Data Set S1). (a) Sc, Sr, and Light Rare Earth Elements (REE), (b) medium REE, (c¢) Y and heavy REE, and (d) High Field Strength
Elements (HFSE). Each symbol represents a single experimental determination for that element. The experiments collectively follow a 1:1 correlation, but the results
for individual elements are characterized by a slope less than 1 (colored trendlines). Note that all trendlines have a slope that is equal to or less than 1.

We can assess the underlying sources of uncertainty in the calculated or experimental partition coefficients by
comparing the slopes of the calculated versus experimental correlation within and between groups of elements.
If we begin with calculated versus experimental values for the three phases of interest using the linear regression
on reciprocal temperature, one can see that for most elements, garnet (Figure 5) has less scatter (smaller range of
calculated D vs. experimental D for each element) than either clinopyroxene (Figure 3) or amphibole (Figure 4).
Further, the magnitude of the horizontal scatter as approximated by the calculated versus experimental slope
appears uniform for all the REE and HFSE in the clinopyroxene database. In contrast, the horizontal scatter
shrinks at higher In mireralmelt ). yalues for both amphibole and garnet, as indicated by the rotation of the trendlines
as a function of experimental In ™nera-melth). Our results imply that analytical uncertainty is a higher proportion of
the predictive uncertainty for expressions describing partitioning in garnet and amphibole than for clinopyroxene
and that the inadequacy of the assumption of ideality (assumption of activity to be the same as concentration)
is most influential for clinopyroxene. These results are consistent with the relative complexity of the processes
related to the substitution of REE and HSFE in clinopyroxene compared to garnet, as well as the greater range of
P, T, and composition in the clinopyroxene data (Table 1).
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Figure 4. Correlation of partition coefficients calculated for amphibole using the single term linear regressions for temperature dependence (Table 2) with
experimentally determined values (Data Set S2). (a) Sc, Sr and Light Rare Earth Elements (REE), (b) medium REE, (c) Y and heavy REE, and (d) High Field Strength
Elements (HFSE). Each symbol represents a single experimental determination for that element. The experiments collectively follow a 1:1 correlation, but the results
for individual elements are characterized by a slope less than 1 (colored trendlines). Note that all trendlines have a slope that is equal to or less than 1.

5.2. Systematics of Temperature Dependence Within the Rare Earth Elements

The partitioning of REE between most rock forming minerals and melt displays a progressive pattern correlated to
ionic radius (Onuma et al., 1968). We can then assume that any model for REE partitioning should produce results
that exhibit a “‘smooth” pattern so long as the conditions are within the range where the REE valence state of +3. In
addition, we can infer that the temperature dependence should also exhibit a regular pattern and manifest that pattern
in terms of the slope of In minera-meltp). versus reciprocal temperature. If we analyze those values (slope column under
reciprocal temperature in Table 2) for minera-melty s a function of atomic number for clinopyroxene (Figure 6a),
amphibole (Figure 6b), and garnet (Figure 6¢), there is a negative correlation of the temperature dependence and
atomic number for clinopyroxene while a positive correlation for amphibole and garnet. It is important to note that
the regression constant that describes temperature dependence increases or decreases by 20%—40% across the REE
(Figure 6). This would result in a flatter pattern of In mireralmeltpy  versus atomic number for clinopyroxene at lower
temperature, and steeper patterns for amphibole and garnet. Such changes in REE patterns have been observed
before and been attributed to changes in the influence of charge balancing Al (e.g., Wood & Blundy, 2001).
Therefore, the observed differences in steepness in REE patterns may be due to a combination of factors and may
be influenced by the fact that temperature and Al activity/concentration are not independent. Although there is
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Figure 5. Correlation of partition coefficients calculated for garnet using the single term linear regressions for temperature dependence (Table 2) with experimentally
determined values (Data Set S3). (a) Sc, Sr and Light Rare Earth Elements (REE), (b) medium REE, (c¢) Y and heavy REE, and (d) High Field Strength Elements
(HFSE). Each symbol represents a single experimental determination for that element. The experiments collectively follow a 1:1 correlation, but the results for
individual elements are characterized by a slope less than 1 (colored trendlines). Note that all trendlines have a slope i.e., equal to or less than 1.

significant correlation of the behavior of the REE with atomic number, not all element's correlation with reciprocal
temperature is linearly aligned but fall above or below a best-fit line (Figure 6). If we apply such single term linear
regression constants to predict partitioning behavior (Figure 7), the result is an irregular pattern across the REE.

