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Abstract We consider a class of single-director Cosserat shell models account-
ing for both curvature and finite mid-plane strains. We assume a polyconvexity
condition for the stored-energy function that reduces to a physically correct
membrane model in the absence of bending. With appropriate growth condi-
tions, we establish the existence of energy minimizers. The local orientation of
a minimizing configuration is maintained via the blowup of the stored energy
as a version of the local volume ratio approaches zero. Finally, we specialize
our results to three constrained versions of the theory commonly employed in
the subject.

Keywords Nonlinear elasticity · Polyconvexity · Energy minimization ·
Plates and Shells

Mathematics Subject Classification (2020) 74B20 · 35D99 · 49K20

1 Introduction

We consider a class of single-director Cosserat shell models, accounting for
both curvature and finite mid-plane strains. We are motivated in part by the
wrinkling of highly stretched, thin elastomer sheets, e.g., [10], [12]. In addi-
tion, shell models incorporating finite mid-plane strains are widely available in
commercial codes, e.g., as employed in [12]. However, most rigorous existence
results for shells rely on small-thickness expansions from 3D elasticity, yield-
ing theories characterized by small (or even zero) mid-plane strains, e.g., [7].
These are inadequate for predicting the phenomena we have in mind. Instead,
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we provide an existence theorem for a general class of direct shell models,
incorporating a physically correct mid-plane or membrane energy. Local ori-
entation of configurations is maintained via the blowup of the energy density
function as a version of the local volume ratio approaches zero. As such, we
obtain global energy minimizers. However, as in the case of bulk nonlinear
elasticity, we are generally unable to ensure that these correspond to weak
solutions of the Euler-Lagrange equilibrium equations.

A general approach to polyconvexity in the context of higher-order elastic-
ity problems is presented in [3]. Among other examples, the set-up for single-
director Cosserat continua is outlined there. On that basis, the complete details
for energy minimization in single-director Cosserat shells are presented in [5].
Local orientation preservation of minimizers is carried out in the same manner
indicated above. However, the model in [5] includes a “relaxed” mid-plane en-
ergy density. That is, in the absence of bending energy, the reduced membrane
density maintains polyconvexity in the sense of [3]. Apparently, this is equiv-
alent to some type of tension-field theory [13], and the inclusion of bending
energy is somewhat redundant. In any case, the model precludes wrinkling.
Here we present a modified definition of polyconvexity such that, in the ab-
sence of bending energy, the membrane energy density is not rank-one convex
(much less polyconvex). At the same time, our membrane energy is polycon-
vex when restricted to planar 2D nonlinear elasticity. Among other things,
the incorporation of bending energy in this model, enables the resolution of
wrinkling patterns. We elaborate on this in Section 6.

The outline of the work is as follows: We formulate the class of problems
considered and state our hypotheses in Section 2. The latter includes growth
conditions, a polyconvexity condition distinct from that employed in [5], and
the blow-up of the stored-energy function as a measure of the local volume
ratio approaches zero. In Section 3, we establish weak lower semicontinuity of
the energy functional, and we prove our existence theorem in Section 4. We
specialize our results to three constrained versions of single-director theories in
Section 5: (1) the so-called special theory characterized by a unit director field
(shearable without thickness change); (2) the director field is normal to the
surface (unshearable with thickness change); (3) the classical Kirchhoff-Love
hypothesis whereby the director field coincides with a unit normal field on the
surface (unshearable without thickness change). We make some concluding
remarks in Section 6.

2 Problem Formulation

We let Rn denote both Euclidean point space and its translate or tangent
space, and we henceforth make the identification R2 ∼= span{e1, e2}, where
{e1, e2, e3} denotes the standard orthonormal basis for R3. Let Ω ⊂ R2 be
an open bounded domain with a strongly locally Lipschitz boundary ∂Ω. We
associate Ω with a reference configuration for a material surface in a “flat”
state as follows: A configuration is specified by two fields on Ω: a deformation
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f : Ω → R3 and a director field d : Ω → R3; the reference configuration
corresponds to f(x) ≡ x and d(x) ≡ e3. The latter need not be stress free.
The gradients or total derivatives of f ,d at x ∈ Ω are denoted F (x) := ∇f(x),
G(x) := ∇d(x) ∈ L(R2,R3), respectively. We further require that a smooth
configuration satisfy the local orientation condition

