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A B S T R A C T 

The time evolution of high-energy synchrotron radiation generated in a relativistic pair plasma energized by reconnection 

of strong magnetic fields is investigated with 2D and 3D particle-in-cell (PIC) simulations. The simulations in this 2D/3D 

comparison study are conducted with the radiative PIC code OSIRIS, which self-consistently accounts for the synchrotron 

radiation reaction on the emitting particles, and enables us to explore the effects of synchrotron cooling. Magnetic reconnection 

causes compression of the plasma and magnetic field deep inside magnetic islands (plasmoids), leading to an enhancement 
of the flaring emission, which may help explain some astrophysical gamma-ray flare observations. Although radiative cooling 

weakens the emission from plasmoid cores, it facilitates additional compression there, further amplifying the magnetic field 

B and plasma density n , and thus partially mitigating this effect. No v el simulation diagnostics utilizing 2D histograms in the 
n - B space are developed and used to visualize and quantify the effects of compression. The n - B histograms are observed to be 
bounded by relatively sharp power-law boundaries marking clear limits on compression. Theoretical explanations for some of 
these compression limits are developed, rooted in radiative resistivity or 3D kinking instabilities. Systematic parameter-space 
studies with respect to guide magnetic field, system size, and upstream magnetization are conducted and suggest that stronger 
compression, brighter high-energy radiation, and perhaps significant quantum electrodynamic effects such as pair production, 
may occur in environments with larger reconnection-region sizes and higher magnetization, particularly when magnetic field 

strengths approach the critical (Schwinger) field, as found in magnetar magnetospheres. 

Key words: magnetic reconnection – radiation: dynamics – relativistic processes – stars: magnetars – (transients:) gamma-ray 

bursts. 

1

B  

f  

s  

e  

u  

d  

e  

n  

i  

w  

(  

A  

v  

a  

b  

F  

fl  

�

(  

j  

2  

2  

o  

m  

s  

i  

e  

d  

(  

2  

f  

K  

h  

a  

a  

S  

l

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/523/3/3812/7188308 by U
niversity of C

olorado user on 05 July 2023
 INTRODUCTION  

right, rapid gamma-ray flares occur throughout the cosmos, coming
rom sources associated with relativistic compact objects – neutron
tars and black holes – both in our own Galaxy and beyond. Among
xtrag alactic flaring g amma-ray sources, perhaps the most spectac-
lar ones are gamma-ray bursts (GRBs) observed at cosmological
istances: both long (several seconds) GRBs resulting from violent,
 xplosiv e deaths of very massive stars, and short ( ≤2 s) GRBs from
eutron-star mergers (Piran 2005 ; M ́esz ́aros 2006 ; Berger 2014 ),
ncluding the recently observed relatively weak short GRB associated
ith the gra vitational-wa v e ev ent GW-170817 detected by LIGO

Abbott et al. 2017 ; Goldstein et al. 2017 ; D’Avanzo et al. 2018 ).
nother important class of powerful extragalactic sources flaring
iolently in the gamma-ray band is coronae and relativistic jets of
ctive galactic nuclei (AGNs) powered by accreting supermassive
lack holes residing at the centres of many galaxies, such as M87.
 or e xample, ultrarapid ( ∼ 10 min) Very-High-Energy (VHE) TeV
ares are observed by ground-based Cerenkov telescopes from M87
 E-mail: ke vin.schoef fler@tecnico.ulisboa.pt 
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Abramowski et al. 2012 ) and from many blazars (relativistic AGN
ets pointing directly along our line of sight) (Aharonian et al.
007 ; Albert et al. 2007b ; Aleksi ́c et al. 2011 ; Madejski & Sikora
016 ); blazars are also observed to have simultaneous GeV flares
n 1-d time-scales (Tanaka et al. 2011 ). Some of the most notable
anifestations of variable gamma-ray activity from Milky Way

ources include pulsed broad-band high-energy emission (peaking
n the GeV range) from young pulsars such as Crab and Vela (see
.g. Philippov & Kramer 2022 , for a recent re vie w); the enigmatic
ay-long 100 MeV–1 GeV flares from the Crab pulsar wind nebula
PWN) (Abdo et al. 2011 ; Tavani et al. 2011 ; Buehler & Blandford
014 ); very short and intense hard-X-ray and soft gamma-ray flares
rom magnetars (e.g. Mazets et al. 1999 ; Palmer et al. 2005 ; see
aspi & Beloborodov 2017 for a recent re vie w); and non-thermal
igh-energy emission extending at least up to MeV energies from
ccreting stellar-mass black holes in X-ray Binaries (XRBs) such
s Cyg X-1 (Remillard & McClintock 2006 ; Zdziarski, Lubi ́nski &
ikora 2012 ), which also sometimes exhibit VHE ( ≥100GeV) hour-

ong flares (Albert et al. 2007a ). 
The leading radiation mechanisms responsible for these flares can

e either synchrotron or inverse-Compton (IC), depending on the
ource. Thus, in neutron-star systems, the magnetic fields are strong
© 2023 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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nd the radiation is often dominated by synchrotron emission, even 
n the gamma-ray range. For sufficiently strong fields, the radiation 
mission takes place in the discrete, quantum-electrodynamic (QED) 
egime, where the emission of a single photon causes a significant 
rop in the emitting particle’s energy. Moreo v er, the interaction of
he emitted energetic gamma-ray photons with the ambient strong 

agnetic field can lead to electron–positron pair production, thus 
roviding an important source of pair plasma populating the neutron- 
tar magnetosphere. These QED processes are especially important 
or magnetars – young neutron stars with ultrastrong magnetic 
elds exceeding the QED (Schwinger) field, B Q 

≡ m 

2 
e c 

3 /e� � 

 . 4 × 10 13 G = E Q (in Gaussian units) (e.g. Duncan & Thompson
992 ). In contrast, in environments with weaker magnetic fields, e.g. 
hose around rapidly accreting black holes (e.g. in coronae of XRBs
nd quasars), radiative cooling is often dominated by IC scattering 
Albert et al. 2007a ), which may also sometimes happen in the
ED Klein-Nishina regime and power prodigious pair production 

Beloborodov 2017 ; Mehlhaff et al. 2020 ). 
In all of these cases, magnetic reconnection provides an attractive 
echanism for explaining the high-energy flares (Romanova & 

o v elace 1992 ; Lyubarskii 1996 ; Di Matteo 1998 ; Lyutikov 2003 ;
aroschek, Lesch & Treumann 2004 ; Giannios 2008 ; Giannios, 
zdensk y & Be gelman 2009 ; Giannios 2010 ; Nalew ajk o et al.
011 ; Uzdensky 2011 ; Uzdensky, Cerutti & Begelman 2011 ; Cerutti,
zdensky & Begelman 2012 ; McKinney & Uzdensky 2012 ; Nale- 
 ajk o et al. 2012 ; Cerutti et al. 2013 ; Giannios 2013 ; Uzden-

ky & Spitkovsky 2014 ; Sironi, Petropoulou & Giannios 2015 ; 
erutti, Philippo v & Spitko vsk y 2016 ; Beloborodo v 2017 ; Lyutiko v
t al. 2018 ; Philippov & Spitkovsky 2018 ; Werner et al. 2018a ;
erner, Philippov & Uzdensky 2018b ; Giannios & Uzdensky 2019 ; 
ehlhaff et al. 2020 ; Chen, Uzdensky & Dexter 2023 ; Hakobyan,

hilippo v & Spitko vsk y 2023a ; Hakobyan, Ripperda & Philippo v
023b ). During reconnection, free energy contained in oppositely 
irected magnetic fields is rapidly converted to bulk flows, plasma 
eating, and non-thermal particle acceleration; moreo v er, in strongly 
adiative cases much of this energy is promptly converted into 
adiation. Furthermore, reconnecting current sheets are unstable to 
he secondary tearing instability leading to the generation of magnetic 
slands (plasmoids), or flux ropes in 3D (Loureiro, Schekochihin & 

owley 2007 ; Bhattacharjee et al. 2009 ; Uzdensky, Loureiro & 

chekochihin 2010 ). As the freshly energized plasma tends to 
ccumulate inside these islands, bursts of radiation are expected to be 
mitted from there (Cerutti et al. 2013 ; Giannios 2013 ; Petropoulou,
iannios & Sironi 2016 ; Sironi, Giannios & Petropoulou 2016 ; 
eloborodov 2017 ; Schoeffler et al. 2019 ; Sironi & Beloborodov 
020 ). 
Magnetic reconnection is therefore a potential cause of observed 

amma-ray and X-ray flares. Several previous radiative-PIC studies 
av e inv estigated reconnection with radiativ e cooling due to inv erse
ompton scattering, where energetic particles upscatter soft photons 

rom an ambient radiation bath (Werner et al. 2018b ; Mehlhaff 
t al. 2020 ; Sironi & Beloborodov 2020 ; Sridhar, Sironi & Be-
oborodov 2021 ). Ho we ver, in reconnection regimes with strong

agnetic fields, especially found near pulsars and magnetars, the 
adiation cooling is predominantly caused by synchrotron emission 
Lyubarskii 1996 ; Uzdensky & Spitkovsky 2014 ; Cerutti et al. 2016 ).
elativistic collision-less reconnection with synchrotron cooling has 
een studied with radiative-PIC simulations, mostly in 2D, in a 
umber of previous works (Jaroschek & Hoshino 2009 ; Cerutti et al.
013 , 2014a ; Nalew ajk o, Yuan & Chru ́sli ́nska 2018 ; Hakobyan,
hilippo v & Spitko vsk y 2019 ; Schoeffler et al. 2019 ; Hakobyan
t al. 2023b ). It will also be the focus of this paper, which will be
evoted to studying the interplay between 3D and radiative cooling 
ffects. 

In our previous 2D computational study (Schoeffler et al. 2019 ),
econnection was shown to cause a sudden jump in the radiation
mission. The reconnection process leads to plasma heating and 
on-thermal particle acceleration, both directly by the reconnect- 
ng electric field, and by the evolution and merging processes 
f the plasmoids. Increased plasma density, magnetic field, and 
emperature, caused by the compression of islands in 2D, leads 
o stronger emission of radiation. Radiative cooling was shown to 
urther enhance the compression and subsequent radiation at the 
ores of magnetic islands. In a strong magnetic field, the enhanced 
adiation can reach into the gamma-ray band, potentially inducing 
ED effects such as pair production (Schoeffler et al. 2019 ). 
The intriguing results of our previous 2D computational study 

Schoeffler et al. 2019 ) naturally lead to an important question of
hether the observ ed v ery strong compression effects will still occur

n a more realistic 3D system. Building up on that study, in this paper
e will show that enhanced compression is indeed possible in 3D

t some level, and hence 3D relativistic magnetic reconnection in 
trong magnetic fields could still explain the occurrence of gamma- 
ay flares in astrophysical systems. Ho we v er, the maximum de gree of
ompression achie v able in 3D remains rather modest, as compressing
ux ropes tend to get disrupted by the kink instabilities. A moderate
ut-of-plane (the so-called ‘guide’) magnetic field can stabilize 
he kink and helps keep the plasma from escaping the flux ropes.
o we ver, at the same time, the magnetic pressure of this same
uide field resists and limits the compression. It turns out that the
ompression is maximized for moderate values of the guide field, 
omparable to the upstream reconnecting field. 

In this paper, we conduct a large, comprehensive study using 
D and 3D particle-in-cell (PIC) simulations using the OSIRIS 

ramework (Fonseca et al. 2002 ). First and foremost, we look at the
mportance of 3D effects on these reconnecting systems with strong 
elds, which has not yet been thoroughly investigated in dedicated 
adiative-PIC simulation studies (see however Cerutti et al. 2014a ). 
urthermore, we have developed novel numerical diagnostic tools 

o characterize and understand in detail the plasma and magnetic 
eld compression in magnetic islands and the emission of radiation 

n these reconnection regimes. This includes 2D histograms charac- 
erizing the spatial correlations between plasma density, magnetic 
eld strength, and plasma temperature, which help us elucidate 

he degrees of compression that enhance the radiation emission. 
xtensiv e e xploration of various broad parameter spaces elucidates 

he conditions under which gamma-ray flares can be expected. 
This paper is organized as follows. In Section 2 we will introduce

he numerical setup for our 2D and 3D radiative PIC simulations
hat will be presented throughout this paper. In Section 3 we
ill introduce the new diagnostics used to examine the emission 
f radiation, divided into (i) the different estimates of the total
adiated power and of the local emissivity as a function of space
nd (ii) 2D correlation histograms of the density, magnetic field, 
nd temperature, which help quantify the degree of compression 
nd spatial correlations between these quantities. In Section 4 
e will examine 2D simulations utilizing these new diagnostics 

onsidering different synchrotron cooling strengths characterized 
y dif ferent v alues of the normalized reconnecting magnetic field
 0 / B Q . In Section 5 we will present and analyse the results of full 3D
imulations. In Section 6 we will present a broad parameter-space 
tudy exploring the effects of several important system parameters, 
uch as the guide magnetic field, the system size and aspect ratio,
nd the upstream plasma magnetization. Finally, in Section 7 we 
MNRAS 523, 3812–3839 (2023) 
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ill summarize the conclusions found in this work, and discuss how
agnetic reconnection in strong fields may power radiation observed

n astrophysical gamma-ray flares. We also include appendices with
 more detailed description of the setup in Appendix A , a more
ev eloped e xplanation of the theoretical boundaries of density in the
ensity-magnetic field histograms in Appendix B , a deri v ation of an
f fecti ve resisti vity due to synchrotron radiation in Appendix C , and
n associated theoretical boundary of magnetic fields in the density-
agnetic field histograms in Appendix D . 

 NUMERICAL  SETUP  

e conducted both 2D and 3D PIC studies of relativistic reconnec-
ion in a pair plasma, taking advantage of the OSIRIS framework
Fonseca et al. 2002 ). OSIRIS self-consistently includes synchrotron
adiation and the QED process of pair production by a single
amma-ray photon propagating across a strong electromagnetic
eld (Grismayer et al. 2016 , 2017 ). Ho we ver, in this study, we

ook at a regime where, although the back-reaction caused by the
ynchrotron radiation plays an important role, the QED processes
re not rele v ant. In these simulations, we track the total amount of
adiated energy emitted by each particle at every time-step and use
he local estimation for the emissivity εest (described in Section 3.1 )
o track emission as a function of space and time. 

We simulate an initial double relativistic Harris current-sheet
quilibrium (Harris 1962 ; Kirk & Skjæraasen 2003 ) with periodic
oundary conditions, which is explained in more detail in Ap-
endix A . For our simulations presented in Sections 4 and 5 , we
ocus on the fiducial values of the key system parameters described
n this section, while we will vary some of them in the parameter
cans in Section 6 . 

The computational domain is initially filled with a relativistically
ot Maxwell-J ̈uttner background electron–positron plasma with
niform density (of each species) n b and temperature T b = 4 m e c 2 .
hese parameters are chosen to yield a high upstream ‘hot’ plasma
agnetization 

h ≡ B 

2 
0 

4 π (2 n b ) h b 

= 25 . 76 , (1) 

here B 0 is the reconnecting magnetic field oriented along the
ˆ x direction and h b is the relativistic enthalpy per particle in the
pstream background ( h ≈ 4 T for ultrarelativistic temperatures). This
orresponds to an upstream plasma beta βup ≡ 8 π (2 n b ) T b /B 

2 
0 =

 / 2 σh = 0 . 0202. Note that the value of magnetization adopted in
his paper is greater than the value σ h = 6.44 of our previous work
Schoeffler et al. 2019 ). We also include an out-of-plane ( ̂ z ) uniform
uide magnetic field B G = 0.4 B 0 . The cold magnetization, discussed
n Appendix A , is σc ≡ B 

2 
0 / 4 π (2 n b ) m e c 

2 = 412. 
In addition to the uniform background, we include two antiparallel

nitial Harris current layers, each lying in a y = const plane and
arrying electric current in the ± ˆ z direction. The layers are com-
osed of drifting Maxwell-J ̈uttner distributions of counterstreaming
lectrons and positrons with central density (of each species) n 0 =
7 n b , rest-frame temperature T 0 = 6.92 m e c 2 , an initial half-thickness
= 2.55 ρL , and a drift velocity v d / c = 0.56 for each species (Lorentz

actor γ d = 1.21, proper velocity u d = γ d v d / c = 0.68). 
Here, our main fiducial normalizing length scale 

L ≡ γT m e c 
2 /eB 0 = γT c/
c (2) 

s defined as the Larmor radius of a background particle with a
orentz factor corresponding to the peak of the initial upstream

elativistic Maxwell-J ̈uttner distribution, γ T ≡ 2 T b / m e c 2 . Here, 
c 
NRAS 523, 3812–3839 (2023) 
eB 0 / m e c is the classical (non-relativistic) gyrofrequency. Other
mportant length scales include the respective background (non-
elativistic) skin depth d e ≡ [ m e c 2 /4 π (2 n ) e 2 ] 1/2 and Debye length
D ≡ [ T /4 π (2 n ) e 2 ] 1/2 , defined by the initial background plasma
arameters ( n = n b and T = T b ): 

 e = ρL 

(
σh m e c 

2 /T b 
)1 / 2 ≈ 2 . 53 ρL , (3) 

D 

= ρL σ
1 / 2 
h ≈ 5 . 08 ρL , (4) 

oth of which are larger than ρL , scaling as σ 1 / 2 
h ρL for relativistic

emperatures. We can also introduce the values of these length scales
n the Harris sheet where n = n 0 and T = T 0 : 

L,H 

= ρL ( T 0 /T b ) ≈ 1 . 73 ρL , (5) 

 e,H 

= ρL 

(
σh n b m e c 

2 /n 0 T b 
)1 / 2 ≈ 0 . 42 ρL , (6) 

D,H 

= ρL ( σh n b T 0 /n 0 T b ) 
1 / 2 ≈ 1 . 10 ρL . (7) 

he Larmor radius and Debye length in the reconnection regions
ncrease as time progresses, due to the heating of the plasma. Our
ducial simulation domain size is 2 L x × 2 L y ( × 2 L z ) = 628.8 ρL ×
28.8 ρL ( × 117.2 ρL ) in 2D (3D), and the simulations are run for
bout 3.16 light crossing times L y / c ( t max = 7948 
−1 

c ). 
Our typical 2D (3D) simulation domain size consists of

280 × 1280( × 240) computational grid cells of size � x = � y ( =
z) = 0.49 ρL , initially with 16 (8) particles per species in each

ell, with a total of about 9.0 × 10 7 (1.0 × 10 10 ) particles.
here are thus about 1700 (8900) initial macroparticles per Debye
ube in the background plasma. Although initially there are only
80 (90) macroparticles per Debye cube in the Harris sheet, once

he background plasma enters the reconnection region, this number
ecomes much larger. The simulations are typically run with a time-
tep of �t = 0 . 5 �x/c = 0 . 25 ρL /c = 0 . 25 γT 


−1 
c . 

A no v el feature of our simulations is the self-consistent inclusion
f optically thin radiation emission by relativistic particles due to
trong magnetic fields. Depending on the importance of QED effects,
SIRIS can treat radiation emission with two alternative implemen-

ations: a continuous description of classical radiation reaction, and
 quantized description that includes the QED processes. 