The possibility that there is a progressive change in differential temperature dependence in addition to progres-
sive changes in the partition coefficient has been recognized before, either attributed to statistical “noise” from
the results for one element to another or as a systematic progression (Dohmen & Blundy, 2014; Nielsen, 1988)
that relates to differences in the calibration database (Bédard, 2006, 2014; Nielsen et al., 2017).

The element-to-element variation can be accommodated if one has a standard with which to link the tempera-
ture dependence (or any other observed dependence). In their investigation of the systematics of trace element
partitioning in plagioclase, Dohmen and Blundy (2014) tied the element-element variation to the behavior of an
element with presumed similar behavior and a large database (number of experimental determinations)—in that
case, all +1 elements were tied to Na, all +2 cations were tied to Ca, and all +3 cations were tied to La. Another
approach is to “force” the regressions for modeled trace element into a regular pattern by assuming that the impact
of any dependency will be the same for all elements that fall into the same behavioral group (e.g., REE, HFSE,
LILE). This approach successfully produces a smooth pattern of behavior for the REE but does not accommodate
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Figure 7. Calculated clinopyroxene-melt partition coefficients using
expressions describing temperature dependence alone. Note that the pattern

becomes increasingly irregular, with decreasing temperature. The elements
related to the largest offsets are Tb and Er.

the possibility that there was a systematic change in the temperature depend-
ence as a function of atomic number, as we see for clinopyroxene, amphibole,
and garnet (Figure 6). In other words, we are assuming that the known differ-
ences in the database characteristics (e.g., number of experiments, pressure
and temperature range, liquid composition) for all elements with the same
valence do not matter. We can evaluate this assumption and the magnitude
to which variation in dependence within a group is systematic by examin-
ing the degree to which the correlation of In minerab-meltp — to reciprocal
temperature with atomic number (Figure 8) departs from the best fit line, and
how that departure from systematic behavior correlates with other aspects
of the database. The results are similar for all three minerals studied here
(Figures 8a—8¢), and can be characterized as a rough (low R?) negative corre-
lation of the departure from the trend shown for the slope of the In mineral-meltp) /
reciprocal temperature correlation versus number of experiments, together
with an estimate of the departure of the progressive trend within the REE.
In effect, the calculated slope that represents the temperature dependence is
negatively correlated with the number of experiments in the calibration data
set. This means that elements for which there are more experimental deter-
minations (one of the differences in database characteristics) exhibit less of
a temperature dependence than one would predict on the basis of the overall
results for the other REE. It is important to note that a negative correlation is
observed for clinopyroxene, amphibole, and garnet, in spite of the differences
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the literature. In contrast, there are ~250 published La partition coefficients for clinopyroxene/melt, and the calculated temperature dependence is 0.3 below the line in
Figure 6a. Note that the trend is negative in all three mineral/melt systems.

observed in the overall number of experiments, and the differences documented in the single term linear regres-
sion correlations (Table 2).

The underlying reason for this correlation of regression bias with the number of experiments is unclear. It is pres-
ent for data from minerals whose partitioning data are otherwise distinct in terms of average phase composition,
number of experiments, and the distribution of the number of experiments within the group. One explanation
may be that experimental approaches are developed primarily based on the need to explore compositions and
conditions that were not previously examined. In that case, new data will tend to expand the compositional
diversity and range of conditions of the data and may result in greater scatter (in predictive models) if there are
unaccounted for dependencies or if the observed dependencies are not independent.

5.3. Predictive Accuracy of Expressions Based on Multiple Linear Regressions
5.3.1. Multiple Linear Regressions

Since our ultimate goal is to develop a methodology for predicting trace element behavior, it is imperative that we
use an approach that will allow us to “see through” both the effects of non-ideal mixing of trace element compo-
nents and the possible impact of the heterogeneous calibration data set used to calibrate predictive models. Building
on the calculations based on temperature dependence alone (single term linear regression), we expanded the analy-
sis to multi-linear regressions to simultaneously determine the combined effect of several geochemical parameters
on trace element partitioning. To build a practical predictive model that remains theoretically grounded, even for
conditions far from the calibration data, we begin by developing a model that is sensitive to 7, P, and phase compo-
sition. This selection of predictor variables for the multi-linear regression is demanded by their large thermody-
namic impact on trace element partitioning. Anything capable of strongly altering the energetics of trace element
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exchange between liquids and coexisting crystals is a strong candidate for inclusion in a multi-linear regression
model. The specific terms we selected provide simple yet robust metrics that capture the dominant factors influenc-
ing elemental substitutions through alterations to the local geometries of crystal lattice sites and the corresponding
pseudo-lattice sites in the atomic structure of the liquid. To obtain a functional and robust regression model, we
must define a set of experimental measurements that adequately capture these primary thermodynamic effects.