J(d,∇f) := d · (f,1 × f,2) > 0 in Ω, (1)

where f,α, α = 1, 2, denote partial derivatives and a × b is the usual right-
handed cross product in R3. We list the set of 15 independent 2×2 sub-
determinants, {ml(F ,G)}15l=1, of the 2×6 gradient matrix

[
F T | GT

]
, which

play an important role in what follows:

m1 = F21F32 − F22F31

m3 = F11F22 − F12F21

m5 = F11G22 − F12G21

m7 = F21G12 − F22G21

m9 = F21G32 − F22G31

m11 = F31G22 − F32G21

m13 = G21G32 −G22G31

m15 = G11G22 −G12G21

m2 = F31F12 − F32F11

m4 = F11G12 − F12G11

m6 = F11G32 − F12G31

m8 = F21G22 − F22G21

m10 = F31G12 − F32G11

m12 = F31G32 − F32G31

m14 = G12G31 −G11G32

We assume that the surface is equipped with a stored-energy function,
W (x,d,F ,G), W : Ω ×O+ × R3×2 → [0,∞), satisfying objectivity:

W (x,Qd,QF ,QG) ≡ W (x,d,F ,G) for all Q ∈ SO(3),

where O+ :=
{
(d,F ) ∈ R3 × R3×2 : J > 0

}
.

We further assume:

(H1) There exist constants p, q, r > 4/3, s > 1, C1 > 0 and C2 ∈ R such that

W (x,d,F ,G) ≥ C1

{
|F |p + |G|q +

3∑
l=1

|ml|r +
15∑
l=4

|ml|s
}

+ C2.

(H2) There is a C1 function Φ : Ω×R3×R3×2×R3×2×(0,∞)×R12 → [0,∞),
such that

(F ,G, J,m4, ...,m15) 7→ Φ(x,d,F ,G, J,m4, ...,m15) is convex (2)

and W (x,d,F ,G) ≡ Φ(x,d,F ,G, J,m4, ...,m15).
(H3) Φ → +∞ as J → 0+.

Let Lp(Ω,R3) denote the space of Lp-integrable 3-vector valued functions
on Ω and let W 1,p(Ω,R3) ⊂ Lp(Ω,R3) denote the Sobolev space of vector
fields whose weak partial derivatives are also Lp-integrable. When the context
is clear, we will avoid writing the domain and co-domain in our notation and
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simply refer to these spaces as Lp and W 1,p. The norms on these spaces are
defined by

∥f∥pLp(Ω,R3) =

∫
Ω

|f |p dx,

∥f∥pW 1,p(Ω,R3) = ∥f∥pLp(Ω,R3) +

∫
Ω

|∇f |p dx.

Consider a subset Γ ⊂ ∂Ω with positive length, i.e., |Γ |∂Ω > 0, and define

W 1,p
Γ (Ω,R3) = {u ∈ W 1,p(Ω,R3) : u = 0 a.e. on Γ},

where u on the boundary is understood in the sense of trace. We define the
admissible set

A := {(f ,d) ∈ W 1,p(Ω,R3)×W 1,q(Ω,R3) : ml ∈ Lr(Ω), l = 1, 2, 3;

ml ∈ Ls(Ω), l = 4, ..., 15; J ∈ L1(Ω); J > 0 a.e. in Ω;

f − fo ∈ W 1,p
Γ (Ω,R3); d− do ∈ W 1,q

Γ (Ω,R3)},

where (fo,do) ∈ W 1,p(Ω,R3) × W 1,q(Ω,R3) are prescribed and satisfy do ·
(fo,1 × fo,2) > 0 a.e.

Remark 1 We note that when p, q > 2, a weakened version of (H1), viz.,

W (x,d,F ,G) ≥ C1 {|F |p + |G|q}+ C2,

is sufficient to establish the results that follow. In this case, the requirement
ml ∈ Lr (or Ls) can be dropped from the definition of A as well.