To determine whether QED (discrete-emission) effects are impor-
ant for a given emitting particle, we calculate the relativistic invariant
or an electron (or positron) of energy γ m e c 2 and momentum p 
oving in an electromagnetic field 

e = 

1 

B Q 

√ (
γ E + 

p 
m e c 

× B 

)2 

−
(

p 
m e c 

· E 

)2 

, (8) 

hich in our parameter regimes, where usually B � E , can be
pproximated by 

e ≈ γB 

B Q 

. (9) 

s this parameter increases, the particle will emit higher energy
hotons, and, once χ e approaches 1, QED effects including discrete
amma-ray emission, and, for even higher χ e , pair production, can
tart playing an important role. Ho we ver, in the simulations presented
n this paper, the χ e parameter does not usually reach significantly
igh values even for very energetic particles (i.e. χ e � 1). We
hus use the continuous description, with the radiation back-reaction
ccounted for classically using the Landau-Lifshitz model (Landau &
ifshitz 1975 ) for the radiative drag force, while we keep track of

he total radiated energy. 
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The radiative cooling is significant when the synchrotron cooling 
ime ∼( αfs χ e 
c ) −1 , where αfs ≡ e 2 / � c ≈ 1/137 is the fine structure
onstant, is shorter than or comparable to the rele v ant time-scale of
he simulation, i.e. a few global light crossing times ( t max ≈ 3.16 L y / c ).
fter one light crossing time L y / c , a relativistic particle with energy
m e c 2 moving in a magnetic field B experiences significant cooling 

i.e. loss of a significant fraction of its energy) when 

2 

3 
αfs χe 
c 

L y 

c 
= 2 γ

B 

2 

B 

2 
0 

� B > 1 , (10) 

 parameter directly related to the global magnetic compactness 

 B ≡ σT L y 

U B0 

m e c 2 
. (11) 

ere, σ T is the Thomson cross-section, and U B0 = B 

2 
0 / 8 π is the

nitial upstream magnetic energy density. Note that in our fiducial 
et of simulations, with fixed values of L y / ρL = 314.4 and γ T =
 T b / m e c 2 = 8, the compactness � B scales just linearly (instead of
uadratically) with B 0 , since ρL = γT m e c 

2 /eB 0 ∝ B 

−1 
0 . 

We assume that synchrotron emission is the dominant radiation 
echanism. For the simulation parameters adopted in this study, the 
homson optical depth is τ T ≡ σ T L y n b = 1.35 × 10 −4 , and thus

he radiation occurs in an optically thin regime. Here we ignore 
he IC scattering of both the synchrotron photons (i.e. synchrotron 
elf-Compton, SSC) and any possible ambient photons of external 
rigin (i.e. external IC); we also neglect synchrotron self-absorption; 
nvestigating the effect of these additional radiative processes is left 
or future studies. 

For reference, we define the characteristic radiation-reaction 
imit Lorentz factor γ rad described (e.g. in Uzdensky et al. 2011 ; 
zdensky 2016 ; Werner et al. 2018b ; Mehlhaff et al. 2020 ; Sironi &
eloborodov 2020 ; Mehlhaff et al. 2021 ). This factor is defined as

he particle Lorentz factor for which the radiation-reaction force 
s equal to the acceleration force by the reconnecting electric field 
 rec = βE B 0 , or, equi v alently, the particle’s radiati ve cooling time is
pproximately equal to the gyro-period. For synchrotron radiation, 
his limit is 

2 
rad = 

1 

sin 2 α

3 

2 

βE 

αfs 

B Q 

B 0 
= 

1 

2 � B 


c L y 

c 

βE 

sin 2 α
= 

4 πe 

σT B 0 

βE 

sin 2 α
, (12) 

here βE ∼ 0.1 is the dimension-less reconnection rate (reconnection 
nflow velocity normalized to the speed of light), and α is the 
article’s pitch angle with respect to the magnetic field. 
In order to investigate the effects of radiative cooling, in this paper

e present the results (in both 2D, Section 4 , and 3D, Section 5 )
rom three simulations with different cooling strengths. The cooling 
trength is controlled by varying the reconnecting magnetic field 
trength, using the same magnetic field values as those used by 
choeffler et al. ( 2019 ): 

(i) Classical Case: B 0 / B Q = 4.53 × 10 −6 (i.e. B 0 = 2 × 10 8 G),
here the peak local average value of χ e reaches χ e ∼ 0.0003 


 αfs 
c t max ) −1 ≈ 0.017, and 2 γ ( B / B 0 ) 2 � B ≈ 0.004 ( � B ≈ 2 × 10 −5 ),
nd hence cooling is not important; 

(ii) Intermediate Case: B 0 / B Q = 4.53 × 10 −4 ( B 0 = 2 × 10 10 G),
here ( αfs 
c t max ) −1 ≈ 0.017 < χ e ∼ 0.03 
 1, and 2 γ ( B / B 0 ) 2 � B ≈
.4 ( � B ≈ 0.002), and cooling is becoming important; 
(iii) Radiative Case: B 0 / B Q = 4.53 × 10 −3 ( B 0 = 2 × 10 11 G),

here χ e ∼ 0.3, and 2 γ ( B / B 0 ) 2 � B ≈ 4 ( � B ≈ 0.02), and cooling is
ery important. 

In these estimations, e.g. of χ e ( B , γ ), to e v aluate peak local average
alues inside of magnetic islands/flux ropes, we have assumed that 
he magnetic field is enhanced by a factor of about 1.5 (i.e. B ≈
.5 B 0 ) and the temperature by a factor of 5 (i.e. T ≈ 5 T b , γ ≈ 5 γ T ).
urthermore, assuming a normalized reconnection rate βE = 0.1 and 
itch angle α = 90 ◦, these parameters correspond to γ rad � 2000,
00, and 60, respectiv ely. F or the radiativ e case, in order to keep
he initial upstream plasma from cooling substantially in the course 
f the simulation, we restrict the degree of radiative cooling based
n the background parameters to 2 γ T � B ≈ 0.44, with a background
verage χ e ( B 0 , γ T ) ≈ 3.6 × 10 −2 . Ho we ver, as the system evolves,
e gions dev elop with an average local value χ e ≈ 0.3 (as shown in
ection 6.4 ), and energetic particles occur with χ e ≈ 1, allowing for
ignificant local cooling. Note, ho we ver, that unlike in Ref. Schoeffler 
t al. ( 2019 ), these values of χ e are small enough that there are no
ignificant QED effects (such as discrete photon emission and pair 
reation). Nevertheless, we still expect qualitatively similar results; 
egligible cooling in the classical case, and a significant radiated 
raction of the released magnetic energy, in part due to a strong
nhancement of magnetic island compression, in the radiative case 
nd, to a lesser extent, in the intermediate case. 

In Section 6 , we also explore the parameter space starting with our
D radiative case B 0 / B Q = 4.53 × 10 −3 , and varying B G / B 0 , L z / ρL ,
 y / ρL , and σ h . 

 DIAGNOSTICS  

.1 Estimated radiated power and emissivity 

hile it is possible to do in-situ measurements in reconnection 
 xperiments and ev en in the Earth’s magnetosphere using spacecraft,
or phenomena that take place around remote astrophysical objects 
ike neutron stars, the only data that can be obtained comes from
bservations of radiation. We thus pay special attention to diagnostics 
easuring the radiation emitted in these environments both as a 

unction of time and of space. 
Each particle emits radiation at an y giv en moment in time with a

ower that is a function of χ e and, in the classical regime ( χ e 
 1),
an be expressed as 

 = 

2 

3 

αfs m e c 
2 

t C 
χ2 

e ≈
2 

3 

e 2 

c 
γ 2 
2 

c sin 2 α , (13) 

here the second expression, for classical synchrotron radiation, is 
alid as long as the magnetic field is much stronger than the electric
eld. Here t C = � / m e c 2 ≈ 1.29 × 10 −21 s is the electron Compton

ime. 
While the total power emitted in a given optically thin system is

alculated by summing the powers P radiated by each particle, it is
lso useful to study the location in space where the radiative power
s emitted from. Instead of considering a discrete sum of particles,
ne can consider a 6D distribution of particles f ( p , x ) o v er the
omentum space p and the coordinate space x , and calculate P as
 function of p , B ( x ) , and E ( x ) . Then, the total power emitted at a
iven moment in time can be expressed as: 

 tot = 

∫ 
d 3 p d 3 x f ( p , x ) P ( p , x ) = 

∫ 
d 3 x ε( x ) , (14) 

here the local emissivity 

( x ) ≡
∫ 

d 3 p f ( p , x ) P ( p , x ) (15) 

s the power emitted from a unit volume in space. The total power is
hus proportional to the v olume-a veraged emissivity P tot ∼ 〈 ε( x ) 〉 , 
here the angle brackets represent an average over space. In our
MNRAS 523, 3812–3839 (2023) 
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imulations, we calculate P tot at each time-step by summing the
adiation from all the particles in the simulation. We normalize P tot 

o its initial value P tot, 0 , P̄ tot ≡ P tot /P tot , 0 , in order to emphasize the
elative enhancement of radiation due to reconnection. 

In principle, in PIC simulations it is possible to precisely measure
oth P tot and ε by summing the power emitted by each particle within
ach given small volume element, e.g. in each grid cell. Ho we ver, in
HD simulations, for example, the details of the particle distribution

re not available. Furthermore, only limited data are available in
bservations. We will thus explore several fluid-level methods of
stimating P tot using various assumptions, and check their fidelity by
omparing them with our exact kinetic measurements. 

Although we do not introduce a diagnostic for the precise (particle-
ased) value of ε( x , t) in our simulations, we will define a reasonable
uid-based method of estimation where we assume a local isotropic
axwell-J ̈uttner distribution in the comoving frame corresponding

o the local drift velocity v d of each species. 
To obtain the ef fecti ve local temperature from a time-evolving

istribution that is not necessarily Maxwell-J ̈uttner, we take the
emperature tensor T ij ≡ m 

−1 
e 

∫ 
d 3 p ( p i p j /γ ) f ( p ) / 

∫ 
d p 

3 f ( p ) for
he background electron species calculated in its local rest frame
i.e. in the so-called Eckart frame (Eckart 1940 ), where the local
urrent of that species vanishes]. Here, p i is the i th component ( i =
 , y , z) of the momentum, γ = 

√ 

1 + p 

2 /m 

2 
e c 

2 , and f ( p ) is the
omentum distribution function. The ef fecti ve temperature is then

efined using the trace of the temperature tensor, T ≡ Tr ( T ij )/3.
hile this temperature initially only represents the temperature of

he background plasma, as the background population mixes with the
urrent-sheet population, this temperature becomes a representative
emperature of the system. We also define a representative density
 , which is the total local particle density of one species (e.g.
ositrons), including both initially background and Harris current-
heet particles. 

Assuming again that E 
 B , we can say that χ e ≈ γ B / B Q , and
ubstitute equation ( 13 ) into equation ( 15 ) to get an estimate for the
missivity. Based on our assumption of an isotropic Maxwell-J ̈uttner
istribution in the local comoving frame, we can integrate over the
itch angles α and momenta, the result of which is proportional to
 

2 
⊥ 

[1 + u 

2 
d ( x )] + B 

2 
‖ . Here, B ‖ and B ⊥ 

are defined with respect to
he local bulk fluid velocity v d ( x ) of the given species, and u d ( x ) ≡
d v d /c is the fluid’s local normalized proper velocity, with γ d being
he corresponding Lorenz factor. For simplicity, we will not include
n our estimation the Doppler-boosting enhancement in radiated
ower based on u d , whose direction may be difficult to determine
n observations. We, therefore, find the following estimation only in
erms of local, space-dependent parameters n ( x ) , T ( x ) , and B( x ): 

est ( x ) ≡ 16 

3 

e 4 

m 

4 
e c 

7 
[2 n ( x )] T 2 ( x ) B 

2 ( x ) . (16) 

ote that while this estimate is calculated in the lab frame, the
xpression takes the temperature variable calculated in the comoving
Eckart) frame. The factor of 2 in front of the density represents
he two species, electrons and positrons. We normalize εest to the
nitial background plasma value εest, 0 , evaluated with T = T b ,
 

2 = B 

2 
0 + B 

2 
G 

, and n = n b . The contribution of the background
lasma to the initial total normalized estimated radiation power
s P back , 0 ≡

∫ 
d 3 x εest , 0 ≈ 0 . 41 P tot , 0 , with all the simulations per-

ormed using the fiducial parameters described in Section 2 . (The
 v erall effect of the weaker magnetic field at the centre of the
urrent sheets is negligible.) We also calculated the initial total
ormalized estimated radiation power due to the Harris sheet:
 HS , 0 ≡

∫ 
d 3 x εest, HS ≈ 0 . 59 P tot , 0 , where εest, HS is εest e v aluated with
NRAS 523, 3812–3839 (2023) 
 = T 0 , B 

2 = B 

2 
x ( y)(1 + 3 u 

2 
d ) + B 

2 
G 

, and n = n ( y ) − n b . Here, in
rder to get a more accurate estimate of the initial emissivity, we
ccount for the drifts perpendicular to the magnetic field by including
he additional factor of 1 + 3 u 

2 
d , where u d is the proper speed of the

rifting particle populations in the initial Harris current layer, as
efined in Section 2 . The radiation from the two populations thus
ccounts for all of the initial radiation P tot, 0 ≈ P back, 0 + P HS, 0 . 

Our first simplified estimate of the total radiated power P tot at any
iven moment in time is defined as 

 tot, est ≡ P back , 0 

〈
n 

n b 

T 2 

T 2 b 

B 

2 

B 

2 
0 + B 

2 
G 

〉
, (17) 

nd is calculated by substituting equation ( 16 ) into equation ( 14 ).
ere, < ... > is the v olume-a verage of the product of n , T 

2 , and B 

2 

ormalized to the background values: n b , T 2 b , and B 

2 
0 + B 

2 
G 

, which
re used to calculate P back, 0 . At t = 0, P tot, est ≈ 0.49 P tot, 0 . While this
stimation includes the density from the Harris sheet population, it
nitially underestimates its radiation because the temperature diag-
ostic is based only on the background population. The estimation,
herefore, takes into account neither the higher temperature of the
nitial Harris population nor the relativistic enhancement due to the
ulk flows of electrons and positrons carrying the electric current. As
escribed earlier, we have ignored the increased radiation due to the
ulk flows, out of simplicity. Both the currents and, later, reconnec-
ion outflows do persist throughout the simulations. Ho we ver, while
he enhanced radiation due to the bulk flows does play a role (e.g. as
n the minijet model of Giannios et al. 2009 ; Giannios 2010 ; see also
alew ajk o et al. 2011 ; Giannios 2013 ), as we will show below,

he simplified estimation of the total, bolometric radiated power
emains qualitativ ely accurate. Re gions with the highest thermal
ner gy content (namely, lar ge plasmoids) tend to have low bulk-
ow velocities, and thus the enhancement of radiation due to the
ulk flows is limited. Although the assumption of a local Maxwell-
 ̈uttner distribution is initially accurate, this estimate ignores any
inetic effects which can play a role as the distribution evolves.
herefore, while the abo v e estimate is reasonable for relatively steep
pectra, for harder, highly non-thermal spectra the kinetic effects
lay an important role, especially for the high-energy emission, as
e discuss in Section 4.4 and at the end of Section 5.1 . 
We also define an even more basic estimation for P tot , making

 connection to situations where one knows only the total (volume-
ntegrated) particle kinetic energy (and hence pressure) and magnetic
nergy as functions of time: 

 tot, est2 ≡ P back , 0 

〈
nT 

n b T b 

〉2 〈
B 

2 

B 

2 
0 + B 

2 
G 

〉
/ 

〈
n 

n b 

〉
. (18) 

t t = 0, we find P tot, est2 ≈ 0 . 62 P tot , 0 . This initial estimation is
omewhat larger than P tot, est because it does not take into account
he initial anticorrelation between the magnetic field and the plasma
ressure due to the initial pressure balance across the current sheet.
ote that this eventually becomes a positive correlation, as discussed

n the next subsection. Due to the particle number conservation, as
he spatial distribution of n evolves, < n > remains constant in time,
nd so only one value is needed for calculating P tot, est2 . In cases not
tudied here, where a significant number of pairs are created, the
ime evolution of this factor would be important. 

The simple estimates P tot, est and P tot, est2 for the total radiated
ower P tot provide convenient estimations from the often limited
easurements available in MHD simulations or from observations.
urthermore, their comparison with the actual exact P tot measured

n the radiative PIC simulations helps elucidate and highlight the
mportance of the spatial correlation between the magnetic field
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Figure 1. Histograms in log–log n - B space of the 3D radiative simulation 
with B G / B 0 = 0.4, L y / ρL = 314.4, and σ h = 25.76, at 4 time-snapshots: (a) 
tc / L y = 0.4, (b) tc / L y = 1, (c) tc / L y = 2, and (d) tc / L y = 3. At intermediate and 
late times (panels b–d), the histograms exhibit clear, well-defined power-law 

boundaries forming 4-sided polygons. The blue plus signs mark the initial 
conditions of the upstream background plasma, the blue ‘X’ (in panel a) 
represents the initial conditions at the centre of the current sheet ( n / n b = 37, 
B / B 0 = 0.4), the red plus signs mark the upper right v erte x of the best-fitting 
polygons, and the B ∼ n scaling [see equation ( 19 )] is highlighted. 
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nd plasma pressure and of the kinetic effects not included in the
stimates. Furthermore, diagnostics showing the spatial distribution 
f the local estimated emissivity εest ( x ) allow us to understand better
ow sudden enhancements of radiation occur in the context of the 
econnection process. 

.2 Parameter-space histograms 

n our previous 2D work, we have argued that, due to radiative
ooling, the magnetic fields and density of the plasma are strongly
ompressed in the cores of magnetic islands (Schoeffler et al. 2019 ).
lthough this effect enhances the radiation in these regions, in this
aper we will show that it only mitigates the loss of the emitted power
ue to the o v erall cooling of the radiating particles. We will argue
hat the positive correlation of the magnetic fields and density inside 
slands leads to enhanced radiation compared to the simple estimate 
 tot, est2 , such that P tot � P tot, est2 . A histogram of the grid points in

he n - B space will both allow us to obtain a quantitative measure for
he degree of compression and show that there is in fact a correlation
etween magnetic fields and density. 

Therefore, we visualize this compression and correlation between 
 and B via the 2D distribution of simulation points in the n -
 parameter space. As an illustration, in Fig. 1 we examine the
istograms for the 3D radiative case taken at 0.4, 1, 2, and 3 light
rossing times. We show joint 2D histograms of the local values of
he normalized n / n b and B / B 0 at each grid point. An integral of the
istogram o v er a re gion of n - B space represents the fraction of the
olume with the values of n and B that lie in that region. 