For the multi-linear regression model, we selected a set of experimentally constrained metrics that jointly capture
the dominant factors influencing the energetics of lattice site substitution. In summary, liquid polymerization
affects liquid component activities. Ca-content of the mineral influences the strain related to the changes in the
crystal lattice caused by the substitution of the large Ca ion into the octahedral sites in clinopyroxene, amphi-
bole, and garnet (Forsythe et al., 1994; Fujinawa & Green, 1997; Hill et al., 2000; Nielsen, 1988; Wood &
Blundy, 2001 and many others). The mole fraction of Al in the tetrahedral site (Al,, ) is related to paired substi-
tution of elements with valences of +1, 43, +4, and +5 that require charge balance to occupy octahedral sites
normally occupied by Ca, Mg, and Fe (Mollo et al., 2020; Nielsen, 1988). This is achieved by first recognizing
that the energetics of elemental partitioning are influenced both by physical variables, like temperature and pres-
sure (which strains lattice sites), as well as chemical factors that include mineral and liquid composition, liquid
polymerization, and volatiles. All of these parameters are interdependent in ways that influence the outcome of
any regression analysis. Once parameters are selected, the next step is to standardize data to optimize computa-
tional effectiveness during the fitting process, improve statistical interpretation of the fitted model parameters,
and enable the introduction of additional constraints to provide model robustness especially in data-limited or
data-heterogeneous systems. Standardized data represent a simple linear transformation of the original data set,
where the mean value is subtracted off and deviations from that mean are scaled by the standard deviation of the
data. Thus, in a standardized data set, every variable is centered on zero and varies typically between —1 and +1
(at the 1s level accounting for 68% of the data). Accordingly, we generated a standardized data set by transform-
ing the experimental parameters and measured partition coefficients described above.

We constructed a standardized set of experimental parameters selected based on the observed correlation with
partitioning behavior (Table 2). We carried out multi-linear regressions on the standardized data using the “stats-
models” package, an open-source package for statistical modeling available in the Python programming language.
These standard ordinary least squares regression fits are carried out in a simple set of python-based Jupyter Note-
books, which simultaneously carry out and document the analysis. The primary output from these Python-based
notebooks is a set of results tables that summarize the fitted models, and also include regression diagnostics that
quantify the goodness of fit for each model. This same analysis is repeated for every trace element in the database
and for each of the three minerals studied here (clinopyroxene, amphibole, and garnet).

Applying basic multi-linear regression certainly improves performance over single-term linear models but still
allows large variations in the model coefficients in response to insufficient data coverage for many elements.
Due to their direct links with the thermodynamic process of elemental site substitution, we expect that the model
coefficients should all take on reasonable values (with standardized magnitudes that do not deviate strongly from
zero). But experimental data coverage is highly variable within the database, both in terms of raw numbers of
measurements as well as the completeness of sampling the key factors influencing partitioning (e.g., temperature,
pressure, and compositions). At the same time, preliminary correlation analysis revealed that the partitioning behav-
ior of Ti was usefully predictive of the behavior of nearly every element for all three minerals studied. In fact, the
single-term correlation strength was generally stronger for Dy, than for any other factor for both clinopyroxene
and amphibole and was still at least reasonably predictive for garnet. This observation points to the underlying
physical and chemical similarities between Ti-partitioning and generalized trace element partitioning (though the
strength of this connection depends on many factors not fully explored, most notably any differences in the dominant
site-substitution mechanism). Given the surprising effectiveness of Ti for predicting the behavior of every element
explored, we thus introduced an additional Ti-based regularization constraint on the multi-linear regressions, which
helped to constrain the allowable partitioning behavior for even the elements where data coverage is not sufficient
to ensure physically reasonable model parameters. Because of standardized variables, every coefficient is placed
on the same unitless scale. This allows easy direct comparison between the coefficients for each partitioning factor
(e.g., inverse temperature, pressure, Aly,, content), enabling us to compare the relative strength of each on the overall
partitioning. To interpret these standardized coefficient values, we can view the coefficients as a simple mapping
between how the typical level of variability for variable X impacts the variability seen in the log-partitioning factor.
For instance, a coefficient of 0.5 means that a typical change in variable X of 1s translates into a 0.5 s change in
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the In mineral"“e“Di value. Due to the standardization of all variables, statistical coefficients must be of the order +1
or smaller. Coefficients express dependence relative to a 1s change in the predict-ed In ™l mel]). values. The data
must have a variability of +1 standard deviation by the construction of the standardized variables, so large magnitude
coefficients are statistically difficult to realize. Large coefficients are highly unlikely because they require perfect
compensation of multiple competing factors, so that large changes induced by variable X1 are mostly canceled by
opposing effects from variable X2 (along with X3, X4, and so on...). Standardization allows us to impose constraints
on the variables to produce models that are stable as a function of the changes in calibration parameters (e.g., they
depart from reality slowly). Given the benefits of the standardization process, along with the observed correlations
with Ti-partitioning, we can safely assume Ti-regularizing prior constraints for every slope coefficient, constraining
each to lie in the range of +0.2 (at the 1s level, e.g., with 68% confidence) relative to the fitted coefficient values for
Ti. Given that the correlations with D,; were strong for nearly every element in all three minerals (0.4 < R? < 0.9),
this approach imposes the limit that every coefficient deviates from the Ti coefficient values by less than +0.4 with
95% confidence (2s).

