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ABSTRACT

The time evolution of high-energy synchrotron radiation generated in a relativistic pair plasma energized by reconnection
of strong magnetic fields is investigated with 2D and 3D particle-in-cell (PIC) simulations. The simulations in this 2D/3D
comparison study are conducted with the radiative PIC code OSIRIS, which self-consistently accounts for the synchrotron
radiation reaction on the emitting particles, and enables us to explore the effects of synchrotron cooling. Magnetic reconnection
causes compression of the plasma and magnetic field deep inside magnetic islands (plasmoids), leading to an enhancement
of the flaring emission, which may help explain some astrophysical gamma-ray flare observations. Although radiative cooling
weakens the emission from plasmoid cores, it facilitates additional compression there, further amplifying the magnetic field
B and plasma density n, and thus partially mitigating this effect. Novel simulation diagnostics utilizing 2D histograms in the
n-B space are developed and used to visualize and quantify the effects of compression. The n-B histograms are observed to be
bounded by relatively sharp power-law boundaries marking clear limits on compression. Theoretical explanations for some of
these compression limits are developed, rooted in radiative resistivity or 3D kinking instabilities. Systematic parameter-space
studies with respect to guide magnetic field, system size, and upstream magnetization are conducted and suggest that stronger
compression, brighter high-energy radiation, and perhaps significant quantum electrodynamic effects such as pair production,
may occur in environments with larger reconnection-region sizes and higher magnetization, particularly when magnetic field
strengths approach the critical (Schwinger) field, as found in magnetar magnetospheres.

Key words: magnetic reconnection —radiation: dynamics —relativistic processes —stars: magnetars — (transients:) gamma-ray
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1 INTRODUCTION

Bright, rapid gamma-ray flares occur throughout the cosmos, coming
from sources associated with relativistic compact objects — neutron
stars and black holes — both in our own Galaxy and beyond. Among
extragalactic flaring gamma-ray sources, perhaps the most spectac-
ular ones are gamma-ray bursts (GRBs) observed at cosmological
distances: both long (several seconds) GRBs resulting from violent,
explosive deaths of very massive stars, and short (<2 s) GRBs from
neutron-star mergers (Piran 2005; Mészaros 2006; Berger 2014),
including the recently observed relatively weak short GRB associated
with the gravitational-wave event GW-170817 detected by LIGO
(Abbott et al. 2017; Goldstein et al. 2017; D’ Avanzo et al. 2018).
Another important class of powerful extragalactic sources flaring
violently in the gamma-ray band is coronae and relativistic jets of
active galactic nuclei (AGNs) powered by accreting supermassive
black holes residing at the centres of many galaxies, such as M87.
For example, ultrarapid (~ 10 min) Very-High-Energy (VHE) TeV
flares are observed by ground-based Cerenkov telescopes from M87
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(Abramowski et al. 2012) and from many blazars (relativistic AGN
jets pointing directly along our line of sight) (Aharonian et al.
2007; Albert et al. 2007b; Aleksi¢ et al. 2011; Madejski & Sikora
2016); blazars are also observed to have simultaneous GeV flares
on 1-d time-scales (Tanaka et al. 2011). Some of the most notable
manifestations of variable gamma-ray activity from Milky Way
sources include pulsed broad-band high-energy emission (peaking
in the GeV range) from young pulsars such as Crab and Vela (see
e.g. Philippov & Kramer 2022, for a recent review); the enigmatic
day-long 100 MeV-1 GeV flares from the Crab pulsar wind nebula
(PWN) (Abdo et al. 2011; Tavani et al. 2011; Buehler & Blandford
2014); very short and intense hard-X-ray and soft gamma-ray flares
from magnetars (e.g. Mazets et al. 1999; Palmer et al. 2005; see
Kaspi & Beloborodov 2017 for a recent review); and non-thermal
high-energy emission extending at least up to MeV energies from
accreting stellar-mass black holes in X-ray Binaries (XRBs) such
as Cyg X-1 (Remillard & McClintock 2006; Zdziarski, Lubiniski &
Sikora 2012), which also sometimes exhibit VHE (>100GeV) hour-
long flares (Albert et al. 2007a).

The leading radiation mechanisms responsible for these flares can
be either synchrotron or inverse-Compton (IC), depending on the
source. Thus, in neutron-star systems, the magnetic fields are strong
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and the radiation is often dominated by synchrotron emission, even
in the gamma-ray range. For sufficiently strong fields, the radiation
emission takes place in the discrete, quantum-electrodynamic (QED)
regime, where the emission of a single photon causes a significant
drop in the emitting particle’s energy. Moreover, the interaction of
the emitted energetic gamma-ray photons with the ambient strong
magnetic field can lead to electron—positron pair production, thus
providing an important source of pair plasma populating the neutron-
star magnetosphere. These QED processes are especially important
for magnetars — young neutron stars with ultrastrong magnetic
fields exceeding the QED (Schwinger) field, By = m2c?/eh ~
4.4 x 103 G = E; (in Gaussian units) (e.g. Duncan & Thompson
1992). In contrast, in environments with weaker magnetic fields, e.g.
those around rapidly accreting black holes (e.g. in coronae of XRBs
and quasars), radiative cooling is often dominated by IC scattering
(Albert et al. 2007a), which may also sometimes happen in the
QED Klein-Nishina regime and power prodigious pair production
(Beloborodov 2017; Mehlhaff et al. 2020).

In all of these cases, magnetic reconnection provides an attractive
mechanism for explaining the high-energy flares (Romanova &
Lovelace 1992; Lyubarskii 1996; Di Matteo 1998; Lyutikov 2003;
Jaroschek, Lesch & Treumann 2004; Giannios 2008; Giannios,
Uzdensky & Begelman 2009; Giannios 2010; Nalewajko et al.
2011; Uzdensky 2011; Uzdensky, Cerutti & Begelman 2011; Cerutti,
Uzdensky & Begelman 2012; McKinney & Uzdensky 2012; Nale-
wajko et al. 2012; Cerutti et al. 2013; Giannios 2013; Uzden-
sky & Spitkovsky 2014; Sironi, Petropoulou & Giannios 2015;
Cerutti, Philippov & Spitkovsky 2016; Beloborodov 2017; Lyutikov
et al. 2018; Philippov & Spitkovsky 2018; Werner et al. 2018a;
Werner, Philippov & Uzdensky 2018b; Giannios & Uzdensky 2019;
Mehlhaff et al. 2020; Chen, Uzdensky & Dexter 2023; Hakobyan,
Philippov & Spitkovsky 2023a; Hakobyan, Ripperda & Philippov
2023b). During reconnection, free energy contained in oppositely
directed magnetic fields is rapidly converted to bulk flows, plasma
heating, and non-thermal particle acceleration; moreover, in strongly
radiative cases much of this energy is promptly converted into
radiation. Furthermore, reconnecting current sheets are unstable to
the secondary tearing instability leading to the generation of magnetic
islands (plasmoids), or flux ropes in 3D (Loureiro, Schekochihin &
Cowley 2007; Bhattacharjee et al. 2009; Uzdensky, Loureiro &
Schekochihin 2010). As the freshly energized plasma tends to
accumulate inside these islands, bursts of radiation are expected to be
emitted from there (Cerutti et al. 2013; Giannios 2013; Petropoulou,
Giannios & Sironi 2016; Sironi, Giannios & Petropoulou 2016;
Beloborodov 2017; Schoeffler et al. 2019; Sironi & Beloborodov
2020).

Magnetic reconnection is therefore a potential cause of observed
gamma-ray and X-ray flares. Several previous radiative-PIC studies
have investigated reconnection with radiative cooling due to inverse
Compton scattering, where energetic particles upscatter soft photons
from an ambient radiation bath (Werner et al. 2018b; Mehlhaff
et al. 2020; Sironi & Beloborodov 2020; Sridhar, Sironi & Be-
loborodov 2021). However, in reconnection regimes with strong
magnetic fields, especially found near pulsars and magnetars, the
radiation cooling is predominantly caused by synchrotron emission
(Lyubarskii 1996; Uzdensky & Spitkovsky 2014; Cerutti et al. 2016).
Relativistic collision-less reconnection with synchrotron cooling has
been studied with radiative-PIC simulations, mostly in 2D, in a
number of previous works (Jaroschek & Hoshino 2009; Cerutti et al.
2013, 2014a; Nalewajko, Yuan & Chruslinska 2018; Hakobyan,
Philippov & Spitkovsky 2019; Schoeffler et al. 2019; Hakobyan
et al. 2023b). It will also be the focus of this paper, which will be
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devoted to studying the interplay between 3D and radiative cooling
effects.

In our previous 2D computational study (Schoeffler et al. 2019),
reconnection was shown to cause a sudden jump in the radiation
emission. The reconnection process leads to plasma heating and
non-thermal particle acceleration, both directly by the reconnect-
ing electric field, and by the evolution and merging processes
of the plasmoids. Increased plasma density, magnetic field, and
temperature, caused by the compression of islands in 2D, leads
to stronger emission of radiation. Radiative cooling was shown to
further enhance the compression and subsequent radiation at the
cores of magnetic islands. In a strong magnetic field, the enhanced
radiation can reach into the gamma-ray band, potentially inducing
QED effects such as pair production (Schoeffler et al. 2019).

The intriguing results of our previous 2D computational study
(Schoeffler et al. 2019) naturally lead to an important question of
whether the observed very strong compression effects will still occur
in a more realistic 3D system. Building up on that study, in this paper
we will show that enhanced compression is indeed possible in 3D
at some level, and hence 3D relativistic magnetic reconnection in
strong magnetic fields could still explain the occurrence of gamma-
ray flares in astrophysical systems. However, the maximum degree of
compression achievable in 3D remains rather modest, as compressing
flux ropes tend to get disrupted by the kink instabilities. A moderate
out-of-plane (the so-called ‘guide’) magnetic field can stabilize
the kink and helps keep the plasma from escaping the flux ropes.
However, at the same time, the magnetic pressure of this same
guide field resists and limits the compression. It turns out that the
compression is maximized for moderate values of the guide field,
comparable to the upstream reconnecting field.

In this paper, we conduct a large, comprehensive study using
2D and 3D particle-in-cell (PIC) simulations using the OSIRIS
framework (Fonseca et al. 2002). First and foremost, we look at the
importance of 3D effects on these reconnecting systems with strong
fields, which has not yet been thoroughly investigated in dedicated
radiative-PIC simulation studies (see however Cerutti et al. 2014a).
Furthermore, we have developed novel numerical diagnostic tools
to characterize and understand in detail the plasma and magnetic
field compression in magnetic islands and the emission of radiation
in these reconnection regimes. This includes 2D histograms charac-
terizing the spatial correlations between plasma density, magnetic
field strength, and plasma temperature, which help us elucidate
the degrees of compression that enhance the radiation emission.
Extensive exploration of various broad parameter spaces elucidates
the conditions under which gamma-ray flares can be expected.

This paper is organized as follows. In Section 2 we will introduce
the numerical setup for our 2D and 3D radiative PIC simulations
that will be presented throughout this paper. In Section 3 we
will introduce the new diagnostics used to examine the emission
of radiation, divided into (i) the different estimates of the total
radiated power and of the local emissivity as a function of space
and (ii) 2D correlation histograms of the density, magnetic field,
and temperature, which help quantify the degree of compression
and spatial correlations between these quantities. In Section 4
we will examine 2D simulations utilizing these new diagnostics
considering different synchrotron cooling strengths characterized
by different values of the normalized reconnecting magnetic field
By/By. In Section 5 we will present and analyse the results of full 3D
simulations. In Section 6 we will present a broad parameter-space
study exploring the effects of several important system parameters,
such as the guide magnetic field, the system size and aspect ratio,
and the upstream plasma magnetization. Finally, in Section 7 we
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will summarize the conclusions found in this work, and discuss how
magnetic reconnection in strong fields may power radiation observed
in astrophysical gamma-ray flares. We also include appendices with
a more detailed description of the setup in Appendix A, a more
developed explanation of the theoretical boundaries of density in the
density-magnetic field histograms in Appendix B, a derivation of an
effective resistivity due to synchrotron radiation in Appendix C, and
an associated theoretical boundary of magnetic fields in the density-
magnetic field histograms in Appendix D.

2 NUMERICAL SETUP

We conducted both 2D and 3D PIC studies of relativistic reconnec-
tion in a pair plasma, taking advantage of the OSIRIS framework
(Fonseca et al. 2002). OSIRIS self-consistently includes synchrotron
radiation and the QED process of pair production by a single
gamma-ray photon propagating across a strong electromagnetic
field (Grismayer et al. 2016, 2017). However, in this study, we
look at a regime where, although the back-reaction caused by the
synchrotron radiation plays an important role, the QED processes
are not relevant. In these simulations, we track the total amount of
radiated energy emitted by each particle at every time-step and use
the local estimation for the emissivity €.y (described in Section 3.1)
to track emission as a function of space and time.

We simulate an initial double relativistic Harris current-sheet
equilibrium (Harris 1962; Kirk & Skjeraasen 2003) with periodic
boundary conditions, which is explained in more detail in Ap-
pendix A. For our simulations presented in Sections 4 and 5, we
focus on the fiducial values of the key system parameters described
in this section, while we will vary some of them in the parameter
scans in Section 6.

The computational domain is initially filled with a relativistically
hot Maxwell-Jiittner background electron—positron plasma with
uniform density (of each species) n, and temperature 7, = 4m,c?.
These parameters are chosen to yield a high upstream ‘hot’ plasma
magnetization

_ B
- 47'[(2}117)]11,

where By is the reconnecting magnetic field oriented along the
X direction and A, is the relativistic enthalpy per particle in the
upstream background (h & 4T for ultrarelativistic temperatures). This
corresponds to an upstream plasma beta B, = 87 (2n,)T},/ Bg =
1/20, = 0.0202. Note that the value of magnetization adopted in
this paper is greater than the value o, = 6.44 of our previous work
(Schoeffler et al. 2019). We also include an out-of-plane (Z) uniform
guide magnetic field B¢ = 0.4B,. The cold magnetization, discussed
in Appendix A, is o, = B§/477(2nb)mec2 =412.

In addition to the uniform background, we include two antiparallel
initial Harris current layers, each lying in a y = const plane and
carrying electric current in the =+ Z direction. The layers are com-
posed of drifting Maxwell-Jiittner distributions of counterstreaming
electrons and positrons with central density (of each species) ny =
37ny, rest-frame temperature 7y = 6.92m,c?, an initial half-thickness
8 =2.55p., and a drift velocity v,/c = 0.56 for each species (Lorentz
factor y, = 1.21, proper velocity u; = y v4/c = 0.68).

Here, our main fiducial normalizing length scale

on = 25.76, (1)

pr = yrmec®/eBy = yre/ Qe )

is defined as the Larmor radius of a background particle with a
Lorentz factor corresponding to the peak of the initial upstream
relativistic Maxwell-Jiittner distribution, y; = 2T}/m.c?. Here, Q.
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= eBy/m,c is the classical (non-relativistic) gyrofrequency. Other
important length scales include the respective background (non-
relativistic) skin depth d, = [m.c?*/4m(2n)e*]"> and Debye length
Ap = [T/4mw(2n)e*]"?, defined by the initial background plasma
parameters (n = np and T = Tp):

2
d. = pp (owmec?/T;)"* ~2.53p,. 3)

= proy” ~ 5.08py, “)
both of which are larger than p;, scaling as ahl ", for relativistic
temperatures. We can also introduce the values of these length scales
in the Harris sheet where n = ng and T = Ty:

oo = pr (To/Ty) =~ 1.73pp, (5)
det = pr (ownpmec? /noT;)' ~ 0420, ©6)
A, = pr (oanpTo/noTy)'* ~ 1.10p;. (7

The Larmor radius and Debye length in the reconnection regions
increase as time progresses, due to the heating of the plasma. Our
fiducial simulation domain size is 2L, x 2L,(x 2L;) = 628.8p; x
628.8p.(x 117.2p;) in 2D (3D), and the simulations are run for
about 3.16 light crossing times Ly/c (fmax = 7948 Q;l).

Our typical 2D (3D) simulation domain size consists of
1280 x 1280(x 240) computational grid cells of size Ax = Ay(=
Az) = 0.49p,, initially with 16 (8) particles per species in each
cell, with a total of about 9.0 x 107 (1.0 x 10'°) particles.
There are thus about 1700 (8900) initial macroparticles per Debye
cube in the background plasma. Although initially there are only
~80 (90) macroparticles per Debye cube in the Harris sheet, once
the background plasma enters the reconnection region, this number
becomes much larger. The simulations are typically run with a time-
step of At = 0.5Ax/c = 0.25p/c = 0.25y7 Q7.

A novel feature of our simulations is the self-consistent inclusion
of optically thin radiation emission by relativistic particles due to
strong magnetic fields. Depending on the importance of QED effects,
OSIRIS can treat radiation emission with two alternative implemen-
tations: a continuous description of classical radiation reaction, and
a quantized description that includes the QED processes.