The vast majority of the grid points are part of the upstream
ackground, where initially n = n b and B = 

√ 

B 

2 
0 + B 

2 
G 

≈ 1 . 08 B 0 ,
ndicated by the blue plus sign in Fig. 1 . The background plasma is
ell frozen into the magnetic field. As the upstream, unreconnected 
agnetic flux is depleted o v er time via magnetic reconnection, the

pstream magnetic field, and density drop, keeping the magnetic flux 
 � y and number of particles n � yL x within a given upstream flux

ube of (time-changing) width � y constant. The upstream field and
ensity thus follow the simple ideal-MHD relation 

B 

B 0 
= 

n 

n b 
, (19) 

ssuming there is not much variation in the ˆ x direction. This simple
inear trend can be noted in Fig. 1 for n / n b < 1 where the narrow
range/red band extends over time to lower values of n and B
ollowing equation ( 19 ). Aside from this basic observation, after
 couple of light-crossing times for the 3D cases, the plasma from
he central mid-plane of the initial Harris current sheet indicated by
he blue ‘X’ in Fig. 1 mixes with the background plasma with the
elp of a kinking instability described in Section 5.2 . 
One of the most striking features of the histograms prominently 

een at intermediate and late times is that the histograms become
ounded abo v e, below, and to the right by clear, distinct limits that
an be modelled by power laws. These limits, which constrain the
ompression of density and magnetic field, will be further discussed 
n Section 5.2 . 

In order to better understand how the compression depends on 
adiative cooling strength quantified by B 0 / B Q , and on various other
arameters in Section 6 , we design here a no v el numerical procedure
or measuring the degree of compression. First, we note that, for the
D simulations after about a light crossing time (starting at tc / L y =
.85), the boundaries of the histogram in log–log n - B space can be
pproximated with a best fit of a four-sided polygon. The parameters
escribing this polygon are first estimated by hand to match the
istogram. A step function with value 1 inside the polygon, with
 20-point smooth, is compared with another step function with 
alue 1 where the histogram is non-zero, with a 10-point smooth.
he parameters of each of the lines are then optimized to a best fit

Markwardt 2009 ). After each time-step, the previous best fit is used
s the new initial estimation. 

F or e xample, in Fig. 1 , at tc / L y = 1, 2, and 3, the respective slopes of
he boundaries (power-law indices B ∼ n α) are ( α = 0.005, 0.075, and
.113) abo v e, and (0.78, 0.88, and 0.67) to the right of the histogram.
hese lines cross at the points ( n / n b , B / B 0 ) = (48.5, 1.53), (24.9,
.71), and (28.8, 2.18) respectively, indicated by red crosses. These 
ntersection points mark the upper right corners of the polygons and
hus give us an estimation for a maximum level of both n and B . The
nal slopes match reasonably well with theoretical predictions that 
= 1/12, α = 1/6, and α = 1, which will be discussed in Section 5 .
A similar histogram can be constructed for the n - T space instead

f the n - B space. This diagnostic furnishes us a convenient visual
ool for examining the spatial correlations between n and T . 

We will be using these histogram diagnostics e xtensiv ely in
ections 4.2 , 4.3 , 5.1 , 5.2 , and throughout Section 6 , especially in
ection 6.2 . 

 2D  RESULTS  

n this section we will explore results from three 2D simulations
ith varying levels of radiation losses: the classical case B 0 / B Q =
.53 × 10 −6 , the intermediate case B 0 / B Q = 4.53 × 10 −4 , and the
adiative case B 0 / B Q = 4.53 × 10 −3 . The rest of the simulation
arameters are held fixed here at their fiducial values listed in
ection 2 . We show the process of reconnection and the effects that
adiation cooling/back-reaction has on it. 
MNRAS 523, 3812–3839 (2023) 
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M

Figure 2. Maps of density with in-plane magnetic field lines o v erlaid for the 2D radiative case B 0 / B Q = 4.5 × 10 −3 , at (a) t = 0.33 L y / c , (b) t = 0.66 L y / c , and 
(c) t = 1 L y / c . 
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In all three simulations, the initial current sheet is unstable to
he tearing instability, leading to the formation of multiple magnetic
slands separated by X-points, where magnetic reconnection converts
he upstream magnetic energy into plasma kinetic energy in the form
f bulk outflows, heating, and non-thermal particle acceleration. The
lasma density maps showing the current sheet with superimposed
agnetic field lines (lines of constant magnetic flux), shown in three

anels in Fig. 2 , illustrate the generation and merging of magnetic
slands during the first light crossing time (up to t = L y / c ) of the
adiative case, which is qualitativ ely representativ e of the other cases
s well. 

One of the key characteristics of the magnetic reconnection
rocess is the reconnection rate. To compute it, we first calculate
he magnetic flux function ψ ≡ ˆ z · ∫ B xy × d l , where B xy is the in-
lane ( xy ) magnetic field, and where the integral is taken o v er the
ine/contour starting at the bottom left-hand corner, going vertically
long the ˆ y direction, and then horizontally along the ˆ x direction. The
econnection rate measures how fast the difference in ψ between the
wo current sheets decreases, multiplied by a factor of 1/2 accounting
or the magnetic flux being divided between the two reconnecting
urrent sheets. We calculate it using two measures: (i) the difference
etween the major X-points of the two current sheets, corresponding,
espectively, to the minimum value of ψ in the upper current sheet
nd the maximum value of ψ in the lower current sheet (defined by
he planes y = ±L y /2, where the current sheets are initially centred),
nd (ii) the difference between the two values calculated by averaging
 along each current sheet (i.e. along the previously defined plane).
he corresponding reconnection rates (defined as the absolute value
f the time deri v ati ve of the flux) are found to be 0.25 and 0.08 B 0 c A ,
espectively (where c A ≈ c is the upstream Alfv ́en speed), between
c / L y = 0.5 and 1, after which the rate slows down by a factor
f about 4. This is consistent with the predicted reconnection rate
or magnetized pair plasmas calculated by Goodbred & Liu ( 2022 ).
lthough there is a slight trend of decreased reconnection rate for

he more radiative cases (stronger B 0 / B Q ), the differences are of the
ame order as the error ( ∼ 10 per cent ). 

The conversion of energy from the magnetic field to the kinetic
nergy of the plasma particles, and the subsequent conversion to
adiation, is shown for all three cases in Fig. 3 . Unlike the classical
ase, where a negligible amount of the kinetic energy is radiated
way, significant energy goes to radiation in the intermediate and
adiative cases, increasing with the strength of the upstream magnetic
NRAS 523, 3812–3839 (2023) 
eld. In these cases, especially in the radiative case, the particle
inetic energy stays nearly flat throughout most of the evolution from
 � 1 L y /c onward, while the radiation energy steadily increases;
his indicates that the particles act as efficient radiators in this case,
romptly converting the energy they receive from magnetic field
issipation into radiation. 
Although even in the initial state the thermal particle motion of the

lasma leads to some synchrotron radiation energy losses, we will
how in Section 4.1 that the radiated power P tot increases rapidly
nd significantly during the onset of reconnection, in agreement
ith all estimates for P tot . We will then show in Section 4.2 that,
hen considering the emissivity as a function of space, a positive

orrelation between the plasma density n and magnetic field strength
 leads to an enhanced P tot . Although this correlation is more
rominent in more radiative cases, we will then show in Section 4.3
hat the correlation between n (or B ) with the temperature T becomes

art/stad1588_f2.eps
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e gativ e and reduces the normalized P̄ tot . Finally, in Section 4.4 we
ill address important kinetic effects that affect the emitted power. 

.1 Total emitted power 

efore discussing the enhancements of the power emitted as a result
f magnetic reconnection, we should note the dependence of the 
adiated power per particle on the magnetic field strength B 0 / B Q (at
xed σ h , etc.). On the one hand, as the radiated power for a given
article is proportional to B 

2 
0 , there is the trivial effect that the most

adiative cases (i.e. those with stronger B 0 / B Q ) will clearly radiate
uch more than less radiativ e ones. F or the radiative case, P tot, 0 is
 factor of 10 2 larger than in the intermediate case and a factor of
0 6 larger than in the classical case. On the other hand, here we
re interested in the relative modifications to this trivial scaling due 
o various factors. Therefore, we will focus the discussion in this
aper on the normalized radiated power P̄ tot ≡ P tot /P tot , 0 . (We will 
lso use this bar notation when plotting estimates P̄ tot, est and P̄ tot, est2 , 
hich have the same normalization.) We will show that this relative 

nhancement in radiation is weaker for the most radiative cases. 
hat is, the normalized radiation is weaker, but the actual amount of

adiation remains much greater. 
We first examine the time evolution of the total normalized radiated 

ower P̄ tot for all three 2D cases, which we plot in Figs 4 (a) and (b)
solid lines). After t ≈ 0.5 L y / c , magnetic reconnection gets started
nd the power of emission abruptly increases by a factor as high as
0. This is caused by the increase in temperature and a concentration
f magnetic fields inside magnetic islands discussed in Section 4.2 . 
The major effect of stronger radiative cooling, quantified by B 0 / B Q ,

s a drop in P̄ tot . While for the classical case (black lines in Fig. 4 ),
fter t ≈ 1 L y / c , P tot remains close to a factor of 30 abo v e the initial
tate’s P tot, 0 , for higher B 0 / B Q in the more radiative cases (blue
nd red lines), the normalized power is limited and even decreases 
ith time for the most radiative case. This is caused primarily by
 decrease in the average particle kinetic energy due to radiative 
ooling. As the cooling is particularly strong in the densest regions,
here the magnetic field is compressed, the effect is enhanced by a

oss of the positive correlation between the temperature and density 
ound in the classical case discussed in Section 4.3 . 

In our previous work (Schoeffler et al. 2019 ), we showed that
n 2D simulations radiative cooling led to significant additional 
ompression of the magnetic field and density inside magnetic islands 
most pronounced for the highest B 0 / B Q ), caused by the necessity to
aintain a magnetostatic equilibrium. The relatively weak guide 
eld B G 

= 0 . 05 B 0 adopted in that study was not able to prevent this
ompression, and this resulted in a concentration of much stronger 
adiative losses at the cores of the magnetic islands. One might then
onjecture that this could lead to an enhanced o v erall normalized
ower in the more radiative cases, in an apparent contrast with
ur results presented here in Fig. 4 (a). Ho we ver, after performing
 similar analysis to the data of that previous study, we find the
esults are qualitatively similar to those presented here. There was 
n initial sudden spike in P̄ tot once reconnection got started, but the
nhancement was weaker for higher B 0 / B Q (more radiative cases) and
t decayed with time [similar to Fig. 4 (a)]. The localized enhancement 
f εest was not strong enough to counterbalance the o v erall cooling-
riven decrease in P̄ tot for stronger B 0 / B Q . In fact, the decrease in
elati ve po wer was e ven more pronounced than in the simulations of
his work. 

As shown in Fig. 4 (a) [see also Fig. 4 (c)] the estimated power
 tot, est [see equation ( 17 )], plotted with a dashed line in Fig. 4 (a), is
 qualitatively good predictor of P tot and, in particular, qualitatively 
aptures the dependence of P̄ tot on B 0 / B Q . In the classical case,
 tot, est moderately underestimates P tot , because it does not include 

he enhancement of radiation due to bulk flows and kinetic effects.
or the intermediate case, it provides an excellent approximation. 
o we v er, P tot, est o v erestimates P tot somewhat for the radiative case.
his o v erestimation is caused by kinetic effects that we will discuss

n Section 4.4 . As shown in Fig. 4 (c), the ratio P tot, est / P tot typically
eaches as high as ∼2 for the most radiative case. 

The simpler normalized estimate of power P tot, est2 / P tot, 0 [see 
quation ( 18 )] is shown as dashed lines in Fig. 4 (b). During the active
econnection stage [ t � (0.5 − 2) L y / c ], it strongly underestimates
he emitted power, by a factor as high as ∼10; a significant
nderestimation, although not as dramatic, is observed at later times 
s well. The reason for this is that P tot, est2 does not take into account
he positive spatial correlation between strong magnetic field and 
arge kinetic energy density (i.e. plasma pressure), which enhances 
he radiated power. This correlation will be discussed in more detail
n Section 4.2 and Section 4.3 . We highlight the importance of the
orrelation in Fig. 4 (d) by taking the ratio of the estimated emission
 tot, est , which takes into account these correlations, to the estimation

rom P tot, est2 , which does not. This ratio can reach values as high
s 7. 

.2 Spatial correlation between plasma density and the 
agnetic field 

ompression of magnetic fields and density near the centres of 
agnetic islands leads to enhancements of the local emissivity ε( x ),

nd the total emitted power P tot . At about t = 1 L y / c , when the ratio
 tot, est / P tot, est2 , which quantifies the importance of the correlation,
hown in Fig. 4 (d), is highest, reaching a factor of about 5, the
ower in Figs 4 (a) and (b) is significantly enhanced. During the next
ight-crossing time the enhancement drops down to about 3–4. 

At the time t = 1.5 L y / c , the compression of n / n b and B / B 0 is
llustrated for both the classical case in Figs 5 (a) and (b) and
MNRAS 523, 3812–3839 (2023) 
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he radiative case in Figs 5 (e) and (f). The corresponding plasma
emperature maps are shown in panels (c) and (g) of Fig. 5 and will
e discussed in more detail in Section 4.3 . The maximum density and
agnetic field are both found near the centres of the magnetic islands,

ndicating a clear correlation between the magnetic field energy and
lasma densities. 1 We provide evidence of the enhancement of local
missivity by examining the estimated emissivity εest as a function
f space in Figs 5 (d) and (h), which shows the strongest emission
xceeding the background levels by factors of more than 1000 in the
entres of the magnetic islands. 

In the radiative case, there is a noticeable decrease, throughout
ost of the volume, in the normalized εest / εest, 0 compared to the

lassical case [see Figs 5 (d) and (h)], consistent with the drop in
 tot, est shown in Fig. 4 (a). This can be explained by the reduction

n the ef fecti ve temperature caused by the radiati ve cooling. Inter-
stingly, ho we ver, at the specific time t = 1.5 L y / c shown in Fig. 5 ,
he peak values of εest / εest, 0 for the radiative and the classical cases
re about the same. This is because the ne gativ e effect of cooling on
he emissivity is compensated, at this particular time, by the stronger
eak compression of the magnetic field in plasmoid cores in the
adiative case [see Figs 5 (b) and (f)]. 

Indeed, in our previous paper (Schoeffler et al. 2019 ) we showed
hat the potential loss of pressure support inside the islands due
o radiative cooling (most pronounced for the highest B 0 / B Q ) is
revented by the enhanced compression of the plasma density, which
NRAS 523, 3812–3839 (2023) 

 Note that the apparent extremely strong (reaching � 100 n b !) peak density 
nhancement inside island cores is mostly explained by the very high density 
f the plasma in the initial Harris layer, n 0 = 37 n b , which quickly collects in 
lasmoid cores and subsequently undergoes only a moderate compression. 

t  

i  

b
 

fl  

o  
n turn drives the compression of the magnetic field (see below).
his compression, in principle, should lead to higher synchrotron
missivity. The compression is not as pronounced in the simulations
resented here due to the stronger guide magnetic field B G / B 0 = 0.4
nstead of B G / B 0 = 0.05 adopted in Schoef fler et al. ( 2019 ). Ho we ver,
t still counteracts the direct suppression of the emissivity by radiative
ooling and hence may explain why the peak εest in Figs 5 (d) and (h)
as not strongly affected by the cooling. 
The enhanced compression can be seen more clearly when exam-

ning the n - B histogram shown for the 2D simulations in Fig. 6 for
 = 3 L y / c . Ho we ver, before looking at the most compressed regions,
et us examine the general features of this histogram. The basic
xpected feature, discussed in Section 3.2 , is that most of the points
tart in the background at n = n b , B = 

√ 

B 

2 
0 + B 

2 
G 

, and follow the
rozen-in scaling of equation ( 19 ). In the higher density region of the
istogram, where n / n b > 1, corresponding to the magnetic islands,
 new scaling can be determined, also based on the flux-freezing
aw. 

First, one should note that the plasma that was initially located
eep inside the Harris current sheet, where n = n 0 = 37 n b , as was
ndicated by the blue X in Fig. 1 at tc / L y = 0.4, has mo v ed at
ater times to the centres of the magnetic islands. This population is
epresented by a very small number of very-high-density points in
ig. 6 , extending up to n / n b � 40 in the classical case and up to n / n b 
 100 in the radiative case. On the other hand, the new scaling under

he discussion here corresponds to the outer parts of the magnetic
slands containing newly reconnected magnetic flux and filled with
ackground plasma, with density n / n b � 1. 
Let us consider a moderately dense ( n ∼ (2 − 5) n b ), thin annular

ux ribbon somewhere inside an island, encircling, but lying outside
f, the island’s dense, guide-field-dominated inner core. Let us
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xamine the self-similar evolution of this ribbon, assuming that its 
adial thickness � r and its radius r decrease in unison, in proportion
o each other, as the island compresses o v er time, i.e. � r ( t ) ∝ r ( t ).
he number of particles 2 πnr � r and the in-plane magnetic flux
 xy � r enclosed within this flux ribbon should both be conserved as

he radius shrinks (neglecting the decay of the magnetic flux due to
adiati ve resisti vity, see Appendices C and D ). One can then obtain
he following relationship, based on the characteristic values of n and 
 inside this flux ribbon, assuming that the in-plane magnetic field 
 xy dominates o v er the guide field B z , so that B � B xy : 

B 

B 0 
∼

(
n 

n b 

)1 / 2 

. (20) 

trictly speaking, this relation should be followed only if the 
agnetic fields can be well described by a 2D model, since, in a

eal 3D situation, the compressed plasma could in principle escape 
he island in the out-of-plane direction. 

We can see in the n - B histogram shown in Figs 6 (a) and (b) that at
 = 3 L y / c , the expected correlations ( 19 ) and ( 20 ) between n and B
ue to the frozen-in condition are followed for both the classical and
adiativ e cases. F or n / n b < 1, it is clear that B / B 0 ∼ n / n b , while for 1
 n / n b � 10, B / B 0 ∼ ( n / n b ) 1/2 provides a good fit. For n / n b > 10 (a

ew points outside of the bulk of the histogram, corresponding to the
entres of the primary magnetic islands filled primarily with the initial
ense current-sheet plasma), neither of the scalings equations ( 19 )–
 20 ) based on frozen-in flux hold, most likely because the compressed
uide field B z dominates here. Ho we v er, we also observ e a significant
ifference between the classical and radiativ e cases. F or the classical
ase, the initial Harris sheet structure is retained; i.e. B decreases with
 for very large densities. The initial current sheet was in pressure
alance, and thus the magnetic pressure initially decreased along 
radients of increasing density. As plasma mo v es towards the high-
ensity centres of the islands during reconnection, the histogram 

etains this trend [the magnetic field B / B 0 slightly decreases with
 / n b in regions of n - B space where n / n b > 10, shown in Fig. 6 (a)]. In
ontrast, the radiative cooling and subsequent compression present 
n the radiative case lead to a continued positive correlation between
he magnetic field and the density, which results in a somewhat
ncreased magnetic field compression in the radiative case [ B / B 0 

lightly increases with n / n b abo v e n / n b > 10, shown in Fig. 6 (b)]. 

.3 Spatial corr elation/anticorr elation between plasma 
emperature and density 

hile we briefly considered the importance of the correlation 
etween the particle kinetic energy and the magnetic field energy in
ection 4.1 , we mostly focused on the correlation between the plasma
ensity and magnetic field strength in Section 4.2 ignoring any 
ependence on temperature. The correlations of B and n with the tem-
erature T are, ho we ver, important because the temperature strongly
ffects the local emissivity, ε ∼ T 

2 . In fact, in the classical case, there
s a positive correlation between the temperature and compressing 
agnetic fields and density (albeit slightly less pronounced), leading 

o an even stronger enhancement of the local emissivity ε( x ) and of
 tot . The enhanced temperature is caused both by heating and particle
cceleration via reconnection and by the adiabatic compression of 
agnetic islands. One can see in Fig. 5 (c) that the temperature is

ncreased inside the islands, although it reaches its peak closer to
he Y-point region where the reconnection outflows collide with the 
slands. 

