

Impact of Autonomous Vehicles on the Car-Following Behaviour of Human Drivers

Ruixuan Zhang^{1,2}, Sara Masoud³, and Neda Masoud⁴

¹Graduate Research Assistant, Civil and Environmental Engineering, University of Michigan Ann Arbor, Address: 2350 Hayward St, Ann Arbor, MI 48109, Email: ruixuanz@umich.edu

²Intern, Advanced Engineering, Isuzu Technical Center of America, Address: 46401 Commerce Center Dr, Plymouth, MI 48170, Email: ruixuan.zhang@isza.com

³Assistant Professor, Industrial and Systems Engineering, Wayne State University, Address: 4815
4th St, Detroit, MI 48201, Email: saramasoud@wayne.edu

⁴Assistant Professor, Civil and Environmental Engineering, University of Michigan Ann Arbor,
Address: 2350 Hayward St, Ann Arbor, MI 48109, Email: nmasoud@umich.edu

ABSTRACT

The past few years have witness to an increase in autonomous vehicle (AV) development and testing. However, even with a fully developed and comprehensively tested AV technology, AVs are anticipated to share the roadway network with human drivers for the unforeseeable future. In such a mixed environment, we use naturalistic driving data from the Next Generation Simulation (NGSIM) and Lyft Level 5 (Lyft L5) prediction datasets to investigate whether the existence of AVs influences the car following behavior of human drivers. We use time headway time series as a proxy to capture the car following behaviour of human drivers. We then develop a nested fixed model to find possible changes in behaviour when human drivers are following different types of vehicles (i.e., human-driven vehicles or AVs). The factors included in this model are the platoon structure (a legacy vehicle following a legacy vehicle, and a legacy vehicle following an autonomous vehicle), road type (freeway and urban), time period (morning and afternoon), lane (right, middle,

24 and left), and the source of the data (NGSIM and Lyft L5). Results indicate a statistically significant
25 difference between the car following behaviour of drivers when they follow a human-driven vehicle
26 compared to an AV. This change in the car following behaviour of drivers is manifested in the form
27 of a reduction in the mean and variance of time headways when human drivers follow an AV. These
28 findings can bridge the gap between anticipated and real-world impacts of AVs on traffic streams
29 and roadway stability and capacity, providing meaningful insights on the influence of AVs on the
30 driving behavior of humans in a naturalistic driving environment.

31 **Author keywords:** Autonomous vehicle-human driver interactions, Car-following behaviour

32 INTRODUCTION

33 The past few years have been a witness to an increase in autonomous vehicle (AV) development
34 and testing, with many mobility-oriented companies as well as original equipment manufacturers
35 (OEMS) attempting to either open AV divisions or partner with/acquire start-ups that focus on
36 software or hardware development for AVs. This move toward a future autonomous transportation
37 system is fueled by many anticipated benefits of AVs, such as increased safety and smoother traffic
38 flow (Zhang et al. 2022a; Wyk et al. 2019; Zhang et al. 2022b; Zhang et al. 2021), which in turn
39 leads to higher levels of fuel economy, less congestion, a wider range of mobility options, and
40 curbing the environmental footprint of the transportation sector (Stern et al. 2018; Liu et al. 2020b;
41 Liu et al. 2020a; Zhang et al. 2020; Ersal et al. 2020; Masoud and Jayakrishnan 2017; Abdolmaleki
42 et al. 2021). It might, however, take several decades for a fully autonomous transportation system
43 to be deployed. Many experts argue that even with a fully developed and comprehensively tested
44 AV technology, there will still be individuals who either have a distrust in the technology or do not
45 wish to cease driving for other personal reasons. Therefore, it is safe to assume that AVs would
46 have to share the roadway network with human drivers for the unforeseeable future.