To determine whether QED (discrete-emission) effects are impor-
tant for a given emitting particle, we calculate the relativistic invariant
for an electron (or positron) of energy ym.c?> and momentum p
moving in an electromagnetic field

1 2 2
o= — (yE+ P ><B> _(” E) ®)
By m.c mec

which in our parameter regimes, where usually B > E, can be
approximated by

~ VB
Xe ™ By ©))
As this parameter increases, the particle will emit higher energy
photons, and, once x, approaches 1, QED effects including discrete
gamma-ray emission, and, for even higher x., pair production, can
start playing an important role. However, in the simulations presented
in this paper, the x, parameter does not usually reach significantly
high values even for very energetic particles (i.e. x. < 1). We
thus use the continuous description, with the radiation back-reaction
accounted for classically using the Landau-Lifshitz model (Landau &
Lifshitz 1975) for the radiative drag force, while we keep track of

the total radiated energy.
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The radiative cooling is significant when the synchrotron cooling
time ~(ats x o 2:) 7", Where o = €*/hic ~ 1/137 is the fine structure
constant, is shorter than or comparable to the relevant time-scale of
the simulation, i.e. a few global light crossing times (fyax 2 3.16L,/c).
After one light crossing time L,/c, a relativistic particle with energy
ym,c? moving in a magnetic field B experiences significant cooling
(i.e. loss of a significant fraction of its energy) when
2

Q L, =2 i l 1 (10)
Z o Ko Q=L = - > 1,
3 Ofs X . Y Bg B

a parameter directly related to the global magnetic compactness
U
. (11)

4

EB = O’TL'\:

Here, o7 is the Thomson cross-section, and Ugy = Bé /8m is the
initial upstream magnetic energy density. Note that in our fiducial
set of simulations, with fixed values of L,/p; = 314.4 and yr =
2T,/m,c* = 8, the compactness £ scales just linearly (instead of
quadratically) with By, since p; = yrm,c?/eBy o< By'.

We assume that synchrotron emission is the dominant radiation
mechanism. For the simulation parameters adopted in this study, the
Thomson optical depth is 77 = o¢Lyn, = 1.35 x 10~*, and thus
the radiation occurs in an optically thin regime. Here we ignore
the IC scattering of both the synchrotron photons (i.e. synchrotron
self-Compton, SSC) and any possible ambient photons of external
origin (i.e. external IC); we also neglect synchrotron self-absorption;
investigating the effect of these additional radiative processes is left
for future studies.

For reference, we define the characteristic radiation-reaction
limit Lorentz factor y g described (e.g. in Uzdensky et al. 2011;
Uzdensky 2016; Werner et al. 2018b; Mehlhaff et al. 2020; Sironi &
Beloborodov 2020; Mehlhaff et al. 2021). This factor is defined as
the particle Lorentz factor for which the radiation-reaction force
is equal to the acceleration force by the reconnecting electric field
E... = BEBy, or, equivalently, the particle’s radiative cooling time is
approximately equal to the gyro-period. For synchrotron radiation,
this limit is

) 1

3 ﬁE BQ 1 Q(.Ly ,35 4e ﬁE
Viad = =

- = = N 12
sinffa2ai By 20y ¢ sina orBy sinfa (12)

where B¢ ~ 0.1 is the dimension-less reconnection rate (reconnection
inflow velocity normalized to the speed of light), and « is the
particle’s pitch angle with respect to the magnetic field.

In order to investigate the effects of radiative cooling, in this paper
we present the results (in both 2D, Section 4, and 3D, Section 5)
from three simulations with different cooling strengths. The cooling
strength is controlled by varying the reconnecting magnetic field
strength, using the same magnetic field values as those used by
Schoeffler et al. (2019):

(i) Classical Case: By/By = 4.53 x 107¢ (i.e. B = 2 x 103 G),
where the peak local average value of x, reaches x. ~ 0.0003 <«
(0t QRetmax) ™! A 0.017, and 2y (B/By)*Lp ~ 0.004 (€3 ~ 2 x 1079),
and hence cooling is not important;

(i) Intermediate Case: By/Bp = 4.53 x 107* (By = 2 x 10 G),
where (0t Qe tmax) ' & 0.017 < x, ~ 0.03 < 1, and 2y (B/By)*lp ~
0.4 (¢5 ~ 0.002), and cooling is becoming important;

(iii) Radiative Case: By/By = 4.53 x 1073 (By =2 x 10''G),
where x. ~ 0.3, and 2y (B/By)* {3 ~ 4 ({3 ~ 0.02), and cooling is
very important.

In these estimations, e.g. of x.(B, y), to evaluate peak local average
values inside of magnetic islands/flux ropes, we have assumed that
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the magnetic field is enhanced by a factor of about 1.5 (i.e. B =~
1.5By) and the temperature by a factor of 5 (i.e. T~ 5T}, y ~ Sy 7).
Furthermore, assuming a normalized reconnection rate S = 0.1 and
pitch angle o = 90°, these parameters correspond to y,q =~ 2000,
200, and 60, respectively. For the radiative case, in order to keep
the initial upstream plasma from cooling substantially in the course
of the simulation, we restrict the degree of radiative cooling based
on the background parameters to 2y 7€z = 0.44, with a background
average x.(Bo, y7) ~ 3.6 x 1072. However, as the system evolves,
regions develop with an average local value x, =~ 0.3 (as shown in
Section 6.4), and energetic particles occur with x, =~ 1, allowing for
significant local cooling. Note, however, that unlike in Ref. Schoeffler
et al. (2019), these values of x,. are small enough that there are no
significant QED effects (such as discrete photon emission and pair
creation). Nevertheless, we still expect qualitatively similar results;
negligible cooling in the classical case, and a significant radiated
fraction of the released magnetic energy, in part due to a strong
enhancement of magnetic island compression, in the radiative case
and, to a lesser extent, in the intermediate case.

In Section 6, we also explore the parameter space starting with our
3D radiative case Bo/By = 4.53 x 1073, and varying Bg/By, L./pL,
Ly/pr,and 5.

3 DIAGNOSTICS

3.1 Estimated radiated power and emissivity

While it is possible to do in-siftu measurements in reconnection
experiments and even in the Earth’s magnetosphere using spacecraft,
for phenomena that take place around remote astrophysical objects
like neutron stars, the only data that can be obtained comes from
observations of radiation. We thus pay special attention to diagnostics
measuring the radiation emitted in these environments both as a
function of time and of space.

Each particle emits radiation at any given moment in time with a
power that is a function of x, and, in the classical regime (x, < 1),
can be expressed as

2

2 agm,c? 2e
=0 2w 1e Y22 sin’ (13)
c

P =
3 tc

where the second expression, for classical synchrotron radiation, is
valid as long as the magnetic field is much stronger than the electric
field. Here t¢ = h/m,c* ~ 1.29 x 10~%!s is the electron Compton
time.

While the total power emitted in a given optically thin system is
calculated by summing the powers P radiated by each particle, it is
also useful to study the location in space where the radiative power
is emitted from. Instead of considering a discrete sum of particles,
one can consider a 6D distribution of particles f(p, x) over the
momentum space p and the coordinate space x, and calculate P as
a function of p, B (x), and E (x). Then, the total power emitted at a
given moment in time can be expressed as:

Po = /d3p &x f(p. x)P(p,x) = /d3xe(x), (14)
where the local emissivity

€(x) = / &p f(p.x)P(p.x) (15)
is the power emitted from a unit volume in space. The total power is

thus proportional to the volume-averaged emissivity Py ~ (€(x)),
where the angle brackets represent an average over space. In our
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simulations, we calculate P, at each time-step by summing the
radiation from all the particles in the simulation. We normalize Py
to its initial value Py 0, Prot = Piot/ Piot.0» in order to emphasize the
relative enhancement of radiation due to reconnection.

In principle, in PIC simulations it is possible to precisely measure
both Py and € by summing the power emitted by each particle within
each given small volume element, e.g. in each grid cell. However, in
MHD simulations, for example, the details of the particle distribution
are not available. Furthermore, only limited data are available in
observations. We will thus explore several fluid-level methods of
estimating Py using various assumptions, and check their fidelity by
comparing them with our exact kinetic measurements.

Although we do not introduce a diagnostic for the precise (particle-
based) value of €(x, ¢) in our simulations, we will define a reasonable
fluid-based method of estimation where we assume a local isotropic
Maxwell-Jiittner distribution in the comoving frame corresponding
to the local drift velocity v, of each species.

To obtain the effective local temperature from a time-evolving
distribution that is not necessarily Maxwell-Jiittner, we take the
temperature tensor T;; = m_" [ &p (pip;/v)f(p)/ [ dp? f(p) for
the background electron species calculated in its local rest frame
[i.e. in the so-called Eckart frame (Eckart 1940), where the local
current of that species vanishes]. Here, p; is the ith component (i =
x, y, z) of the momentum, y = /1 + p?/m2c?, and f(p) is the
momentum distribution function. The effective temperature is then
defined using the trace of the temperature tensor, T = Tr(T)/3.
While this temperature initially only represents the temperature of
the background plasma, as the background population mixes with the
current-sheet population, this temperature becomes a representative
temperature of the system. We also define a representative density
n, which is the total local particle density of one species (e.g.
positrons), including both initially background and Harris current-
sheet particles.

Assuming again that £ < B, we can say that x, ~ yB/Bg, and
substitute equation (13) into equation (15) to get an estimate for the
emissivity. Based on our assumption of an isotropic Maxwell-Jiittner
distribution in the local comoving frame, we can integrate over the
pitch angles o and momenta, the result of which is proportional to
Bi[l + uﬁ(x)] + B‘f. Here, B and B, are defined with respect to
the local bulk fluid velocity v,(x) of the given species, and u,(x) =
yava/c is the fluid’s local normalized proper velocity, with y, being
the corresponding Lorenz factor. For simplicity, we will not include
in our estimation the Doppler-boosting enhancement in radiated
power based on uy, whose direction may be difficult to determine
in observations. We, therefore, find the following estimation only in
terms of local, space-dependent parameters n(x), 7' (x), and B(x):

4
) = 3 20 T B 0). (16)

méic
Note that while this estimate is calculated in the lab frame, the
expression takes the temperature variable calculated in the comoving
(Eckart) frame. The factor of 2 in front of the density represents
the two species, electrons and positrons. We normalize €.y to the
initial background plasma value €.y o, evaluated with T = T},
B? = B} + B%, and n = n;. The contribution of the background
plasma to the initial total normalized estimated radiation power
1S Ppacko = f d3x €est.0 ~ 0.41 Py o, with all the simulations per-
formed using the fiducial parameters described in Section 2. (The
overall effect of the weaker magnetic field at the centre of the
current sheets is negligible.) We also calculated the initial total
normalized estimated radiation power due to the Harris sheet:
Puso = [ @x €eqis & 0.59 Pgy 0, Where €cq, s 18 €cq evaluated with
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T = Ty, B> = BX(y)(1 +3u?) + B%, and n = n(y) — np. Here, in
order to get a more accurate estimate of the initial emissivity, we
account for the drifts perpendicular to the magnetic field by including
the additional factor of 1 + 3u3, where u, is the proper speed of the
drifting particle populations in the initial Harris current layer, as
defined in Section 2. The radiation from the two populations thus
accounts for all of the initial radiation Py, 0 & Ppack, 0 + Pus, 0-

Our first simplified estimate of the total radiated power P, at any
given moment in time is defined as

Pores = P n 17 _ B 17
tot,est = 4 back,0 <nb sz Bg + Bé > ) ( )
and is calculated by substituting equation (16) into equation (14).
Here, <... > is the volume-average of the product of n, T2, and B>
normalized to the background values: ny, T2, and BZ + B2, which
are used to calculate Ppyck, 0. At =0, Pior, est = 0.49Pyo 9. While this
estimation includes the density from the Harris sheet population, it
initially underestimates its radiation because the temperature diag-
nostic is based only on the background population. The estimation,
therefore, takes into account neither the higher temperature of the
initial Harris population nor the relativistic enhancement due to the
bulk flows of electrons and positrons carrying the electric current. As
described earlier, we have ignored the increased radiation due to the
bulk flows, out of simplicity. Both the currents and, later, reconnec-
tion outflows do persist throughout the simulations. However, while
the enhanced radiation due to the bulk flows does play a role (e.g. as
in the minijet model of Giannios et al. 2009; Giannios 2010; see also
Nalewajko et al. 2011; Giannios 2013), as we will show below,
the simplified estimation of the total, bolometric radiated power
remains qualitatively accurate. Regions with the highest thermal
energy content (namely, large plasmoids) tend to have low bulk-
flow velocities, and thus the enhancement of radiation due to the
bulk flows is limited. Although the assumption of a local Maxwell-
Jiittner distribution is initially accurate, this estimate ignores any
kinetic effects which can play a role as the distribution evolves.
Therefore, while the above estimate is reasonable for relatively steep
spectra, for harder, highly non-thermal spectra the kinetic effects
play an important role, especially for the high-energy emission, as
we discuss in Section 4.4 and at the end of Section 5.1.

We also define an even more basic estimation for Py, making
a connection to situations where one knows only the total (volume-
integrated) particle kinetic energy (and hence pressure) and magnetic
energy as functions of time:

Popese = P "N B /{= (18)
tot,est2 = 1L back,0 anb Bg T Bé m .

At t = 0, we find Poresz & 0.62 Py 9. This initial estimation is
somewhat larger than Py .y because it does not take into account
the initial anticorrelation between the magnetic field and the plasma
pressure due to the initial pressure balance across the current sheet.
Note that this eventually becomes a positive correlation, as discussed
in the next subsection. Due to the particle number conservation, as
the spatial distribution of n evolves, <n > remains constant in time,
and so only one value is needed for calculating Py, esi2- In cases not
studied here, where a significant number of pairs are created, the
time evolution of this factor would be important.

The simple estimates Pio et and Py esr2 for the total radiated
power P, provide convenient estimations from the often limited
measurements available in MHD simulations or from observations.
Furthermore, their comparison with the actual exact Py, measured
in the radiative PIC simulations helps elucidate and highlight the
importance of the spatial correlation between the magnetic field
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Figure 1. Histograms in log—log n-B space of the 3D radiative simulation
with Bg/By = 0.4, Ly/p; = 314.4, and 0, = 25.76, at 4 time-snapshots: (a)
tc/Ly = 0.4, (b) tc/Ly =1, (c) t¢/Ly =2, and (d) tc/Ly = 3. At intermediate and
late times (panels b—d), the histograms exhibit clear, well-defined power-law
boundaries forming 4-sided polygons. The blue plus signs mark the initial
conditions of the upstream background plasma, the blue ‘X’ (in panel a)
represents the initial conditions at the centre of the current sheet (n/nj, = 37,
B/By = 0.4), the red plus signs mark the upper right vertex of the best-fitting
polygons, and the B ~ n scaling [see equation (19)] is highlighted.

and plasma pressure and of the kinetic effects not included in the
estimates. Furthermore, diagnostics showing the spatial distribution
of the local estimated emissivity €. (x) allow us to understand better
how sudden enhancements of radiation occur in the context of the
reconnection process.

3.2 Parameter-space histograms

In our previous 2D work, we have argued that, due to radiative
cooling, the magnetic fields and density of the plasma are strongly
compressed in the cores of magnetic islands (Schoeffler et al. 2019).
Although this effect enhances the radiation in these regions, in this
paper we will show that it only mitigates the loss of the emitted power
due to the overall cooling of the radiating particles. We will argue
that the positive correlation of the magnetic fields and density inside
islands leads to enhanced radiation compared to the simple estimate
Piot, est2» such that Py 3> Pior, es2- A histogram of the grid points in
the n-B space will both allow us to obtain a quantitative measure for
the degree of compression and show that there is in fact a correlation
between magnetic fields and density.

Therefore, we visualize this compression and correlation between
n and B via the 2D distribution of simulation points in the n-
B parameter space. As an illustration, in Fig. 1 we examine the
histograms for the 3D radiative case taken at 0.4, 1, 2, and 3 light
crossing times. We show joint 2D histograms of the local values of
the normalized n/n;, and B/B, at each grid point. An integral of the
histogram over a region of n-B space represents the fraction of the
volume with the values of n and B that lie in that region.

The vast majority of the grid points are part of the upstream
background, where initially n = n, and B = /B + B% ~ 1.08B,,
indicated by the blue plus sign in Fig. 1. The background plasma is
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well frozen into the magnetic field. As the upstream, unreconnected
magnetic flux is depleted over time via magnetic reconnection, the
upstream magnetic field, and density drop, keeping the magnetic flux
BAy and number of particles nAyL, within a given upstream flux
tube of (time-changing) width Ay constant. The upstream field and
density thus follow the simple ideal-MHD relation

By

assuming there is not much variation in the X direction. This simple
linear trend can be noted in Fig. 1 for n/n, < 1 where the narrow
orange/red band extends over time to lower values of n and B
following equation (19). Aside from this basic observation, after
a couple of light-crossing times for the 3D cases, the plasma from
the central mid-plane of the initial Harris current sheet indicated by
the blue ‘X’ in Fig. 1 mixes with the background plasma with the
help of a kinking instability described in Section 5.2.

One of the most striking features of the histograms prominently
seen at intermediate and late times is that the histograms become
bounded above, below, and to the right by clear, distinct limits that
can be modelled by power laws. These limits, which constrain the
compression of density and magnetic field, will be further discussed
in Section 5.2.

In order to better understand how the compression depends on
radiative cooling strength quantified by Bo/Bg, and on various other
parameters in Section 6, we design here a novel numerical procedure
for measuring the degree of compression. First, we note that, for the
3D simulations after about a light crossing time (starting at tc/L, =
0.85), the boundaries of the histogram in log—log n-B space can be
approximated with a best fit of a four-sided polygon. The parameters
describing this polygon are first estimated by hand to match the
histogram. A step function with value 1 inside the polygon, with
a 20-point smooth, is compared with another step function with
value 1 where the histogram is non-zero, with a 10-point smooth.
The parameters of each of the lines are then optimized to a best fit
(Markwardt 2009). After each time-step, the previous best fit is used
as the new initial estimation.

Forexample, inFig. 1, atfc/L, = 1,2, and 3, the respective slopes of
the boundaries (power-law indices B ~ n“) are (o« = 0.005, 0.075, and
0.113) above, and (0.78, 0.88, and 0.67) to the right of the histogram.
These lines cross at the points (n/n,, B/By) = (48.5, 1.53), (24.9,
1.71), and (28.8, 2.18) respectively, indicated by red crosses. These
intersection points mark the upper right corners of the polygons and
thus give us an estimation for a maximum level of both n and B. The
final slopes match reasonably well with theoretical predictions that
o =1/12, « = 1/6, and @ = 1, which will be discussed in Section 5.