In contrast, in the radiative case, as seen in Fig. 5 (g), there is
 general reduction of temperature due to radiative cooling. In 
articular, the temperature becomes much lower at the centres of 
he islands, reaching a local minimum. This results in a ne gativ e
orrelation between n and T , which, along with the general cooling,
elps explain the clear reduction in P̄ tot shown in Fig. 4 (a) for the
ore radiative cases. 
These correlations are also clearly visible in the n - T histograms.

n the classical case shown in Fig. 6 (c), there is a clear positive
orrelation between n and T , particularly visible on the right (high- n )
order of the histogram (with a scaling around T ∼ n ), while the
emperatures in the highly compressed ( n � 5 n b ) regions, including
sland cores, seem to be weakly dependent on n . Ho we ver, in the
adiative case Fig. 6 (d), one observes an inverse correlation between
 and T when these reach their maximum values (with a scaling
round T ∼ n −1/2 ). This is expected due to the enhanced cooling at
igher B which corresponds to higher densities [as seen in Fig. 6 (b)].

.4 Kinetic effects 

he estimate P tot, est is based on fluid quantities, assuming that 
n isotropic Maxwell-J ̈uttner distribution in the given species’ 
omoving frame is maintained and thus ignores kinetic effects. 
o we ver, the particle momentum distribution does not in fact remain
axwellian or isotropic, and the average particle energy alone no 

onger suffices to determine the emissivity. Radiation is dominated 
y more energetic particles and particles with velocities making 
arge angles with respect to the magnetic field; it is thus affected
y features like, respectively, super-Gaussian energy distributions 
nd anisotropic pitch-angle distributions. Pitch-angle distribution 
nisotropy, e.g. caused by the predominant synchrotron cooling of 
igh pitch-angle particles, reduces the emission relative to the level 
MNRAS 523, 3812–3839 (2023) 
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redicted by P tot, est , which may explain the increase in the ratio
 tot, est / P tot seen in Fig. 4 (c) for the more radiative simulations. On

he other hand, non-thermal high-energy particles accelerated during
econnection, which do not al w ays provide a significant contribution
o the ef fecti ve temperature and hence to P tot, est , are expected to
adiate significantly more, making P tot, est an underestimate; this may
xplain the drop in P tot, est / P tot occurring at the onset of magnetic
econnection around tc / L y ≈ 0.5, also visible in Fig. 4 (c) for all three
ases. 

The energy distributions of the background electrons, shown in
ig. 7 at several different times, display the formation of a non-

hermal population after t = 0.5 L y / c [Fig. 7 (a)]. By t = 3 L y / c [shown
n Fig. 7 (d)], the distribution for the non-radiative case (black)
volves to a hard power law with an index α ≈ 1.3, whereas in
he radiative case (red) there is a spectral break to a steeper high-
nergy power law with an index α � 3, consistent with previous
esults by Werner et al. ( 2016 , 2018b ); Hakobyan et al. ( 2019 ). 

The moments of the distribution, <γ> (temperature), and <γ 2 >

power radiated), can help us understand the drop in P tot, est / P tot 

een in Fig. 4 (c) starting at t ∼ 0.5 L y / c . This drop corresponds
o situations where the power-law index of the non-thermal part
f the particle energy distribution falls between 2 and 3. Indeed,
uch a power law has a peculiar property that the first moment of
he distribution function (and hence the ef fecti ve temperature) is
ominated by the lower energy particles with γ near the peak of
he distribution, while the second moment (and hence the radiated
ower) is dominated by the highest energy particles. That is, different
article sub-populations are responsible for the temperature, which
nters into P tot, est , and for the actual emissivity, which enters into
he directly measured P tot ; this leads to an underestimation of the
mitted power by P tot, est . We can see in Fig. 7 (b) that at t ∼ 1 L y / c the
e veloping po wer law has become hard enough so that its spectral
ndex is between the critical values 2 and 3 (for the classical and
ntermediate cases), and this corresponds to a dip in the P tot, est / P tot 

atio in Fig. 4 (c). By t ∼ 2 L y / c [see Fig. 7 (c)], ho we ver, the non-
hermal spectra in the classical and intermediate cases, as well as
he moderate-energy uncooled part of the spectrum in the radiative
ase, hav e hardened ev en further and their power-la w indices start
o drop below 2. Both the temperature (the first moment) and the
NRAS 523, 3812–3839 (2023) 
adiati ve emissi vity (the second moment) are now dominated by
he same, highest energy, particle populations and hence (ignoring
he effects of radiative cooling on the pitch-angle distribution which
llow P tot, est / P tot to exceed unity in the radiative case) P tot, est becomes
 better estimation of the emitted power. 

Kinetic effects are therefore expected to enhance the radiated
ower compared to the average-energy-based estimations ( P tot >

 tot, est ) during the early stages of magnetic reconnection, and
iminish it ( P tot < P tot, est ) as time progresses for more strongly
adiative systems. 

In summary, in this section, we have shown that, in 2D relativistic
adiative reconnection, the total radiated power P tot is increased at the
nset of magnetic reconnection due to the heating and acceleration of
articles in the plasma by reconnection, enhanced by the compression
nd correlation of magnetic fields and plasma density at the centres of
agnetic islands, which can be reasonably well captured by P tot, est ,

ut not by P tot, est2 . In addition, the kinetic, non-thermal effects, which
re ignored by P tot, est , can further enhance the radiated power at these
arly times. Ho we v er, we hav e also shown that, in the most radiative
ases, radiative cooling leads to a pronounced anticorrelation of
emperature with density and magnetic field; this causes a decrease
n the normalized radiated power P̄ tot . As a result, at late times the
nhancements in radiation can be cancelled out, and both P tot, est and
 tot, est2 become better predictors. 

 3D  RESULTS  

s in the 2D study of Section 4 , in this section we will explore
esults from three simulations using the fiducial parameters from
ection 2 ( σ h = 25.76, B g / B 0 = 0.4, L x / ρL = L y / ρL = 314.4, etc.)
ith v arying le vels of radiation strength: the classical case B 0 / B Q =
.53 × 10 −6 , the intermediate case B 0 / B Q = 4.53 × 10 −4 , and the
adiative case B 0 / B Q = 4.53 × 10 −3 . In these 3D simulations, we
dopt the system size in the third dimension to be L z / ρL = 58.6
 L z / L y = 0.19). Although this value of L z is rather small, given our
uide field B G / B 0 = 0.4, it still allows the system to exhibit important
ynamics in the ˆ z direction including the development of a kinking
nstability. We did conduct a parameter-space study varying the guide
eld in Section 6.1 and L z in Section 6.2 to justify this choice. We
gain show the process of reconnection, the effects that radiation
as on it, and no w ho w 3D results differ from 2D. As we will show
elow, while the guide field keeps the dynamics similar to the 2D
ase, and many of the standard predictions of reconnection do not
iffer strongly, the development of a kink mode significantly limits
he density compression compared to that found in 2D. 

Again, in all cases, the initial current sheet is unstable to the
earing instability, and multiple magnetic islands (plasmoids; flux
opes in 3D) form, driven by magnetic reconnection that converts the
pstream magnetic energy into the particle kinetic energy in the form
f bulk outflows, heating, and non-thermal particle acceleration. The
lasma density map in the current sheet, with superimposed magnetic
eld lines, shown in Fig. 8 , illustrates the generation and merging
f 3D plasmoids during the first light crossing time in the radiative
ase. Like in 2D, these dynamics are representative and similar to
he other two cases. 

The conversion of energy from the magnetic fields to the kinetic
nergy of the plasma particles (both heating and bulk flows) as a
unction of time is shown for the three cases in Fig. 9 , comparing
he 3D simulations to the 2D ones. Like in 2D, the particle kinetic
nergy is rapidly converted into radiation for the more radiative cases,
here the radiated energy fraction increases with the strength of

adiative cooling characterized by B 0 / B Q . The onset of reconnection,
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Figure 8. Zoom-in on the upper current sheet, showing magnetic field lines (green) and a volume rendering of the plasma density (brown), for the 3D radiative 
case B 0 / B Q = 4.5 × 10 −3 , at (a) t = 0.33 L y / c , (b) t = 0.66 L y / c , and (c) t = 1 L y / c . 
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nd thus energy transformations occur somewhat later in 3D, but the 
ecay in magnetic energy e ventually follo ws similar curves. Further-
ore, for the 3D intermediate and radiative cases, there is slightly

ess radiation and therefore more particle kinetic energy at late 
imes. 

Again we calculate the reconnection rate by looking at the 
ifference in magnetic flux between the two current sheets (using two 
easures, the difference between the average flux along the planes of

he initial current sheets y = ±L y /2, and between the maximum and
inimum values in each of these planes). Although in 3D a magnetic
ux function is difficult to define in a unique way, we estimate one
fter averaging the magnetic fields along ̂  z . The rate at which the flux
ecreases, for the radiative case, gives us a normalized reconnection 
ate of 0.04 and 0.125 B 0 c A using the two respective measures of flux,
 factor of 2 slower than the equi v alent measures in 2D; ho we ver, this
ate persists for the whole duration of the simulation in agreement 
ith Werner & Uzdensky ( 2021 ). Also, as in 2D, we do not find a
ignificant dependence of the reconnection rate on radiative cooling 
trength. 

.1 Comparisons of radiation, field maps, and their 
orrelations between 3D and 2D simulations 

or the most part, the power emitted (including its spectra) and its
stimates based on the spatial distributions of density, magnetic field, 
nd temperature from the 3D simulations are qualitatively the same 
s in 2D. Generally, diagnostics differ only by factors of about 2, and
e will note some of these modest dif ferences. Ho we ver, we will
ighlight one significant dif ference: 3D ef fects tend to disrupt the
ense concentrated regions with significantly higher local emissivity 
t the centres of plasmoids that were found in 2D. 

First, the total power and its estimates are qualitatively similar in
D and 3D. This can be seen in Figs 10 (a) and (b), where the actual
mitted power P tot and its estimates P tot, est and P tot, est2 are roughly
omparable to those shown in Figs 4 (a) and (b) (the dotted line in
ig. 10 shows the 2D classical result for reference). Ho we ver, there
re still substantial quantitati ve dif ferences. The emitted power grows
ore slowly in 3D, although eventually it reaches magnitudes that 

re fairly similar to (but slightly less than) those found in 2D. The
ormalized emitted power P̄ tot begins to increase at t = 0.6 − 0.7 L y / c ,
bout a factor of 1.3 later than in 2D. In addition, whereas in the
D non-radiative case P̄ tot stays nearly flat for t � 1 L y / c , in 3D it
ndergoes a steady rise after about t � 2 L y / c , so that the total 2D and
D radiati ve po wers become very close at late times. The 3D radiati ve
ase differs substantially from its 2D counterpart in terms of the time
ehaviour of P tot, est / P tot . In 2D, this ratio [the red curve in Fig. 4 (c),
lso shown in Fig. 10 (c) as the dotted red curve] quickly rises and
hen saturates at a level corresponding to P tot, est o v erestimating P tot 

y a factor of about 2. For the 3D case, shown in Fig. 10 (c) with a
olid red line, the ratio P tot, est / P tot grows slowly with time throughout
he whole simulation, so that P tot, est underestimates P tot until about 
c / L y = 2 and reaches the levels of o v erestimation comparable to
he 2D case only by tc / L y = 3. Like in 2D, energy is predominantly
adiated by the high-energy electrons and positrons moving roughly 
erpendicular to the magnetic field, leading to deviations from a 
axwellian distribution. Unlike in 2D, the time evolution of these 

eviations spans the full duration of the simulation. 
The enhancement of radiation due to the correlation between 

he magnetic B 

2 /8 π and thermal nT energies is similarly present
n 2D and 3D. In Section 4.1 we showed that the importance of
MNRAS 523, 3812–3839 (2023) 
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Figure 10. (a) Total normalized radiated power P̄ tot ≡ P tot /P tot , 0 (solid 
lines) for 3D simulations with B 0 / B Q = 4.5 × 10 −6 (black, classical case), 
4.5 × 10 −4 (blue, intermediate case) and 4.5 × 10 −3 (red, radiative case). 
These colours are used for all panels in this figure. For reference, the black 
dotted lines represent the same quantities as the solid lines but for the 2D 

classical case (radiative case shown in red in panel c). The dashed lines 
represent the normalized estimated power P̄ tot, est ∼

〈
nT 2 B 

2 
〉

[see equation 
( 17 )]. (b) Total normalized radiated power P̄ tot (solid lines) and the second 
normalized power estimation P̄ tot, est2 ∼ 〈 nT 〉 2 〈B 

2 
〉

[see equation ( 18 )] in 
dashed lines. (c) Ratio P tot, est / P tot . (d) Ratio of the two estimations of power 
radiated P tot, est / P tot, est2 . 

t  

i  

t  

r  

F  

a  

t  

t  

n
 

i  

T  

(  

v  

∼  

o  

m  

o  

F  

fi
 

s  

T  

s  

m  

c  

t
r  

f
 

h  

b  

a  

t  

t  

w  

d  

n  

i  

t  

t  

e  

a  

d
 

c  

T  

a  

p  

H
 

c  

i  

a
n  

F  

m
 

2  

I  

p  

(  

s  

f  

c  

i  

l  

w  

b  

t  

3  

t  

t  

p
 

g  

w  

r  

p  

h  

t  

e  

c  

p  

e  

2

5

A  

h  

o  

a  

h  

F  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/523/3/3812/7188308 by U
niversity of C

olorado user on 05 July 2023
his correlation can be quantified by the ratio P tot, est / P tot, est2 , shown
n Fig. 4 (d). In 2D this ratio, shown with a dotted black line for
he non-radiative case, rises rapidly during the onset of magnetic
econnection and reaches a saturated value. This differs in 3D [see
ig. 10 (d)], where the ratio P tot, est / P tot, est2 , continues to grow slowly
nd steadily without reaching saturation, and consequently so does
he normalized emitted power P̄ tot [in Figs 10 (a) and (b)] (except for
he radiative case, where radiative cooling causes a decrease in the
ormalized power). 
The most notable difference between the 3D and 2D simulations

s that there is significantly less compression of the density in 3D.
he respective enhancements of density, shown in Figs 11 (a) and

e), and of the magnetic field, shown in Figs 11 (b) and (f), reach
alues of ∼20 n b and ∼(1.5 − 2) B 0 , compared to the ∼100 n b or
3 B 0 in the 2D case. The density concentration is thus almost an

rder of magnitude weaker in 3D, while the enhancements of the
agnetic field and the temperature, shown in Figs 11 (c) and (g), are

nly about a factor of 2 smaller. Similar to the 2D case shown in
ig. 5 , the spatial correlations between the peak density, magnetic
eld, and, for the classical case, temperature in Fig. 11 , are visible. 
All else being equal, the weaker density compression leads to

ignificantly weaker emissivity at the centres of plasmoids in 3D.
he estimated local emissivity εest reaches peak values that are
ignificantly lower (by a factor of about 10) in 3D than in 2D. This
eans that in 3D, regions with significant radiation emission are less

oncentrated and are spread o v er a larger volume. Note that, despite
his strong difference in the peak εest , the total emitted power P tot 

emains roughly the same in both 2D and 3D simulations (only a
actor of about 2 higher in 2D). 

The limit on the density compression can be seen in the n - B
istogram shown in Fig. 12 . Like in 2D, in 3D the correlations
etween n and B due to the frozen-in condition are followed
ccording to equation ( 19 ) for n / n b < 1. Ho we ver, in 3D, as magnetic
NRAS 523, 3812–3839 (2023) 
ension squeezes the plasma to a higher density in a magnetic island,
he plasma is free to mo v e out along the ˆ z direction to regions
ith a weaker magnetic field. Therefore, variations along the ˆ z
irection caused by, for example, the kink instability, prevent the
 - B distribution from following equation ( 20 ) for n / n b > 1 as found
n 2D. Furthermore, compression of the density is also limited, and
he maximum n / n b drops from ∼100 to close to 30 (i.e. less than
he initial current-sheet density n 0 / n b = 37). Not only is the density
nhancement limited, but the plasma is also allowed to spread broadly
cross n - B space, eventually revealing power-law limits that will be
escribed further in Section 5.2 . 
In 3D, the plasma is not as easily trapped and compressed at the

entres of plasmoids, where it can be strongly cooled, as occurs in 2D.
herefore, the anticorrelation between the magnetic field (density)
nd the temperature, found in the radiative case, is not as strongly
ronounced in 3D. This can be seen by comparing Figs 11 and 5 .
o we ver, the cooling still leads to an anticorrelation in 3D. 
The similarity of these (anti)correlations between 2D and 3D cases

an be also noted from the n - T histograms. In the classical case shown
n Fig. 12 (c), there remains a clear positive correlation between n
nd T , roughly consistent with the relativistic adiabatic scaling T ∼
 

1/3 , for the whole range of n . In contrast, in the radiative case, see
ig. 12 (d), an inverse correlation between n and T is visible near the
aximum values, with a power-law slope close to n −1/2 . 
Finally, the particle energy spectra are almost the same in 3D as in

D, in agreement with previous studies (Werner & Uzdensky 2017 ).
n 3D, shown in Fig. 13 , the non-thermal electron population in the
article energy distribution forms more slowly than in the 2D case
shown in Fig. 7 ), and is not yet present by t = 0.5 L y / c . Ho we ver,
imilar to 2D, at late times ( tc / L y = 2 − 3) a power-law tail is fully
ormed in 3D runs, with the index reaching α ≈ 1.3 for the radiative
ase (at moderate energies) and ≈1.5 for the other cases. Once again,
n the 3D radiative case, there is a spectral break to a steeper power
aw with α � 3 at higher energies. These results remain consistent
ith the results of 2D radiative reconnection PIC simulation studies
y Werner et al. ( 2018b ) and Hakobyan et al. ( 2019 ). The limit on
he maximum energy of the most energetic electrons is stricter in
D than in 2D. As in 2D, kinetic effects influence the accuracy of
he estimated power. The spectral index 2 < α < 3 occurs between
 = (1 − 2) L y / c and may help explain the underestimation of P est ,
articularly in the classical case, in Fig. 10 (c). 
We should also remark that, based on the radiative case’s back-

round magnetic field strength of B 0 / B Q = 4.53 × 10 −3 , all particles
ith Lorentz factors γ � 15 are expected to emit synchrotron

adiation in the gamma-ray regime (i.e. with � ω > m e c 2 ), thus
otentially feeding powerful pair creation. While for simplicity we
av e e xcluded pair-production effects and other QED physics from
his study, incorporating them self-consistently in PIC studies and
xamining their back-reaction on the reconnection process itself
onstitutes a particularly interesting and exciting frontier of extreme
lasma astrophysics (Uzdensky 2011 ; Beloborodov 2017 ; Hakobyan
t al. 2019 ; Schoeffler et al. 2019 ; Mehlhaff et al. 2021 ; Chen et al.
023 ; Hakobyan et al. 2023b ). 

