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Abstract We consider a class of single-director Cosserat shell models account-
ing for both curvature and finite mid-plane strains. We assume a polyconvexity
condition for the stored-energy function that reduces to a physically correct
membrane model in the absence of bending. With appropriate growth condi-
tions, we establish the existence of energy minimizers. The local orientation of
a minimizing configuration is maintained via the blowup of the stored energy
as a version of the local volume ratio approaches zero. Finally, we specialize
our results to three constrained versions of the theory commonly employed in
the subject.
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1 Introduction

We consider a class of single-director Cosserat shell models, accounting for
both curvature and finite mid-plane strains. We are motivated in part by the
wrinkling of highly stretched, thin elastomer sheets, e.g., [10], [12]. In addi-
tion, shell models incorporating finite mid-plane strains are widely available in
commercial codes, e.g., as employed in [12]. However, most rigorous existence
results for shells rely on small-thickness expansions from 3D elasticity, yield-
ing theories characterized by small (or even zero) mid-plane strains, e.g., [7].
These are inadequate for predicting the phenomena we have in mind. Instead,
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we provide an existence theorem for a general class of direct shell models,
incorporating a physically correct mid-plane or membrane energy. Local ori-
entation of configurations is maintained via the blowup of the energy density
function as a version of the local volume ratio approaches zero. As such, we
obtain global energy minimizers. However, as in the case of bulk nonlinear
elasticity, we are generally unable to ensure that these correspond to weak
solutions of the Euler-Lagrange equilibrium equations.

A general approach to polyconvexity in the context of higher-order elastic-
ity problems is presented in [3]. Among other examples, the set-up for single-
director Cosserat continua is outlined there. On that basis, the complete details
for energy minimization in single-director Cosserat shells are presented in [5].
Local orientation preservation of minimizers is carried out in the same manner
indicated above. However, the model in [5] includes a “relaxed” mid-plane en-
ergy density. That is, in the absence of bending energy, the reduced membrane
density maintains polyconvexity in the sense of [3]. Apparently, this is equiv-
alent to some type of tension-field theory [13], and the inclusion of bending
energy is somewhat redundant. In any case, the model precludes wrinkling.
Here we present a modified definition of polyconvexity such that, in the ab-
sence of bending energy, the membrane energy density is not rank-one convex
(much less polyconvex). At the same time, our membrane energy is polycon-
vex when restricted to planar 2D nonlinear elasticity. Among other things,
the incorporation of bending energy in this model, enables the resolution of
wrinkling patterns. We elaborate on this in Section 6.

The outline of the work is as follows: We formulate the class of problems
considered and state our hypotheses in Section 2. The latter includes growth
conditions, a polyconvexity condition distinct from that employed in [5], and
the blow-up of the stored-energy function as a measure of the local volume
ratio approaches zero. In Section 3, we establish weak lower semicontinuity of
the energy functional, and we prove our existence theorem in Section 4. We
specialize our results to three constrained versions of single-director theories in
Section 5: (1) the so-called special theory characterized by a unit director field
(shearable without thickness change); (2) the director field is normal to the
surface (unshearable with thickness change); (3) the classical Kirchhoff-Love
hypothesis whereby the director field coincides with a unit normal field on the
surface (unshearable without thickness change). We make some concluding
remarks in Section 6.

2 Problem Formulation

We let R™ denote both Euclidean point space and its translate or tangent
space, and we henceforth make the identification R? =2 span{e;,es}, where
{e1,ea,e3} denotes the standard orthonormal basis for R3. Let £2 C R? be
an open bounded domain with a strongly locally Lipschitz boundary 92. We
associate {2 with a reference configuration for a material surface in a “flat”
state as follows: A configuration is specified by two fields on £2: a deformation
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f : 2 — R? and a director field d : 2 — R3?; the reference configuration
corresponds to f(z) = x and d(z) = e3. The latter need not be stress free.
The gradients or total derivatives of f, d at x € {2 are denoted F'(z) := V f(x),
G(z) := Vd(z) € L(R?,R3), respectively. We further require that a smooth
configuration satisfy the local orientation condition