The results of these Ti-constrained (regularized) regressions (Figures 9—11; Table 3) for clinopyroxene, amphibole,
and garnet, respectively, exhibit improved prediction accuracy for the experimental values (slope that approaches
1, for a linear fit to the calculated and experimental partitioning values i.e., characterized by R? approaching 1).
Despite dramatic improvements, examination of the regression coefficient means and errors demonstrates that
the parameters still retain non-negligible variability from element to element within the REE, pointing to areas
for future improvement. Overall, the accuracy of these regularized multi-linear models is strongly improved
compared with the results for the linear regression based on reciprocal temperature alone (as documented by the
rotation of the slope toward the 1:1 line as well as improved R? values).

5.3.2. Comparison of Predictive Error Between Single Term (Reciprocal Temperature) Linear and
Multiple Linear Regressions

In the comparison described below, we will attempt to quantify differences in the predictive error of parti-
tioning models and use the comparative results to assess the role of database characteristics. We use the cali-
bration data set as unknowns and applied the regression parameters to that data (Tables 2 and 3) to test the
internal consistency of the data by calculating partition coefficients and assessing their relationship/corre-
lation to the experimental values. This comparison may be made between models by comparing the square
of the calculated-experimental values—normalized to the number of experimental determinations for each
number (root mean square deviation—RMSD) and use that as a measure of the model's predictive power
(Figures 12a—12c, Data Set S4).

For the three minerals studied, the multiple linear regression results exhibit greater predictive power (lower
RMSD) compared to the linear regression based solely on reciprocal temperature. As noted above, this is consist-
ent with the observed differences in the slopes of the trendlines for the calculated versus experimental values
(Figures 3,4, 5,9, 10, and 11). In general, the trendlines for calculated versus experimental values are closer to 1
for the results from the multiple linear regression. To reduce the level of complexity in the graphical representa-
tion of the results (Figure 12), we will consider only Sr outside the REE, and the HFSE.

If we first consider the results for clinopyroxene (Figure 12a), the predictive power for the individual element parti-
tion coefficients calculated using the multiple linear regression are all lower than for the linear regression-based
results. In addition, the trend of predictive error with average In D exhibits a negative correlation, as one would
predict if there were increased analytical error at low In D. As noted above, if analytical error is a primary factor in
the observed differences in correlation coefficient for each element, then the analytical error on the experimental
values would decrease as In D increased toward a value of ~0 (D of 1), and as concentration in the experimentally
produced crystal approached that in the co-existing melt. However, this interpretation is complicated by the fact
that many experiments are doped with the element of interest to different levels.