A similar histogram can be constructed for the n-T space instead
of the n-B space. This diagnostic furnishes us a convenient visual
tool for examining the spatial correlations between n and 7.

We will be using these histogram diagnostics extensively in
Sections 4.2, 4.3, 5.1, 5.2, and throughout Section 6, especially in
Section 6.2.

4 2D RESULTS

In this section we will explore results from three 2D simulations
with varying levels of radiation losses: the classical case By/By =
4.53 x 1079, the intermediate case By/By = 4.53 x 10*, and the
radiative case Bo/By = 4.53 x 1073, The rest of the simulation
parameters are held fixed here at their fiducial values listed in
Section 2. We show the process of reconnection and the effects that
radiation cooling/back-reaction has on it.
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Figure 2. Maps of density with in-plane magnetic field lines overlaid for the 2D radiative case Bo/Bp = 4.5 X 1073, at (a) t = 0.33Ly/c, (b) t = 0.66Ly/c, and

© 1= I1Lyc.

In all three simulations, the initial current sheet is unstable to
the tearing instability, leading to the formation of multiple magnetic
islands separated by X-points, where magnetic reconnection converts
the upstream magnetic energy into plasma kinetic energy in the form
of bulk outflows, heating, and non-thermal particle acceleration. The
plasma density maps showing the current sheet with superimposed
magnetic field lines (lines of constant magnetic flux), shown in three
panels in Fig. 2, illustrate the generation and merging of magnetic
islands during the first light crossing time (up to t = L,/c) of the
radiative case, which is qualitatively representative of the other cases
as well.

One of the key characteristics of the magnetic reconnection
process is the reconnection rate. To compute it, we first calculate
the magnetic flux function ¢ = £ - [ B,, x dI, where B,, is the in-
plane (xy) magnetic field, and where the integral is taken over the
line/contour starting at the bottom left-hand corner, going vertically
along the y direction, and then horizontally along the ¥ direction. The
reconnection rate measures how fast the difference in ¥ between the
two current sheets decreases, multiplied by a factor of 1/2 accounting
for the magnetic flux being divided between the two reconnecting
current sheets. We calculate it using two measures: (i) the difference
between the major X-points of the two current sheets, corresponding,
respectively, to the minimum value of ¥ in the upper current sheet
and the maximum value of v in the lower current sheet (defined by
the planes y = £L,/2, where the current sheets are initially centred),
and (ii) the difference between the two values calculated by averaging
Y along each current sheet (i.e. along the previously defined plane).
The corresponding reconnection rates (defined as the absolute value
of the time derivative of the flux) are found to be 0.25 and 0.08 Byc,,
respectively (where c4 & c is the upstream Alfvén speed), between
tc/Ly = 0.5 and 1, after which the rate slows down by a factor
of about 4. This is consistent with the predicted reconnection rate
for magnetized pair plasmas calculated by Goodbred & Liu (2022).
Although there is a slight trend of decreased reconnection rate for
the more radiative cases (stronger By/By), the differences are of the
same order as the error (~ 10 per cent).

The conversion of energy from the magnetic field to the kinetic
energy of the plasma particles, and the subsequent conversion to
radiation, is shown for all three cases in Fig. 3. Unlike the classical
case, where a negligible amount of the kinetic energy is radiated
away, significant energy goes to radiation in the intermediate and
radiative cases, increasing with the strength of the upstream magnetic
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Figure 3. Time-evolution plots of energy partition between electromagnetic
(green), particle kinetic (red), and radiated (blue) energies, along with their
sum (black), for the 2D simulations with (a) Bo/Bg =4.5 x 1079, (b) Bo/Bg =
4.5 x 1074, and (c) Bo/Bg = 4.5 x 1073.

field. In these cases, especially in the radiative case, the particle
kinetic energy stays nearly flat throughout most of the evolution from
t >~ 1 L,/c onward, while the radiation energy steadily increases;
this indicates that the particles act as efficient radiators in this case,
promptly converting the energy they receive from magnetic field
dissipation into radiation.

Although even in the initial state the thermal particle motion of the
plasma leads to some synchrotron radiation energy losses, we will
show in Section 4.1 that the radiated power P increases rapidly
and significantly during the onset of reconnection, in agreement
with all estimates for P,,. We will then show in Section 4.2 that,
when considering the emissivity as a function of space, a positive
correlation between the plasma density » and magnetic field strength
B leads to an enhanced Py. Although this correlation is more
prominent in more radiative cases, we will then show in Section 4.3
that the correlation between n (or B) with the temperature 7' becomes
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Figure 4. (a) Total normalized radiated power Py = Piot/ Piot.0 (solid lines)
for 2D simulations with Bo/Bg = 4.5 x 1070 (black, classical case),
45 x 1074 (blue, intermediate case), and 4.5 x 1073 (red, radiative case).
These colours are used for all panels in this figure. The dashed lines represent
the normalized estimated power Proq est ~ <n TZB2> [see equation (17)]. (b)
Total normalized radiated power Py (solid lines) and the second normalized
power estimation Py est2 ~ (nT)2 <Bz> [see equation (18)] in dashed lines.
(c) Ratio Pio, est/Pror- (d) Ratio of the two estimations of power radiated
Ptol, est/Plot, est2-

negative and reduces the normalized P Finally, in Section 4.4 we
will address important kinetic effects that affect the emitted power.

4.1 Total emitted power

Before discussing the enhancements of the power emitted as a result
of magnetic reconnection, we should note the dependence of the
radiated power per particle on the magnetic field strength By/B, (at
fixed o, etc.). On the one hand, as the radiated power for a given
particle is proportional to B2, there is the trivial effect that the most
radiative cases (i.e. those with stronger By/Bg) will clearly radiate
much more than less radiative ones. For the radiative case, Py, o 1S
a factor of 107 larger than in the intermediate case and a factor of
10° larger than in the classical case. On the other hand, here we
are interested in the relative modifications to this trivial scaling due
to various factors. Therefore, we will focus the discussion in this
paper on the normalized radiated power Py = Py / Pioro. (We will
also use this bar notation when plotting estimates f_’mt,est and F’m[,estz,
which have the same normalization.) We will show that this relative
enhancement in radiation is weaker for the most radiative cases.
That is, the normalized radiation is weaker, but the actual amount of
radiation remains much greater.

We first examine the time evolution of the total normalized radiated
power Py, for all three 2D cases, which we plot in Figs 4(a) and (b)
(solid lines). After t ~ 0.5L,/c, magnetic reconnection gets started
and the power of emission abruptly increases by a factor as high as
30. This is caused by the increase in temperature and a concentration
of magnetic fields inside magnetic islands discussed in Section 4.2.

The major effect of stronger radiative cooling, quantified by By/By,
is a drop in P.. While for the classical case (black lines in Fig. 4),
after t ~ 1L,/c, P, remains close to a factor of 30 above the initial
state’s Py, 0, for higher By/By in the more radiative cases (blue
and red lines), the normalized power is limited and even decreases
with time for the most radiative case. This is caused primarily by
a decrease in the average particle kinetic energy due to radiative
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cooling. As the cooling is particularly strong in the densest regions,
where the magnetic field is compressed, the effect is enhanced by a
loss of the positive correlation between the temperature and density
found in the classical case discussed in Section 4.3.

In our previous work (Schoeffler et al. 2019), we showed that
in 2D simulations radiative cooling led to significant additional
compression of the magnetic field and density inside magnetic islands
(most pronounced for the highest By/By), caused by the necessity to
maintain a magnetostatic equilibrium. The relatively weak guide
field B = 0.05 By adopted in that study was not able to prevent this
compression, and this resulted in a concentration of much stronger
radiative losses at the cores of the magnetic islands. One might then
conjecture that this could lead to an enhanced overall normalized
power in the more radiative cases, in an apparent contrast with
our results presented here in Fig. 4(a). However, after performing
a similar analysis to the data of that previous study, we find the
results are qualitatively similar to those presented here. There was
an initial sudden spike in P, once reconnection got started, but the
enhancement was weaker for higher By/B, (more radiative cases) and
itdecayed with time [similar to Fig. 4(a)]. The localized enhancement
of €. Was not strong enough to counterbalance the overall cooling-
driven decrease in P, for stronger By/Bg. In fact, the decrease in
relative power was even more pronounced than in the simulations of
this work.

As shown in Fig. 4(a) [see also Fig. 4(c)] the estimated power
Piot, est [s€e equation (17)], plotted with a dashed line in Fig. 4(a), is
a qualitatively good predictor of Py, and, in particular, qualitatively
captures the dependence of P on By/Bg. In the classical case,
Pyot, st moderately underestimates Py, because it does not include
the enhancement of radiation due to bulk flows and kinetic effects.
For the intermediate case, it provides an excellent approximation.
However, Py et Overestimates Py, somewhat for the radiative case.
This overestimation is caused by kinetic effects that we will discuss
in Section 4.4. As shown in Fig. 4(c), the ratio Py, est/Pior typically
reaches as high as ~2 for the most radiative case.

The simpler normalized estimate of power Pio es2/Prot 0 [se€
equation (18)] is shown as dashed lines in Fig. 4(b). During the active
reconnection stage [f >~ (0.5 — 2)L,/c], it strongly underestimates
the emitted power, by a factor as high as ~10; a significant
underestimation, although not as dramatic, is observed at later times
as well. The reason for this is that Py, .52 does not take into account
the positive spatial correlation between strong magnetic field and
large kinetic energy density (i.e. plasma pressure), which enhances
the radiated power. This correlation will be discussed in more detail
in Section 4.2 and Section 4.3. We highlight the importance of the
correlation in Fig. 4(d) by taking the ratio of the estimated emission
Pyt est» Which takes into account these correlations, to the estimation
from Py, esr2, Which does not. This ratio can reach values as high
as 7.

4.2 Spatial correlation between plasma density and the
magnetic field

Compression of magnetic fields and density near the centres of
magnetic islands leads to enhancements of the local emissivity €(x),
and the total emitted power Py. At about t = 1L,/c, when the ratio
Piot, est/Prot, est2, Which quantifies the importance of the correlation,
shown in Fig. 4(d), is highest, reaching a factor of about 5, the
power in Figs 4(a) and (b) is significantly enhanced. During the next
light-crossing time the enhancement drops down to about 3—4.

At the time t = 1.5Ly/c, the compression of n/n, and B/By is
illustrated for both the classical case in Figs 5(a) and (b) and
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Figure 5. Left-hand column: Maps of (a) electron density, (b) total magnetic field, (c) effective temperature, and (d) normalized estimated local synchrotron
emissivity €egi/€est, 0 ~ nT2B? for the 2D classical case Bo/Bg =4.5 x 10 %atr= 1.5Ly/c. Right-hand column: Respective maps (e.f,g,h) for the 2D radiative

case Bo/Bg = 4.5 x 1073 at the same time 1 = 1.5L,/c.

the radiative case in Figs 5(e) and (f). The corresponding plasma
temperature maps are shown in panels (c) and (g) of Fig. 5 and will
be discussed in more detail in Section 4.3. The maximum density and
magnetic field are both found near the centres of the magnetic islands,
indicating a clear correlation between the magnetic field energy and
plasma densities.! We provide evidence of the enhancement of local
emissivity by examining the estimated emissivity €.y as a function
of space in Figs 5(d) and (h), which shows the strongest emission
exceeding the background levels by factors of more than 1000 in the
centres of the magnetic islands.

In the radiative case, there is a noticeable decrease, throughout
most of the volume, in the normalized €.q/€c, o compared to the
classical case [see Figs 5(d) and (h)], consistent with the drop in
Pior, est shown in Fig. 4(a). This can be explained by the reduction
in the effective temperature caused by the radiative cooling. Inter-
estingly, however, at the specific time t = 1.5L,/c shown in Fig. 5,
the peak values of e.q/€cq, o for the radiative and the classical cases
are about the same. This is because the negative effect of cooling on
the emissivity is compensated, at this particular time, by the stronger
peak compression of the magnetic field in plasmoid cores in the
radiative case [see Figs 5(b) and (f)].

Indeed, in our previous paper (Schoeffler et al. 2019) we showed
that the potential loss of pressure support inside the islands due
to radiative cooling (most pronounced for the highest By/By) is
prevented by the enhanced compression of the plasma density, which

Note that the apparent extremely strong (reaching > 100n;!) peak density
enhancement inside island cores is mostly explained by the very high density
of the plasma in the initial Harris layer, np = 37n,, which quickly collects in
plasmoid cores and subsequently undergoes only a moderate compression.
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in turn drives the compression of the magnetic field (see below).
This compression, in principle, should lead to higher synchrotron
emissivity. The compression is not as pronounced in the simulations
presented here due to the stronger guide magnetic field B¢/By = 0.4
instead of Bs/By = 0.05 adopted in Schoeffler et al. (2019). However,
it still counteracts the direct suppression of the emissivity by radiative
cooling and hence may explain why the peak €. in Figs 5(d) and (h)
was not strongly affected by the cooling.

The enhanced compression can be seen more clearly when exam-
ining the n-B histogram shown for the 2D simulations in Fig. 6 for
t = 3L,/c. However, before looking at the most compressed regions,
let us examine the general features of this histogram. The basic
expected feature, discussed in Section 3.2, is that most of the points
start in the background at n = np,, B = \/Bg + BZ, and follow the
frozen-in scaling of equation (19). In the higher density region of the
histogram, where n/n;, > 1, corresponding to the magnetic islands,
a new scaling can be determined, also based on the flux-freezing
law.

First, one should note that the plasma that was initially located
deep inside the Harris current sheet, where n = ny = 37n,, as was
indicated by the blue X in Fig. 1 at tc/L, = 0.4, has moved at
later times to the centres of the magnetic islands. This population is
represented by a very small number of very-high-density points in
Fig. 6, extending up to n/n;, >~ 40 in the classical case and up to n/n,
2 100 in the radiative case. On the other hand, the new scaling under
the discussion here corresponds to the outer parts of the magnetic
islands containing newly reconnected magnetic flux and filled with
background plasma, with density n/n;, 2 1.

Let us consider a moderately dense (n ~ (2 — 5) np,), thin annular
flux ribbon somewhere inside an island, encircling, but lying outside
of, the island’s dense, guide-field-dominated inner core. Let us
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Figure 6. Top row: Histograms in n-B space at t = 3Ly/c in terms of the local
density n/n, and magnetic field B/By, for (a) the 2D classical simulation and
(b) the 2D radiative simulation. Bottom row: Similar histograms in n-T space
in terms of the local density n/nj; and temperature 7/T}, for (c) the 2D classical
simulation, (d) the 2D radiative simulation. The blue plus signs represent the
initial conditions of the ambient background. The B ~ n [equation (19)] and
B~ n'2 [equation (20)] scalings are shown with thin solid lines in the top
panels. Similarly, the scalings T~ n, T~ n°, and T ~ n~ !/ are shown in the
n-T space histograms in the bottom panels for reference.

examine the self-similar evolution of this ribbon, assuming that its
radial thickness Ar and its radius r decrease in unison, in proportion
to each other, as the island compresses over time, i.e. Ar(f) o r(z).
The number of particles 2wnrAr and the in-plane magnetic flux
B\, Ar enclosed within this flux ribbon should both be conserved as
the radius shrinks (neglecting the decay of the magnetic flux due to
radiative resistivity, see Appendices C and D). One can then obtain
the following relationship, based on the characteristic values of n and
B inside this flux ribbon, assuming that the in-plane magnetic field
B,, dominates over the guide field B., so that B >~ B,,:

B 2\ 12
2 (2 . (20)
By (nh )

Strictly speaking, this relation should be followed only if the
magnetic fields can be well described by a 2D model, since, in a
real 3D situation, the compressed plasma could in principle escape
the island in the out-of-plane direction.

We can see in the n-B histogram shown in Figs 6(a) and (b) that at
t = 3L,/c, the expected correlations (19) and (20) between n and B
due to the frozen-in condition are followed for both the classical and
radiative cases. For n/n;, < 1, it is clear that B/By ~ n/n;, while for 1
< nlny S 10, B/By ~ (n/n,)"? provides a good fit. For n/n, > 10 (a
few points outside of the bulk of the histogram, corresponding to the
centres of the primary magnetic islands filled primarily with the initial
dense current-sheet plasma), neither of the scalings equations (19)-
(20) based on frozen-in flux hold, most likely because the compressed
guide field B, dominates here. However, we also observe a significant
difference between the classical and radiative cases. For the classical
case, the initial Harris sheet structure is retained; i.e. B decreases with
n for very large densities. The initial current sheet was in pressure
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balance, and thus the magnetic pressure initially decreased along
gradients of increasing density. As plasma moves towards the high-
density centres of the islands during reconnection, the histogram
retains this trend [the magnetic field B/B, slightly decreases with
n/ny, in regions of n-B space where n/n;, > 10, shown in Fig. 6(a)]. In
contrast, the radiative cooling and subsequent compression present
in the radiative case lead to a continued positive correlation between
the magnetic field and the density, which results in a somewhat
increased magnetic field compression in the radiative case [B/B
slightly increases with n/n;, above n/n;, > 10, shown in Fig. 6(b)].

4.3 Spatial correlation/anticorrelation between plasma
temperature and density

While we briefly considered the importance of the correlation
between the particle kinetic energy and the magnetic field energy in
Section 4.1, we mostly focused on the correlation between the plasma
density and magnetic field strength in Section 4.2 ignoring any
dependence on temperature. The correlations of B and n with the tem-
perature T are, however, important because the temperature strongly
affects the local emissivity, € ~ 72. In fact, in the classical case, there
is a positive correlation between the temperature and compressing
magnetic fields and density (albeit slightly less pronounced), leading
to an even stronger enhancement of the local emissivity €(x) and of
Py;. The enhanced temperature is caused both by heating and particle
acceleration via reconnection and by the adiabatic compression of
magnetic islands. One can see in Fig. 5(c) that the temperature is
increased inside the islands, although it reaches its peak closer to
the Y-point region where the reconnection outflows collide with the
islands.