The total potential energy is given by

E[f ,d] =

∫
Ω

W (x,d(x),∇f(x),∇d(x)) dx− L(f ,d), (3)

where L is a bounded linear functional on W 1,p(Ω,R3) ×W 1,q(Ω,R3) repre-
senting “dead” loading. For example,

L(f ,d) =

∫
Ω

(b · f + g · d) dx+

∫
Γ c

[τ · f + µ · d] ds, (4)

where b, g ∈ L∞(Ω,R3), τ ,µ ∈ L∞(Γ c,R3) are prescribed loadings and Γ c :=
∂Ω \ Γ .
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3 Weak Lower Semicontinuity

We show that (H2) implies weak lower semicontinuity of E[·] in the following
sense:

Proposition 1 The energy functional (3) is weakly lower semicontinuous,
i.e.,

lim inf
k→∞

E[fk,dk] ≥ E[f ,d],

whenever fk ⇀ f weakly in W 1,p, dk ⇀ d weakly in W 1,q, Jk :=
J(dk,∇fk) ⇀ J := J(d,∇f) with Jk, J > 0 a.e., and mk

l :=
ml(∇fk,∇dk) ⇀ ml := ml(∇f ,∇d), weakly in L1, l = 4, ..., 15, for p, q ≥ 1.

Proof Since L is weakly continuous, we focus on the internal energy

I[f ,d] :=

∫
Ω

W (x,d,∇f ,∇d) dx.

Assume (by passing a subsequence, if necessary) that

lim
k→∞

I[fk,dk] = lim inf
k→∞

I[fk,dk].

From compact embedding [4], dk ⇀ d in W 1,q =⇒ dk → d strongly in Lq.
Consequently, for some subsequence (without relabeling) dk → d pointwise
a.e. By Egorov’s theorem, for ϵ > 0, there is a set Uϵ with |Ω \ Uϵ| ≤ ϵ such
that dk → d uniformly on Uϵ. We also define Υϵ := {x ∈ Ω : |d|+|∇f |+|∇d| ≤
1/ϵ, J ≥ ϵ} and Ωϵ := Uϵ∩Υϵ. Hence, |Ω \Ωϵ| → 0 as ϵ → 0. By virtue of (H2),
we then find∫

Ω

W (x,dk,∇fk,∇dk) dx ≥
∫
Ωϵ

W (x,dk,∇fk,∇dk) dx

=

∫
Ωϵ

Φ(x,dk,∇fk,∇dk, Jk,m4, ...,m15) dx

≥
∫
Ωϵ

Φ(x,dk,∇f ,∇d, J,m4, ...,m15) dx

+

∫
Ωϵ

DFΦ(x,d
k,∇f ,∇d, J,m4, ...,m15) · (∇fk −∇f) dx

+

∫
Ωϵ

DGΦ(x,dk,∇f ,∇d, J,m4, ...,m15) · (∇dk −∇d) dx

+

∫
Ωϵ

DJΦ(x,d
k,∇f ,∇d, J,m4, ...,m15)(J

k − J) dx

+

∫
Ωϵ

15∑
l=4

Dml
Φ(x,dk,∇f ,∇d, J,m4, ...,m15)(m

k
l −ml) dx, (5)

where, Dρ, ρ = F ,G, J,m4, ...,m15 denotes the partial derivatives.
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In the limit k → ∞, weak convergence implies that the last four in-
tegrals in the final inequality of (5) all vanish, while the first converges
to

∫
Ω
χΩϵ

W (x,d,∇f ,∇d) dx, where χ(·) denotes the characteristic function.
Taking ϵ → 0, the desired result then follows from the monotone convergence
theorem, and hence, limk→∞ I[fk,dk] ≥

∫
Ω
W (x,d,∇f ,∇d) dx = I[f ,d]. ⊓⊔

4 Energy Minimizers

Our main result is the following:

Theorem 1 Suppose that A is non-empty with infA E[f ,d] < ∞. Then there
exists (f∗,d∗) ∈ A such that E[f∗,d∗] = infA E[f ,d].

Proof In this proof, we will focus on the more technical case when 4/3 <
p, q ≤ 2. Otherwise, the arguments simplify.