47 Since the advent of personal automobiles traffic engineers have been interested in studying the
48 car-following behaviour of human drivers, with Bruce Greenshields being credited with the first
49 recorded set of experiments to scientifically measure this car-following behaviour (Greenshields

50 et al. 1934). The advent of AVs has given rise to an interesting research question: Will the car-
51 following behaviour of human drivers be affected when they knowingly follow an autonomous
52 vehicle? Few attempts have been made in the literature to answer this question. (Rahmati et al.
53 2019) set up two sets of experiments with a platoon of size three, where the third vehicle in the
54 platoon was a human-driven vehicle. In the first set of experiments, the second vehicle was a human-
55 driven vehicle, and in the second set of experiments it was an AV. They recorded the trajectory of
56 the third vehicle, and used data-driven and model-based approaches to discern any changes in the
57 car-following behaviour of the third vehicle in reaction to its preceeding vehicle. They concluded
58 that when following an AV, a human driver's car-following behaviour is significantly different than
59 following a human-driven vehicle.

60 Conducting controlled field experiments allows for assessing the impact of a single factor at
61 a time on the car-following behaviour of human drivers, while keeping all other factors fixed.
62 However, controlled field experiments have a number of downsides. First, a combinatorial number
63 of experiments are required to capture the impact of multiple factors changing at once. This
64 could easily render comprehensive controlled field experiments impractical, since a wide range of
65 environmental factors as well as the presence of other agents (e.g., other AVs or legacy vehicles,
66 pedestrians, bicycles, etc.) may play a role in the car-following behaviour of drivers. As a result,
67 the conclusions obtained from basic and contained field experiments, although insightful, may not
68 be readily generalizable to a naturalistic driving environment. As such, in this paper we seek to
69 investigate the car-following behavior of human drivers who follow an AV in a naturalistic driving
70 environment using a naturalistic and large dataset that allows for making statistically significant
71 conclusions. To this end, we use the Lyft Level 5 (Lyft L5) (Houston et al. 2020) data repository, in
72 which a fleet of AVs travels on a fixed route in an urban environment, providing over 1,000 hours of
73 AV trajectories, their surrounding agents, and the transportation network. The route encompasses
74 a variety of transportation facility types, including intersections and corridors. This dataset is the
75 first to enable analysis of the car-following behaviour of a heterogeneous set of drivers who follow
76 an AV in a naturalistic and dynamically changing driving environment.

77 Despite the benefits of using naturalistic driving data in analyzing the changes in the car-
78 following behaviour of human drivers when following an AV, it also poses a unique set of challenges.
79 More specifically, the appearance of an AV is a key factor that can influence a human driver's car-
80 following behavior. For the presence of an AV to change the behaviour of human drivers, they
81 should be able to discern that they are following an AV based on clear visual cues. Garnished by
82 lidars and cameras, AVs generally have a distinctive look that human drivers are likely to discern.
83 Additionally, a human driver's car-following behaviour depends on their subjective opinion on how
84 an AV operates and its risk-taking attitude (Zhao et al. 2020). As such, to mitigate the risk of
85 unwanted bias in data collection, data should be collected within an extended period of time from
86 a diverse set of drivers.

87 The car-following behaviour of a driver can be reflected using a number of parameters, e.g.,
88 velocity, acceleration, and time headway (Wang et al. 2014). Here, we use time headway (THW)—
89 defined as the time it takes for the following vehicle to reach its leading vehicle—to model car-
90 following behaviour. As such, we conduct change point analysis on THW of the following driver
91 to identify the moment in time when the human driver has identified its leading AV.

92 The remainder of the paper is organized as follows. We first present the existing work and
93 list the contributions of this paper in the LITERATURE REVIEW section. Then, we provide the
94 analytical approach in detail. After that, we lay out our analysis using Lyft L5 and NGSIM datasets
95 and present our findings in the RESULTS AND DISCUSSION section. Finally, we conclude the
96 paper by summarizing our findings.

97 **LITERATURE REVIEW**

98 In traffic modeling, car-following behavior has been intensively studied to establish how a
99 vehicle interacts with its leading vehicle. The main idea is to work with longitudinal dynamics
100 of the vehicle pair, such as velocity, acceleration, time headway, and time-to-collision inverse, to
101 uncover the behavior patterns of the following vehicle in various driving scenarios. There are two
102 main components involved in the study of car-following behavior: modeling and analysis. These
103 two components are discussed in the following.