In contrast, in the radiative case, as seen in Fig. 5(g), there is
a general reduction of temperature due to radiative cooling. In
particular, the temperature becomes much lower at the centres of
the islands, reaching a local minimum. This results in a negative
correlation between n and 7, which, along with the general cooling,
helps explain the clear reduction in Py shown in Fig. 4(a) for the
more radiative cases.

These correlations are also clearly visible in the n-T histograms.
In the classical case shown in Fig. 6(c), there is a clear positive
correlation between n and 7, particularly visible on the right (high-n)
border of the histogram (with a scaling around 7 ~ n), while the
temperatures in the highly compressed (n 2 5n,) regions, including
island cores, seem to be weakly dependent on n. However, in the
radiative case Fig. 6(d), one observes an inverse correlation between
n and T when these reach their maximum values (with a scaling
around T ~ n~"2). This is expected due to the enhanced cooling at
higher B which corresponds to higher densities [as seen in Fig. 6(b)].

4.4 Kinetic effects

The estimate Py o 1S based on fluid quantities, assuming that
an isotropic Maxwell-Jiittner distribution in the given species’
comoving frame is maintained and thus ignores kinetic effects.
However, the particle momentum distribution does not in fact remain
Maxwellian or isotropic, and the average particle energy alone no
longer suffices to determine the emissivity. Radiation is dominated
by more energetic particles and particles with velocities making
large angles with respect to the magnetic field; it is thus affected
by features like, respectively, super-Gaussian energy distributions
and anisotropic pitch-angle distributions. Pitch-angle distribution
anisotropy, e.g. caused by the predominant synchrotron cooling of
high pitch-angle particles, reduces the emission relative to the level
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Figure 7. Electron energy distributions for the 2D classical case Byo/Bg =
4.5 x 107 (black), the intermediate case Bo/Bg = 4.5 x 107 (blue), and
the radiative case Bo/Bg = 4.5 x 1073 (red), at tc/Ly = (a) 0.5, (b) 1, (¢) 2,
and (d) 3.

predicted by Py est, Which may explain the increase in the ratio
Piot, est/ Pror seen in Fig. 4(c) for the more radiative simulations. On
the other hand, non-thermal high-energy particles accelerated during
reconnection, which do not always provide a significant contribution
to the effective temperature and hence to Py ey, are expected to
radiate significantly more, making Py, e an underestimate; this may
explain the drop in Py est/Prot Occurring at the onset of magnetic
reconnection around fc/L, & 0.5, also visible in Fig. 4(c) for all three
cases.

The energy distributions of the background electrons, shown in
Fig. 7 at several different times, display the formation of a non-
thermal population after ¢t = 0.5L,/c [Fig. 7(a)]. By t = 3L,/c [shown
in Fig. 7(d)], the distribution for the non-radiative case (black)
evolves to a hard power law with an index o ~ 1.3, whereas in
the radiative case (red) there is a spectral break to a steeper high-
energy power law with an index o 2> 3, consistent with previous
results by Werner et al. (2016, 2018b); Hakobyan et al. (2019).

The moments of the distribution, <y > (temperature), and <y 2>
(power radiated), can help us understand the drop in Py, est/Prot
seen in Fig. 4(c) starting at ¢+ ~ 0.5L,/c. This drop corresponds
to situations where the power-law index of the non-thermal part
of the particle energy distribution falls between 2 and 3. Indeed,
such a power law has a peculiar property that the first moment of
the distribution function (and hence the effective temperature) is
dominated by the lower energy particles with y near the peak of
the distribution, while the second moment (and hence the radiated
power) is dominated by the highest energy particles. That is, different
particle sub-populations are responsible for the temperature, which
enters into Py cst, and for the actual emissivity, which enters into
the directly measured P; this leads to an underestimation of the
emitted power by Py, oi. We can see in Fig. 7(b) that at # ~ 1L,/c the
developing power law has become hard enough so that its spectral
index is between the critical values 2 and 3 (for the classical and
intermediate cases), and this corresponds to a dip in the P, est/Prot
ratio in Fig. 4(c). By t ~ 2L,/c [see Fig. 7(c)], however, the non-
thermal spectra in the classical and intermediate cases, as well as
the moderate-energy uncooled part of the spectrum in the radiative
case, have hardened even further and their power-law indices start
to drop below 2. Both the temperature (the first moment) and the
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radiative emissivity (the second moment) are now dominated by
the same, highest energy, particle populations and hence (ignoring
the effects of radiative cooling on the pitch-angle distribution which
allow P, st/ Prot to exceed unity in the radiative case) Py, o5t becomes
a better estimation of the emitted power.

Kinetic effects are therefore expected to enhance the radiated
power compared to the average-energy-based estimations (P >
Pyt est) during the early stages of magnetic reconnection, and
diminish it (Piot < Piot,est) as time progresses for more strongly
radiative systems.

In summary, in this section, we have shown that, in 2D relativistic
radiative reconnection, the total radiated power Py, is increased at the
onset of magnetic reconnection due to the heating and acceleration of
particles in the plasma by reconnection, enhanced by the compression
and correlation of magnetic fields and plasma density at the centres of
magnetic islands, which can be reasonably well captured by Py, st
but not by Py, est2. In addition, the kinetic, non-thermal effects, which
are ignored by Py est, can further enhance the radiated power at these
early times. However, we have also shown that, in the most radiative
cases, radiative cooling leads to a pronounced anticorrelation of
temperature with density and magnetic field; this causes a decrease
in the normalized radiated power Pyy. As a result, at late times the
enhancements in radiation can be cancelled out, and both Py, 5 and
Py, est2 become better predictors.

5 3D RESULTS

As in the 2D study of Section 4, in this section we will explore
results from three simulations using the fiducial parameters from
Section 2 (0, = 25.76, By/By = 0.4, L,/p; = L,/p; = 314.4, etc.)
with varying levels of radiation strength: the classical case By/Bp =
4.53 x 1075, the intermediate case Bo/Bg = 4.53 x 107*, and the
radiative case By/Bg = 4.53 x 1073. In these 3D simulations, we
adopt the system size in the third dimension to be L,/p; = 58.6
(L,/L, = 0.19). Although this value of L, is rather small, given our
guide field Bs/By = 0.4, it still allows the system to exhibit important
dynamics in the Z direction including the development of a kinking
instability. We did conduct a parameter-space study varying the guide
field in Section 6.1 and L, in Section 6.2 to justify this choice. We
again show the process of reconnection, the effects that radiation
has on it, and now how 3D results differ from 2D. As we will show
below, while the guide field keeps the dynamics similar to the 2D
case, and many of the standard predictions of reconnection do not
differ strongly, the development of a kink mode significantly limits
the density compression compared to that found in 2D.

Again, in all cases, the initial current sheet is unstable to the
tearing instability, and multiple magnetic islands (plasmoids; flux
ropes in 3D) form, driven by magnetic reconnection that converts the
upstream magnetic energy into the particle kinetic energy in the form
of bulk outflows, heating, and non-thermal particle acceleration. The
plasma density map in the current sheet, with superimposed magnetic
field lines, shown in Fig. 8, illustrates the generation and merging
of 3D plasmoids during the first light crossing time in the radiative
case. Like in 2D, these dynamics are representative and similar to
the other two cases.

The conversion of energy from the magnetic fields to the kinetic
energy of the plasma particles (both heating and bulk flows) as a
function of time is shown for the three cases in Fig. 9, comparing
the 3D simulations to the 2D ones. Like in 2D, the particle kinetic
energy is rapidly converted into radiation for the more radiative cases,
where the radiated energy fraction increases with the strength of
radiative cooling characterized by By/By. The onset of reconnection,
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Figure 8. Zoom-in on the upper current sheet, showing magnetic field lines (green) and a volume rendering of the plasma density (brown), for the 3D radiative

case Bo/Bg = 4.5 x 1073, at (a) t = 0.33Ly/c, (b) t = 0.66Ly/c, and (c) t = 1Ly/c.
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Figure 9. Time-evolution plots of energy partition between electromagnetic
(green), particle kinetic (red), and radiated (blue) energies, along with their
sum (black), for the 3D simulations with (a) Bo/Bg = 4.5 x 1076, (b)
Bo/Bg =4.5 x 104, and (c) Bo/Bp =4.5 x 1073, For reference, the dotted
lines represent the same quantities for the 2D cases.

and thus energy transformations occur somewhat later in 3D, but the
decay in magnetic energy eventually follows similar curves. Further-
more, for the 3D intermediate and radiative cases, there is slightly
less radiation and therefore more particle kinetic energy at late
times.

Again we calculate the reconnection rate by looking at the
difference in magnetic flux between the two current sheets (using two
measures, the difference between the average flux along the planes of
the initial current sheets y = £L,/2, and between the maximum and
minimum values in each of these planes). Although in 3D a magnetic
flux function is difficult to define in a unique way, we estimate one
after averaging the magnetic fields along Z. The rate at which the flux
decreases, for the radiative case, gives us a normalized reconnection
rate of 0.04 and 0.125Bc4 using the two respective measures of flux,
a factor of 2 slower than the equivalent measures in 2D; however, this
rate persists for the whole duration of the simulation in agreement
with Werner & Uzdensky (2021). Also, as in 2D, we do not find a

significant dependence of the reconnection rate on radiative cooling
strength.

5.1 Comparisons of radiation, field maps, and their
correlations between 3D and 2D simulations

For the most part, the power emitted (including its spectra) and its
estimates based on the spatial distributions of density, magnetic field,
and temperature from the 3D simulations are qualitatively the same
as in 2D. Generally, diagnostics differ only by factors of about 2, and
we will note some of these modest differences. However, we will
highlight one significant difference: 3D effects tend to disrupt the
dense concentrated regions with significantly higher local emissivity
at the centres of plasmoids that were found in 2D.

First, the total power and its estimates are qualitatively similar in
2D and 3D. This can be seen in Figs 10(a) and (b), where the actual
emitted power Py and its estimates Py, est and Pior, esr2 are roughly
comparable to those shown in Figs 4(a) and (b) (the dotted line in
Fig. 10 shows the 2D classical result for reference). However, there
are still substantial quantitative differences. The emitted power grows
more slowly in 3D, although eventually it reaches magnitudes that
are fairly similar to (but slightly less than) those found in 2D. The
normalized emitted power P begins to increase at = 0.6 — 0.7L,/c,
about a factor of 1.3 later than in 2D. In addition, whereas in the
2D non-radiative case P, stays nearly flat for t 2 1L,/c, in 3D it
undergoes a steady rise after about r > 2L,/c, so that the total 2D and
3D radiative powers become very close at late times. The 3D radiative
case differs substantially from its 2D counterpart in terms of the time
behaviour of Py est/Pror- In 2D, this ratio [the red curve in Fig. 4(c),
also shown in Fig. 10(c) as the dotted red curve] quickly rises and
then saturates at a level corresponding to Py et Overestimating Py
by a factor of about 2. For the 3D case, shown in Fig. 10(c) with a
solid red line, the ratio Py, est/Piot grows slowly with time throughout
the whole simulation, so that Py, s Underestimates Py, until about
tc/Ly, = 2 and reaches the levels of overestimation comparable to
the 2D case only by c/L, = 3. Like in 2D, energy is predominantly
radiated by the high-energy electrons and positrons moving roughly
perpendicular to the magnetic field, leading to deviations from a
Maxwellian distribution. Unlike in 2D, the time evolution of these
deviations spans the full duration of the simulation.

The enhancement of radiation due to the correlation between
the magnetic B?/87 and thermal nT energies is similarly present
in 2D and 3D. In Section 4.1 we showed that the importance of
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Figure 10. (a) Total normalized radiated power Py = Pt/ Pio,0 (solid
lines) for 3D simulations with Bo/Bg = 4.5 x 107° (black, classical case),
4.5 x 10~* (blue, intermediate case) and 4.5 x 1073 (red, radiative case).
These colours are used for all panels in this figure. For reference, the black
dotted lines represent the same quantities as the solid lines but for the 2D
classical case (radiative case shown in red in panel c). The dashed lines
represent the normalized estimated power Py est ~ <nTsz> [see equation
(17)]. (b) Total normalized radiated power P (solid lines) and the second
normalized power estimation Piog estz ~ (nT)2 <BZ> [see equation (18)] in
dashed lines. (c) Ratio Py, est/Prot- (d) Ratio of the two estimations of power
radiated Pio, est/Piot, est2-

this correlation can be quantified by the ratio Pio, est/Prot, est2, Shown
in Fig. 4(d). In 2D this ratio, shown with a dotted black line for
the non-radiative case, rises rapidly during the onset of magnetic
reconnection and reaches a saturated value. This differs in 3D [see
Fig. 10(d)], where the ratio Py, est/Prot, est2, cONtinues to grow slowly
and steadily without reaching saturation, and consequently so does
the normalized emitted power Py, [in Figs 10(a) and (b)] (except for
the radiative case, where radiative cooling causes a decrease in the
normalized power).

The most notable difference between the 3D and 2D simulations
is that there is significantly less compression of the density in 3D.
The respective enhancements of density, shown in Figs 11(a) and
(e), and of the magnetic field, shown in Figs 11(b) and (f), reach
values of ~20n;, and ~(1.5 — 2)By, compared to the ~100n, or
~3By in the 2D case. The density concentration is thus almost an
order of magnitude weaker in 3D, while the enhancements of the
magnetic field and the temperature, shown in Figs 11(c) and (g), are
only about a factor of 2 smaller. Similar to the 2D case shown in
Fig. 5, the spatial correlations between the peak density, magnetic
field, and, for the classical case, temperature in Fig. 11, are visible.

All else being equal, the weaker density compression leads to
significantly weaker emissivity at the centres of plasmoids in 3D.
The estimated local emissivity €.y reaches peak values that are
significantly lower (by a factor of about 10) in 3D than in 2D. This
means that in 3D, regions with significant radiation emission are less
concentrated and are spread over a larger volume. Note that, despite
this strong difference in the peak €.y, the total emitted power Py
remains roughly the same in both 2D and 3D simulations (only a
factor of about 2 higher in 2D).

The limit on the density compression can be seen in the n-B
histogram shown in Fig. 12. Like in 2D, in 3D the correlations
between n and B due to the frozen-in condition are followed
according to equation (19) for n/n, < 1. However, in 3D, as magnetic
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tension squeezes the plasma to a higher density in a magnetic island,
the plasma is free to move out along the Z direction to regions
with a weaker magnetic field. Therefore, variations along the Z
direction caused by, for example, the kink instability, prevent the
n-B distribution from following equation (20) for n/n, > 1 as found
in 2D. Furthermore, compression of the density is also limited, and
the maximum n/n;, drops from ~100 to close to 30 (i.e. less than
the initial current-sheet density no/n, = 37). Not only is the density
enhancement limited, but the plasma is also allowed to spread broadly
across n-B space, eventually revealing power-law limits that will be
described further in Section 5.2.

In 3D, the plasma is not as easily trapped and compressed at the
centres of plasmoids, where it can be strongly cooled, as occurs in 2D.
Therefore, the anticorrelation between the magnetic field (density)
and the temperature, found in the radiative case, is not as strongly
pronounced in 3D. This can be seen by comparing Figs 11 and 5.
However, the cooling still leads to an anticorrelation in 3D.

The similarity of these (anti)correlations between 2D and 3D cases
can be also noted from the n-T histograms. In the classical case shown
in Fig. 12(c), there remains a clear positive correlation between n
and T, roughly consistent with the relativistic adiabatic scaling 7'~
n'3, for the whole range of n. In contrast, in the radiative case, see
Fig. 12(d), an inverse correlation between n and T is visible near the
maximum values, with a power-law slope close to n~2.

Finally, the particle energy spectra are almost the same in 3D as in
2D, in agreement with previous studies (Werner & Uzdensky 2017).
In 3D, shown in Fig. 13, the non-thermal electron population in the
particle energy distribution forms more slowly than in the 2D case
(shown in Fig. 7), and is not yet present by t = 0.5L,/c. However,
similar to 2D, at late times (tc/Ly, = 2 — 3) a power-law tail is fully
formed in 3D runs, with the index reaching o & 1.3 for the radiative
case (at moderate energies) and 1.5 for the other cases. Once again,
in the 3D radiative case, there is a spectral break to a steeper power
law with & 2> 3 at higher energies. These results remain consistent
with the results of 2D radiative reconnection PIC simulation studies
by Werner et al. (2018b) and Hakobyan et al. (2019). The limit on
the maximum energy of the most energetic electrons is stricter in
3D than in 2D. As in 2D, kinetic effects influence the accuracy of
the estimated power. The spectral index 2 < o < 3 occurs between
t = (1 — 2)L,/c and may help explain the underestimation of Py,
particularly in the classical case, in Fig. 10(c).

We should also remark that, based on the radiative case’s back-
ground magnetic field strength of Bo/Bg = 4.53 x 1073, all particles
with Lorentz factors y 2 15 are expected to emit synchrotron
radiation in the gamma-ray regime (i.e. with hw > m,c?), thus
potentially feeding powerful pair creation. While for simplicity we
have excluded pair-production effects and other QED physics from
this study, incorporating them self-consistently in PIC studies and
examining their back-reaction on the reconnection process itself
constitutes a particularly interesting and exciting frontier of extreme
plasma astrophysics (Uzdensky 2011; Beloborodov 2017; Hakobyan
et al. 2019; Schoeffler et al. 2019; Mehlhaff et al. 2021; Chen et al.
2023; Hakobyan et al. 2023b).