.2 Histogram boundaries in 3D 

s mentioned in Section 3.2 , one of the most striking features of the
istogram diagnostic from the 3D simulations is that the local levels
f magnetic field and density compression are bounded by clear
nd distinct power laws in the n - B space. The late-time ( t = 3 L y / c )
istograms for both the classical and radiative cases are shown in
ig. 12 . One can see at the top of the histogram for both these cases,
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n Figs 12 (a) and (b), an upper bound on B given by the power law
 / B 0 ∼ ( n / n b ) 1/12 . At the top of the histogram of the radiative case, in
ig. 12 (b), an additional upper bound on B , given by the power law
 / B 0 ∼ ( n / n b ) 1/6 , is seen at lower densities. Also, to the right of the
istogram for both cases, in Figs 12 (a) and (b), an upper bound on n
an be described as B / B 0 ∼ ( n / n b ) 1 . It is also worth mentioning that
here is a very clear, robust lower boundary of this histogram: B min 

 0.3 B 0 , essentially independent of n . 
To put this in context, the best-fitting lines of the boundaries o v er

he entire ranges of n and B for the 3D radiative case presented in
ig. 1 (d) correspond to B / B 0 = 1.5( n / n b ) 0.11 and B / B 0 = 0.23( n / n b ) 2/3 .
he 0.11 � 1/9 slope of the best-fitting upper boundary appears to be

oughly an average between the 1/6 and 1/12 slopes; it is an artefact
f fitting with a single power law a function that is better described
s a broken po wer law. Like wise, the discrepancy between the slopes
f the right boundaries shown in Fig. 1 (d) and Fig. 12 (b) occurs
ecause, at tc / L y = 3, the power-law boundary is also not distinct
long the full range in n - B space. The right boundary does not fit
 single power law for lo w v alues of magnetic field ( B / B 0 � 0.6),
nd therefore the automatic fit, when applied to the entire range of
agnetic-field variation, B / B 0 � 0.3 − 2, does not give an accurate
easure of the slope of this power-law boundary. However, the fit

till provides a good measure of the maximum compression of both 
 and n via the intersection point between the two limiting lines,

ndicated by red plus signs in Fig. 12 . 
Below we describe a couple of theoretical models that may be 

sed to explain these power laws, and to get an order-of-magnitude 
stimate of the coefficients in front, allowing us to determine the 
aximum compression theoretically. 
w
t  
.2.1 Density boundary 

o the right of the histogram in Figs 12 (a) and (b) there is a power-
aw boundary limiting the compression of the plasma density. In 
ppendix B , we present a possible explanation for a boundary with a

lope B min ∼ n [see equation ( B1 )], based on the marginal condition
or the onset of the kink instabilities found in 3D. Initially, the current
heet can become unstable to the relativistic drift-kink instability 
RDKI), while later, the current filaments (flux ropes) can be unstable
o other modes including MHD kink. The kinking of the current
laments, which constitute the highest density regions, allows the 
lasma to escape to new locations, thereby checking the growth of
he density due to compression. Regions to the right of this histogram
oundary are subject to instability, while regions to the left are
table. 

Fig. 14 (a) shows that this compression boundary in fact occurs
here the electric current density is highest. Instead of the dis-

ribution density of the histogram, the average normalized current 
ensity j / j 0 is shown here for each location in the n - B space. The
ormalization j 0 ≡ en 0 c is about equal to the initial peak current
ensity 1.08 j 0 . The highest current densities are located at the upper
art of the right boundary in the n - B space given by equation ( B1 )
n Appendix B , suggesting that the location of the boundary is
etermined by the unstable kinking of current filaments. 
The formation of the boundary can be observed as the kink

nstability evolves. Initially, the centre of the current sheet, marked 
y an X in Fig. 1 (a), is unstable to the RDKI. After 1 light crossing
ime, as seen in Fig. 1 (b), the plasma evolves, pushing the histogram
nto new regions of the n - B space where n tends to be smaller;
hile lower densities (often with lower current densities) decrease 

he likelihood of kink instabilities, some of these regions can still be
MNRAS 523, 3812–3839 (2023) 
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Section 3.2 ), which is plotted versus time in Fig. 15 . The B ∼ n [equation 
( 19 ) and equation ( B1 )] and B ∼ n 1/6 [equation ( D7 )] scalings are shown with 
thin solid lines. The orange cross in panel (b) represents the intercept of the 
n 1/6 upper boundary assuming L y / ct d = 0.7, as explained in the text. 
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nstable, and kink instabilities continue to grow. After 2 or 3 light
rossing times, the non-linear development of the kink instability
s expected to mix high and low-density re gions, ev entually leaving
nly regions (confined by a boundary in n - B space) where we predict
he kink instabilities to be stable. 

In Appendix B , the B ∼ n boundary is predicted to occur where
 B / B b )/( n / n B ) ≈ 0.08 [see equation ( B10 )]. We test our hypothesis by
onsidering the boundary region, using the local maximum values of
ompressed islands, B / B 0 = 2.2 and n / n b = 28.8, from the intersection
n Fig. 1 (indicated by red crosses in Figs 12 and 14 ), matching the
heoretical predictions remarkably well. 

.2.2 Magnetic-field boundary 

bo v e the histogram in Fig. 12 , there are power-law boundaries
hat limit the magnetic field compression. There is an empirically
etermined boundary with the scaling B ∼ n 1/12 , found in both
lassical and radiati ve cases. Ho we ver, there is also evidence for
nother, somewhat steeper slope, B ∼ n 1/6 , for the radiative case
t low and moderate plasma densities. Its origin is elucidated in
ppendix D [see equation ( D7 )] based on the radiative dissipation of

he magnetic flux, associated with an ef fecti ve synchrotron resistivity 

eff � 

40 

9 

e 2 B 

2 

nm 

2 
e c 

5 

(
T 

m e c 2 

)2 

, (21) 

 function of the local values of n , B , and T , derived in Appendix C
see equation ( C10 )]. Therefore, in the radiative case, the combina-
ion of this slope and the shallower power law B ∼ n 1/12 exhibited in
he higher density segment of the boundary (see Fig. 12 ) ef fecti vely
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Figure 15. Peak (a) density and (b) magnetic field corresponding to the 
upper right v erte x of the best-fitting polygon boundary of the n - B histogram 

(see Section 3.2 ), indicated in Figs 12 and 14 , as functions of time for 3D 

simulations with a range of magnetic field strengths: B 0 / B Q = 4.5 × 10 −6 

(black, classical case), 4.5 × 10 −4 (blue, intermediate case), and 4.5 × 10 −3 

(red, radiative case). The dotted line in panel (a) is the initial density at the 
centre of the Harris current layer. 
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eads to the intermediate best-fitting power law α = 0.11 over the 
hole range of n , plotted in Fig. 1 (d). 
In the interest of understanding the 1/6 slope, we look at the

D radiative case in Fig. 11 (h), which shows the emissivity map
t t = 3 L y / c . It is evident that most of the radiation is produced
ear the centres of plasmoids where the magnetic field is strongest
the local estimated emissivity εest is greatest there). As shown in 
ppendix D , the magnetic field dissipation rate via ef fecti ve radiati ve

esistivity in plasmoid cores is proportional to B 

2 T 

2 / n . Given the
arameters of the 3D radiative simulation (described in Appendix D ), 
he corresponding magnetic dissipation time-scale t d is comparable 
o the radiative cooling time t c . Therefore, it is expected that the
adiative dissipation has sufficient time to occur and to dominate in 
hese hot, strongly magnetized regions. 

To provide firmer evidence that radiative dissipation is most 
ele v ant near the upper boundary in n - B space, in Fig. 14 (b), instead
f the distribution of the histogram, we show the average value of
he normalized magnetic dissipation rate < 1/ t d > L y / c [see equation
 D3 ) from Appendix D ] for each location in n - B space. Although
e argued earlier that the radiative dissipation is most rele v ant in

egions where the emissivity εest is greatest, < 1/ t d > L y / c better
etermines the rele v ant regions. The picture is, therefore, somewhat 
uanced and we need to distinguish two classes of plasmoids. First,
he cores of primary, first-generation, plasmoids, filled mostly with 
he dense plasma from the initial Harris current sheet, have the highest 
missi vity εest ; ho we ver, their radiati ve-resisti ve magnetic decay rate
 

−1 
d ∝ B 

2 T 2 /n is relati vely lo w because of its inverse scaling with
ensity and because of the cooling-induced anticorrelation between 
emperature and density. In contrast, the low-density (and hence 
elati vely lo w-emissi vity) cores of secondary plasmoids, filled with 
he more tenuous upstream background plasma, have much higher 
 1/ t d > L y / c ; this is basically because, in order for a smaller number

f particles to carry a sufficient current, they must move faster. As one
an see in Fig. 14 (b), the largest values of < 1/ t d > L y / c are indeed
ound at the lower density ( n � 2 n b ) part of the upper power-law
oundary in n - B space. This is clear evidence that the B ∼ n 1/6 limit
n the strength of the magnetic field is indeed related to radiative
issipation. 
One can further verify the model by estimating the location of

he boundary in n - B space, i.e. the normalization of the power-law
caling. One can estimate the limit of B / B 0 at n / n b = 2, near the end of
he n 1/6 scaling, by solving the expression for L y / ct d from Appendix D
see equation ( D3 )] with respect to B / B 0 , imposing the requirement
f significant dissipation during a crossing time, e.g. L y / ct d ≈ 0.7
a reasonable number chosen to fit the boundary). By taking the 
arameters of the radiative simulation: B 0 / B Q = 4.53 × 10 −3 , L y / ρL =
14, and σ h = 25.76, taking the characteristic filament radius from 

ig. 11 to be r / ρL = 20, and setting θ e , loc ≈ 5( n / n b ) 1/3 , one obtains
 / B 0 ≈ 1.7. This is in reasonable agreement with the limits on the
istogram shown in Fig. 14 (b), where this point is highlighted with
n orange cross. The B ∼ n 1/6 scaling in Fig. 12 (b) is valid only for
ow density n / n b ≤ 2, and is then replaced by a shallower scaling B ∼
 

1/12 at higher densities. In principle, for more radiative systems, this
caling would be valid for the full range of densities. 

.2.3 Plasmoids and their compression 

hile discussing the limits on compression, we have focused our 
ttention on the most significant source of radiation, the compressed 
egions inside plasmoids. Despite the small area they occupy, the total 
ower they radiate may exceed that from the entire upstream region. 
n Fig. 14 (c), the distribution in n - B space is weighted by the value
f εest for each grid point. This figure illustrates both the significant
ower radiated from the upstream region, where B � ( B 

2 
0 + B 

2 
G 

) 1 / 2 

nd n � n b , and the even greater power radiated from the compressed
lasmoid cores, centred around B = 1.3 B 0 and n = 6.5 n b . Most of
hese plasmoid regions are located in between (and far from) the
wo boundaries in n - B space, where neither the density and current
re so high that kinking plays a role, nor are the magnetic field
nd hence < 1/ t d > L y / c so large that radiative dissipation becomes
mportant. Thus, the compact, compressed plasmoid-core regions 
ecome brightly shining fireballs that contribute significantly to, and 
erhaps even dominate, the overall emission. 
We also wish to highlight the trend that the estimated χe, est ≡

2 T /m e c 
2 ) B/B Q 

increases in regions of stronger compression
higher B / B 0 ), as seen in Fig. 14 (d). We, therefore, expect that for
ystems with stronger compression, and hence stronger B , χ e , est 

ould approach or exceed unity, leading to significant discrete hard 
amma-ray emission and pair production. 

In 3D, it is possible to define a useful and simple measure
or quantifying the compression of plasmoids using the power-law 

oundary fits described in Section 3.2 . For times t > L y / c , i.e. after
he clear boundaries hav e dev eloped, a useful measurement of the
aximal degree of compression is given by the intersection of the two 

oundaries in n - B space at the upper right v erte x of the histograms.
his intersection is indicated by the red ‘ + ’ signs at t = 3 L y / c for

he classical case in Fig. 12 (a), where ( n / n b , B / B 0 ) = (24.0, 1.86),
nd for the radiative case in Fig. 12 (b), where ( n / n b , B / B 0 ) = (28.8,
.18). We present this measurement of compression for both n in
ig. 15 (a) and B in Fig. 15 (b) as functions of time. Unfortunately,

his diagnostic does not work well for the histograms based on our
D simulations, and thus we only present this diagnostic in 3D. 
Although this diagnostic is not yet available before t ∼ 1 L y / c

ecause the clear histogram boundaries have not yet fully formed, 
efore this time, the initial already high density at the centre of the
urrent sheet, n 0 = 37 n b , is compressed even more in the centres
f magnetic islands, as we have already shown in 2D and 3D in
oth radiative and non-radiative cases (see Sections 4 and 5 ). By
he time the diagnostic becomes available around t ∼ 1 L y / c , the
ensity has already compressed to peak values as high as n / n b ∼
0 ( n / n 0 ∼ 2) and the peak density has already begun to decrease.
or all 3D cases the degree of density compression in Fig. 15 (a)
rops as a function of time due to kinking (see Section 5.2 and
ppendix B ). Meanwhile, the magnetic field, which has also already

tarted compressing, continues to grow, as seen in Fig. 15 (b). 
MNRAS 523, 3812–3839 (2023) 
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We can measure the dependence of the compression on the strength
f radiative cooling, controlled by the strength of the upstream re-
onnecting field B 0 / B Q , by comparing our three simulations. We find
hat both max( n )/ n b and max( B )/ B 0 have a rather weak dependence
n B 0 / B Q in 3D. By tc / L y = 3, the respective enhancements of the
ompression are ∼ 50 per cent and ∼ 30 per cent in the radiative
ase compared to the classical case. Thus, in contrast with the 2D
esults from Schoeffler et al. ( 2019 ), the radiative cooling-driven
nhancement is relatively modest. Since the out-of-plane magnetic
ux due to the initially relatively strong guide-field B G / B 0 = 0.4 is
onserved no matter how strongly the plasma cools radiatively, the
ompression is limited. Ho we ver, in 3D, as we show in Section 6.1 ,
he compression is maximized for this value of the guide field.
lthough the B 0 / B Q -dependence is not so significant (at least for

hese parameters), we will use these measurements of compression
o investigate its dependencies on other parameters in Section 6 and
etermine in which regimes more compression may be expected. 
In summary, in this section, we have shown that, like in 2D, the

lasma energization due to 3D relativistic magnetic reconnection
eads to a sudden increase in the total radiated power P tot and its
implified fluid-level estimates P tot, est and P tot, est, 2 . This increase
s further enhanced by the compression of n and B within the
agnetic islands, which we can quantify using theoretical limits

n n - B space (where the limit on density is only found in 3D).
he compression enhances the emission of energetic photons and

hus may be an important factor in powering gamma-ray flares
rom various astrophysical systems. Simulations performed in 2D
ive good qualitative agreement with the 3D simulations in overall
article spectra, the total radiation power, and field maps. However,
he much stronger density compression, and thus also local emissivity
nhancement, found in 2D are disrupted by kinking instabilities that
an (and do) develop only in 3D simulations. Although the density
ompression is reduced in 3D relative to the 2D case, the sudden
ncrease in radiative power persists. 

 PARAMETER  SCANS  

ignificant synchrotron gamma-ray emission (i.e. radiation with
hoton energies E γ > m e c 2 ) occurs when the parameter χ e of a
ignificant number of particles gets as large as χ e ∼ 1/ γ , and thus
he synchrotron photon energy, which is about � ( eB / m e c ) γ 2 is of
he order of m e c 2 . Reconnection can cause an enhancement of the

e parameter by particle energization and also by magnetic field
ompression. 

In Sections 4 and 5 , we have found that, although larger values of
 0 / B Q lead to more intense gamma-ray emission, the enhancement
f radiation from the reconnection process becomes less pronounced
or stronger magnetic fields, due to radiative cooling of the plasma
 v erall, as well as the fact that locations of most significant radiation
lso suffer the most radiativ e cooling. Howev er, we hav e also found
hat radiative cooling leads to an enhanced compression of the

agnetic field and plasma density, helping us to mitigate these
ffects. We have thus begun to understand the effect of one parameter,
.e. the normalized strength of the reconnecting magnetic field B 0 / B Q ,
n gamma-ray emission. Ho we ver, there are several other important
arameters to consider which also merit investigation. 
To decide which parameters to investigate, we consider some

mportant questions. For example, in what parameter regimes do
e expect the strongest compression and the strongest flaring of

adiation in the gamma-ray energy range? In which regimes do we
xpect 2D models to provide good predictions for the full 3D system?

hen are kinking instabilities in the z direction important, and how
NRAS 523, 3812–3839 (2023) 
o they affect compression? Some regimes exist in theory, but are
ifficult to simulate numerically; are there regimes with stronger
aring of radiation in the gamma-ray energy range than those we can
imulate? In what regime is significant pair production eventually
xpected to take place (i.e. typically χ e > 1)? Do we expect such
egimes to occur in astrophysical environments? 

Moti v ated by these questions, in this section we will explore
he effects of several important parameters: guide field ( B G / B 0 ),
hich resists and inhibits compression but can also mitigate 3D

ffects by suppressing the kinking instabilities; system size ( L y / ρL 

nd L z / ρL ), which allows for longer evolution of both rele v ant 2D
nd 3D dynamics; and upstream plasma magnetization σ h , which
uantifies the magnetic energy released during reconnection. Each
f the subsections that follow presents the findings of an individual
arameter scan with respect to one of these parameters. We perform
hese parameter scans by starting with our previous fiducial case,
he 3D radiative ( B 0 / B Q = 4.53 × 10 −3 ) simulation setup, and
ndi vidually v arying these parameters while keeping the others
onstant. 

.1 Parameter scan: guide field B G 

he first step towards finding a regime with significant gamma-ray
mission is looking at the dependence on the guide field B G / B 0 . A
eal 3D plasma acts like a 2D simulation only for a sufficiently
trong guide field. Therefore, one should view as tentativ e an y
onclusions based on 2D simulations with a weak guide field, such
s those presented by Schoeffler et al. ( 2019 ), where the compression
as unphysically large. For the simulations shown in the previous

ections of this paper, we have chosen a guide field of B G / B 0 = 0.4,
hich is both strong enough for an order-of-magnitude agreement
ith 2D simulations, but also weak enough to allow significant

ompression and thus enhancement of emitted radiation power. 
To investigate the dependence of the results on the guide field, we

ave performed a parameter scan of B G / B 0 = 0.05, 0.2, 0.4, 0.6, and
.0, for the 3D radiative case, keeping B 0 / B Q = 4.53 × 10 −3 , L y / ρL =
 x / ρL = 314.4, L z = 0 . 19 L y = 58 . 6 ρL , and σ h = 25.76 fixed. 
We again use the histogram diagnostic from Section 3.2 to find

 good measure of the maximal n and B compression for times t >
 y / c after the clear boundaries have developed. We show in Fig. 16 (a)

hat the compression of the magnetic field has a clear dependence
n the strength of the guide field. Here we calculate the compression
ased on the maximal total field compared to the initial upstream
otal field | B 0 + B G 

| , instead of just B 0 , as we are no longer keeping
 G constant. One should first note that the effect of the guide field
n the magnetic compression is non-monotonic. While for strong
uide fields e.g. B G / B 0 = 1, the guide-field pressure naturally acts to
imit the compression of the plasma and thus the compression of the
agnetic field, for a very weak guide field B G / B 0 = 0.05 there is also

lmost no compression seen. As we will show later in this subsection,
he compression, in this case, is disrupted by the development of a
ink instability. We thus find that magnetic-field compression peaks
t intermediate guide fields, B G / B 0 = 0.2 − 0.4. For these guide
elds, the compression fluctuates strongly in time but, on the whole,
ontinues to grow up to tc / L y ≈ 3. At this time the compression
s strongest for B G / B 0 = 0.4, justifying our choice of this value of
 G for our main fiducial simulations. A similar trend was found by
erutti et al. ( 2014b ), where non-thermal particle acceleration was
lso maximized at these moderate guide-field strengths. 