104 **Modeling**

105 As the most commonly encountered driving maneuver in the real world, car-following behavior
106 has been extensively studied in investigating many specific driving scenarios. To properly describe
107 the interaction between the leading and following vehicles, several measures are proposed. Time-
108 to-collision (TTC) reflects human drivers' perception of their safety for potential collision, and it is
109 strongly related to longitudinal acceleration/deceleration (Jin et al. 2011). (Vogel 2003) compares
110 time headway and TTC with real-world traffic data and concludes that time headway and TTC are
111 independent but suitable for different usages. They also argue that time headway directly reflects
112 potential danger and thus prevents risky TTC, while TTC should be used for actual danger, i.e.,
113 on-road obstacle or collision. (Boer 1999) also mentioned that time headway characterizes the
114 safety margin in the situation where the preceding vehicle decelerates, while TTC denotes the time
115 left for drivers to intervene to avoid a crash. Headway is not considered here as it can not include
116 velocity-related information, which is necessary to learn the car-following behavior. As we are
117 interested in human drivers' reaction to on-road stimuli (the preceding AV) without evaluating an
118 actual collision, in our study we select time headway to model the car-following behaviour.

119 Several car-following behavior models are formulated using ordinary differential equations
120 (ODE) that take positions and velocities of vehicles as inputs. The intelligent driving model (IDM)
121 (Treiber et al. 2000) and optimal velocity model (OVM) (Sugiyama 1999) are two extensively-
122 applied ODE-based models capable of modeling nonlinear dynamics. Additionally, a linearized
123 model can be further derived from ODEs via Taylor expansion. The full velocity difference model
124 (FVDM) (Jiang et al. 2001) was developed based on OVM and the generalized force model (GFM)
125 (Helbing and Tilch 1998) by taking both positive and negative velocity differences into account.
126 It could obtain more precise predictions of vehicle motion in traffic jam density. Wiedemann
127 74 (W-74) model and Wiedemann 99 (W-99) model (Durrani et al. 2016) are two car-following
128 models developed by Rainer Wiedemann, where the drivers change their behaviors at discrete time
129 steps only when certain thresholds (predefined for headway, speed, or relative speed) are reached.
130 However, the values of parameters in W-99 are empirical, and no literature exists to indicate how

ranges for these parameter should be established, which prompted many related works (Durrani et al. 2016; Mathew and Radhakrishnan 2010; Gallelli et al. 2017) in calibrating the W-99 model. Newell's car-following model (Newell 2002) applied a similar concept to W-99, assuming that a vehicle will maintain a minimum space and time gap between itself and its preceding vehicle. Some studies which pursue a more general way of modeling the car-following behavior are discussed in (Ro et al. 2017; Koutsopoulos and Farah 2012), where not only the car-following dynamics is considered, but also random human factors and different driving scenarios (such as following and emergency braking) were accounted for. Other car-following models such as adaptive cruise control (ACC) and cooperative adaptive cruise control (CACC) were designed for commercial vehicles, applying automated longitudinal control by adjusting acceleration with a linear function to maintain preset velocity and headway values.

All of the aforementioned car-following models are based on mathematical formulations with longitudinal dynamics, taking advantage of traditional control theory. On the other hand, predictive techniques enable a data-driven approach and can directly learn the car-following behavior using real-world data. (Zhang et al. 2008) utilized time headway and time-to-collision inverse data and a back-propagation neural network to reproduce longitudinal accelerations. A long short-term memory (LSTM) neural network in (Zhang et al. 2019) used the position information of surrounding vehicles to predict the car-following behavior with low longitudinal trajectory error. A deep deterministic policy gradient reinforcement learning car-following model was developed in (Zhu et al. 2018), where a mapping from speed, relative speed, and headway to acceleration regime of the following vehicle were obtained to deliver a human-like car-following model. A Gaussian mixture model (GMM) was developed in (Angkititrakul et al. 2011) to anticipate the future car-following behavior based on velocity and headway. Such learning-based methods require a large amount of training data, and the quality of data significantly influences model performance. Neural network-based designs also require careful tuning when learning the longitudinal dynamics of vehicles (Da Lio et al. 2020).

From the literature, it can be noticed that multiple longitudinal dynamics impact the car-

158 following behaviors of both the following vehicle and the proceeding vehicle, among which relative
159 distance and velocity are the two most essential factors. To leverage this finding and reduce the
160 complexity of the model, we select time headway as the main feature for modeling car-following
161 behavior as it accounts for both relative distance and velocity (Chen et al. 2015; Vogel 2002).