J(d, V) :=d-(f1x f2)>0in 2, (1)

where f ., o = 1,2, denote partial derivatives and a x b is the usual right-
handed cross product in R3. We list the set of 15 independent 2x2 sub-
determinants, {m;(F,G)}}2,, of the 2x6 gradient matrix [FT | GT], which
play an important role in what follows:
my = Fo1F3o — FaoF3y
mg = F11Fa — FiaFn
ms = F11Gaz — F12G21
my = F51G12 — FaaGoy
mg = F21G32 — FaaG3
mi1 = F31Gaz — F32Gay
mi3 = G21G32 — G22Gs1
mis = G11Gaz — G12Ga1

mg = F31F12 — F30F11

my = F11G12 — F12G11
me = F11G32 — F12G3;
mg = F21Ga2 — FaaGoy
mio = F31G12 — F32G11
mia = F31G32 — F32G3;
m1g = G12G31 — G11G32

We assume that the surface is equipped with a stored-energy function,
W(z,d, F,G), W : 2 x OF x R®*? — [0, c0), satisfying objectivity:

W(z,Qd,QF,QG) =W (z,d,F,G) for all Q € SO(3),
where O := {(d,F) e R® x R¥*?: J > 0}.
We further assume:

(H1) There exist constants p,q,r > 4/3, s > 1, C; > 0 and C5 € R such that

3 15
W(.’L‘,(LF,G) >y {'Flp + |G|q +Z|ml|r +Z ml|s} + Cs.
=1 =4

(H2) There is a C* function @ : 2 x R3 x R3*2 x R3*2 x (0, 00) x R'2 — [0, o0),
such that

(F,G,J,my,...,mi5) — P(z,d, F,G, J,my,...,mi5) is convex  (2)

and W(z,d, F,G) = §(x,d, F, G, J,my,...,mi5).
(H3) & — +o0 as J — 0.

Let LP(£2,R?) denote the space of LP-integrable 3-vector valued functions
on 2 and let WhP(2,R3) C LP(£2,R?) denote the Sobolev space of vector
fields whose weak partial derivatives are also LP-integrable. When the context
is clear, we will avoid writing the domain and co-domain in our notation and
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simply refer to these spaces as L? and W1P. The norms on these spaces are
defined by

”.f”ljip 0.R3) — |.ﬂp dz,
(£2,R3) o

£ Wiz = 1F gz + [ V517 o
Consider a subset I C 0f2 with positive length, i.e., |I'|;,, > 0, and define
WEP(2,R3) = {u € WHP(2,R3) : u =0 a.c. on I'},

where u on the boundary is understood in the sense of trace. We define the
admissible set

A:={(f,d) e W'P(2,R?) x WH(Q,R3) :m; € L"(2),1=1,2,3;
my € L5(02),1=4,..,15; J € L'(2); J > 0 a.e. in £;
f—fo e WP(2,R%); d —d, € WL(2,R)},

where (f,,d,) € WHP(£2,R?) x Wh4(£2,R?) are prescribed and satisfy d, -
(fo1 X fo2) >0 ace.

Remark 1 We note that when p,q > 2, a weakened version of (H1), viz.,
W(z,d,F,G) > Ci {|F" + |G|} + Cs,

is sufficient to establish the results that follow. In this case, the requirement
my € L™ (or L*®) can be dropped from the definition of A as well.

The total potential energy is given by
Elf.d = [ W(e.d(@),Vf(). V(o) do - L(F.d) 3)

where L is a bounded linear functional on W1P(§2,R3) x Wh4(£2,R3) repre-
senting “dead” loading. For example,

L(f,d):/n(b-f+g-d)dar:—&—/rc[f-f—i—/J,-d]ds7 (4)

where b,g € L*>®(2,R3), 7, u € L>(I'°,R3) are prescribed loadings and I'® :=
ON\T.
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3 Weak Lower Semicontinuity

We show that (H2) implies weak lower semicontinuity of F[-] in the following
sense:

Proposition 1 The energy functional (3) is weakly lower semicontinuous,
i.e.,

liminf E[f* d*] > E[f,d],

k—o0
whenever ¥ — f weakly in W', d*¥ — d weakly in Whi, J¢ .=
J@F VR =~ J = Jd,Vf) with J*J > 0 ae., and my =
my(VFF VdF) — my .= m(Vf,Vd), weakly in L', 1 = 4,...,15, for p,q > 1.