If we analyze the same data for amphibole (Figure 12b), we see a different pattern in RMSD compared with
clinopyroxene. First, the calculated results for the two models are not correlated with the average In D for each
element (Figure 12b), indicating no improved correlation between calculated and observed values for higher In
D (more compatible elements). Second, the RMSD for the linear regression-calculated values is higher at low
In D than the RMSD for the multiple linear results (MLR more predictive for more incompatible elements).
However, RMSD values for average In D above O are consistently (but not exclusively) higher for the multiple
linear regression-based estimates (MLR less predictive for more compatible elements).
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Figure 9. Calculated versus experimental ™ melt]). ysing multiple linear regression (MLR) parameters (Table 3) for clinopyroxene (Data Set S1). (a) Sc, Sr and Light
Rare Earth Elements (REE), (b) medium REE, (c) Y and heavy REE, and (d) High Field Strength Elements (HFSE). Each symbol represents a single experimental
determination for that element. The experiments collectively follow a 1:1 correlation, but the results for individual elements are characterized by a slope less than 1
(colored trendlines). Note that all trendlines have a slope that is equal to or less than 1.

The correlation of calculated versus experimental garnet partitioning experimental data results are similar in that
they (Figure 12c¢) exhibit lower RMSD (more predictive) for multiple regression results at low average In D than
for linear regression results (blue above orange at low In D) but reverse for compatible elements characterized by
an average In D ~ 0 (orange above blue).

Taken collectively, these results indicate that the inclusion of extra terms in multiple linear regression will
improve the predictive power for clinopyroxene/melt partitioning data, less so for amphibole and garnet. The
increased predictive power seen with the inclusion of additional terms is also consistent with the wider range
of composition, P and T where clinopyroxene is stable in natural systems (Figure 1). In the case of garnet/melt
partitioning, the lower level of improvement in predictive power associated with the inclusion of additional terms
suggests that the dependencies associated with composition are less important than the influence of propagated
error associated with measurement of the additional terms, as can be seen in the rotation of the trendlines for
calculated versus experimental results (e.g., Figure 11a). Unfortunately, a quantitative analysis of the propagated
error for the entire database is difficult because of the multiple analytical tools used, as well as the wide range of
doping levels—and the differences in each of those factors for different elements in any specific mineral.
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Figure 10. Calculated versus experimental ™na-meltD). ysing multiple linear regression (MLR) parameters (Table 3) for amphibole (Data Set S2). (a) Sc, Sr and Light
Rare Earth Elements (REE), (b) medium REE, (c) Y and heavy REE, and (d) High Field Strength Elements (HFSE). Each symbol represents a single experimental
determination for that element. The experiments collectively follow a 1:1 correlation, but the results for individual elements are characterized by a slope less than 1
(colored trendlines). Note that all trendlines have a slope that is equal to or less than 1.

6. Conclusions

Using an expanded calibration database comprised of published experimentally determined partition coefficients,
we confirmed that REE and HFSE partitioning in clinopyroxene, amphibole, and garnet is correlated to temper-
ature, pressure, melt composition, Ca content, Al,y, Siy; (garnet), and Dy;. These dependencies were identified
several decades ago on smaller, more restricted databases, but had not been reaffirmed with new experimental
data. This new analysis has identified additional details of the dependencies, including how the magnitude of the
dependence varies from mineral to mineral. The correlation of minreraVmeliy D, for REE and HFSE in clinopyroxene
and amphibole with Al,, and D; are similar to one another, in spite of the difference in valence. The strongest
dependence for garnet/melt REE and HFSE partitioning is with reciprocal temperature.

Predictive models may be developed based on any individual parameter dependence or, using multiple linear
regression analysis, by including all parameters in the regression for which there is an observed correlation with
partitioning behavior. If one uses any one of the individual dependencies, the result is that the impact of the
others (combined dependencies) is not accounted for. However, the calculated results of those models are not
linearly correlated with the calibration data set (calculated and experimental values for partitioning do not lie on
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Figure 11. Calculated versus experimental ™ra-meltD). yusing multiple linear regression (MLR) parameters (Table 3) for garnet (Data Set S3). (a) Sc, Sr and Light
Rare Earth Elements (REE), (b) medium REE, (c) Y and heavy REE, and (d) High Field Strength Elements (HFSE). Each symbol represents a single experimental
determination for that element. The experiments collectively follow a 1:1 correlation, but the results for individual elements are characterized by a slope less than 1
(colored trendlines). Note that all trendlines have a slope that is equal to or less than 1.

a 1:1 line). The range of predicted (calculated) values is therefore narrower than that of the experimental values
on which the model is based and appears “flatter,” characterized by a trendline slope less than 1. The difference
between the distribution of the calculated values versus the experimental values is dependent on the impact of all
the other unaccounted parameters, including analytical error.