As for the compression of the plasma density, we see a similar non-
onotonic trend. Fig. 16 (b) shows a clear dependence on B G at the

arliest time that the density compression diagnostic is available, e.g.
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Figure 16. Peak (a) magnetic field, normalized to the initial upstream field 
strength ( B 

2 
0 + B 

2 
G 

) 1 / 2 , and (b) plasma density, corresponding to the upper 
right v erte x of the best-fitting polygon boundary of the n - B histogram (see 
Section 3.2 ), and (c) total normalized radiated power P̄ tot (with the time- 
integrated power as a function of B G / B 0 plotted above), as functions of time 
for 3D radiative simulations with a range of initial guide magnetic fields: 
B G / B 0 = 0.05 (black), 0.2 (magenta), 0.4 (blue), 0.6 (green), and 1.0 (red). 
The dotted line in panel (b) is the initial density at the centre of the Harris 
current layer. 

a  

t
d  

b
t  

t  

0  

l  

t  

o
s  

f

w  

s  

o  

t
m  

h  

r
t  

t  

p
w  

b  

d  

a
T
c

t
fi  

e  

t  

m

t  

m  

f  

e  

s  

a  

H
j  

n
 

t  

g
A  

i  

p
m  

m  

f  

i  

s
o  

k  

a  

w
a  

t  

A  

s  

s  

i  

m  

t  

i
d
a  

b  

w  

i

s
B
a  

t  

c

6

A
v
k  

s  

g  

a
t  

fi  

r  

f  

R  

2  

s  

0  

(  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/523/3/3812/7188308 by U
niversity of C

olorado user on 05 July 2023
t tc / L y ≈ 1, where it is largest for a guide field B G / B 0 = 0.6. Soon
hereafter, ho we ver, the dependence becomes less clear, with the 
ifferences between all the curves except the red one ( B G / B 0 = 1.0)
eing comparable to their fluctuation level. The density compression 
hen rises somewhat for some of the simulations just before the end of
he runs, and reaches a maximum at tc / L y ≈ 3, occurring at B G / B 0 =
.4, similar to the magnetic compression. One can note that the red
ine ( B G / B 0 = 1.0) is consistently below all others starting from about
c / L y = 1.2; i.e. that a strong guide field does suppress compression
f the plasma. This suppression eventually leads to a compression 
maller than in the case with the strongest compression by almost a
actor of 2. 

One should note that although the compression is suppressed in 
eak guide fields, the total radiated power increases as B G is lowered,

ee Fig. 16 (c). The total energy E rad radiated up to t max = 3.16 L y / c ,
btained by integrating the radiated power from Fig. 16 (c) up to this
ime, normalized to the initial energy contained in the reconnecting 

agnetic field E B 0 , is plotted as a function of B G / B 0 in the top right-
and panel of Fig. 16 , just abo v e panel (c). As one might expect, the
adiated energy does not depend strongly on the guide field when 
he guide field is weak, B G � 0.2 B 0 . For low B G / B 0 approaching 0,
he energy radiated approaches E rad ≈ 0.6. Ho we ver, there is a clear
ower-law dependence for stronger guide fields, scaling inversely 
ith B G / B 0 [as ∼( B G / B 0 ) −0.8 ]. This is because the reconnection rate
ecomes smaller for higher B G / B 0 , and thus there is less energy
issipation and hence less radiation. Ho we ver, we find that the local
verage values of χ e or γχ e increase with the magnetic compression. 
herefore, the largest values occur in the simulation with maximal 
ompression ( B G / B 0 = 0.4). 

The physical origin of these numerically observed trends, in par- 
icular, the suppression of the compression of plasma and magnetic 
elds in the weak guide-field regime in 3D, can be traced to the
ffect that the guide field has on the 3D instabilities developing in
he current sheet. The initial current sheet is unstable to two types of

odes; the tearing mode developing primarily in the ˆ x direction and 
he RDKI mode primarily in the ̂  z direction. To identify the dominant
odes, we use fast Fourier transform (FFT) of the density maps

rom the PIC simulations of this B G parameter scan at a relatively
arly time tc / L y ≈ 0.4. We find the peaks of the Fourier power
pectrum at k ρL ≈ [0 . 2 , 0 , 0] ( k δ ≈ [0 . 5 , 0 , 0]) for the tearing mode
nd k ρL ≈ [0 , 0 . 34 , 0 . 2] ( k δ = [0 , 0 . 87 , 0 . 5]) for the kink mode.
ere the component of the wavenumber directed in the ˆ y direction 

ust corresponds to the thickness of the unstable current sheet and is
ot associated with the direction of the unstable mode. 
Figs 17 (a)–(e) shows early-time, t ≈ 0.6 L y / c , 3D renderings of

he plasma density contours, which exhibit kinking across a range of
uide fields, with decreasing amplitude as the guide field increases. 
t a slightly earlier time tc / L y ≈ 0.4, the calculated FFT of the density

n the ( k x , k z ) space at fixed k y ρL = 0.34 in Figs 17 (f)–(j) shows the
resence of both tearing and kinking modes (although the tearing 
ode peaks at k y = 0, it is still visible at k y ρL = 0.34). The tearing
ode is slowed down but not fully suppressed by the guide field and is

ound for all the parameters that we have investigated. It is therefore
mportant to understand the role of the kinking modes which, when
ignificant (for weak guide fields), act to disrupt the compression 
f the plasma and magnetic fields observed in 2D. We find that the
inking mode, which is only found in 3D where k z �= 0, disrupts
nd limits the compression seen in 2D simulations, and thus explains
hy the density compression max ( n )/ n b depends strongly on B G / B 0 

t tc / L y ≈ 1, shown in Fig. 16 (b). As one can see in Figs 17 (f)–(j),
he kink’s amplitude is highest for the weakest B G / B 0 = 0.05, 0.2.
s B G / B 0 is increased, this mode is suppressed, growing slower and

aturating earlier. For B G / B 0 = 1.0, the kinking mode is completely
uppressed for our fiducial value of L z [no kinking mode is visible
n the Fourier spectrum in Fig. 17 (j)]. While the dominant kinking
ode at early stages is the RDKI mode with a fix ed wav elength in

he ˆ z direction, λ = 2 πk −1 
z ∼ 30 ρL , at later times the MHD kink

nstability of the flux ropes starts to dominate. The corresponding 
ominant MHD kink mode’s wavelength grows with the guide field 
nd, for our strongest guide-field case B G / B 0 = 1.0, it can only fit in
oxes with L z larger than simulated in the present parameter scan. We
ill explore the L z -dependence of both of these 3D kinking modes

n the next subsection. 
To sum up, the maximum compression in our 3D reconnection 

imulations occurs at intermediate values of the guide field, e.g. 
 G / B 0 ≈ 0.4, when the compression-disrupting kinking instabilities 
re somewhat suppressed by the guide field, but, at the same time,
he guide-field’s pressure B 

2 
G 

/ 8 π is not strong enough to prevent the
ompression outright. 

.2 Parameter scan: L z 

s shown in the previous subsection, stronger guide fields suppress 
ariations in the ˆ z direction, in particular those coming from the 
inking modes, making 3D results more like 2D. In general, 3D
imulations become more accurate when the box size 2 L z in the
uide-field direction (quantified by L z / ρL or L z / L y ) is increased,
llowing for modes with longer wavelengths and more variations 
o fit in the ˆ z direction. An important question is: for a given guide
eld, how large does L z / ρL (or L z / L y ) need to be to capture the
ele v ant 3D physics? From the previous subsection, we learned that,
or moderate guide fields, at least the initially dominant k z ρL ≈ 0.2
DKI mode of the initial Harris current sheet, with wavelength λ =
 π / k z � 30 ρL , has to fit in the box of length 2 L z . Our main fiducial
equence of 3D runs in Section 5 adopted the z-length L z = 58.6 ρL =
.19 L y . This is sufficiently long to resolve four initial wavelengths
 k z 2 L z /2 π ≈ 4), and thus these initial RDKI kinking modes are well
MNRAS 523, 3812–3839 (2023) 
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Figure 17. 3D renderings of density contours (top row: panels a–e) at tc / L y = 0.566 and the spatial Fourier decomposition of the density (bottom row: panels 
f–j) at tc / L y = 0.404, for 3D radiative-case simulations with different guide-field strengths: from left to right, B G / B 0 = 0.05, 0.2, 0.4, 0.6, and 1.0. Bottom-row 

panels (f–j) are 2D cuts of the 3D FFT at k y ρL = 0.34. 
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aptured. In the present subsection, we justify our choice for L z , by
omparing simulations with a range of lengths. 

We performed a parameter scan of L z / ρL = 7.325, 14.65, 29.3,
8.6, 117.2, and 175.84, keeping B 0 / B Q = 4.53 × 10 −3 (i.e. radiative
ase), B G / B 0 = 0.4, and σ h = 25.76 fix ed. F or computational reasons,
hese simulations were done using a smaller system size L x / ρL =
 y / ρL = 157.2 (i.e. half of our fiducial system size); this allowed
s to explore a broad range of aspect ratios from L z / L y = 0.047 to
.125. Unfortunately, at this smaller system size, there is not much
pace and time for significant compression. 

We find that only the biggest- L z / ρL runs have n - B histograms that
esemble those for the 3D runs presented in Section 5 and allow for
he use of the compression diagnostic from Section 3.2 . As we see
n Figs 18 (a)–(c), the histograms of the runs with the smallest values
f L z / ρL ∈ [7.3, 14.7, 29.3] resemble those from the 2D simulations
see Fig. 6 (b)], where B / B 0 follows the frozen-in scaling of equation
 19 ) for n / n b < 1 and continues to increase with n for n / n b > 1, with
 weaker slope. On the other hand, in larger- L z simulations ( L z / ρL 

 30; L z / L y > 0.19), shown in Figs 18 (d)–(f), the histograms more
trongly resemble those from the fiducial 3D simulations of Section 5
see Fig. 12 (b)]. In particular, while the bulk of the background
lasma still follows the frozen-in scaling of equation ( 19 ), there are
lear and distinct power-law boundaries above and to the right of
he distributions. This allows us to employ our standard measures of
aximal density and magnetic-field compression (see Section 3.2 )

n terms of the intersection point of these histogram boundaries [red
lus signs in Figs 18 (d)–(f)]. 
As seen in Figs 19 (a) and (b), the compression in both n and B

from the histogram diagnostic in Section 3.2 ) is not as strong as that
ound in the simulations with larger L y . Ho we ver, we can conclude
hat while the dependence on L z is not strong, the compression may
e still slightly greater for larger L z . The normalized emitted power
¯
 tot , shown in Fig. 19 (c), is greater for the simulations with the
mallest values of L z , which are essentially 2D runs, while for L z / ρL 

 30 the emitted power appears to become independent of L z . 
As in the previous subsection 6.1 , we show early-time 3D

socontours of the density at tc / L y = 0.566 in Figs 20 (a)–(f) and
he FFT of the density in the xz plane (at k y ρL = 0.34) at tc / L y =
.404 in Figs 20 (g)–(l), now for several values of L z / ρL . The initial
NRAS 523, 3812–3839 (2023) 
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o

inking mode appears at the same value of k z ρL � 0.2 as in the
revious subsection, independent of L z , for all the runs except for the
uasi-2D case L z / ρL = 7.3. The reason why there are no signs of the
inking mode in the L z / ρL = 7.3 case is simply that the wavelength
f this instability mode, λz / ρL ∼ 30, is too long to fit in the box
f a full z-extent of 2 L z � 15 ρL . On the other hand, our fiducial
hoice of the box half-length L z = 58.6 ρL captures almost four full
avelengths. Besides this main RDKI kinking mode, we do not see 

ny other significant variations along the ˆ z direction, e.g. any clear 
vidence of the MHD kink modes, at this relatively early time, even
or the largest value of L z / ρL = 176 ( L z / L y = 1.12, four times longer
han our fiducial L z ). Therefore, L z / ρL = 58.6 ( L z / L y = 0.37) appears
o be sufficient to capture the 3D effects, at least at early times. It is
till not clear if 3D effects might become more important at higher
alues of L y / ρL or L z / L y , which we did not simulate in this study. As
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igure 20. 3D renderings of density contours (top row: panels a–f) at tc / L y = 0.5
–l) at tc / L y = 0.404, for 3D radiative-case simulations with different L − z: from 

g–l) are 2D cuts of the 3D FFT at k y ρL = 0.34. 
e discussed in Section 5.2 , the peak density of the current filaments
ppears to be limited at late times to a certain region in n - B space,
o v erned by the marginal stability condition for the flux-rope kink
ode in the filaments, and this may explain the lack of clear kinking
odes. 
We thus conclude that, although rough, order-of-magnitude pre- 

ictions of compression and radiation are possible based on 2D 

imulations, an accurate prediction in 3D requires the domain’s 
ength in the third dimension to be large enough to capture at least
he initial RDKI instability. 

.3 Parameter scan: L y 

ther parameters may lead to stronger compression, greater χ e , 
nd thus more powerful emission of gamma-rays, but are also more
omputationally difficult to study. In particular, in this subsection, 
e consider the dependence on the system size L y / ρL . Increasing the

ystem size leads to a longer time of evolution of plasmoids, and thus
otentially to stronger compression of the magnetic field in plasmoid 
ores, and more pronounced non-thermal particle acceleration. 

In order to see the effects of system size, we have performed, in
ddition to our fiducial L y / ρL = 314.4 run, two more simulations,
ith both larger ( L y / ρL = 471.6) and smaller ( L y / ρL = 157.2) sizes,
eeping L z / ρL = 58.6, B 0 / B Q = 4.53 × 10 −3 , B G / B 0 = 0.4, and σ h =
5.76 fixed. The simulation duration was t max c / L y = 3.16 in all the
uns. 

We find that the degree of compression (from the histogram 

iagnostic in Section 3.2 ) scales with the time normalized to the
microscopic) cyclotron time-scale c/ρL = γT 


−1 
c , rather than to 

he (macroscopic) system’s light-crossing time c / L y . Therefore, in
ig. 21 , we show the comparisons of the time histories of the
agnetic field (panel a) and density (panel b) compression, as well

s of the total normalized power (panel c), using this microscopic
ime normalization, which indicates little dependence on the system 

ize. Ho we ver, while the level of compression in n seems to reach
n approximate steady state at late times that is weakly dependent
n system size, the compression of B appears to continue to
row roughly linearly with time. Therefore, for simulations with 
 given duration in light-crossing times, magnetic compression can 
ventually reach larger values for larger system sizes. Note that for
he smallest system size ( L y / ρL = 157.2) there is not enough time for
MNRAS 523, 3812–3839 (2023) 

(d)

-10
0

0
-50

50

z
/ρ
L

10
0

0

-10
0

z
/ρ
L
10

0

(f)(e)

 L  /ρ  = 59z     L  L  /ρ  = 117z     L
 L  /ρ  = 176z     L

10
-4

10
-5

10
-6

(k) (l)

|F
F

T
(n

/n
0)

|

66 and the spatial Fourier decomposition of the density (bottom row: panels 
left to right, L z / ρL = 7.3, 14.7, 29.3, 58.6, 117, and 176. Bottom-row panels 

lorado user on 05 July 2023

art/stad1588_f19.eps
art/stad1588_f20.eps


3832 K. M. Schoeffler et al. 

M

(c)(b)

(a) L  /   = 

160
314
470

y     Lρ

m
ax

(n
)/

n b

60

40

20

0

t c/ρL

15001000500

m
ax

(B
)/

B
0

3

2.5

2

1.5

1

P
to

t

2

1.5

1

0.5

0

t c/ρL

150010005000

n0

Figure 21. Peak (a) magnetic field and (b) plasma density at the upper 
right v erte x of the best-fitting polygon boundary (see Section 3.2 ), and (c) 
total normalized emitted power P̄ tot , as functions of time for 3D radiative- 
case simulations with a range of system sizes: L y / ρL = 157.2 (black), 314.4 
(blue), and 471.6 (red). The dotted line in panel (b) is the initial density at the 
centre of the Harris current layer. 

s  

n
 

P  

a  

m  

H  

p  

l  

l  

r

6

A  

b  

w  

m  

t  

e  

a  

o  

t  

c  

a  

n  

c  

g  

d  

 

2  

0  

m  

o  

W  

s  

6  

p  

(c)(b)

(a)   = 

6
13
26

hσ

m
ax

(B
)/

B
0

2.5

2

1.5

1

P
to

t

2

1

0

t c/Ly

3210

m
ax

(n
)/

n b

60

40

20

0

t c/Ly

321

n0

n0

n0

Figure 22. Peak (a) magnetic field and (b) plasma density at the upper right 
v erte x of the best-fitting polygon boundary (see Section 3.2 ), and (c) total 
normalized emitted power P̄ tot , as functions of time for 3D radiative-case 
simulations with a range of upstream magnetizations: σ h = 6.44 (black), 
12.88 (blue), and 25.76 (red). The dotted lines in panel (b) are the initial 
densities at the centre of the Harris current layer. 

t  

(  

c
a

 

i  

m  

σ  

t  

1  

t  

G  

p  

i  

t  

s  

m  

T  

n  

c  

[  

a  

d  

d  

w  

l  

c  

t
 

o  

i  

t  

F  

n  

b  

i  

d  

t

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/523/3/3812/7188308 by U
niversity of C

olorado user on 05 July 2023
ignificant compression, and hence the magnetic compression does
ot exhibit a clear linear trend like in the other two cases. 
Like the density compression, the total normalized emitted power

¯
 tot decreases as a function of time at intermediate times and
pproaches a steady state at late times [see Fig. 21 (c)]. In general,
ore power is emitted at relatively early times, tc / ρL ∼ 300 − 500.
o we ver, for larger system sizes, there is more time for the com-
ressed magnetic field and increased temperature (not shown) to
ead to more energy radiated at higher photon energies. Therefore,
arger systems have greater potential for producing brighter gamma-
ay emission and hence possibly more copious pair production. 