5.2 Histogram boundaries in 3D

As mentioned in Section 3.2, one of the most striking features of the
histogram diagnostic from the 3D simulations is that the local levels
of magnetic field and density compression are bounded by clear
and distinct power laws in the n-B space. The late-time (1 = 3L,/c)
histograms for both the classical and radiative cases are shown in
Fig. 12. One can see at the top of the histogram for both these cases,
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Figure 11. Left-hand column: Maps of (a) electron density, (b) total magnetic field, (c) effective temperature, and (d) normalized estimated local synchrotron
emissivity €eg/€est, 0 ™~ nT?B? ata representative slice z = —4/5 L for the 3D classical case Bo/Bg =4.5 x 10 %atr= 1.5Ly/c. Right-hand column: Respective
maps (e,f,g,h) for the 2D radiative case Bo/Bg = 4.5 x 1073 at the same time t = 1.5Ly/c.

in Figs 12(a) and (b), an upper bound on B given by the power law
BIBy ~ (n/n;)"'2. At the top of the histogram of the radiative case, in
Fig. 12(b), an additional upper bound on B, given by the power law
BIBy ~ (n/ny)"®, is seen at lower densities. Also, to the right of the
histogram for both cases, in Figs 12(a) and (b), an upper bound on n
can be described as B/By ~ (n/n,)'. It is also worth mentioning that
there is a very clear, robust lower boundary of this histogram: By,
2~ 0.3By, essentially independent of n.

To put this in context, the best-fitting lines of the boundaries over
the entire ranges of n and B for the 3D radiative case presented in
Fig. 1(d) correspond to B/By = 1.5(n/n;,)*'" and B/By = 0.23(n/n;)*>.
The 0.11 > 1/9 slope of the best-fitting upper boundary appears to be
roughly an average between the 1/6 and 1/12 slopes; it is an artefact
of fitting with a single power law a function that is better described
as a broken power law. Likewise, the discrepancy between the slopes
of the right boundaries shown in Fig. 1(d) and Fig. 12(b) occurs
because, at tc¢/L, = 3, the power-law boundary is also not distinct
along the full range in n-B space. The right boundary does not fit
a single power law for low values of magnetic field (B/By < 0.6),
and therefore the automatic fit, when applied to the entire range of
magnetic-field variation, B/By >~ 0.3 — 2, does not give an accurate
measure of the slope of this power-law boundary. However, the fit
still provides a good measure of the maximum compression of both
B and n via the intersection point between the two limiting lines,
indicated by red plus signs in Fig. 12.

Below we describe a couple of theoretical models that may be
used to explain these power laws, and to get an order-of-magnitude
estimate of the coefficients in front, allowing us to determine the
maximum compression theoretically.

5.2.1 Density boundary

To the right of the histogram in Figs 12(a) and (b) there is a power-
law boundary limiting the compression of the plasma density. In
Appendix B, we present a possible explanation for a boundary with a
slope By ~ n [see equation (B1)], based on the marginal condition
for the onset of the kink instabilities found in 3D. Initially, the current
sheet can become unstable to the relativistic drift-kink instability
(RDKI), while later, the current filaments (flux ropes) can be unstable
to other modes including MHD kink. The kinking of the current
filaments, which constitute the highest density regions, allows the
plasma to escape to new locations, thereby checking the growth of
the density due to compression. Regions to the right of this histogram
boundary are subject to instability, while regions to the left are
stable.

Fig. 14(a) shows that this compression boundary in fact occurs
where the electric current density is highest. Instead of the dis-
tribution density of the histogram, the average normalized current
density j/jo is shown here for each location in the n-B space. The
normalization j, = engc is about equal to the initial peak current
density 1.08jy. The highest current densities are located at the upper
part of the right boundary in the n-B space given by equation (B1)
in Appendix B, suggesting that the location of the boundary is
determined by the unstable kinking of current filaments.

The formation of the boundary can be observed as the kink
instability evolves. Initially, the centre of the current sheet, marked
by an X in Fig. 1(a), is unstable to the RDKI. After 1 light crossing
time, as seen in Fig. 1(b), the plasma evolves, pushing the histogram
into new regions of the n-B space where n tends to be smaller;
while lower densities (often with lower current densities) decrease
the likelihood of kink instabilities, some of these regions can still be
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Figure 12. Top row: Histograms in n-B space at t = 3Ly/c in terms of the
local density n/n;, and magnetic field B/B for (a) the 3D classical case and (b)
the 3D radiative case [same as in Fig. 1(d)]. Bottom row: Similar histograms
in n-T space in terms of the local density n/n;, and temperature 7/7}, for (c)
the 3D classical case, (d) the 3D radiative case. The blue plus signs represent
the initial conditions of the ambient background, while the red plus signs in
the n-B histograms mark the upper right vertex of the best-fitting polygon
boundary of the histogram, as explained in Section 3.2; the n-B coordinates
of this vertex are plotted versus time in Fig. 15. The scalings B ~ n [equation
(19) and equation (B1)], B ~ nl’ [equation (D7)], and B ~ nY12 are shown
with thin solid black lines in the top panels, while the T ~ n'/® and T ~
n~12 scalings are shown in the n-T space histograms in the bottom panels for
reference.

dN/dy

1 10 100 1000 1 10 100 1000

Figure 13. Electron energy distributions for the 3D classical case Bo/Bg =
4.5 x 107° (black), the intermediate case Bo/Bg = 4.5 x 10~* (blue), and
the radiative case Bo/Bg = 4.5 x 1073 (red), at te/lLy = (a) 0.5, (b) 1, (¢) 2,
and (d) 3.
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Figure 14. 2D maps in n-B space of the local average (a) current density
<j > /jo, (b) radiative-resistive magnetic dissipation rate <1/t; > Ly/c from
equation (D3), (c) histogram distribution weighted by the local estimated
emissivity €. from equation (16), and (d) <y, est > based on equation (9)
with y = 20,, at t = 3L,/c for the 3D radiative case. The blue plus signs
represent the initial conditions of the ambient background, the red plus signs
represent the upper right vertex of the best-fitting polygon boundary (see
Section 3.2), which is plotted versus time in Fig. 15. The B ~ n [equation
(19) and equation (B1)] and B ~ n'/® [equation (D7)] scalings are shown with
thin solid lines. The orange cross in panel (b) represents the intercept of the
1! upper boundary assuming Ly/ct; = 0.7, as explained in the text.

unstable, and kink instabilities continue to grow. After 2 or 3 light
crossing times, the non-linear development of the kink instability
is expected to mix high and low-density regions, eventually leaving
only regions (confined by a boundary in n-B space) where we predict
the kink instabilities to be stable.

In Appendix B, the B ~ n boundary is predicted to occur where
(B/Bp)/(ning) =~ 0.08 [see equation (B10)]. We test our hypothesis by
considering the boundary region, using the local maximum values of
compressed islands, B/By = 2.2 and n/n;, = 28.8, from the intersection
in Fig. 1 (indicated by red crosses in Figs 12 and 14), matching the
theoretical predictions remarkably well.

5.2.2 Magnetic-field boundary

Above the histogram in Fig. 12, there are power-law boundaries
that limit the magnetic field compression. There is an empirically
determined boundary with the scaling B ~ n''?, found in both
classical and radiative cases. However, there is also evidence for
another, somewhat steeper slope, B ~ n'®, for the radiative case
at low and moderate plasma densities. Its origin is elucidated in
Appendix D [see equation (D7)] based on the radiative dissipation of
the magnetic flux, associated with an effective synchrotron resistivity

40 e*B? ( T )2 o
Nei > — —=|—5 ) -
¢ 9 nm2¢> \ m.c?

a function of the local values of n, B, and T, derived in Appendix C
[see equation (C10)]. Therefore, in the radiative case, the combina-
tion of this slope and the shallower power law B ~ n'/'? exhibited in
the higher density segment of the boundary (see Fig. 12) effectively
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High-energy flares from radiative reconnection

leads to the intermediate best-fitting power law « = 0.11 over the
whole range of n, plotted in Fig. 1(d).

In the interest of understanding the 1/6 slope, we look at the
3D radiative case in Fig. 11(h), which shows the emissivity map
at t = 3L,/c. It is evident that most of the radiation is produced
near the centres of plasmoids where the magnetic field is strongest
(the local estimated emissivity €.y is greatest there). As shown in
Appendix D, the magnetic field dissipation rate via effective radiative
resistivity in plasmoid cores is proportional to B>T*/n. Given the
parameters of the 3D radiative simulation (described in Appendix D),
the corresponding magnetic dissipation time-scale #, is comparable
to the radiative cooling time f.. Therefore, it is expected that the
radiative dissipation has sufficient time to occur and to dominate in
these hot, strongly magnetized regions.

To provide firmer evidence that radiative dissipation is most
relevant near the upper boundary in n-B space, in Fig. 14(b), instead
of the distribution of the histogram, we show the average value of
the normalized magnetic dissipation rate <1/t; > L,/c [see equation
(D3) from Appendix D] for each location in n-B space. Although
we argued earlier that the radiative dissipation is most relevant in
regions where the emissivity €.y is greatest, <1/t; > Ly/c better
determines the relevant regions. The picture is, therefore, somewhat
nuanced and we need to distinguish two classes of plasmoids. First,
the cores of primary, first-generation, plasmoids, filled mostly with
the dense plasma from the initial Harris current sheet, have the highest
emissivity €.y; however, their radiative-resistive magnetic decay rate
t; "'« B2T?/n is relatively low because of its inverse scaling with
density and because of the cooling-induced anticorrelation between
temperature and density. In contrast, the low-density (and hence
relatively low-emissivity) cores of secondary plasmoids, filled with
the more tenuous upstream background plasma, have much higher
<1/t; > Ly/c; this is basically because, in order for a smaller number
of particles to carry a sufficient current, they must move faster. As one
can see in Fig. 14(b), the largest values of <1/t; > L,/c are indeed
found at the lower density (n < 2n;) part of the upper power-law
boundary in n-B space. This is clear evidence that the B ~ n'® limit
on the strength of the magnetic field is indeed related to radiative
dissipation.

One can further verify the model by estimating the location of
the boundary in n-B space, i.e. the normalization of the power-law
scaling. One can estimate the limit of B/By at n/n;, = 2, near the end of
the n'/® scaling, by solving the expression for L,/ct, from Appendix D
[see equation (D3)] with respect to B/B, imposing the requirement
of significant dissipation during a crossing time, e.g. L,/cty; ~ 0.7
(a reasonable number chosen to fit the boundary). By taking the
parameters of the radiative simulation: Bo/Bg =4.53 x 1073, L,/p;, =
314, and o, = 25.76, taking the characteristic filament radius from
Fig. 11 to be r/p; = 20, and setting 6, o ~ 5(n/n,)", one obtains
B/By =~ 1.7. This is in reasonable agreement with the limits on the
histogram shown in Fig. 14(b), where this point is highlighted with
an orange cross. The B ~ n'/ scaling in Fig. 12(b) is valid only for
low density n/n;, <2, and is then replaced by a shallower scaling B ~
n'/'2 at higher densities. In principle, for more radiative systems, this
scaling would be valid for the full range of densities.

5.2.3 Plasmoids and their compression

While discussing the limits on compression, we have focused our
attention on the most significant source of radiation, the compressed
regions inside plasmoids. Despite the small area they occupy, the total
power they radiate may exceed that from the entire upstream region.

max(n)/n,

tell, teil,

Figure 15. Peak (a) density and (b) magnetic field corresponding to the
upper right vertex of the best-fitting polygon boundary of the n-B histogram
(see Section 3.2), indicated in Figs 12 and 14, as functions of time for 3D
simulations with a range of magnetic field strengths: Bo/Bg = 4.5 x 10-°
(black, classical case), 4.5 x 104 (blue, intermediate case), and 4.5 x 1073
(red, radiative case). The dotted line in panel (a) is the initial density at the
centre of the Harris current layer.

In Fig. 14(c), the distribution in n-B space is weighted by the value
of €.y for each grid point. This figure illustrates both the significant
power radiated from the upstream region, where B >~ (B3 + B%)!/?
and n >~ ny,, and the even greater power radiated from the compressed
plasmoid cores, centred around B = 1.3B, and n = 6.5n,. Most of
these plasmoid regions are located in between (and far from) the
two boundaries in n-B space, where neither the density and current
are so high that kinking plays a role, nor are the magnetic field
and hence <1/t; > L,/c so large that radiative dissipation becomes
important. Thus, the compact, compressed plasmoid-core regions
become brightly shining fireballs that contribute significantly to, and
perhaps even dominate, the overall emission.

We also wish to highlight the trend that the estimated y, ey =
(2T /m.c?*) B/ B, increases in regions of stronger compression
(higher B/By), as seen in Fig. 14(d). We, therefore, expect that for
systems with stronger compression, and hence stronger B, X, est
could approach or exceed unity, leading to significant discrete hard
gamma-ray emission and pair production.

In 3D, it is possible to define a useful and simple measure
for quantifying the compression of plasmoids using the power-law
boundary fits described in Section 3.2. For times ¢ > L,/c, i.e. after
the clear boundaries have developed, a useful measurement of the
maximal degree of compression is given by the intersection of the two
boundaries in n-B space at the upper right vertex of the histograms.
This intersection is indicated by the red ‘ + ° signs at t = 3L,/c for
the classical case in Fig. 12(a), where (n/ny,, B/By) = (24.0, 1.86),
and for the radiative case in Fig. 12(b), where (n/n;, B/By) = (28.8,
2.18). We present this measurement of compression for both n in
Fig. 15(a) and B in Fig. 15(b) as functions of time. Unfortunately,
this diagnostic does not work well for the histograms based on our
2D simulations, and thus we only present this diagnostic in 3D.

Although this diagnostic is not yet available before t ~ 1L,/c
because the clear histogram boundaries have not yet fully formed,
before this time, the initial already high density at the centre of the
current sheet, ny = 37n,, is compressed even more in the centres
of magnetic islands, as we have already shown in 2D and 3D in
both radiative and non-radiative cases (see Sections 4 and 5). By
the time the diagnostic becomes available around ¢ ~ 1L,/c, the
density has already compressed to peak values as high as n/n, ~
80 (n/ny ~ 2) and the peak density has already begun to decrease.
For all 3D cases the degree of density compression in Fig. 15(a)
drops as a function of time due to kinking (see Section 5.2 and
Appendix B). Meanwhile, the magnetic field, which has also already
started compressing, continues to grow, as seen in Fig. 15(b).
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‘We can measure the dependence of the compression on the strength
of radiative cooling, controlled by the strength of the upstream re-
connecting field By/By, by comparing our three simulations. We find
that both max(n)/n;, and max(B)/By have a rather weak dependence
on By/By in 3D. By tc/L, = 3, the respective enhancements of the
compression are ~ 50 per cent and ~ 30 per cent in the radiative
case compared to the classical case. Thus, in contrast with the 2D
results from Schoeffler et al. (2019), the radiative cooling-driven
enhancement is relatively modest. Since the out-of-plane magnetic
flux due to the initially relatively strong guide-field Bs/By = 0.4 is
conserved no matter how strongly the plasma cools radiatively, the
compression is limited. However, in 3D, as we show in Section 6.1,
the compression is maximized for this value of the guide field.
Although the By/By-dependence is not so significant (at least for
these parameters), we will use these measurements of compression
to investigate its dependencies on other parameters in Section 6 and
determine in which regimes more compression may be expected.

In summary, in this section, we have shown that, like in 2D, the
plasma energization due to 3D relativistic magnetic reconnection
leads to a sudden increase in the total radiated power Py, and its
simplified fluid-level estimates Py ese and Piog est, 2. This increase
is further enhanced by the compression of n and B within the
magnetic islands, which we can quantify using theoretical limits
in n-B space (where the limit on density is only found in 3D).
The compression enhances the emission of energetic photons and
thus may be an important factor in powering gamma-ray flares
from various astrophysical systems. Simulations performed in 2D
give good qualitative agreement with the 3D simulations in overall
particle spectra, the total radiation power, and field maps. However,
the much stronger density compression, and thus also local emissivity
enhancement, found in 2D are disrupted by kinking instabilities that
can (and do) develop only in 3D simulations. Although the density
compression is reduced in 3D relative to the 2D case, the sudden
increase in radiative power persists.

6 PARAMETER SCANS

Significant synchrotron gamma-ray emission (i.e. radiation with
photon energies E, > m,.c?) occurs when the parameter x, of a
significant number of particles gets as large as x, ~ 1/y, and thus
the synchrotron photon energy, which is about fi(eB/m,c)y? is of
the order of m,c?. Reconnection can cause an enhancement of the
X parameter by particle energization and also by magnetic field
compression.

In Sections 4 and 5, we have found that, although larger values of
By/By lead to more intense gamma-ray emission, the enhancement
of radiation from the reconnection process becomes less pronounced
for stronger magnetic fields, due to radiative cooling of the plasma
overall, as well as the fact that locations of most significant radiation
also suffer the most radiative cooling. However, we have also found
that radiative cooling leads to an enhanced compression of the
magnetic field and plasma density, helping us to mitigate these
effects. We have thus begun to understand the effect of one parameter,
i.e. the normalized strength of the reconnecting magnetic field By/B,
on gamma-ray emission. However, there are several other important
parameters to consider which also merit investigation.

To decide which parameters to investigate, we consider some
important questions. For example, in what parameter regimes do
we expect the strongest compression and the strongest flaring of
radiation in the gamma-ray energy range? In which regimes do we
expect 2D models to provide good predictions for the full 3D system?
When are kinking instabilities in the z direction important, and how
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do they affect compression? Some regimes exist in theory, but are
difficult to simulate numerically; are there regimes with stronger
flaring of radiation in the gamma-ray energy range than those we can
simulate? In what regime is significant pair production eventually
expected to take place (i.e. typically x, > 1)? Do we expect such
regimes to occur in astrophysical environments?