162 Analysis

163 Car-following behavior is of interest to transportation researchers as it can provide insights into
164 the best ways to approach flow throughput control, on-road safety, and energy consumption, etc.
165 There are two directions followed in the current literature to analyze the car-following behavior of
166 drivers: one studies the stability (string stability and plant stability) of traffic flow, while the other
167 quantifies the car-following behavior using statistical tools such as mean and variance. As this work
168 focuses on patterns of interactions between human-driven vehicles and AVs, the analysis of string
169 stability and plant stability is out of the scope this study.

170 Car-following behavior may be affected by many factors such as road condition, weather, and
171 vehicle type. When dealing with data relevant to multiple factors, Analysis of Variance (ANOVA)
172 is a powerful tool to investigate the influence level of each factor. In (Liu et al. 2019), two one-way
173 ANOVA tests were conducted, indicating that different speed limits have a significant influence on
174 the time headway and headway, and the mean of time headway is closely centered around a fixed
175 value. A factorial ANOVA analysis was conducted in (Hjelkrem 2015) to determine the interactions
176 between area type, number of lanes, and vehicle type influencing the car-following behavior. Road
177 condition is suggested to be a critical factor in influencing both headway and time headway by
178 (Wang et al. 2015; Houchin 2015). Significant influence from vehicle type (2-door car v.s. 4-door
179 vehicles, sedans v.s. trucks, vehicles v.s. motorcycles) is also observed in (Evans and Wasielewski
180 1983; Houchin 2015; Amini et al. 2019).

181 The literature on the analysis of car-following behavior mainly focuses on human-driven ve-
182 hicles, and AV-involved scenarios are rarely studied. Human-AV interactions at the microscopic
183 level were first studied in (Rahmati et al. 2019), where a field experiment was conducted though
184 setting up two two-vehicle platoon structures of human-following-human and human-following-

185 AV. (Rahmati et al. 2019) showed that a shorter headway is selected when human drivers follow
186 an AV. Other field experiments conducted by (Zhao et al. 2020) suggest that a driver's subjective
187 attitude toward to AV technology dominates the actual AV's driving behavior in the speed-headway
188 relationship. Observations from these two field experiments indicate that the limited data collected
189 from field experiments degrades the robustness of the intersection effect(s). Recently, (Li et al.
190 2021) leveraged the Lyft L5 dataset as the data source for operational safety analysis in human-AV
191 interactions in car-following scenarios. In this study we utilize the Lyft L5 and NGSIM datasets
192 to provide a comprehensive and robust evaluation of the car-following behaviour of humans, ac-
193 counting for multiple factors that may affect the car-following behaviour of human drivers. This
194 naturalistic study serves as a necessary complement to the existing field experiments.

195 Contribution

196 The objective of this paper is to provide insights on the potential influence of AVs on the
197 car-following behavior of human drivers. The contributions of this paper are two-fold: *(i)* we
198 conduct statistical analysis on time headway data from Lyft L5, using NGSIM datasets (US101, I-
199 80, Lankershim Blvd) as the control group, to find the influence of leading AVs on the car-following
200 behaviour of following drivers; *(ii)* This naturalistic study provides evidence that human drivers
201 are regulated as a result of introducing AVs, as evidenced by the statistically significant reduction
202 in the mean value and variance of their time headways.

203 METHODS

204 The objective of this study is to investigate whether, and the extent to which, the existence of
205 AVs in the traffic stream influences the car-following behaviour of human drivers. To answer this
206 question, we propose a comprehensive framework demonstrated in Figure 1. Data used in this study
207 is obtained from two public datasets: Lyft L5 (Houston et al. 2020) and NGSIM (NGS 2021). We
208 use time headway time series in our analysis as a proxy to quantify the car-following behaviour of
209 vehicles. Time headway between two vehicles is defined as the travel time from the centroid of the
210 following vehicle to the centroid of the preceding/leading vehicle based on the following vehicle's
211 speed. In the rest of this paper, we denote a legacy vehicle following an autonomous vehicle as

212 LFA, and a legacy vehicle following a legacy vehicle as LFL. We refer to LFA and LFL as platoon
213 structures.

214 As displayed in Figure 1, the proposed framework consists of two main phases, namely, data
215 acquisition and data analysis. These phases are described in the following sections.