.4 Parameter scan: σ h 

lthough large- σ h simulations are computationally challenging,
ecause it is numerically difficult to handle initial Harris equilibria
ith very large density contrasts n 0 / n b (a force-free initial equilibrium
ay be more amenable to simulation studies in this regime),

hese parameter regimes may be more rele v ant to astrophysical
nvironments associated with gamma-ray flares. We, therefore, look
t the dependence of some of the key reconnection characteristics
n the magnetization σ h . As a reminder, this parameter quantifies
he relative free energy in the upstream magnetic fields that can be
onverted by reconnection into plasma heating and the non-thermal
cceleration of particles. For high σ h , the magnetic pressure domi-
ates o v er the plasma pressure, potentially enabling stronger density
ompression. Therefore, as σ h is increased, we expect to find both
reater heating and acceleration, and stronger compression of plasma
ensity, leading to higher χ e and thus brighter gamma-ray emission.
We have performed a parameter scan of σ h = 6.44, 12.88, and

5.76, keeping T b = 4 m e c 2 , B 0 / B Q = 4.53 × 10 −3 , B G / B 0 =
.4, L z / ρL = 58.6, and L x / ρL = L y / ρL = 314.4 constant. The
agnetization σ h ∼ 1/ n b is varied by changing n b while keeping the

ther two basic background plasma parameters, T b and B 0 , constant.
e also keep fixed most of the initial parameters of the current

heet, namely, its initial thickness δ = 2.55 ρL and temperature T 0 =
.92 m e c 2 , as well as the drift velocity v d / c = 0.56 of current-carrying
articles [see equation ( A8 ) in Appendix A ]. This, in turn, implies
NRAS 523, 3812–3839 (2023) 
hat the difference in density n 0 − n b is kept constant [equation
 A7 ) in Appendix A ] as σ h (and hence n b ) is varied, and so n 0 is
hanged slightly. The respective density contrasts for increasing σ h 

re n 0 / n b = 10, 19, and 37. 
Again, we examine the compression from the histogram diagnostic

n Section 3.2 , after t = L y / c , once the distribution has sufficiently
ixed. As shown in Fig. 22 (a), the magnetic field compression for
h � 6.4 stays nearly constant at a modest value of about (1.6–1.8)

hroughout the simulation. Ho we ver, for higher magnetization, σ h �
3 and 26, the magnetic compression exhibits an overall growth, up
o ∼2.5 at the end of the simulation, on top of strong fluctuations.
enerally, higher σ h results in stronger magnetic compression. The
eak density compared to the initial background density n b , displayed
n Fig. 22 (b), is also higher for higher magnetization. Ho we ver,
his dependence does not actually reflect the degree of compression,
imply because higher magnetization just corresponds to lower nor-
alization n b relative to the peak density n 0 in the initial Harris layer.
herefore, comparing the peak density of the compressed regions to
 0 would be a better measure. Although a density compression has
learly occurred by the time the histogram diagnostic is first available
max ( n )/ n 0 ∼ 2 at t ≈ L y / c ], the peak density decreases with time
nd quickly drops below n 0 , especially for higher σ h . After that,
uring the second half of each simulation ( t � 1 . 5 L y /c), the peak
ensity fluctuates below n 0 , around a saturated level that decreases,
hen normalized to n 0 , as σ h is increased, see Fig. 22 (b). Since the

ate-time peak density remains below n 0 for all cases, any sustained
ompression can only be due to the background plasma, rather than
he plasma from the initial current sheet. 

Taking into account the magnetic field compression, we expect an
 v erall increase in the values of χ e for typical particles in magnetic
slands, which would be consistent with the clear enhancement of
he normalized radiated power for increased values of σ h seen in
ig. 22 (c). Note that although there is a greater enhancement of
ormalized radiated power for higher σ h , the total energy radiated
y the end of the simulations remains about 1/3 of the initial energy
n the reconnecting field for all σ h . The initial radiated power
ecreases with σ h , because there are fewer radiating particles in
he background. 
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A very good estimation for the average χ e of particles at a given
ocation is given by χe, est ≡ (2 T /m e c 

2 ) ( B/B Q 

), shown in Fig. 23 .
 comparison of the 2D maps of this quantity, corresponding to the

lices of the simulation domain at z = 0 at t = 3 L y /c, illustrates
he expected increase in χ e with increased σ h , as seen in Figs 23 (a)–
c). In addition to these maps, the dependence of χ e , est on σ h is
learly visible in the time histories of the maximum (o v er the domain)
alues of χ e , est , plotted in Fig. 23 (d). For the σ h = 25.76 case (the
adiative case in Section 5 ), the maximum local average χ e , est grows 
apidly before plateauing at about 0.15 (i.e. somewhat below the 0.2–
.25 range of variation found in the corresponding 2D simulation). 
t then fluctuates around this level throughout most of the active 
econnection phase, before spiking suddenly near the end of the 
imulation to a value as high as 0.3, almost a factor of 10 higher than
he initial background value of 0.038 [see Fig. 23 (d)]. Although the
otal radiated power in 3D is not a high as in 2D [the radiative case
n Section 4 ], the high values that χ e , est reaches in 3D at late times
see Fig. 23 (c)] exceed those seen in the 2D case with the same σ h 

26 [see Fig. 23 (e) and the red dashed line in Fig. 23 (d)]. 
We have thus shown that the initial background magnetization σ h 

as a significant effect on the magnetic field and density compression, 
he total emitted power, and the average χ e parameter in the cores of
lasmoids, all pointing to regimes where gamma-ray emission can 
e more efficient. 

 CONCLUSIONS  

e have presented the results of a comparative 2D and 3D numerical
tudy of collision-less relativistic reconnection of strong magnetic 
elds in an electron–positron pair plasma, self-consistently taking 
nto account synchrotron radiation reaction. The main focus of our 
tudy was on investigating reconnection-powered sudden bursts of 
nhancement of the estimated local emissivity εest and the total radi- 
ted power P tot , especially in the gamma-ray re gime. Our radiativ e-
IC simulations were conducted with the OSIRIS radiative-PIC code 
nd were initialized with a self-consistent equilibrium relativistic, 
ense Harris sheet immersed in a lower density ambient background 
air plasma. We hav e inv estigated the effects of the relative strength
f synchrotron cooling, controlled by the reconnecting magnetic field 
 0 / B Q , in both 2D (Section 4 ) and 3D (Section 5 ). In addition, in 3D,
e have performed an e xtensiv e study of the effects of several other
ey physical parameters (Section 6 ), namely, the relative strength 
f the non-reconnecting, guide magnetic field along the ˆ z direction 
 G / B 0 (Section 6.1 ), the length of the current sheet in the ˆ z direction
 z / ρL (Section 6.2 ), which characterizes 3D effects, the system size

n the perpendicular direction L y / ρL (Section 6.3 ), and the upstream
lasma magnetization σ h (Section 6.4 ). 
We have developed two novel diagnostic estimates of the total 

adiated power, which also help elucidate what causes the bursts 
n photon emission found in both 2D and 3D simulations. These
iagnostics are based on fluid-level quantities obtained as reductions 
f the PIC-simulation kinetic data. The first one is a simple estimate
f radiated power P tot, est [equation ( 17 )], which integrates the
stimated local emissivity εest , ignoring both bulk-flows and kinetic 
ffects/non-Maxwellian distributions; it eventually overestimates the 
mission of radiation (for more radiative cases), but takes into 
ccount the important correlation between the magnetic energy 
ensity and plasma energy density. The second estimate, P tot, est2 

see equation ( 18 )], is even simpler, as it ignores this correlation, and
MNRAS 523, 3812–3839 (2023) 
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aturally leads to the development of inhomogeneities in the system,
.g. via plasma and magnetic-field compression inside plasmoids
magnetic islands; or flux ropes in 3D). The resulting increased
alues of the plasma density, magnetic field, and temperature are,
n general, spatially correlated and found concentrated in plasmoid
ores. This enhancement and correlation, which is taken into account
y P tot, est , increases the local emissivity and the total radiated power
n comparison with the more naive estimate P tot, est2 , especially in 2D.
lthough, as we had pointed out in our previous paper (Schoeffler

t al. 2019 ), radiative cooling can drive an even stronger compression
nd hence a further concentration of the radiativ e re gions in the
entral cores of magnetic islands, making them more ef fecti ve
adiators, in this study we have found that enhanced radiative cooling
f the plasma caused by stronger magnetic fields actually reduces the
ppropriately normalized radiated power. 

We have found that, for the most part, 2D simulations yield rea-
onable qualitative estimates (i.e. within factors ∼2) for several key
haracteristics, such as the radiated power, particle spectra, magnetic
eld compression, etc., for the full 3D system with a moderate
uide field B G / B 0 = 0.4. Ho we ver, for some other quantities, we
av e observ ed rather large differences between 2D and 3D results.
 or e xample, the localized compression of plasma density and the
nhancement of local emissivity in 2D can reach peak values around
 factor of 10 greater than in 3D. Such unphysically strong plasma
ompression does not occur in 3D because compression becomes
isrupted by kinking instabilities, in particular, the RDKI at early
imes, capturing which requires accessing modes with k z δ ∼ 0.5. 

To study the development and limits of compression, and to
elp highlight the correlations between density n , magnetic field
 (and sometimes temperature T ) that drive the enhancements of

econnection-powered radiation, we have designed and made use
f a no v el compression diagnostic based on 2D histograms in n - B
nd n - T spaces of our simulations (Section 3.2 ). We have observed
hat the distributions of points on these histograms, especially in
D simulations, tend to develop very clear, well-defined borders,
escribed by power laws, corresponding to sharp limits on the
ompression. 

We have presented tentative theoretical explanations for two such
ompression limits seen on the histograms in our simulations: for
he maximum B / B 0 ∼ ( n / n b ) 1/6 [equation ( D7 )] (moderate-density
art of the top boundary) for 2D and 3D radiative cases, which
e attribute to radiati ve-resisti ve dissipation of magnetic fields in

econdary plasmoid cores; and (in 3D only) for the maximum density,
iven by n / n b ∼ ( B / B 0 ) 1 [equation ( B1 )] (right boundary), which
ppears to be determined by the kink instability condition. 

We have further explored the compression and the resulting power
adiated using parameter-space scans employing 3D radiative simu-
ations that are subject to both of these compression limits. We have
ound that the relative enhancement of the radiated power decreases
ith increased B G / B 0 or B 0 / B Q but increases significantly with

ncreased magnetization σ h . The density compression (compared
o n 0 ) does not change significantly for all parameters studied, while
he compression of the magnetic fields, on the other hand, increases
ith B 0 / B Q , L y / ρL , and σ h . 
In light of the results of our study, we expect that magnetic recon-

ection in strongly radiative, strong-field astrophysical environments
s capable of producing bright flares of gamma-rays and X-rays. This
tudy should help us in understanding to what degree these bursts of
adiation can explain observations of gamma-ray and X-ray flares,
.g. from the magnetospheres of neutron stars, including magnetars.

In addition, this study paves the way for future numerical 3D
nv estigations of ev en more e xtreme astrophysically rele v ant regimes,
NRAS 523, 3812–3839 (2023) 
haracterized by stronger magnetic fields B 0 / B Q and higher upstream
agnetizations σ h . This will enable us to reach the χ e ∼ 1 regime,
here QED effects, including pair creation, can become dominant.
urthermore, extending this study to larger normalized system sizes
 y / ρL , in combination with the strong magnetic field, will allow us to
each higher, more realistic values of magnetic compactness � B , a key
arameter go v erning the importance of radiativ e and QED effects. 
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PPENDIX  A:  SIMULATION  SETUP  

n our 2D (3D) simulations, we model a 2 L x × 2 L y ( × 2 L z ) domain
ith two oppositely directed thin current sheets located at y = ±L y /2.
he current is directed out of the ( x , y ) simulation plane in the

espective ±ˆ z directions, which leads to an asymptotic magnetic 
eld B = B 0 ̂  x , between −L y /2 > y > L y /2, and B = −B 0 ̂  x on the
utside of the two current sheets. An initially uniform background 
axwell-J ̈uttner population of relativistic electrons and positrons, 

ach with density n = n b at temperature T = T b , is included to
epresent the ambient (upstream) plasma. This population is initially 
tationary and does not contribute to the current. Furthermore, we 
nclude a uniform guide magnetic field B G along the ˆ z direction. 

The current and self-consistent magnetic field profiles are in 
ressure balance in a kinetic equilibrium, known as the relativistic 
arris sheet (Harris 1962 ; Kirk & Skjæraasen 2003 ). The current is

arried by counter-drifting Maxwell-J ̈uttner distributions of positrons 
nd electrons with a uniform temperature T 0 , boosted into opposite
ˆ z -directions with a uniform velocity v d . The lab-frame density 

rofile (of both electrons and positrons) in the Harris current sheet at
 = ±L y /2 is: 

 = ( n 0 − n b ) sech 2 
(

y ∓ L y / 2 

δ

)
, (A1) 

here n 0 is the total electron (or positron) density at the centre of
ach current sheet. The self-consistent initial reconnecting magnetic 
eld is: 

 x = B 0 

[
1 − tanh 

(
y − L y / 2 

δ

)
+ tanh 

(
y + L y / 2 

δ

)

+ tanh 

(
y − 3 L y / 2 

δ

)
− tanh 

(
y + 3 L y / 2 

δ

)]
. (A2) 

e conduct our simulations with periodic boundary conditions, so we 
lso include the self-consistent magnetic field due to two more current 
heets at y = 3 L y /2 and y = −3 L y /2 (outside of the simulation box).
his is a small correction due to the periodic boundary conditions

ntroduced to account for the exponential tail that passes through the
oundary. 
This current-sheet setup is unstable to the tearing instability, which 

rows naturally from the particle noise without externally imposed 
eed fields. In order to facilitate the onset of magnetic reconnection, 
he initial thickness of the current sheet δ is chosen to be sufficiently
mall (of the order of the gyroradius of the particles in the sheet), so
hat the tearing instability growth rate approaches the characteristic 
yclotron period (Daughton 1999 ). We normalize all the length 
cales in our simulations to ρL ≡ γ T m e c 2 / eB 0 = γ T c / 
c , defined
s the Larmor radius of a background particle with a Lorentz factor
orresponding to the peak of the initial upstream relativistic Maxwell- 
 ̈uttner distribution, γ T ≡ 2 T b / m e c 2 , and choose δ > ρL , ρL 0 , where
L 0 = ρL T 0 / T b is the gyroradius of a typical particle in the current
heet. 
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The three main physical parameters that describe the upstream
lasma conditions outside of the current sheets – T b , n b , and B 0 –
efine two important dimension-less parameters: the magnetization
h and the plasma- β parameter, βup (the ratio of the background
lasma pressure to the magnetic pressure): 

h ≡ B 

2 
0 

4 π (2 n b ) h b 

, (A3) 

up ≡ 8 π (2 n b ) T b 
B 

2 
0 

= 

2 T b 
h b 

1 

σh 

. (A4) 

The subscript h refers to the ‘hot’ magnetization σ h , defined
ith the upstream background relativistic enthalpy per parti-

le h b (Melzani et al. 2013 ). In the non-relativistic limit ( T b 
 m e c 2 ),
he enthalpy h b ≈ m e c 2 + 5/2 T b is dominated by the rest-mass m e c 2 

nd so the ‘hot’ magnetization σ h approaches the so-called ‘cold’
agnetization 

c ≡ B 

2 
0 

4 π (2 n b ) m e c 2 
, (A5) 

hich is often used in the literature. In the ultrarelativistic limit ( T b 

m e c 2 ), ho we ver, h b ≈ 4 T b , and then σ h = 1/(2 βup ). 
Using the βup parameter allows us to cast the electron and positron

rift speed inside the two Harris current layers, determined by
mp ̀ere’s law, in a convenient form as 

v d 

c 
= 

1 

βup 

ρL 

δ

n b 

n 0 − n b 
. (A6) 

n addition, the temperature T 0 of the drifting plasma in the layer,
etermined by the cross-layer pressure balance, can be written as 

T 0 

m e c 2 
= 

T b 

m e c 2 

γd 

βup 

n b 

n 0 − n b 
, (A7) 

here γd ≡ 1 / 
√ 

1 − v 2 d /c 
2 . We can thus derive a convenient expres-

ion for the proper drift velocity u d = γ d v d / c , 

 d = 

ρL 

δ

T 0 

T b 
= 

ρL 0 

δ
. (A8) 

his shows that for constant values of δ/ ρL and T 0 / T b , the drift u d is
lso constant. 

PPENDIX  B:  BOUND  AR  Y  FROM  KINKING  

s we pointed out in the histogram in Fig. 12 , there exists a boundary
n n - B space in the 3D case, that corresponds to a maximum value
f n , or equi v alently a minimum value of B , following the scaling 

 min ∝ n. (B1) 

n this appendix, we will sketch a heuristic argument aimed at
nderstanding the origin of this scaling and will discuss how the
ocation of the limit is likely determined by unstable kinking modes
hat occur for regimes with large densities. 

As we discussed in Section 3.2 , the upstream background plasma
s frozen into the magnetic field and follows equation ( 19 ). In the
nner non-ideal (diffusion) regions near X-points, where magnetic
econnection takes place, the frozen-in condition is broken, and the
lasma density may mo v e to new re gions of n - B space. Once the
lasma and the associated reconnected magnetic flux escape from
he X-point regions and join nearby circularized magnetic islands
magnetic flux ropes in 3D), the frozen-in condition holds again. In
he outer regions of these flux ropes, assuming that the background
uide magnetic field is weak, the magnetic field strength is dominated
y the in-plane, reconnected component B xy , and the ideal-MHD
NRAS 523, 3812–3839 (2023) 
volution of a given fluid element in the n - B space follows equation
 20 ) (see Section 4.2 ). Then, ho we ver, as the flux rope grows further
n the outside by accumulating more and more reconnected flux and
y merging with other flux ropes, the given fluid element gets buried
eeper and deeper inside the flux rope and experiences compression.
he magnetic flux also compresses, but this compression has a greater
ffect on the out-of-plane (guide) magnetic field component B z ,
hich thus eventually comes to dominate over B xy deep inside the
ux rope’s core. As long as ideal MHD holds in this region during

his compression process (i.e. the rope’s core radius is much greater
han the typical particle gyroradius, and the radiative resistive effects,
iscussed in the next two appendices, can be neglected), and before
ny 3D instabilities, such as the kink, get excited and cause mixing
f plasma, the joint evolution of the plasma density and the guide
agnetic field B z (which dominates in these regions) follows the

caling equation ( B1 ). Since the central cores of these flux ropes/
urrent filaments are also the highest density regions, their behaviour
etermines the slope of the high- n compression boundary. 
Up to this point, the abo v e discussion was applicable to both 2D

nd 3D cases. Ho we ver, in 2D, the density and magnetic field remain
elatively constant at the centre of plasmoids (i.e. regions where n / n b 
 10). These regions, therefore, do not occupy much area in n - B

pace, as was shown in Fig. 6 , and thus do not result in a clear power-
aw high- n boundary. In contrast, in 3D, these quantities evolve and
ll the n - B space, in part because of the freedom of motion of plasma
long the third dimension. 