Motivated by these questions, in this section we will explore
the effects of several important parameters: guide field (Bs/Bo),
which resists and inhibits compression but can also mitigate 3D
effects by suppressing the kinking instabilities; system size (L,/p;,
and L,/p;), which allows for longer evolution of both relevant 2D
and 3D dynamics; and upstream plasma magnetization o, which
quantifies the magnetic energy released during reconnection. Each
of the subsections that follow presents the findings of an individual
parameter scan with respect to one of these parameters. We perform
these parameter scans by starting with our previous fiducial case,
the 3D radiative (By/Bg = 4.53 x 1073) simulation setup, and
individually varying these parameters while keeping the others
constant.

6.1 Parameter scan: guide field B¢

The first step towards finding a regime with significant gamma-ray
emission is looking at the dependence on the guide field Bs/By. A
real 3D plasma acts like a 2D simulation only for a sufficiently
strong guide field. Therefore, one should view as tentative any
conclusions based on 2D simulations with a weak guide field, such
as those presented by Schoeffler et al. (2019), where the compression
was unphysically large. For the simulations shown in the previous
sections of this paper, we have chosen a guide field of B5/By = 0.4,
which is both strong enough for an order-of-magnitude agreement
with 2D simulations, but also weak enough to allow significant
compression and thus enhancement of emitted radiation power.

To investigate the dependence of the results on the guide field, we
have performed a parameter scan of Bs/By = 0.05, 0.2, 0.4, 0.6, and
1.0, for the 3D radiative case, keeping Bo/By = 4.53 x 1073, Ly/pr =
L/pp=3144,L, =0.19L, =58.6p., and 0, = 25.76 fixed.

We again use the histogram diagnostic from Section 3.2 to find
a good measure of the maximal n and B compression for times ¢ >
L,/c after the clear boundaries have developed. We show in Fig. 16(a)
that the compression of the magnetic field has a clear dependence
on the strength of the guide field. Here we calculate the compression
based on the maximal total field compared to the initial upstream
total field | By + B/, instead of just By, as we are no longer keeping
B constant. One should first note that the effect of the guide field
on the magnetic compression is non-monotonic. While for strong
guide fields e.g. B¢/By = 1, the guide-field pressure naturally acts to
limit the compression of the plasma and thus the compression of the
magnetic field, for a very weak guide field Bg/By = 0.05 there is also
almost no compression seen. As we will show later in this subsection,
the compression, in this case, is disrupted by the development of a
kink instability. We thus find that magnetic-field compression peaks
at intermediate guide fields, Bg/By = 0.2 — 0.4. For these guide
fields, the compression fluctuates strongly in time but, on the whole,
continues to grow up to fc/L, ~ 3. At this time the compression
is strongest for Bg/By = 0.4, justifying our choice of this value of
B¢ for our main fiducial simulations. A similar trend was found by
Cerutti et al. (2014b), where non-thermal particle acceleration was
also maximized at these moderate guide-field strengths.

As for the compression of the plasma density, we see a similar non-
monotonic trend. Fig. 16(b) shows a clear dependence on Bg at the
earliest time that the density compression diagnostic is available, e.g.
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Figure 16. Peak (a) magnetic field, normalized to the initial upstream field
strength (Bg + Bé)l/ 2, and (b) plasma density, corresponding to the upper
right vertex of the best-fitting polygon boundary of the n-B histogram (see
Section 3.2), and (c) total normalized radiated power Py (with the time-
integrated power as a function of Bg/By plotted above), as functions of time
for 3D radiative simulations with a range of initial guide magnetic fields:
Bg/Bo = 0.05 (black), 0.2 (magenta), 0.4 (blue), 0.6 (green), and 1.0 (red).
The dotted line in panel (b) is the initial density at the centre of the Harris
current layer.

at rc/L, ~ 1, where it is largest for a guide field Bs/By = 0.6. Soon
thereafter, however, the dependence becomes less clear, with the
differences between all the curves except the red one (Bg/By = 1.0)
being comparable to their fluctuation level. The density compression
then rises somewhat for some of the simulations just before the end of
the runs, and reaches a maximum at #c/L, ~ 3, occurring at BG/By =
0.4, similar to the magnetic compression. One can note that the red
line (Bg/By = 1.0) is consistently below all others starting from about
tc/L, = 1.2; i.e. that a strong guide field does suppress compression
of the plasma. This suppression eventually leads to a compression
smaller than in the case with the strongest compression by almost a
factor of 2.

One should note that although the compression is suppressed in
weak guide fields, the total radiated power increases as Bg is lowered,
see Fig. 16(c). The total energy E,q radiated up to . = 3.16L,/c,
obtained by integrating the radiated power from Fig. 16(c) up to this
time, normalized to the initial energy contained in the reconnecting
magnetic field Epy, is plotted as a function of Bg/Bj in the top right-
hand panel of Fig. 16, just above panel (c). As one might expect, the
radiated energy does not depend strongly on the guide field when
the guide field is weak, B < 0.2By. For low Bs/By approaching 0,
the energy radiated approaches E.,g &~ 0.6. However, there is a clear
power-law dependence for stronger guide fields, scaling inversely
with Bg/By [as ~(Bg/Bo)~"%]. This is because the reconnection rate
becomes smaller for higher Bs/By, and thus there is less energy
dissipation and hence less radiation. However, we find that the local
average values of x, or y x . increase with the magnetic compression.
Therefore, the largest values occur in the simulation with maximal
compression (Bg/By = 0.4).

The physical origin of these numerically observed trends, in par-
ticular, the suppression of the compression of plasma and magnetic
fields in the weak guide-field regime in 3D, can be traced to the
effect that the guide field has on the 3D instabilities developing in
the current sheet. The initial current sheet is unstable to two types of
modes; the tearing mode developing primarily in the £ direction and
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the RDKI mode primarily in the Z direction. To identify the dominant
modes, we use fast Fourier transform (FFT) of the density maps
from the PIC simulations of this B parameter scan at a relatively
early time fc/L, ~ 0.4. We find the peaks of the Fourier power
spectrum at kp; ~ [0.2, 0, 0] (k6 ~ [0.5, 0, O]) for the tearing mode
and kp; ~[0,0.34,0.2] (k§ = [0, 0.87,0.5]) for the kink mode.
Here the component of the wavenumber directed in the y direction
just corresponds to the thickness of the unstable current sheet and is
not associated with the direction of the unstable mode.

Figs 17(a)-(e) shows early-time, ¢ ~ 0.6L,/c, 3D renderings of
the plasma density contours, which exhibit kinking across a range of
guide fields, with decreasing amplitude as the guide field increases.
Ataslightly earlier time #c/L, ~ 0.4, the calculated FFT of the density
in the (k,, k.) space at fixed k,p; = 0.34 in Figs 17(f)-(j) shows the
presence of both tearing and kinking modes (although the tearing
mode peaks at k, = 0, it is still visible at k,po; = 0.34). The tearing
mode is slowed down but not fully suppressed by the guide field and is
found for all the parameters that we have investigated. It is therefore
important to understand the role of the kinking modes which, when
significant (for weak guide fields), act to disrupt the compression
of the plasma and magnetic fields observed in 2D. We find that the
kinking mode, which is only found in 3D where k, # 0, disrupts
and limits the compression seen in 2D simulations, and thus explains
why the density compression max (n)/n;, depends strongly on Bg/By
at tc/Ly, ~ 1, shown in Fig. 16(b). As one can see in Figs 17()-(j),
the kink’s amplitude is highest for the weakest Bs/By = 0.05, 0.2.
As Bg/By is increased, this mode is suppressed, growing slower and
saturating earlier. For Bs/By = 1.0, the kinking mode is completely
suppressed for our fiducial value of L, [no kinking mode is visible
in the Fourier spectrum in Fig. 17(j)]. While the dominant kinking
mode at early stages is the RDKI mode with a fixed wavelength in
the Z direction, A = 271k;1 ~ 30p., at later times the MHD kink
instability of the flux ropes starts to dominate. The corresponding
dominant MHD kink mode’s wavelength grows with the guide field
and, for our strongest guide-field case Bg/By = 1.0, it can only fit in
boxes with L, larger than simulated in the present parameter scan. We
will explore the L,-dependence of both of these 3D kinking modes
in the next subsection.

To sum up, the maximum compression in our 3D reconnection
simulations occurs at intermediate values of the guide field, e.g.
Bs/By =~ 0.4, when the compression-disrupting kinking instabilities
are somewhat suppressed by the guide field, but, at the same time,
the guide-field’s pressure B2 /87 is not strong enough to prevent the
compression outright.

6.2 Parameter scan: L,

As shown in the previous subsection, stronger guide fields suppress
variations in the Z direction, in particular those coming from the
kinking modes, making 3D results more like 2D. In general, 3D
simulations become more accurate when the box size 2L, in the
guide-field direction (quantified by L./p; or L./L,) is increased,
allowing for modes with longer wavelengths and more variations
to fit in the Z direction. An important question is: for a given guide
field, how large does L./p; (or L /L) need to be to capture the
relevant 3D physics? From the previous subsection, we learned that,
for moderate guide fields, at least the initially dominant ko, = 0.2
RDKI mode of the initial Harris current sheet, with wavelength A =
2n/k, >~ 30p, has to fit in the box of length 2L,. Our main fiducial
sequence of 3D runs in Section 5 adopted the z-length L, = 58.6p;, =
0.19L,. This is sufficiently long to resolve four initial wavelengths
(k;2L,/27 =~ 4), and thus these initial RDKI kinking modes are well
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Figure 17. 3D renderings of density contours (top row: panels a—e) at tc/Ly = 0.566 and the spatial Fourier decomposition of the density (bottom row: panels
f—j) at tc/Ly = 0.404, for 3D radiative-case simulations with different guide-field strengths: from left to right, Bg/By = 0.05, 0.2, 0.4, 0.6, and 1.0. Bottom-row

panels (f-j) are 2D cuts of the 3D FFT at kyp; = 0.34.

captured. In the present subsection, we justify our choice for L,, by
comparing simulations with a range of lengths.

We performed a parameter scan of L,/p;, = 7.325, 14.65, 29.3,
58.6,117.2, and 175.84, keeping By/By = 4.53 x 1073 (i.e. radiative
case), Bg/By = 0.4, and o, = 25.76 fixed. For computational reasons,
these simulations were done using a smaller system size L,/p; =
Ly/pr = 157.2 (i.e. half of our fiducial system size); this allowed
us to explore a broad range of aspect ratios from L./L, = 0.047 to
1.125. Unfortunately, at this smaller system size, there is not much
space and time for significant compression.

We find that only the biggest-L,/p, runs have n-B histograms that
resemble those for the 3D runs presented in Section 5 and allow for
the use of the compression diagnostic from Section 3.2. As we see
in Figs 18(a)—(c), the histograms of the runs with the smallest values
of L,/py € [7.3, 14.7, 29.3] resemble those from the 2D simulations
[see Fig. 6(b)], where B/B, follows the frozen-in scaling of equation
(19) for n/n;, < 1 and continues to increase with n for n/n;, > 1, with
a weaker slope. On the other hand, in larger-L, simulations (L,/p.
> 30; L,/L, > 0.19), shown in Figs 18(d)—(f), the histograms more
strongly resemble those from the fiducial 3D simulations of Section 5
[see Fig. 12(b)]. In particular, while the bulk of the background
plasma still follows the frozen-in scaling of equation (19), there are
clear and distinct power-law boundaries above and to the right of
the distributions. This allows us to employ our standard measures of
maximal density and magnetic-field compression (see Section 3.2)
in terms of the intersection point of these histogram boundaries [red
plus signs in Figs 18(d)—(f)].

As seen in Figs 19(a) and (b), the compression in both n and B
(from the histogram diagnostic in Section 3.2) is not as strong as that
found in the simulations with larger L,. However, we can conclude
that while the dependence on L, is not strong, the compression may
be still slightly greater for larger L,. The normalized emitted power
Py, shown in Fig. 19(c), is greater for the simulations with the
smallest values of L., which are essentially 2D runs, while for L./p,
> 30 the emitted power appears to become independent of L.

As in the previous subsection 6.1, we show early-time 3D
isocontours of the density at tc/L, = 0.566 in Figs 20(a)—(f) and
the FFT of the density in the xz plane (at k,p; = 0.34) at tc¢/L, =
0.404 in Figs 20(g)—(1), now for several values of L,/p;. The initial
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Figure 18. Histograms in n-B space in terms of the local density n/n;, and
magnetic field B/Bg at t = 3Ly/c for the 3D radiative-case simulations with
different L;: L./pp = (a) 7.3, (b) 14.7, (c) 29.3, (d) 58.6, (e) 117, and (f)
176. The blue plus signs represent the initial conditions of the upstream
background, the red plus signs represent the upper right vertex of the best-
fitting polygon boundary (see Section 3.2), which is plotted versus time in
Fig. 19. The B ~ n scaling [equation (19)] is shown with thin solid lines.
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Figure 19. Peak (a) magnetic field and (b) plasma density at the upper
right vertex of the best-fitting polygon boundary (see Section 3.2), indicated
with the red plus signs in Fig. 18, along with (c) total normalized emitted
power Py, as functions of time for the 3D radiative-case simulations with
L, =L, =157.2p; and with a range of system sizes in the Z direction:
L./pr, = 7.3 (black), 14.7 (magenta), 29.3 (blue), 58.6 (green), 117 (orange),
and 176 (red). The dotted line in panel (b) is the initial density at the centre
of the Harris current layer.

kinking mode appears at the same value of k;p;, ~ 0.2 as in the
previous subsection, independent of L., for all the runs except for the
quasi-2D case L,/p; = 7.3. The reason why there are no signs of the
kinking mode in the L,/p; = 7.3 case is simply that the wavelength
of this instability mode, A./p; ~ 30, is too long to fit in the box
of a full z-extent of 2L, >~ 15p;. On the other hand, our fiducial
choice of the box half-length L, = 58.6p, captures almost four full
wavelengths. Besides this main RDKI kinking mode, we do not see
any other significant variations along the Z direction, e.g. any clear
evidence of the MHD kink modes, at this relatively early time, even
for the largest value of L,/p; = 176 (L./L, = 1.12, four times longer
than our fiducial L;). Therefore, L./p;, = 58.6 (L,/L, = 0.37) appears
to be sufficient to capture the 3D effects, at least at early times. It is
still not clear if 3D effects might become more important at higher
values of L,/p; or L./L,, which we did not simulate in this study. As

L/p =7 L,/o =15

3831

we discussed in Section 5.2, the peak density of the current filaments
appears to be limited at late times to a certain region in n-B space,
governed by the marginal stability condition for the flux-rope kink
mode in the filaments, and this may explain the lack of clear kinking
modes.

We thus conclude that, although rough, order-of-magnitude pre-
dictions of compression and radiation are possible based on 2D
simulations, an accurate prediction in 3D requires the domain’s
length in the third dimension to be large enough to capture at least
the initial RDKI instability.

6.3 Parameter scan: L,

Other parameters may lead to stronger compression, greater x.,
and thus more powerful emission of gamma-rays, but are also more
computationally difficult to study. In particular, in this subsection,
we consider the dependence on the system size L,/p; . Increasing the
system size leads to a longer time of evolution of plasmoids, and thus
potentially to stronger compression of the magnetic field in plasmoid
cores, and more pronounced non-thermal particle acceleration.

In order to see the effects of system size, we have performed, in
addition to our fiducial L,/p; = 314.4 run, two more simulations,
with both larger (L,/p; = 471.6) and smaller (L,/p; = 157.2) sizes,
keeping L./p;, = 58.6, Bo/By = 4.53 x 103, Bg/By = 0.4, and 0, =
25.76 fixed. The simulation duration was fmacc/L, = 3.16 in all the
runs.

We find that the degree of compression (from the histogram
diagnostic in Section 3.2) scales with the time normalized to the
(microscopic) cyclotron time-scale ¢/p; = yr Q;l, rather than to
the (macroscopic) system’s light-crossing time c¢/L,. Therefore, in
Fig. 21, we show the comparisons of the time histories of the
magnetic field (panel a) and density (panel b) compression, as well
as of the total normalized power (panel ¢), using this microscopic
time normalization, which indicates little dependence on the system
size. However, while the level of compression in n seems to reach
an approximate steady state at late times that is weakly dependent
on system size, the compression of B appears to continue to
grow roughly linearly with time. Therefore, for simulations with
a given duration in light-crossing times, magnetic compression can
eventually reach larger values for larger system sizes. Note that for
the smallest system size (L,/p; = 157.2) there is not enough time for
L,/p =59

L/ =117 L./p =176

5
IFFT(n /ny)!

_0_45 . . . i
-04 -02 0 02 04
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Figure 20. 3D renderings of density contours (top row: panels a—f) at t¢/L, = 0.566 and the spatial Fourier decomposition of the density (bottom row: panels
g-1) at tc/L, = 0.404, for 3D radiative-case simulations with different L — z: from left to right, L./p; = 7.3, 14.7,29.3, 58.6, 117, and 176. Bottom-row panels

(g-1) are 2D cuts of the 3D FFT at k,p; = 0.34.
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Figure 21. Peak (a) magnetic field and (b) plasma density at the upper
right vertex of the best-fitting polygon boundary (see Section 3.2), and (c)
total normalized emitted power Py, as functions of time for 3D radiative-
case simulations with a range of system sizes: Ly/p;, = 157.2 (black), 314.4
(blue), and 471.6 (red). The dotted line in panel (b) is the initial density at the
centre of the Harris current layer.

significant compression, and hence the magnetic compression does
not exhibit a clear linear trend like in the other two cases.