Proof Since L is weakly continuous, we focus on the internal energy
I[f,d] = / W(z,d,Vf,Vd)dzx
10

Assume (by passing a subsequence, if necessary) that

lim I[f* d"] = hmmfl[f]€ d"].

k—o0
From compact embedding [4], d* — d in W14 = d* — d strongly in L¢.
Consequently, for some subsequence (without relabeling) d* — d pointwise
a.e. By Egorov’s theorem, for € > 0, there is a set U, with |2\ U| < € such
that d* — d uniformly on U,.. We also define 7, := {x € 2 : |d|+|V f|+|Vd| <
1/e, J > €} and 2, := U.NT,. Hence, |2\ 2] — 0 as e — 0. By virtue of (H2),
we then find

/W(x,dk,ka,de)dxz W(z,d", Vv £k vd")dz
2 2

:/ ( dk,ka,de,Jk,m4,...,m15)dx

/ x,d* Vf Vd,J my,..,ms)ds
/ Dp®(z,d* VF,Vd, Jmy,..,mis) - (V¥ - Vf)dz
-Qs

+/ Dg®(z,d", V£, Vd,J my, .., mys) - (Vd' — Vd)dzx
Qs

+/ D;®(x,d*, YV, Vd,J my,..,ms)(J* = J)de
(9]

€

/ ZDmp z,d* V£, Vd,J, my,...,mis)(mf —my)dz, (5)

Qe 1=y

where, Dy, p = F, G, J,my, ..., m15 denotes the partial derivatives.
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In the limit & — oo, weak convergence implies that the last four in-
tegrals in the final inequality of (5) all vanish, while the first converges
to fQ xeW(z,d,Vf,Vd)dz, where x(.y denotes the characteristic function.
Taking € — 0, the desired result then follows from the monotone convergence
theorem, and hence, limy o0 I[fr, di] > [, W(z,d,Vf,Vd)dx = I[f,d]. O

4 Energy Minimizers

Our main result is the following:

Theorem 1 Suppose that A is non-empty with inf 4 E[f,d] < co. Then there
exists (f*,d*) € A such that E[f*,d*] = inf o E[f,d].

Proof In this proof, we will focus on the more technical case when 4/3 <
p,q < 2. Otherwise, the arguments simplify.
Integrating the growth condition (H1) yields

/ W(z,d,Vf,Vd)dx
0

3 15
> {IIVfII’ip IV, + Y Il + > IIszISLs} +Cy

=1 =4

A generalized Poincaré inequality [11] reads

/ [of? dm<C{/ |Vol? dx—i—‘/ Tvda
7 2 r

where T : W1P(£2) — LP(9£2) is the trace operator. From this, we find

p
}, 1<p<oo,

/ W(z,d,Vf,Vd)dx
Q

3 15
>C {||f||§v1,p o + D e+ IIszSLs} +C3,
=1 =4

with constants C] > 0 and C%. Furthermore, since L(f, d) is a bounded linear
functional on WP x W4 we have

IL(f,d)| < Cs ([[fllwre + 1 dllypra) 5

Since p, g > 1, the last two inequalities yield

3 15
Elf,d>C {lfllv’vl,p o+ lmallze + ||mzllis} +D, (6)
=1 =4

where C' > 0 and D are constants.
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Let {(f*,d*)} C A be a minimizing sequence for E[], i.e.,

o k k .
klgI;oE[f ,d¥] = (f}(ril)feAE[f,d].

As before, let mF := m;(Vf¥,VdF), 1 = 1,...,15. By virtue of (6), we see that
the sequences {f*}, {d*}, {mF};_, and {mF}13, are bounded in WhP, Wha,
L™ and L®, respectively, each of which is a reflexive Banach space. Hence, there
exist f* e WP, d* e W4, oy € L" 1 =1,2,3and a; € L* | = 4,...,15 and
subsequences (not relabeled) converging weakly, i.e. f¥ — f* d*¥ — d*, and
mF — oy [4]. For p = ¢ = 2, the determinants my [ = 1,..., 15 are well-defined
L' functions, while for 4/3 < p < 2 and/or 4/3 < q < 2, they should be
interpreted in the distributional sense, e.g.,

1 By = TR e
Eod /{ 1 TH TP g vy e o (0
/Qm“& v 2)o |=diy diy | [dY] [ee v (@)

In any case, it is well known that each of these converge as distributions [6],
ie.,

/ miedr — | mjodr Vo€ CX(9),
Q 2

where m} 1= m(Vf*,Vd*), l =1,...15. Comparing these to the weak conver-
gence results above, we conclude that

mf —my in L", for 1 =1,2,3, and in L®, for [ =4,...,15.