We believe that the slope and the location of this boundary
n 3D are go v erned by the marginal stability condition of the
ompressed current-filament (flux-rope) cores to the kink instability.
pproximating these flux ropes as simple cylindrical pinches, we

an invoke the well-known Grad–Shafranov (GS) criterion for the
nstability onset, cast in terms of the safety factor q : 

1 

q( r) 
≡ B xy 

B z 

� z 

r 
> 1 . (B2) 

ere, r is the cylindrical radius inside the flux rope’s core, � z is its
ength in the z-direction, B xy ( r ) is the in-plane magnetic field, and B z 

s the out-of-plane (guide) magnetic field inside the flux rope. 
In the following, we shall assume that inside each flux-rope core,

he out-of-plane magnetic field B z and the current density j z are
pproximately uniform in r . The in-plane magnetic field as a function
f radius r inside a given core can then be estimated using Ampere’s
aw as 

 xy ( r) � 

2 πj z 

c 
r , (B3) 

.e. increases linearly with the radius inside the flux rope. This is
mportant because, once this expression for the in-plane magnetic
eld is plugged into the GS instability condition ( B2 ), the radius r
ancels, and the condition becomes 

1 

q 
= 2 π� z 

j z 

c 

1 

B z 

> 1 . (B4) 

ext, it is reasonable to assume that the guide magnetic field B z 

ominates o v er (or is at least comparable to) B xy inside plasmoid
ores, and thus provides a good estimate for the total magnetic field
trength B there. Furthermore, we shall assume that counterstreaming
in z) electrons and positrons contribute equally to the current density
n the z-direction, so that j z = 2 env d , where n is the density of
he electrons (or positrons, which we will assume is equal) in the
lasmoid core and v d = βd c is the absolute value of the drift z-
elocity of the current-carrying particles. For simplicity, we shall
iew both n and v d as being uniform inside a given plasmoid core.
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e can then recast the marginal kink stability condition q = 1 for
 given flux-rope core in terms of a linear relationship between the
agnetic field B ≈ B z and density n inside of it as 

B 

n 
� 4 πe � z βd . (B5) 

e can go one step further and express this relationship in terms
f the dimension-less, normalized density and magnetic field, n / n b 
nd B / B 0 , that form the axes of our 2D n - B histograms. We then get 

B/B 0 

n/n b 
� 

1 

2 σc 

� z 

ρ0 
βd , (B6) 

here σc ≡ B 

2 
0 / (8 πn b m e c 

2 ) is the initial upstream ‘cold’ magne-
ization [corresponding to the total, electron plus positron, particle 
ensity 2 n b , see equation ( A5 )] and ρ0 ≡ m e c 2 / eB 0 is the nominal
elativistic Larmor radius. The cold magnetization provides the 
asic scale for the available upstream magnetic energy per particle, 
nd then the combination ρc ≡ σ c ρ0 gives the corresponding 
haracteristic Larmor radius of reconnection-energized particles. For 
 relativistically hot upstream plasma, σ c = 4 σ h ( T b / m e c 2 ) = 2 γ T σ h ,
nd hence 

c ≡ σc ρ0 = 2 σh ρL . (B7) 

hus, the kink-based density boundary can be written as 

B/B 0 

n/n b 
� 

� z 

2 ρc 

βd = 

1 

4 σh 

� z 

ρL 

βd . (B8) 

ote that σ h and ρL appearing in the expression on the right-hand 
ide are just fixed parameters, defined in terms of the initial upstream
lasma conditions; they are, therefore, constant, by definition, within 
 given simulation. Thus, in order to see whether the B ∼ n
caling ( B1 ) for the high-density histogram boundary holds, one 
ust needs to examine βd and � z . 

Empirically, in our simulations we see that different plasmoid 
ores reach roughly similar typical peak values of βd � 0.2, with 
elatively little variation. 

As for estimating the rele v ant v alues of � z , one can consider two
rguments. First, the upper limit on � z is given by the z-extent of the
omputational box: � z = 2 L z . Then, all the quantities on the right-
and side of equation ( B8 ) have fixed (i.e. the same for all flux-rope
ores) values for a given simulation, and we thus recover the high- n
istogram-boundary scaling ( B1 ), i.e. B ∼ n . Quantitatively, for our
ducial simulations with σ h = 25.76 and 2 L z = 117 ρL , we obtain 

B/B 0 

n/n b 
� βd � 0 . 2 , (B9) 

hich agrees reasonably well with the location of this boundary for
oth radiative and non-radiative cases as can be seen in Figs 12 (a)
nd (b). 

Alternatively, one can argue that kink modes that are particularly 
f fecti ve in disrupting the compression of a flux rope and causing
fficient plasma mixing, are those with their z-wavelength, � z , 
omparable to, but perhaps somewhat longer (but not much longer) 
han, the flux-rope core’s diameter 2 r . The GS condition equation
 B2 ) is then roughly equi v alent to B xy ∼ B z /2 (c.f. Pritchett & Coroniti
004 ). We observe that in our 3D simulations, compressed flux-
ope cores have characteristic radii 2 of r ∼ 20 ρL , and hence further
ompression is disrupted by kink modes with � z ∼ 40 ρL . Substituting
 See e.g. Fig. 11 ; note that Fig. 11 shows an earlier time, tc / L y = 1.5, whereas 
he histogram in Fig. 12 is at a later time, tc / L y = 3. While the flux ropes do 
ecome larger o v er time, the rele v ant cores remain about the same size. 

o
b  

e  

c

his estimate into equation ( B8 ), we get, for our fiducial σ h = 25.76
ase, 

B/B 0 

n/n b 
� 

10 

σh 

βd � βd / 2 . 5 � 0 . 08 . (B10) 

his provides an excellent fit for the boundaries in Figs 12 (a) and (b)
nd in Fig. 14 (a). 

After the kink instability gets excited and mixes high- and 
ow-density re gions, we e xpect the density to be limited to the
table regions in n - B space, such that the boundary occurs at
arginal stability given by the abo v e condition, as we discussed in
ection 5.2 . 

PPENDIX  C:  EFFECTIVE  RADIATIVE  

ESISTIVITY  DERIVATION  

n this appendix, we derive an expression for the ef fecti ve radiati ve
esistivity ηeff , which acts in a manner similar to the standard colli-
ional Spitzer resistivity (Spitzer & H ̈arm 1953 ; Krall, Trivelpiece &
empton 1973 ) in the magnetic induction equation. This radiative 
issipation is caused by the synchrotron radiation reaction instead of 
inary particle collisions. 
Just like with the collisional resistivity, the radiative resistivity 

an be formulated for an arbitrary orientation of the electric field
elative to the magnetic field. In the case when the two fields are not
trictly aligned (or anti-aligned), the perpendicular component of the 
lectric field drives an E × B drift of the magnetic field lines; in the
ase of a resistively decaying magnetic flux rope with an azimuthal
agnetic field and an axial electric field, this drift is directed inwards,

owards the rope’s centre. However, if the electric force on the
lectron (or positron) fluid is balanced by the net radiation-reaction 
orce F rad , then the E × B drift of the particles is cancelled by
he oppositely directed drift due to the radiative friction force. The
esulting resistive slippage of the plasma particles relative to the 
nward-drifting magnetic field lines allows the plasma in a flux-rope 
ore to remain approximately static while the azimuthal magnetic 
ux mo v es inward and ev entually gets destroyed at the flux rope’s
-point. 
In order to obtain a simple estimation for the synchrotron radiative

esistivity quantifying this resistive slippage, we will make a few 

ssumptions. First, we shall assume that the electron and positron 
opulations mo v e in opposite directions in response to a superim-
osed electric field E = E ̂  x , contributing equally to the resulting
lectric current (i.e. the net e + e − flow is zero). We shall also assume
or simplicity that the electron and positron distributions f e,p ( u ),
here u is the normalized momentum (proper velocity normalized 

o c ), can be approximated by two drifting ultrarelativistic Maxwell-
 ̈uttner distribution functions with the same density n and normalized
emperature � e ≡ T e / m e c 2 � 1. The distributions are boosted along
he flow ( ̂  x ) direction by a drift velocity c βd = ±cβd ̂  x (where the ‘ + ’
ign is for positrons and ‘ −’ sign is for electrons), corresponding to a
rift Lorentz factor γd ≡ (1 − β2 

d ) 
−1 / 2 ∼ 1 
 θe . In this Appendix, 

e ignore any possible spatial dependence of our quantities. 
The standard way to formulate a resistivity is to calculate, in a

teady state, how much electric current can be driven by an externally
mposed electric field E , taking into account the presence of friction
n the charge-carrying particles. The steady state is then determined 
y balancing the total volumetric electric force on one of the species,
.g. the electrons, with the volumetric friction force, which, in the
ase under consideration here, is the radiation-reaction force per unit 
MNRAS 523, 3812–3839 (2023) 
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olume, F rad . Thus, for electrons, 

− en E = − F rad = −
∫ 

d 3 u f e ( u ) f rad ( u ) , (C1) 

here the synchrotron radiation-reaction force on an ultrarelativistic
article is 

f rad ( u ) = − 2 

3 
β

( B × u ) 2 e 4 

m 

2 
e c 

4 
= − 2 σT 

B 

2 

8 π
β u 

2 sin 2 α . (C2) 

ere β ≡ u /γ is the particle’s 3-velocity, α is its pitch angle with re-
pect to the magnetic field B , and σT ≡ (8 π/ 3) r 2 e = (8 π/ 3) e 4 /m 

2 
e c 

4 

s the classical Thomson cross-section, r e ≡ e 2 / m e c 2 being the
lassical electron radius. 

Substituting equation ( C2 ) into equation ( C1 ), we get 

− en E = 2 σT 

B 

2 

8 π

∫ 
d 3 u β

( B × u ) 2 

B 

2 
f e ( u ) . (C3) 

f we consider a set of coordinates where the applied electric field
nd the current are along the ˆ x direction and the magnetic field is in
he x –y plane, we can then express the x -component of the integral
n equation ( C3 ) as ∫ 

d 3 u βx 

[
u 

2 
x sin 2 θ + u 

2 
y cos 2 θ + u 

2 
z 

]
f e ( u ) , (C4) 

here θ is the angle between the current and the magnetic field, and
here we made use of the assumption that the distribution function
 e ( u ) is even with respect to u y . For an ultrarelativistically hot plasma
ith � e � 1, we can e v aluate the rele v ant inte grals o v er the assumed
oosted Maxwell-J ̈uttner electron distribution as follows: ∫ 

d 3 u βx u 

2 
x f e ( u ) � −12 n� 

2 
e βd 

(
1 + 2 u 

2 
d 

)
, (C5) 

nd ∫ 
d 3 u βx u 

2 
y f e ( u ) = 

∫ 
d 3 u βx u 

2 
z f e ( u ) � −4 n� 

2 
e βd , (C6) 

here the ne gativ e sign appears because the electrons are boosted in
he direction opposite to the current. Then, equation ( C3 ) becomes: 

− en E � −16 nσT 

B 

2 

8 π
� 

2 
e βd 

[
1 + (1 + 3 u 

2 
d ) sin 2 θ

]
ˆ x . (C7) 

ne can now solve for the electric field in terms of the current density
enerated by both the electrons and positrons j = 2 enβd c ˆ x : 

E � 8 
σT 

c ne 2 

B 

2 

8 π
� 

2 
e 

[
1 + (1 + 3 u 

2 
d ) sin 2 θ

]
j . (C8) 

omparing with Ohm’s law, E = η j , we thus find an ef fecti ve
adiati ve resisti vity ηeff : 

eff � 

σT 

c ne 2 

B 

2 

π
� 

2 
e 

[
1 + (1 + 3 u 

2 
d ) sin 2 θ

]
= 

64 

3 
π

r e 

c 
σc � 

2 
e 

[
1 + (1 + 3 u 

2 
d ) sin 2 θ

]
, (C9) 

here σ c = B 

2 /8 πnm e c 2 is the cold magnetization based on the
ocal values of the magnetic field and total particle density 2 n . For
implicity and since the expression in equation ( C9 ) only varies by
 factor of about 2 when varying the angle θ (assuming γ d ∼ 1), let
s average over θ assuming a uniform, isotropic distribution of these
NRAS 523, 3812–3839 (2023) 
ngles in 3D space. This isotropic average leads to the estimate: 

eff � 

σT 

c ne 2 

B 

2 

π
� 

2 
e 

(
5 

3 
+ 2 u 

2 
d 

)

= 

8 

3 

e 2 B 

2 

nm 

2 
e c 

5 
� 

2 
e 

(
5 

3 
+ 2 u 

2 
d 

)

= 

64 

3 
π

r e 

c 
σc � 

2 
e 

(
5 

3 
+ 2 u 

2 
d 

)
. (C10) 

This ef fecti ve radiati ve resisti vity can act as a dissipati ve term
n the resistive-magnetohydrodynamics (MHD) magnetic induction
quation, 

∂ B 

∂ t 
= − c ∇ × E = ∇ × ( v × B ) − ∇ ×

[
ηeff c 

2 

4 π
∇ × B 

]
, 

(C11) 

esulting in a simple expression for the radiative magnetic dif fusi vity: 

ηeff c 
2 

4 π
� 

16 

3 
cr e σc � 

2 
e 

(
5 

3 
+ 2 u 

2 
d 

)
≈ 80 

9 
cr e σc � 

2 
e , (C12) 

here the last expression is valid for small u d . 
Note that all the quantities appearing in the expressions presented

n this appendix, e.g. B , n , � e , βd , γ 2 
d , and σ c , are local, and so their

alues may, in general, be different from the globally defined initial
ystem parameters that are used elsewhere in the paper. 

PPENDIX  D:  RADIATIVE  DISSIPATION  

OUND  AR  Y  

n addition to the right boundary of the n - B histogram shown
n Fig. 12 , which we discussed in Appendix B , we can offer an
xplanation for the upper limit in the n - B space for the radiative
ases, especially promising for the 3D radiative case. We empirically
nd a very shallow power law of B ∼ n 1/12 which can be seen in both
lassical and radiative 3D cases [see Figs 12 (a) and (b)]. However, in
he radiative case [Fig. 12 (b)], we also observe a somewhat steeper
pper boundary at lower densities, n � 2 n b , consistent with the
ower-law scaling B ∼ n 1/6 . In this appendix, we will argue that this
pper limit on the magnetic field strength is due to the radiative-
esistive dissipation of the magnetic field in the central cores of
econdary plasmoids filled with low-density background plasma
rom the upstream region. 

To understand the radiative dissipation of magnetic flux ropes
current filaments), we first consider resistive decay described by the
esistive-MHD magnetic induction equation ( C11 ). In the collision-
ess relativistic plasmas under consideration in this study, the usual
ollisional resistivity can be neglected, but the ef fecti ve radiati ve
esistivity ηeff due to synchrotron radiation reaction, introduced in
ppendix C , needs to be considered. The dissipation time-scale t d 

an be obtained by comparing the left-hand side of equation ( C11 )
ith the second (dif fusi ve) term on the right-hand side, yielding 

1 

t d 
∼ ηeff c 

2 

4 πr 2 var 

, (D1) 

here r var is the gradient length scale of the magnetic fields in
urrent filaments. Using our estimate ( C9 ) for the ef fecti ve radiati ve
esisti vity deri v ed in Appendix C , we can e xpress the corresponding
adiati ve-resisti ve decay rate, normalized to the global light crossing
ime L y / c , assuming u d 
 1, as 

L y 

ct d 
∼ 80 

9 

L y r e 

r 2 
σc, loc � 

2 
e, loc , (D2) 
var 
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here we have added the additional subscript ‘loc’ in σc, loc and � e, loc 

n order to distinguish these local quantities, describing a given flux-
ope core, from the globally defined initial parameters describing the 
imulation setup such as γ T = 2 T b / m e c 2 . 

This expression for the normalized radiative magnetic decay rate 
an be conveniently recast in terms of our simulation parameters as 

L y 

ct d 
∼ 80 

9 
αfs γ

−1 
T 

L y 

ρL 

ρ2 
L 

r 2 var 

B 0 

B Q 

σc, loc � 

2 
e, loc ∝ 

B 

2 T 2 

n 
. (D3) 

he last expression represents the scaling of the normalized radiative- 
esistive dissipation rate with the local quantities ( B , n , and T ) used
n our histograms from Section 3.2 . Note that here we used 

c, loc ≡ B 

2 

8 πnm e c 2 
= 2 σh γT 

B 

2 

B 

2 
0 

n b 

n 
∝ 

B 

2 

n 
, (D4) 

here σ h , γ T , B 0 , and n b are the initial upstream plasma parameters
ntroduced in Section 2 . 

Similarly, we define a radiative cooling time t cool as the time for a
ypical (thermal) particle with energy γ = 2 � e, loc (corresponding 
o the peak of the relativistic Maxwellian distribution), gyrating 
erpendicular to the local magnetic field B , to lose an order-unity
raction of its energy to synchrotron cooling. The ratio of the light
rossing time to the cooling time can be written as 

L y 

ct cool 
= 

4 

3 
αfs 

B 0 

B Q 

L y 

ρL 

B 

2 

B 

2 
0 

� e, loc γT ∝ B 

2 T . (D5) 

gain, the last expression is the scaling with respect to the space-
ependent parameters used in our histograms from Section 3.2 . In our
adiative case, L y / ct cool = 0.44 based on the background conditions
 b and B 0 , and L y / ct cool = 0.77 for the initial Harris sheet conditions
 0 and B 0 . While these values correspond to only moderate cooling
f the initial plasma throughout the simulation, for the hot plasma 
nergized by the reconnection process, especially in plasmoid cores, 
he cooling rate can be quite significant. 

If the cooling rate 1/ t cool in a given region is slow compared to the
agnetic field resistive dissipation rate 1/ t d , then there is enough time

or the magnetic field to decay before the plasma cools significantly. 
his ratio can be expressed as: 

t cool 

t d 
= 

20 

3 
σh 

T 

T b 

n b 

n 

ρ2 
L 

r 2 
. (D6) 
var 

2023 The Author(s) 
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e believe that the magnetic field indeed suffers radiativ e-resistiv e
issipation in certain localized regions in the parameter regime of this
resent paper. As shown in Section 5.2 , the magnetic field strength
n regions with density n / n b � 2 seems to be limited by the power-
aw boundary B ∼ n 1/6 . For the low-density secondary plasmoids in
he 3D case, where r var / ρL � 7, n / n b � 2, B / B 0 � 1.5, T / T b � 1,
nd γd, loc � 1, we find the ratios L y / ct d � 1.8 and L y / ct cool � 1 (i.e.
 cool / t d � 1.8). Therefore, there is marginally enough time for the
agnetic dissipation to become important and limit the compression 

f the magnetic field. In the 2D case, the parameters are about the
ame, and thus magnetic dissipation should also play a role in limiting 
agnetic field amplification. Ho we ver, in this case, we do not observe

he very clear boundaries in n - B space found in 3D to help confirm
his hypothesis. 

When, for a given flux-rope core, the normalized resistive dissipa- 
ion rate ( D3 ) exceeds unity (and at the same time also exceeds the
ormalized radiative cooling rate, t d < t cool ), the magnetic field has
ufficient time to dissipate within a light-crossing time (i.e. the flux
ope’s characteristic dynamical lifetime, enough time for a power-law 

oundary in n - B space to develop). The magnetic field’s amplification
y compression is then checked by the ef fecti ve radiati ve-resisti ve
ecay. To e v aluate the location of the corresponding histogram
oundary in n - B space, we will assume, based on the numerical
bservation from Fig. 12 (d), that T ∼ n 1/3 , a scaling that is expected
rom simple adiabatic compression for a relativistic plasma. As we 
ave argued above, it is justifiable to ignore radiative cooling in
hese regions because the radiati ve-resisti ve decay of the magnetic
eld occurs faster than the cooling of the plasma. This adiabatic

emperature scaling was also confirmed by checking the average local 
emperature at the boundary in n - B space for n � n b (not presented),
i ving a v alue of � e , loc ≈ 5( n / n b ) 1/3 , just slightly hotter than a scaling
ased on the initial background temperature T b = 4 m e c 2 at n = n b .
hen, substituting the T ∼ n 1/3 scaling into equation ( D3 ), and setting

he normalized resistive dissipation rate to be constant and of order
nity, we obtain the scaling for the maximum magnetic field, 

 max ∼ n 1 / 6 . (D7) 

his scaling provides a good match with the upper boundary of the
 - B histogram observed in Fig. 12 (b). 
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