Like the density compression, the total normalized emitted power
P, decreases as a function of time at intermediate times and
approaches a steady state at late times [see Fig. 21(c)]. In general,
more power is emitted at relatively early times, tc/p; ~ 300 — 500.
However, for larger system sizes, there is more time for the com-
pressed magnetic field and increased temperature (not shown) to
lead to more energy radiated at higher photon energies. Therefore,
larger systems have greater potential for producing brighter gamma-
ray emission and hence possibly more copious pair production.

6.4 Parameter scan: o,

Although large-o, simulations are computationally challenging,
because it is numerically difficult to handle initial Harris equilibria
with very large density contrasts no/n;, (a force-free initial equilibrium
may be more amenable to simulation studies in this regime),
these parameter regimes may be more relevant to astrophysical
environments associated with gamma-ray flares. We, therefore, look
at the dependence of some of the key reconnection characteristics
on the magnetization oj,. As a reminder, this parameter quantifies
the relative free energy in the upstream magnetic fields that can be
converted by reconnection into plasma heating and the non-thermal
acceleration of particles. For high ¢, the magnetic pressure domi-
nates over the plasma pressure, potentially enabling stronger density
compression. Therefore, as o, is increased, we expect to find both
greater heating and acceleration, and stronger compression of plasma
density, leading to higher y, and thus brighter gamma-ray emission.

We have performed a parameter scan of o, = 6.44, 12.88, and
25.76, keeping T, = 4m,c?, By/By = 4.53 x 1073, Bg/By =
04, L./p, = 586, and L,/p;, = L,/p; = 314.4 constant. The
magnetization o, ~ 1/n,, is varied by changing n;, while keeping the
other two basic background plasma parameters, 7}, and By, constant.
We also keep fixed most of the initial parameters of the current
sheet, namely, its initial thickness § = 2.55p, and temperature 7, =
6.92m,c?, as well as the drift velocity v,/c = 0.56 of current-carrying
particles [see equation (A8) in Appendix A]. This, in turn, implies
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Figure 22. Peak (a) magnetic field and (b) plasma density at the upper right
vertex of the best-fitting polygon boundary (see Section 3.2), and (c) total
normalized emitted power Py, as functions of time for 3D radiative-case
simulations with a range of upstream magnetizations: o), = 6.44 (black),
12.88 (blue), and 25.76 (red). The dotted lines in panel (b) are the initial
densities at the centre of the Harris current layer.

that the difference in density ny — n, is kept constant [equation
(A7) in Appendix A] as o, (and hence n;) is varied, and so ng is
changed slightly. The respective density contrasts for increasing o,
are no/n, = 10, 19, and 37.

Again, we examine the compression from the histogram diagnostic
in Section 3.2, after t = L,/c, once the distribution has sufficiently
mixed. As shown in Fig. 22(a), the magnetic field compression for
o =~ 6.4 stays nearly constant at a modest value of about (1.6-1.8)
throughout the simulation. However, for higher magnetization, o,
13 and 26, the magnetic compression exhibits an overall growth, up
to ~2.5 at the end of the simulation, on top of strong fluctuations.
Generally, higher o, results in stronger magnetic compression. The
peak density compared to the initial background density n,, displayed
in Fig. 22(b), is also higher for higher magnetization. However,
this dependence does not actually reflect the degree of compression,
simply because higher magnetization just corresponds to lower nor-
malization n,, relative to the peak density g in the initial Harris layer.
Therefore, comparing the peak density of the compressed regions to
ny would be a better measure. Although a density compression has
clearly occurred by the time the histogram diagnostic is first available
[max (n)/ng ~ 2 at t = L,/c], the peak density decreases with time
and quickly drops below ng, especially for higher o). After that,
during the second half of each simulation (r 2 1.5 L, /c), the peak
density fluctuates below ng, around a saturated level that decreases,
when normalized to ny, as o, is increased, see Fig. 22(b). Since the
late-time peak density remains below ny for all cases, any sustained
compression can only be due to the background plasma, rather than
the plasma from the initial current sheet.

Taking into account the magnetic field compression, we expect an
overall increase in the values of x, for typical particles in magnetic
islands, which would be consistent with the clear enhancement of
the normalized radiated power for increased values of o seen in
Fig. 22(c). Note that although there is a greater enhancement of
normalized radiated power for higher o, the total energy radiated
by the end of the simulations remains about 1/3 of the initial energy
in the reconnecting field for all o,. The initial radiated power
decreases with o, because there are fewer radiating particles in
the background.
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Figure 23. 2D maps of estimated local averaged x, ey = (2T /m.c?) (B/ Bp) att = 3Ly/c from a representative z = 0 cut for 3D radiative-case simulations with
(a) o = 6.44, (b) 12.88, and (c) 25.76. Panel (d) shows the time evolution of the maximum ., s for each of the simulations. Panel (e) shows the x, esi-map

from the 2D radiative case with o), = 25.76.

A very good estimation for the average x, of particles at a given
location is given by xe.est = 2T /m.c?) (B/Bg), shown in Fig. 23.
A comparison of the 2D maps of this quantity, corresponding to the
slices of the simulation domain at z = 0 at t = 3 L, /c, illustrates
the expected increase in x, with increased o, as seen in Figs 23(a)—
(c). In addition to these maps, the dependence of x. .y On oy is
clearly visible in the time histories of the maximum (over the domain)
values of x, e, plotted in Fig. 23(d). For the o, = 25.76 case (the
radiative case in Section 5), the maximum local average x ., cst Erows
rapidly before plateauing at about 0.15 (i.e. somewhat below the 0.2—
0.25 range of variation found in the corresponding 2D simulation).
It then fluctuates around this level throughout most of the active
reconnection phase, before spiking suddenly near the end of the
simulation to a value as high as 0.3, almost a factor of 10 higher than
the initial background value of 0.038 [see Fig. 23(d)]. Although the
total radiated power in 3D is not a high as in 2D [the radiative case
in Section 4], the high values that y, .y reaches in 3D at late times
[see Fig. 23(c)] exceed those seen in the 2D case with the same o,
A 26 [see Fig. 23(e) and the red dashed line in Fig. 23(d)].

We have thus shown that the initial background magnetization o,
has a significant effect on the magnetic field and density compression,
the total emitted power, and the average y, parameter in the cores of
plasmoids, all pointing to regimes where gamma-ray emission can
be more efficient.

7 CONCLUSIONS

We have presented the results of a comparative 2D and 3D numerical
study of collision-less relativistic reconnection of strong magnetic
fields in an electron—positron pair plasma, self-consistently taking

into account synchrotron radiation reaction. The main focus of our
study was on investigating reconnection-powered sudden bursts of
enhancement of the estimated local emissivity €.y and the total radi-
ated power Py, especially in the gamma-ray regime. Our radiative-
PIC simulations were conducted with the OSIRIS radiative-PIC code
and were initialized with a self-consistent equilibrium relativistic,
dense Harris sheet immersed in a lower density ambient background
pair plasma. We have investigated the effects of the relative strength
of synchrotron cooling, controlled by the reconnecting magnetic field
By/Bg, in both 2D (Section 4) and 3D (Section 5). In addition, in 3D,
we have performed an extensive study of the effects of several other
key physical parameters (Section 6), namely, the relative strength
of the non-reconnecting, guide magnetic field along the Z direction
Bg/By (Section 6.1), the length of the current sheet in the Z direction
L./py, (Section 6.2), which characterizes 3D effects, the system size
in the perpendicular direction L,/p;, (Section 6.3), and the upstream
plasma magnetization o, (Section 6.4).

We have developed two novel diagnostic estimates of the total
radiated power, which also help elucidate what causes the bursts
in photon emission found in both 2D and 3D simulations. These
diagnostics are based on fluid-level quantities obtained as reductions
of the PIC-simulation kinetic data. The first one is a simple estimate
of radiated power Py .« [equation (17)], which integrates the
estimated local emissivity €.y, ignoring both bulk-flows and kinetic
effects/non-Maxwellian distributions; it eventually overestimates the
emission of radiation (for more radiative cases), but takes into
account the important correlation between the magnetic energy
density and plasma energy density. The second estimate, Py, est2
[see equation (18)], is even simpler, as it ignores this correlation, and
thus underestimates the emission. We have found that reconnection
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naturally leads to the development of inhomogeneities in the system,
e.g. via plasma and magnetic-field compression inside plasmoids
(magnetic islands; or flux ropes in 3D). The resulting increased
values of the plasma density, magnetic field, and temperature are,
in general, spatially correlated and found concentrated in plasmoid
cores. This enhancement and correlation, which is taken into account
by Py, est> increases the local emissivity and the total radiated power
in comparison with the more naive estimate Py, est2, €specially in 2D.
Although, as we had pointed out in our previous paper (Schoeffler
etal. 2019), radiative cooling can drive an even stronger compression
and hence a further concentration of the radiative regions in the
central cores of magnetic islands, making them more effective
radiators, in this study we have found that enhanced radiative cooling
of the plasma caused by stronger magnetic fields actually reduces the
appropriately normalized radiated power.

We have found that, for the most part, 2D simulations yield rea-
sonable qualitative estimates (i.e. within factors ~2) for several key
characteristics, such as the radiated power, particle spectra, magnetic
field compression, etc., for the full 3D system with a moderate
guide field Bs/By = 0.4. However, for some other quantities, we
have observed rather large differences between 2D and 3D results.
For example, the localized compression of plasma density and the
enhancement of local emissivity in 2D can reach peak values around
a factor of 10 greater than in 3D. Such unphysically strong plasma
compression does not occur in 3D because compression becomes
disrupted by kinking instabilities, in particular, the RDKI at early
times, capturing which requires accessing modes with k;§ ~ 0.5.

To study the development and limits of compression, and to
help highlight the correlations between density n, magnetic field
B (and sometimes temperature 7)) that drive the enhancements of
reconnection-powered radiation, we have designed and made use
of a novel compression diagnostic based on 2D histograms in n-B
and n-T spaces of our simulations (Section 3.2). We have observed
that the distributions of points on these histograms, especially in
3D simulations, tend to develop very clear, well-defined borders,
described by power laws, corresponding to sharp limits on the
compression.

We have presented tentative theoretical explanations for two such
compression limits seen on the histograms in our simulations: for
the maximum B/By ~ (n/ny)"® [equation (D7)] (moderate-density
part of the top boundary) for 2D and 3D radiative cases, which
we attribute to radiative-resistive dissipation of magnetic fields in
secondary plasmoid cores; and (in 3D only) for the maximum density,
given by n/n, ~ (B/By)! [equation (B1)] (right boundary), which
appears to be determined by the kink instability condition.

We have further explored the compression and the resulting power
radiated using parameter-space scans employing 3D radiative simu-
lations that are subject to both of these compression limits. We have
found that the relative enhancement of the radiated power decreases
with increased Bg/By or By/By but increases significantly with
increased magnetization o,. The density compression (compared
to np) does not change significantly for all parameters studied, while
the compression of the magnetic fields, on the other hand, increases
with By/Bg, Ly/p;, and o,.

In light of the results of our study, we expect that magnetic recon-
nection in strongly radiative, strong-field astrophysical environments
is capable of producing bright flares of gamma-rays and X-rays. This
study should help us in understanding to what degree these bursts of
radiation can explain observations of gamma-ray and X-ray flares,
e.g. from the magnetospheres of neutron stars, including magnetars.

In addition, this study paves the way for future numerical 3D
investigations of even more extreme astrophysically relevant regimes,
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characterized by stronger magnetic fields By/B and higher upstream
magnetizations o . This will enable us to reach the x, ~ 1 regime,
where QED effects, including pair creation, can become dominant.
Furthermore, extending this study to larger normalized system sizes
L,/pr,in combination with the strong magnetic field, will allow us to
reach higher, more realistic values of magnetic compactness 5, a key
parameter governing the importance of radiative and QED effects.
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APPENDIX A: SIMULATION SETUP

In our 2D (3D) simulations, we model a 2L, x 2L,(x 2L,) domain
with two oppositely directed thin current sheets located at y = &=L,/2.
The current is directed out of the (x, y) simulation plane in the
respective £Z directions, which leads to an asymptotic magnetic
field B = ByX, between —L,/2 >y > L,/2, and B = —ByX on the
outside of the two current sheets. An initially uniform background
Maxwell-Jiittner population of relativistic electrons and positrons,
each with density n = n;, at temperature T = T}, is included to
represent the ambient (upstream) plasma. This population is initially
stationary and does not contribute to the current. Furthermore, we
include a uniform guide magnetic field B along the Z direction.

The current and self-consistent magnetic field profiles are in
pressure balance in a kinetic equilibrium, known as the relativistic
Harris sheet (Harris 1962; Kirk & Skj@raasen 2003). The current is
carried by counter-drifting Maxwell-Jiittner distributions of positrons
and electrons with a uniform temperature 7, boosted into opposite
+Z-directions with a uniform velocity v,. The lab-frame density
profile (of both electrons and positrons) in the Harris current sheet at
y==xL,/2is:

(Al

L,/2
n=(nyg—nyp) sech? (M> ,

8

where ny is the total electron (or positron) density at the centre of
each current sheet. The self-consistent initial reconnecting magnetic
field is:

—L,/2 L,/2
B, = By {1 — tanh <%> + tanh (%)

+ tanh (#) — tanh (W)] . (A2)

We conduct our simulations with periodic boundary conditions, so we
also include the self-consistent magnetic field due to two more current
sheets at y = 3L,/2 and y = —3L,/2 (outside of the simulation box).
This is a small correction due to the periodic boundary conditions
introduced to account for the exponential tail that passes through the
boundary.

This current-sheet setup is unstable to the tearing instability, which
grows naturally from the particle noise without externally imposed
seed fields. In order to facilitate the onset of magnetic reconnection,
the initial thickness of the current sheet § is chosen to be sufficiently
small (of the order of the gyroradius of the particles in the sheet), so
that the tearing instability growth rate approaches the characteristic
cyclotron period (Daughton 1999). We normalize all the length
scales in our simulations to p; = miecz/eBo = yrc/Q,, defined
as the Larmor radius of a background particle with a Lorentz factor
corresponding to the peak of the initial upstream relativistic Maxwell-
Jiittner distribution, yr = 2T,/m.c?, and choose 8 > p;, pro, where
pro = prTo/Ty is the gyroradius of a typical particle in the current
sheet.
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The three main physical parameters that describe the upstream
plasma conditions outside of the current sheets — 7}, np,, and By —
define two important dimension-less parameters: the magnetization
o, and the plasma-B parameter, B, (the ratio of the background
plasma pressure to the magnetic pressure):

By (A3)
UI = o A <7
" 4 Qny)hy,
8n(2nb)Tb 2Tb 1
p = — =T A4
fo=—ps o (A4)

The subscript & refers to the ‘hot’ magnetization o, defined
with the upstream background relativistic enthalpy per parti-
cle i, (Melzani et al. 2013). In the non-relativistic limit (7}, < m,c?),
the enthalpy h, &~ m.c* + 5/2T, is dominated by the rest-mass m1,c>
and so the ‘hot’ magnetization o, approaches the so-called ‘cold’
magnetization
o, = 373 (AS)

T Anny) mec?’
which is often used in the literature. In the ultrarelativistic limit (7},
> m,c?), however, i, & 4Ty, and then o, = 1/(2B.p).

Using the B, parameter allows us to cast the electron and positron
drift speed inside the two Harris current layers, determined by
Ampere’s law, in a convenient form as

ve _ 1 pr ny

c Bup 8 ny—np

(A6)

In addition, the temperature Ty of the drifting plasma in the layer,
determined by the cross-layer pressure balance, can be written as

To Ty va mp

= (A7)
mec?  mec? Bupno —np’

where y; = 1/4/1 — v3/c2. We can thus derive a convenient expres-
sion for the proper drift velocity uy; = y 4v4/c,
prTo _ pro

8 Ty 8
This shows that for constant values of 6/p; and Ty/T}, the drift u, is
also constant.

(A8)

Ug =

APPENDIX B: BOUNDARY FROM KINKING

As we pointed out in the histogram in Fig. 12, there exists a boundary
in n-B space in the 3D case, that corresponds to a maximum value
of n, or equivalently a minimum value of B, following the scaling

Buin o 1. (Bl)

In this appendix, we will sketch a heuristic argument aimed at
understanding the origin of this scaling and will discuss how the
location of the limit is likely determined by unstable kinking modes
that occur for regimes with large densities.

As we discussed in Section 3.2, the upstream background plasma
is frozen into the magnetic field and follows equation (19). In the
inner non-ideal (diffusion) regions near X-points, where magnetic
reconnection takes place, the frozen-in condition is broken, and the
plasma density may move to new regions of n-B space. Once the
plasma and the associated reconnected magnetic flux escape from
the X-point regions and join nearby circularized magnetic islands
(magnetic flux ropes in 3D), the frozen-in condition holds again. In
the outer regions of these flux ropes, assuming that the background
guide magnetic field is weak, the magnetic field strength is dominated
by the in-plane, reconnected component B,,, and the ideal-MHD
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evolution of a given fluid element in the n-B space follows equation
(20) (see Section 4.2). Then, however, as the flux rope grows further
on the outside by accumulating more and more reconnected flux and
by merging with other flux ropes, the given fluid element gets buried
deeper and deeper inside the flux rope and experiences compression.
The magnetic flux also compresses, but this compression has a greater
effect on the out-of-plane (guide) magnetic field component B,
which thus eventually comes to dominate over B,, deep inside the
flux rope’s core. As long as ideal MHD holds in this region during
this compression process (i.e. the rope’s core radius is much greater
than the typical particle gyroradius, and the radiative resistive effects,
discussed in the next two appendices, can be neglected), and before
any 3D instabilities, such as the kink, get excited and cause mixing
of plasma, the joint evolution of the plasma density and the guide
magnetic field B, (which dominates in these regions) follows the
scaling equation (B1). Since the central cores of these flux ropes/
current filaments are also the highest density regions, their behaviour
determines the slope of the high-n compression boundary.