We now consider the convergence of J* := J(d*, Vf¥). We first observe
that

fﬁ X j"fC = mbe; +mhey + mbes. (7)

Thus fﬁ X f’g — f1 x f% weakly in L" for r > 4/3. In addition, dk — d*

weakly in W14 implies strong convergence in LY for 1< q < ¢* where

= 22Tq 1<g<2,
' 00 q=2.

Keeping in mind that ¢,r > 4/3, if ¢ > r, we choose ¢ = r/(r — 1) and if
r > q, we choose ¢ = q/(q — 1). In either case, [,d" - (f& x f&)pde —
fQ d* - (f1 x f5)ede for all p € L=, ie, JF —~ J* weakly in L'.

Next, we show that (f*,d*) € A. First, we claim that J* > 0 a.e. in
(2. By virtue of Mazur’s theorem, we can construct a sequence of convex
combinations of the sequence {J*} that converges strongly in L' to J*. Thus,
there is a subsequence converging to J* a.e. in §2. Since each J* > 0 a.e., we
deduce that J* > 0 a.e. Now suppose that that J* = 0 a.e. in U C 2, where
|| > 0. Employing xy as a test function, the weak convergence of J* implies
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J¥ — 0 strongly in L*(i). Thus, for a subsequence (not relabeled), J* — 0
a.e. in Y. But then (H3) and Fatou’s lemma imply

liminf E[f7, d’] > / lim W (z,d’(z), VF (x),Vd’(x))dz + C = oo,
j—o0

u J—00

which contradicts our hypothesis that inf 4 E[f, d] < oo. Hence, J* > 0 a.e. in
. In addition, f* — f, € W}’p (£2,R?), which is a closed linear subspace of
WP, Thus, W? is weakly closed [4], and f¥—f, — f*— f, € W". Similarly,
d* —d, € W9 We conclude that (f*,d*) € A.

To complete the proof, we combine the results above with Proposition 1 to
conclude E[f*,d*] < liminf;_,, E[f¥,d*] with (f*,d*) € A, i.e., E attains
its infimum on A. O

5 Constrained Minimizers

We now explore three different constrained versions of the theory that are
common in the study of nonlinearly elastic shells.

5.1 Special Theory

Here the director field is constrained to have unit length, i.e.,
|d| =1 a.e. in £2. (8)
Again, we assume (H1)-(H3) and incorporate (8) into the admissible set:

A:={(f,d) e WP(2,R3) x Wh(,R3) :my € L"(2),1=1,2,3;
my € L*(02), 1 =4,...,15; J € L'(2);
J>0a.e. in 2;|d| =1 ae. in {2

f—fo e WEP(2,R%); d —d, € Wh(2,R?)},

where (f,,d,) € WHP(£2,R3) x W4(£2,R3) are prescribed and |d,| = 1 and
do - (fo1 X fo2) >0 ae.

The existence of a minimizer follows precisely as before in Theorem 1. We
only need to show that (8) is satisfied. This follows from compact embedding:
For a minimizing sequence, we have d* — d* in W' = dF — d* in L1.
Thus there is a convergent subsequence d*» — d* a.e. Since ‘dk"| =1a.e., we
have |d*| =1 a.e.
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5.2 Normal Director Field

We now constrain the director field to be normal to the surface (allowing its
length to be variable), viz.,

d-fo=0aeinf2, a=12 (9)
Again, we assume (H1)-(H3) and incorporate (9) into the admissible set:

A:={(f,d) e W"P(2,R*) x WH(2,R*) :my € L", 1 =1,2,3;
mp € L5(2),1=4,..,15; J € L'(2); J > 0 a.e. in 2;
d-fo=0ae in 2, a=1,2;
f—fo e WP(QR?); d—d, € WI(2,R%)},
where (f,,d,) € WhP(2,R3) x W14(2, R?) are prescribed with the property
that d, - fo.o =0 for a« =1,2 and d, - (fo,1 X for2) > 0 a.e.
Existence of a minimizer again follows as before. In this case, we only

need to show that (f*,d*) satisfies (9). Without loss of generality, suppose
p < ¢, then we have fffJK — f%, weakly in LP and by compact embedding

d* — d* in L7 1. The case of p > q works similarly. By admissibility, 0 =
Jodb-frode — [,d*- fiodaforall p € C°(£2), a = 1,2. By the theorem
of DuBois-Reymond [11], we conclude that (f*,d*) satisfies (9).