Integrating the growth condition (H1) yields∫
Ω

W (x,d,∇f ,∇d) dx

≥ C1

{
∥∇f∥pLp + ∥∇d∥qLq +

3∑
l=1

∥ml∥rLr +
15∑
l=4

∥ml∥sLs

}
+ C ′

2

A generalized Poincaré inequality [11] reads∫
Ω

|v|p dx ≤ C

{∫
Ω

|∇v|p dx+

∣∣∣∣∫
Γ

Tv da

∣∣∣∣p} , 1 ≤ p < ∞,

where T : W 1,p(Ω) → Lp(∂Ω) is the trace operator. From this, we find∫
Ω

W (x,d,∇f ,∇d) dx

≥ C ′
1

{
∥f∥pW 1,p + ∥d∥qW 1,q +

3∑
l=1

∥ml∥rLr +

15∑
l=4

∥ml∥sLs

}
+ C ′′

2 ,

with constants C ′
1 > 0 and C ′′

2 . Furthermore, since L(f ,d) is a bounded linear
functional on W 1,p ×W 1,q we have

|L(f ,d)| ≤ C3 (∥f∥W 1,p + ∥d∥W 1,q ) ,

Since p, q > 1, the last two inequalities yield

E[f ,d] ≥ C

{
∥f∥pW 1,p + ∥d∥qW 1,q +

3∑
l=1

∥ml∥rLr +

15∑
l=4

∥ml∥sLs

}
+D, (6)

where C > 0 and D are constants.
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Let {(fk,dk)} ⊂ A be a minimizing sequence for E[·], i.e.,

lim
k→∞

E[fk,dk] = inf
(f ,d)∈A

E[f ,d].

As before, let mk
l := ml(∇fk,∇dk), l = 1, ..., 15. By virtue of (6), we see that

the sequences {fk}, {dk}, {mk
l }3l=1 and {mk

l }15l=4 are bounded in W 1,p, W 1,q,
Lr and Ls, respectively, each of which is a reflexive Banach space. Hence, there
exist f∗ ∈ W 1,p, d∗ ∈ W 1,q, αl ∈ Lr l = 1, 2, 3 and αl ∈ Ls l = 4, ..., 15 and
subsequences (not relabeled) converging weakly, i.e. fk ⇀ f∗, dk ⇀ d∗, and
mk

l ⇀ αl [4]. For p = q = 2, the determinants mk
l l = 1, ..., 15 are well-defined

L1 functions, while for 4/3 < p < 2 and/or 4/3 < q < 2, they should be
interpreted in the distributional sense, e.g.,∫

Ω

mk
4φdx := −1

2

∫
Ω

[
fk
1,1 −fk

1,2

−dk1,1 dk1,2

] [
fk
1

dk1

]
·
[
φ,1

φ,2

]
dx ∀φ ∈ C∞

c (Ω)

In any case, it is well known that each of these converge as distributions [6],
i.e., ∫

Ω

mk
l φdx →

∫
Ω

m∗
l φdx ∀φ ∈ C∞

c (Ω),

where m∗
l := ml(∇f∗,∇d∗), l = 1, ...15. Comparing these to the weak conver-

gence results above, we conclude that

mk
l ⇀ m∗

l in Lr, for l = 1, 2, 3, and in Ls, for l = 4, ..., 15.

We now consider the convergence of Jk := J(dk,∇fk). We first observe
that

fk
,1 × fk

,2 = mk
1e1 +mk

2e2 +mk
3e3. (7)

Thus fk
,1 × fk

,2 ⇀ f∗
,1 × f∗

,2 weakly in Lr for r > 4/3. In addition, dk ⇀ d∗

weakly in W 1,q implies strong convergence in Lq′ for 1 ≤ q′ < q∗ where

q∗ :=

{
2q
2−q 1 ≤ q < 2,

∞ q = 2.

Keeping in mind that q, r > 4/3, if q ≥ r, we choose q′ = r/(r − 1) and if
r > q, we choose q′ = q/(q − 1). In either case,

∫
Ω
dk · (fk

,1 × fk
,2)φdx →∫

Ω
d∗ · (f∗

,1 × f∗
,2)φdx for all φ ∈ L∞, i.e., Jk ⇀ J∗ weakly in L1.