Up to this point, the above discussion was applicable to both 2D
and 3D cases. However, in 2D, the density and magnetic field remain
relatively constant at the centre of plasmoids (i.e. regions where n/n;,
> 10). These regions, therefore, do not occupy much area in n-B
space, as was shown in Fig. 6, and thus do not result in a clear power-
law high-n boundary. In contrast, in 3D, these quantities evolve and
fill the n-B space, in part because of the freedom of motion of plasma
along the third dimension.

We believe that the slope and the location of this boundary
in 3D are governed by the marginal stability condition of the
compressed current-filament (flux-rope) cores to the kink instability.
Approximating these flux ropes as simple cylindrical pinches, we
can invoke the well-known Grad—Shafranov (GS) criterion for the
instability onset, cast in terms of the safety factor g:

1 = By & > 1. (B2)
q(r) B, r

Here, r is the cylindrical radius inside the flux rope’s core, ¢, is its
length in the z-direction, B,,(r) is the in-plane magnetic field, and B,
is the out-of-plane (guide) magnetic field inside the flux rope.

In the following, we shall assume that inside each flux-rope core,
the out-of-plane magnetic field B, and the current density j, are
approximately uniform in r. The in-plane magnetic field as a function
of radius r inside a given core can then be estimated using Ampere’s
law as

27,

B, (r) >~

r, (B3)

i.e. increases linearly with the radius inside the flux rope. This is
important because, once this expression for the in-plane magnetic
field is plugged into the GS instability condition (B2), the radius r
cancels, and the condition becomes

! =2md, 1
q “c¢ B

Next, it is reasonable to assume that the guide magnetic field B,
dominates over (or is at least comparable to) B,, inside plasmoid
cores, and thus provides a good estimate for the total magnetic field
strength B there. Furthermore, we shall assume that counterstreaming
(in z) electrons and positrons contribute equally to the current density
in the z-direction, so that j, = 2env,, where n is the density of
the electrons (or positrons, which we will assume is equal) in the
plasmoid core and v, = B,c is the absolute value of the drift z-
velocity of the current-carrying particles. For simplicity, we shall
view both n and v, as being uniform inside a given plasmoid core.

> 1. (B4)
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We can then recast the marginal kink stability condition ¢ = 1 for
a given flux-rope core in terms of a linear relationship between the
magnetic field B & B, and density »n inside of it as

B
— ~4mel, By . (B5)
n

We can go one step further and express this relationship in terms
of the dimension-less, normalized density and magnetic field, n/n,,
and B/By, that form the axes of our 2D n-B histograms. We then get

B/By _ 1 ¢

I’l/}’lh N 200 Lo

Ba. (B6)

where o, = Bg/(Syrnbmecz) is the initial upstream ‘cold’ magne-
tization [corresponding to the total, electron plus positron, particle
density 2n;, see equation (AS)] and py = m,c*leBy is the nominal
relativistic Larmor radius. The cold magnetization provides the
basic scale for the available upstream magnetic energy per particle,
and then the combination p. = o.p¢ gives the corresponding
characteristic Larmor radius of reconnection-energized particles. For
a relativistically hot upstream plasma, o, = 40 ,(T/m.c?) = 2y o,
and hence

Pe = 0cpo = 20,pL - (B7)
Thus, the kink-based density boundary can be written as

B/By ¢, 1 e
/Bo . & By (B8)
l’l/}’lb 2,0¢

T 4oy o1
Note that o), and p; appearing in the expression on the right-hand
side are just fixed parameters, defined in terms of the initial upstream
plasma conditions; they are, therefore, constant, by definition, within
a given simulation. Thus, in order to see whether the B ~ n
scaling (B1) for the high-density histogram boundary holds, one
just needs to examine 8, and £,.

Empirically, in our simulations we see that different plasmoid
cores reach roughly similar typical peak values of 8, >~ 0.2, with
relatively little variation.

As for estimating the relevant values of £., one can consider two
arguments. First, the upper limit on ¢, is given by the z-extent of the
computational box: £, = 2L,. Then, all the quantities on the right-
hand side of equation (B8) have fixed (i.e. the same for all flux-rope
cores) values for a given simulation, and we thus recover the high-n
histogram-boundary scaling (B1), i.e. B ~ n. Quantitatively, for our
fiducial simulations with o, = 25.76 and 2L, = 117p,, we obtain

B/B,

n/n,

~ By ~02, (B9)

which agrees reasonably well with the location of this boundary for
both radiative and non-radiative cases as can be seen in Figs 12(a)
and (b).

Alternatively, one can argue that kink modes that are particularly
effective in disrupting the compression of a flux rope and causing
efficient plasma mixing, are those with their z-wavelength, £,
comparable to, but perhaps somewhat longer (but not much longer)
than, the flux-rope core’s diameter 2r. The GS condition equation
(B2)is then roughly equivalent to By, ~ B_./2 (c.f. Pritchett & Coroniti
2004). We observe that in our 3D simulations, compressed flux-
rope cores have characteristic radii’> of » ~ 20p;, and hence further
compression is disrupted by kink modes with £, ~ 40p,. Substituting

2See e.g. Fig. 11; note that Fig. 11 shows an earlier time, #c/Ly, = 1.5, whereas
the histogram in Fig. 12 is at a later time, tc/L, = 3. While the flux ropes do
become larger over time, the relevant cores remain about the same size.
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this estimate into equation (BS), we get, for our fiducial o, = 25.76
case,

B/B,

n/np

10
~ — B~ B4/2.5>=0.08. (B10)
Oh

This provides an excellent fit for the boundaries in Figs 12(a) and (b)
and in Fig. 14(a).

After the kink instability gets excited and mixes high- and
low-density regions, we expect the density to be limited to the
stable regions in n-B space, such that the boundary occurs at
marginal stability given by the above condition, as we discussed in
Section 5.2.

APPENDIX C: EFFECTIVE RADIATIVE
RESISTIVITY DERIVATION

In this appendix, we derive an expression for the effective radiative
resistivity n.g, which acts in a manner similar to the standard colli-
sional Spitzer resistivity (Spitzer & Harm 1953; Krall, Trivelpiece &
Kempton 1973) in the magnetic induction equation. This radiative
dissipation is caused by the synchrotron radiation reaction instead of
binary particle collisions.

Just like with the collisional resistivity, the radiative resistivity
can be formulated for an arbitrary orientation of the electric field
relative to the magnetic field. In the case when the two fields are not
strictly aligned (or anti-aligned), the perpendicular component of the
electric field drives an E x B drift of the magnetic field lines; in the
case of a resistively decaying magnetic flux rope with an azimuthal
magnetic field and an axial electric field, this drift is directed inwards,
towards the rope’s centre. However, if the electric force on the
electron (or positron) fluid is balanced by the net radiation-reaction
force F.4, then the E x B drift of the particles is cancelled by
the oppositely directed drift due to the radiative friction force. The
resulting resistive slippage of the plasma particles relative to the
inward-drifting magnetic field lines allows the plasma in a flux-rope
core to remain approximately static while the azimuthal magnetic
flux moves inward and eventually gets destroyed at the flux rope’s
O-point.

In order to obtain a simple estimation for the synchrotron radiative
resistivity quantifying this resistive slippage, we will make a few
assumptions. First, we shall assume that the electron and positron
populations move in opposite directions in response to a superim-
posed electric field E = EX, contributing equally to the resulting
electric current (i.e. the net eTe~ flow is zero). We shall also assume
for simplicity that the electron and positron distributions f, ,(u),
where u is the normalized momentum (proper velocity normalized
to ¢), can be approximated by two drifting ultrarelativistic Maxwell-
Jiittner distribution functions with the same density » and normalized
temperature ®, = T./m.c* > 1. The distributions are boosted along
the flow (%) direction by a drift velocity cf4 = £cf,% (where the ‘+’
sign is for positrons and ‘—’ sign is for electrons), corresponding to a
drift Lorentz factor y; = (1 — B3)7/2 ~ 1 < 0,. In this Appendix,
we ignore any possible spatial dependence of our quantities.

The standard way to formulate a resistivity is to calculate, in a
steady state, how much electric current can be driven by an externally
imposed electric field E, taking into account the presence of friction
on the charge-carrying particles. The steady state is then determined
by balancing the total volumetric electric force on one of the species,
e.g. the electrons, with the volumetric friction force, which, in the
case under consideration here, is the radiation-reaction force per unit
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volume, F 4. Thus, for electrons,

—enE = — Frad = - /d3u fe(u) frad(u)s (Cl)

where the synchrotron radiation-reaction force on an ultrarelativistic
particle is

2 B 2.4 BZ
sy =28 B~ a0 T puinta. ()
T

m2c*
Here B = u/y is the particle’s 3-velocity, « is its pitch angle with re-
spect to the magnetic field B, and oy = (87/3) 2 = (87/3) * /m2c*
is the classical Thomson cross-section, r, = e?/m.c> being the

classical electron radius.
Substituting equation (C2) into equation (C1), we get

2 2
— enE =207 51;37: /d3u B (BB%”) f). (C3)

If we consider a set of coordinates where the applied electric field
and the current are along the £ direction and the magnetic field is in
the x—y plane, we can then express the x-component of the integral
in equation (C3) as

/d3u By [u)zL sin 0 + ui cos? 0 + uﬂ fe(u), Cc4)

where 0 is the angle between the current and the magnetic field, and
where we made use of the assumption that the distribution function
Jfe(u)is even with respect to u,. For an ultrarelativistically hot plasma
with ©, >> 1, we can evaluate the relevant integrals over the assumed
boosted Maxwell-Jiittner electron distribution as follows:

/d3u Beuts folu) = —12n0 By (14 2uj), (C5)
and
/d3u Bt fo(u) = /d3u Bou? fo(u) = —4n@? By, (C6)

where the negative sign appears because the electrons are boosted in
the direction opposite to the current. Then, equation (C3) becomes:

BZ
—enE = —16no7 o— ©7 Ba [1+ (1 +3u})sin’ 0] £. (C7)
T

One can now solve for the electric field in terms of the current density
generated by both the electrons and positrons j = 2enf;c X:

BZ
E=~8"0 " @2[14(143u})sin’6] j. (C8)
cne* 8w

Comparing with Ohm’s law, E = nj, we thus find an effective
radiative resistivity neg:

or Bz

~ 2 2\ in2
et & — 5 — ©7 [1+ (1 +3uj)sin® 6]
64 Fe 2 2N inl
= 57 00 [14 (14 3up)sin’ 6] (€9
c

where o, = B?/8mwnm,c? is the cold magnetization based on the
local values of the magnetic field and total particle density 2n. For
simplicity and since the expression in equation (C9) only varies by
a factor of about 2 when varying the angle 6 (assuming y, ~ 1), let
us average over 6 assuming a uniform, isotropic distribution of these
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angles in 3D space. This isotropic average leads to the estimate:

B? 5
Meff = o 2 e? (g + 2u5>

cner m

8 ’B? 5
= ¢ @2 <* + 21/[5)

3 nm2cS ¢ \3
64 r, 5
AL <§ + zug,) . (C10)

This effective radiative resistivity can act as a dissipative term
in the resistive-magnetohydrodynamics (MHD) magnetic induction
equation,
0B Meir €

a—lz—chEsz(va)—Vx[47T

V x B] s
(C11)

resulting in a simple expression for the radiative magnetic diffusivity:

2
ﬂzrerC ~ ?crgac 95 (g +2u§) ~ %cn o, @3, (C12)
where the last expression is valid for small u,.

Note that all the quantities appearing in the expressions presented
in this appendix, e.g. B, n, ©,, B4, ydz, and o, are local, and so their
values may, in general, be different from the globally defined initial
system parameters that are used elsewhere in the paper.

APPENDIX D: RADIATIVE DISSIPATION
BOUNDARY

In addition to the right boundary of the n-B histogram shown
in Fig. 12, which we discussed in Appendix B, we can offer an
explanation for the upper limit in the n-B space for the radiative
cases, especially promising for the 3D radiative case. We empirically
find a very shallow power law of B ~ n''? which can be seen in both
classical and radiative 3D cases [see Figs 12(a) and (b)]. However, in
the radiative case [Fig. 12(b)], we also observe a somewhat steeper
upper boundary at lower densities, n < 2n,, consistent with the
power-law scaling B ~ n'/®. In this appendix, we will argue that this
upper limit on the magnetic field strength is due to the radiative-
resistive dissipation of the magnetic field in the central cores of
secondary plasmoids filled with low-density background plasma
from the upstream region.

To understand the radiative dissipation of magnetic flux ropes
(current filaments), we first consider resistive decay described by the
resistive-MHD magnetic induction equation (C11). In the collision-
less relativistic plasmas under consideration in this study, the usual
collisional resistivity can be neglected, but the effective radiative
resistivity neg due to synchrotron radiation reaction, introduced in
Appendix C, needs to be considered. The dissipation time-scale #,
can be obtained by comparing the left-hand side of equation (C11)
with the second (diffusive) term on the right-hand side, yielding

1 Neff (32

ty  Amrl,

(D)

where ry, is the gradient length scale of the magnetic fields in
current filaments. Using our estimate (C9) for the effective radiative
resistivity derived in Appendix C, we can express the corresponding
radiative-resistive decay rate, normalized to the global light crossing
time Ly/c, assuming us < 1, as
L 80 Ly

2
Oc¢,loc C)

cty 9 r2, eloc?

D2)
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where we have added the additional subscript ‘loc’ in o joc and ®, joc
in order to distinguish these local quantities, describing a given flux-
rope core, from the globally defined initial parameters describing the
simulation setup such as y = 27T,/m,c>.

This expression for the normalized radiative magnetic decay rate
can be conveniently recast in terms of our simulation parameters as

B?T?

L, 80 1Ly pf By o D3)
n

— Y O Yy — O¢,loc ®
ctg 9 oL r2. Bo

e,loc

The last expression represents the scaling of the normalized radiative-
resistive dissipation rate with the local quantities (B, n, and T) used
in our histograms from Section 3.2. Note that here we used

B? oo, B B o
O, = — = 20 — — X —,
¢,loc Snnmecz WYr Bg n n

where o, y1, By, and n;, are the initial upstream plasma parameters
introduced in Section 2.

Similarly, we define a radiative cooling time 7., as the time for a
typical (thermal) particle with energy y = 20, 1o (corresponding
to the peak of the relativistic Maxwellian distribution), gyrating
perpendicular to the local magnetic field B, to lose an order-unity
fraction of its energy to synchrotron cooling. The ratio of the light
crossing time to the cooling time can be written as

L, 4 ByL,B?

= - ——2=0, o« B*T. D5
oot 3 fs BQ oL Bg Jdoc VYT (D5)

Again, the last expression is the scaling with respect to the space-
dependent parameters used in our histograms from Section 3.2. In our
radiative case, L,/ct.oo = 0.44 based on the background conditions
T, and By, and Ly/ct.o0 = 0.77 for the initial Harris sheet conditions
Ty and By. While these values correspond to only moderate cooling
of the initial plasma throughout the simulation, for the hot plasma
energized by the reconnection process, especially in plasmoid cores,
the cooling rate can be quite significant.

If the cooling rate 1/f.. in a given region is slow compared to the
magnetic field resistive dissipation rate 1/z,, then there is enough time
for the magnetic field to decay before the plasma cools significantly.
This ratio can be expressed as:

Tcool 20

=0 ——L1L . D6
ty 3Gh T, n r\%ar (D6)
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‘We believe that the magnetic field indeed suffers radiative-resistive
dissipation in certain localized regions in the parameter regime of this
present paper. As shown in Section 5.2, the magnetic field strength
in regions with density n/n, < 2 seems to be limited by the power-
law boundary B ~ n'/®. For the low-density secondary plasmoids in
the 3D case, where ry,/p; >~ 7, n/ln, >~ 2, BIBy ~ 1.5, T/T, ~ 1,
and yg,10c > 1, we find the ratios Ly/ct; ~ 1.8 and Ly/ct.o0 == 1 (ie.
teoot/ts = 1.8). Therefore, there is marginally enough time for the
magnetic dissipation to become important and limit the compression
of the magnetic field. In the 2D case, the parameters are about the
same, and thus magnetic dissipation should also play a role in limiting
magnetic field amplification. However, in this case, we do not observe
the very clear boundaries in n-B space found in 3D to help confirm
this hypothesis.

When, for a given flux-rope core, the normalized resistive dissipa-
tion rate (D3) exceeds unity (and at the same time also exceeds the
normalized radiative cooling rate, 7; < f.001), the magnetic field has
sufficient time to dissipate within a light-crossing time (i.e. the flux
rope’s characteristic dynamical lifetime, enough time for a power-law
boundary in n-B space to develop). The magnetic field’s amplification

by compression is then checked by the effective radiative-resistive
decay. To evaluate the location of the corresponding histogram

boundary in n-B space, we will assume, based on the numerical
observation from Fig. 12(d), that T ~ n'”3, a scaling that is expected
from simple adiabatic compression for a relativistic plasma. As we
have argued above, it is justifiable to ignore radiative cooling in
these regions because the radiative-resistive decay of the magnetic
field occurs faster than the cooling of the plasma. This adiabatic
temperature scaling was also confirmed by checking the average local
temperature at the boundary in n-B space for n < n,, (not presented),
giving a value of ®,_;,. & 5(n/n,)"?, just slightly hotter than a scaling
based on the initial background temperature 7, = 4m,c? at n = ny.
Then, substituting the T ~ n'? scaling into equation (D3), and setting
the normalized resistive dissipation rate to be constant and of order
unity, we obtain the scaling for the maximum magnetic field,

Bunax ~ n'/°. (D7)

This scaling provides a good match with the upper boundary of the
n-B histogram observed in Fig. 12(b).

This paper has been typeset from a TEX/IATEX file prepared by the author.
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