5.3 Kirchhoff-Love Theory

In this classical case, the director field is required to coincide with the unit nor-
mal field to the deformed surface. This is usually referred to as the Kirchhoft-
Love theory.

The constraints are now

d-fo=0 aeinf2 a=1,2;
|d| =1 a.e. in 2.
We modify the admissible set to accommodate these:
A:={(f,d) € W"P(2,R3) x WH(02,R3) :my € L"(2),1=1,2,3;
my € L*(02),1=4,..,15; J € L*(2); J > 0 a.e. in £2;
d-fo=0ae in,a=12;|d =1a.e. in §2;
f—fo e WP(Q,R); d—d, € WhU(02,R)},
where (f,,d,) € W1P x W14 are prescribed and satisfy d, - fo.o = 0 for
a=12|d,|=1and d, - (fo1 X fo2) >0 ae.
The existence of a minimizer follows as before, and the arguments used

in Section 5.1 and 5.2 imply |d*| = 1 a.e. and d* - f7, = 0 ae, a = 1,2,
respectively.
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6 Concluding Remarks

In our notation, the stored-energy function employed in [5] takes the form
W(ZU, d, .1'717 G) = g/(ZII, d, F, C:7 M1y eeny m15), where (F, G, mi, ..., m15) — v
is convex. In the absence of bending energy, the membrane energy depends
only on the deformation gradient, i.e., W(x,F) = @(m,F,ml,mg,mg) with
(F,m1,my, ms) — ¥ convex. That is, W is polyconvex as in [3]. As noted in
Section 1, this is apparently equivalent to some kind of tension-field theory,
i.e., compression is replaced by zero stress. In contrast, the membrane version
of (2) reduces to W(z, F) = &(x, F,J), with (F,J) — & convex. Here, J
denotes the local area ratio of the surface, i.e.,

Ji=n-(f1x f2)=I|f1x fol = [det(FTF)]'/?,

where n denotes the unit normal field in the same direction as f,; x f 2. Observe
that W is polyconvex for planar deformations only, viz., F' € R2*2. Indeed,
it can be shown that W is not even rank-one convex for F € R3*2. Among
other things, this is the correct model for predicting wrinkling: In the absence
of bending energy, arbitrarily finer and finer spatial oscillations (wrinkles) are
allowed to develop in lieu of sustained compression. Such behavior, in turn, is
penalized by bending energy, enabling the resolution of wrinkling amplitudes
and wavelengths. Also, compressive stresses are not generally zero.

A rigorous existence theorem for the Kirchhoff-Love model, based on energy
minimization, is presented in [1]. Local orientation preservation is maintained
via a blow-up argument similar to that employed here and in [5], except that
the volume ratio employed in [1] takes into account the surface thickness via the
Cosserat ansatz, cf. [2]. The definition of polyconvexity used in [1], involving
only G, F' and the volume ratio just described, is much more restrictive than
that employed in this work. However, when reduced to its membrane part
(ignoring thickness) it agrees with ours. Also, in contrast to our approach based
on constraints, the unit normal field is directly parametrized by the surface
deformation in [1]. A distinction between those results and those of Section 5.3
becomes apparent upon taking a formal first variation (not rigorous): Our
Euler-Lagrange equations at a minimizer would involve Lagrange multiplier
fields enforcing the constraints (representing transverse shears and through-
thickness resultants), whereas the latter would be effectively eliminated from
the Euler-Lagrange equations associated with [1].

We also mention that [8] is comparable to our results from Section 5.2.
In the former, the normal director field (not necessarily unit) is directly
parametrized by the surface deformation. This entails a full second-gradient
surface theory, while local orientation is preserved in a manner similar to that
presented here. For growth conditions on the second gradient with p > 2, the
first variation can be taken rigorously at a minimizer, leading to the weak form
of the Euler-Lagrange equations. This follows from the same construction used
in [9]. Interestingly, it is not at all clear how to do so based on the results of
Section 5.2.
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