Additional scatter may be related to the difference in the configuration of the calibration data set. In the case
of the temperature dependence of REE partitioning (as approximated by the slope of In mineralmeltpy g,
10000/T), clinopyroxene, amphibole, and garnet are correlated with atomic number and ionic radius, with that
dependence on atomic number being negative for clinopyroxene and positive for amphibole and garnet. The
correlation is irregular, with some values for temperature dependence above the correlated line, and others
below. The irregularity of the correlation of temperature dependence and atomic number will result in irregu-
lar patterns for calculated REE partition coefficients across the range of REE. The source of that irregularity
can be seen in the correlation of the magnitude of departures from the temperature dependence versus atomic
number. Such departures are negatively correlated with the number of experimental determinations for each
element. The precise provenance of this negative correlation is unknown but may be related to how the exper-
imental investigations for specific elements are designed (including dopant levels), and which elements pose
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Figure 12. Predictive power (difference between calculated and experimental values) in terms of root mean square deviation (root of sum of the square of the difference
between the calculated and experimental values) vs. experimentally determined average In D for (a) clinopyroxene, (b) amphibole, and (c) garnet. Blue symbols
represent calculated values using a linear correlation of In D with reciprocal temperature (Table 2). Orange symbols represent calculated values using multiple linear
regression correlating In D with a number of dependent parameters (Table 3). The inset figures with dashed squares are close-up views of the specified region.

more difficult analytical problems due to a combination of factors including low concentration, low sensitivity,
or signal overlap. The multiple source of uncertainty makes it difficult to quantify the magnitude of the irregu-
larity (e.g., is the irregularity statistically meaningful). Even if the irregularity of the modeled results is within
the error of the regression, it does not inform our understanding of the trend of the dependency as a function
of atomic number. That dependency should be regular (based on our understanding of the behavior of groups
of elements such as the REE). However, the rough correlation of RMSD and temperature dependency with the
number of experiments for all three phases suggests that there are underlying properties of the existing data
that may be related to experimental design—on the part of literally hundreds of experimentalists over a period
of 50 years.

The predictive power (reduced predictive error) of expressions describing partitioning behavior may be improved
by the application of multiple regression analysis. However, our results for multiple regression exhibit significant
element-element irregularity in the regression parameters, and significant differences in the magnitude of those
parameters among the three minerals. The results for multiple regression generally exhibit higher levels of corre-
lation than single term temperature-dependent regressions, but do not reproduce the predicted consistent behavior
within the REE. Rather, the modeled REE patterns exhibit increasingly irregularity as one simulates conditions at
the margins of the calibration data set. Similar patterns are likely present within other element groups such as the
HFSE and LILE but are less obvious due to the more complex differences in ionic radius and charge within those
groups. Nevertheless, it is possible that such irregularities would impact the modeling of, for example, LILE/
HFSE or REE/HFSE ratios (e.g., Y/Zr, Ba/Nb). This may also be caused by the differences in the substitution
mechanisms for different phases for elements with variable valences, particularly for 4+1, 42 cations compared
to +3, +4, 45 cations.
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Estimates of the predictive power of models based on either single term linear regressions or multiple linear
regression exhibit different patterns for reduced residual scatter relative to 1:1 calculated versus experimental
trend as exhibited in R? of the regression or root mean square deviation (RMSD) for the predicted values. Further,
for clinopyroxene and to some degree for garnet, the RMSD of calculated values versus the experimental values
trend lower as the average partition coefficients trend higher. This would be the expected result if the inclusion
of additional parameters effectively improves the precision of the model—with a majority of the remaining scat-
ter due to analytical error. Such error is correlated to concentration and indirectly to the partition coefficient.
However, the results for amphibole do not show a correlation of RMSD with In D. In addition, there remains
a significant element to element variation in the regression parameters within groups of elements presumed to
behave coherently. This can be attributed to differences in the number and characteristics of experimental deter-
minations for each element in each mineral. Increase in the accuracy of predictive models will require increased
sophistication in our approach to regression analysis, involving regularization of the controlling parameters. More
importantly, we must account for the fact that the controlling parameters for clinopyroxene, amphibole, and garnet
have different impact on predictive models due to the differences in substitution mechanisms, the range of compo-
sition representative of the stability field of each phase, and the resultant differences in the calibration data sets.
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The dataset is available through the traceDs database site (Nielsen & Ustunisik, 2022a, 2022b, 2022c).
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