216 **Phase I: Data Acquisition**

217 The first phase starts by extracting time headways of LFL and LFA platoon structures. More
218 precisely, we extract LFA time headways from the Lyft L5 dataset, and LFL time headways from
219 both Lyft L5 and NGSIM datasets. Once the time headways are extracted, We use Bayesian change
220 point analysis to filter out the portions of time headway data in the LFA platoon structure where
221 the legacy vehicle is not aware of following an AV.

222 *Change Point Analysis*

223 Our objective in this study is to make a determination on whether the presence of an AV affects
224 the car-following behaviour of its following vehicle in the LFA platoon structure. Consequently,
225 we first need to identify scenarios in the Lyft L5 dataset where a legacy vehicle is following an
226 AV, and more importantly, is *aware* that it is following an AV. To identify such scenarios, we first
227 identify scenes from the Lyft L5 dataset where a legacy vehicle is immediately following an AV.
228 Next, for each scene we conduct change point analysis to mark any changes in the time headway
229 sequence of the legacy vehicle and the velocity sequence of its leading AV. The adopted Change
230 point analysis is an online detection approach that provides uncertainty bounds on the number and
231 location of change points across observations (Ruggieri and Antonellis 2016). This method strives
232 to make fast inferences on the occurrence of new change points based on each new observation.

233 Let us denote by c_L^h the time instance when a change point is detected in the time headway
234 time series of the legacy vehicle, and by c_A^v the time instance when a change point identified in
235 the velocity time series of the AV. Let us denote by t_{\min}^r and t_{\max}^r the minimum and maximum
236 reaction time of the legacy vehicle, i.e., the time period lapsed from the moment the AV changes
237 its acceleration and the moment the acceleration of the legacy vehicle changes in response. When
238 $t_{\min}^r \leq c_L^h - c_A^v \leq t_{\max}^r$, the change in the time headway of the legacy vehicle can be attributed

239 to its car-following behaviour. However, when c_L^h is not proceeded with a c_A^v within the time
240 interval $[t_{\min}^r, t_{\max}^r]$, i.e., the change point analysis detects a change in time headway of the legacy
241 vehicle that cannot be attributed to its car-following behaviour, we postulate that this change can be
242 attributed to the legacy vehicle having identified its proceeding vehicle as an AV, and only consider
243 the trajectory of the legacy vehicle after this change point. In other instances where no such change
244 point is detected, we assume that the legacy vehicle is aware of its leading AV due to the distinctive
245 appearance of AVs in the Lyft L5 study.

246 Owing to many factors, such as the driving environment, age, gender, and experience, the
247 range for the reaction time can vary from case to case, as shown in (Johansson and Rumar 1971;
248 McGehee et al. 2000; Summala 2000), where different field experiments and calibrated models
249 find the minimum value (t_{\min}^r) can be as small as 0.3 seconds, and the maximum value (t_{\max}^r) can
250 be as high as 2.4 seconds. Avoiding the extreme values where reaction times may slightly increase
251 when the stimulus (e.g., following an AV instead of another legacy vehicle) is a surprise to drivers
252 (Johansson and Rumar 1971; Mehmoor and Easa 2009), or decrease at lower driving speeds (Calvi
253 et al. 2018; Ruhai et al. 2010), in this study we set the minimum and maximum values of reaction
254 time to $t_{\min}^r = 0.5$ and $t_{\max}^r = 1$ seconds, respectively, following the literature.

255 For human drivers, there is a preferable time headway interval towards the preceding vehicle
256 (Fuller 1981; Das and Maurya 2017). The preferable time headway is the most frequently adopted
257 time headway when human drivers are in the car-following mode, which is used to baseline the
258 car-following behavior of rational human drivers. Following the existing literature (e.g., (WINSUM
259 and Heino 1996; Van Winsum and Brouwer 1997; Van Winsum 1998; Bham' and Ancha 2006)),
260 the preferable time headway is considered to be 1 to 2.5 seconds in this study. When time headway is
261 shorter than the lower bound, drivers are more likely to slow down, while when the time headway is
262 longer than the upper bound, drivers may either keep the current speed or accelerate to catch up with
263 the preceding vehicle. The basic idea is that when the time headway is inside the interval, human
264 drivers will feel comfortable and will not overreact unless there is an external disturbance. This
265 preferable time headway may be influenced by many factors (e.g., road configuration, lane, etc.).