Next, we show that (f∗,d∗) ∈ A. First, we claim that J∗ > 0 a.e. in
Ω. By virtue of Mazur’s theorem, we can construct a sequence of convex
combinations of the sequence {Jk} that converges strongly in L1 to J∗. Thus,
there is a subsequence converging to J∗ a.e. in Ω. Since each Jk > 0 a.e., we
deduce that J∗ ≥ 0 a.e. Now suppose that that J∗ = 0 a.e. in U ⊂ Ω, where
|U| > 0. Employing χU as a test function, the weak convergence of Jk implies
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Jk → 0 strongly in L1(U). Thus, for a subsequence (not relabeled), Jk → 0
a.e. in U . But then (H3) and Fatou’s lemma imply

lim inf
j→∞

E[f j ,dj ] ≥
∫
U

lim
j→∞

W (x,dj(x),∇f j(x),∇dj(x)) dx+ C = ∞,

which contradicts our hypothesis that infA E[f ,d] < ∞. Hence, J∗ > 0 a.e. in
Ω. In addition, fk − fo ∈ W 1,p

Γ (Ω,R3), which is a closed linear subspace of

W 1,p. Thus,W 1,p
Γ is weakly closed [4], and fk−fo ⇀ f∗−fo ∈ W 1,p

Γ . Similarly,

d∗ − do ∈ W 1,q
Γ . We conclude that (f∗,d∗) ∈ A.

To complete the proof, we combine the results above with Proposition 1 to
conclude E[f∗,d∗] ≤ lim infk→∞ E[fk,dk] with (f∗,d∗) ∈ A, i.e., E attains
its infimum on A. ⊓⊔

5 Constrained Minimizers

We now explore three different constrained versions of the theory that are
common in the study of nonlinearly elastic shells.

5.1 Special Theory

Here the director field is constrained to have unit length, i.e.,

|d| = 1 a.e. in Ω. (8)

Again, we assume (H1)-(H3) and incorporate (8) into the admissible set:

A := {(f ,d) ∈ W 1,p(Ω,R3)×W 1,q(Ω,R3) : ml ∈ Lr(Ω), l = 1, 2, 3;

ml ∈ Ls(Ω), l = 4, ..., 15; J ∈ L1(Ω);

J > 0 a.e. in Ω; |d| = 1 a.e. in Ω;

f − fo ∈ W 1,p
Γ (Ω,R3); d− do ∈ W 1,q

Γ (Ω,R3)},

where (fo,do) ∈ W 1,p(Ω,R3) ×W 1,q(Ω,R3) are prescribed and |do| = 1 and
do · (fo,1 × fo,2) > 0 a.e.

The existence of a minimizer follows precisely as before in Theorem 1. We
only need to show that (8) is satisfied. This follows from compact embedding:
For a minimizing sequence, we have dk ⇀ d∗ in W 1,r =⇒ dk → d∗ in Lq.
Thus there is a convergent subsequence dkn → d∗ a.e. Since

∣∣dkn
∣∣ = 1 a.e., we

have |d∗| = 1 a.e.



Energy Minimizing Configurations for Single-Director Cosserat Shells 9

5.2 Normal Director Field

We now constrain the director field to be normal to the surface (allowing its
length to be variable), viz.,

d · f,α = 0 a.e. in Ω, α = 1, 2. (9)

Again, we assume (H1)-(H3) and incorporate (9) into the admissible set:

A := {(f ,d) ∈ W 1,p(Ω,R3)×W 1,q(Ω,R3) : ml ∈ Lr, l = 1, 2, 3;

ml ∈ Ls(Ω), l = 4, ..., 15; J ∈ L1(Ω); J > 0 a.e. in Ω;

d · f,α = 0 a.e. in Ω, α = 1, 2;

f − fo ∈ W 1,p
Γ (Ω,R3); d− do ∈ W 1,q

Γ (Ω,R3)},

where (fo,do) ∈ W 1,p(Ω,R3)×W 1,q(Ω,R3) are prescribed with the property
that do · fo,α = 0 for α = 1, 2 and do · (fo,1 × fo,2) > 0 a.e.

Existence of a minimizer again follows as before. In this case, we only
need to show that (f∗,d∗) satisfies (9). Without loss of generality, suppose
p ≤ q, then we have fk

,α ⇀ f∗
,α weakly in Lp and by compact embedding

dk → d∗ in L
p

p−1 . The case of p > q works similarly. By admissibility, 0 =∫
Ω
dk ·fk

,αφdx →
∫
Ω
d∗ ·f∗

,αφdx for all φ ∈ C∞
c (Ω), α = 1, 2. By the theorem

of DuBois-Reymond [11], we conclude that (f∗,d∗) satisfies (9).

5.3 Kirchhoff-Love Theory

In this classical case, the director field is required to coincide with the unit nor-
mal field to the deformed surface. This is usually referred to as the Kirchhoff-
Love theory.

The constraints are now

d · f,α = 0 a.e. in Ω α = 1, 2;

|d| = 1 a.e. in Ω.

We modify the admissible set to accommodate these:

A := {(f ,d) ∈ W 1,p(Ω,R3)×W 1,q(Ω,R3) : ml ∈ Lr(Ω), l = 1, 2, 3;

ml ∈ Ls(Ω), l = 4, ..., 15; J ∈ L1(Ω); J > 0 a.e. in Ω;

d · f,α = 0 a.e. in Ω, α = 1, 2; |d| = 1 a.e. in Ω;

f − fo ∈ W 1,p
Γ (Ω,R3); d− do ∈ W 1,q

Γ (Ω,R3)},

where (fo,do) ∈ W 1,p × W 1,q are prescribed and satisfy do · fo,α = 0 for
α = 1, 2, |do| = 1 and do · (fo,1 × fo,2) > 0 a.e.

The existence of a minimizer follows as before, and the arguments used
in Section 5.1 and 5.2 imply |d∗| = 1 a.e. and d∗ · f∗

,α = 0 a.e., α = 1, 2,
respectively.
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6 Concluding Remarks

In our notation, the stored-energy function employed in [5] takes the form
W (x,d,F ,G) = Ψ(x,d,F ,G,m1, ...,m15), where (F ,G,m1, ...,m15) 7→ Ψ
is convex. In the absence of bending energy, the membrane energy depends
only on the deformation gradient, i.e., W̃ (x,F ) = Ψ̃(x,F ,m1,m2,m3) with
(F ,m1,m2,m3) 7→ Ψ̃ convex. That is, W̃ is polyconvex as in [3]. As noted in
Section 1, this is apparently equivalent to some kind of tension-field theory,
i.e., compression is replaced by zero stress. In contrast, the membrane version
of (2) reduces to Ŵ (x,F ) = Φ̂(x,F , J), with (F , J) 7→ Φ̂ convex. Here, J
denotes the local area ratio of the surface, i.e.,

J := n · (f,1 × f,2) = |f,1 × f,2| = [det(F TF )]1/2,

where n denotes the unit normal field in the same direction as f,1×f,2. Observe

that Ŵ is polyconvex for planar deformations only, viz., F ∈ R2×2. Indeed,
it can be shown that Ŵ is not even rank-one convex for F ∈ R3×2. Among
other things, this is the correct model for predicting wrinkling: In the absence
of bending energy, arbitrarily finer and finer spatial oscillations (wrinkles) are
allowed to develop in lieu of sustained compression. Such behavior, in turn, is
penalized by bending energy, enabling the resolution of wrinkling amplitudes
and wavelengths. Also, compressive stresses are not generally zero.

A rigorous existence theorem for the Kirchhoff-Love model, based on energy
minimization, is presented in [1]. Local orientation preservation is maintained
via a blow-up argument similar to that employed here and in [5], except that
the volume ratio employed in [1] takes into account the surface thickness via the
Cosserat ansatz, cf. [2]. The definition of polyconvexity used in [1], involving
only G,F and the volume ratio just described, is much more restrictive than
that employed in this work. However, when reduced to its membrane part
(ignoring thickness) it agrees with ours. Also, in contrast to our approach based
on constraints, the unit normal field is directly parametrized by the surface
deformation in [1]. A distinction between those results and those of Section 5.3
becomes apparent upon taking a formal first variation (not rigorous): Our
Euler-Lagrange equations at a minimizer would involve Lagrange multiplier
fields enforcing the constraints (representing transverse shears and through-
thickness resultants), whereas the latter would be effectively eliminated from
the Euler-Lagrange equations associated with [1].

We also mention that [8] is comparable to our results from Section 5.2.
In the former, the normal director field (not necessarily unit) is directly
parametrized by the surface deformation. This entails a full second-gradient
surface theory, while local orientation is preserved in a manner similar to that
presented here. For growth conditions on the second gradient with p > 2, the
first variation can be taken rigorously at a minimizer, leading to the weak form
of the Euler-Lagrange equations. This follows from the same construction used
in [9]. Interestingly, it is not at all clear how to do so based on the results of
Section 5.2.
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