266 Generally, there is no universal standard, and this interval can be determined from the observed
267 data itself. We use the distribution of time headway in the LFA dataset to define the preferable time
268 headway.

269 In the final step of phase I, the collected and filtered time headways from both Lyft L5 and
270 NGSIM datasets are integrated and associated. In this step, each time headway is labeled based on
271 platoon structure, road type, time period, data source, and lane, as shown in Figure 2.

272 **Phase II: Analysis**

273 Phase II focuses on analysis. In the first step, two samples of equal sizes are taken from LFA
274 and LFL datasets. Next, partial autocorrelation analysis is employed to detect autocorrelation lags.
275 Using these identified lags, differencing is applied to stationarize the randomly selected time series.
276 Next, we define the factors of interest, which alongside time headway will be used for fitting the
277 ANOVA model.

278 Once the factors of interest are identified and before fitting the nested model, we first create
279 balanced datasets.

280 To obtain balanced datasets we sample time headways without replacement from LFL and LFA
281 datasets so that the same number of data points will be available in each branch of the nested design.
282 Next, the ANOVA model is fitted using balanced datasets. Finally, we confirm the adequacy of the
283 fitted model, and conduct follow-up pair-wise comparisons to isolate the effects that are significantly
284 different, as displayed in Figure 1. The major steps of the analysis are detailed in the following.

285 **Analysis of Variance**

286 Analysis of Variance (ANOVA) is one of the most well-known statistical tools for evaluating the
287 existence of significant differences between factor levels on a continuous measurement (Tabachnick
288 and Fidell 2013). A factorial ANOVA can be implemented to examine the impacts of independent
289 categorical factors on a continuous target variable. Factorial ANOVA is an suitable approach to
290 study whether there exists a statistically significant difference in the time headway patterns of LFA
291 and LFL platoon structures based on different factors and their levels. One of the main requirements
292 of ANOVA is the independence of observations. The underlying sequential and time dependant

293 nature of time series data is a direct violation of this requirement. To address this issue, we apply
294 a two-step data processing procedure. First, we randomly (without replacement) down-sample the
295 time series to remove any potential dependencies. Next, we render the randomly selected time
296 series approximately stationary through differencing to remove auto-correlation.

297 *Stationarity and Partial Auto-Correlation*

298 In time series, auto-correlation is the correlation between two observations at different time
299 stamps, where these observations correlate with themselves repetitively at certain lags. Auto-
300 correlation and partial auto-correlation plots can be used to study the auto-correlation of time series.
301 Although auto-correlation plots can measure and visualize the correlation between observations
302 for a predefined set of lags, they fail to account for the propagation of correlation among successive
303 lags. Partial auto-correlation analysis addresses this problem by isolating the auto-correlation
304 lag. In this work, we use partial auto-correlation plots to identify auto-correlation lags, and apply
305 differencing at the identified lags to stationarize the time headway time series. We discard data
306 points that cannot be stationarized by first level differencing.

307 *Nested Fixed Effect Model*

308 The design of the fitted factorial ANOVA is highly dependent on the structure of the collected data.
309 Fig. 2 displays the factors of interest. A total of five factors are considered in this study. The first
310 factor, platoon structure, models whether the reported time headway profiles belong to an LFL or
311 an LFA pair. The second factor, road type, represents whether the data is collected from an urban
312 road network (i.e., Palo Alto, CA and Lankershim Blvd, CA) or a freeway (i.e., US 101, CA and
313 I-80, CA). The third factor, time period, models whether the data is collected during the morning
314 (i.e., 7:50am - 9:00am) or afternoon (i.e., 4:00pm - 5:30pm) peak period.

315 The fourth factor studies whether the source of the collected data has any significant impact on
316 human driving behavior. Data source is defined as a factor to account for the impact of different
317 data collection techniques and locations in NGSIM and Lyft L5 datasets. The final factor, lane,
318 represents the lane at which the data has been collected. This factor is considered because the
319 lane in which a vehicle travels could impact its car-following behaviour. As the number of lanes is

320 different across data collection sites, we used one-way ANOVA to group lanes that failed to show a
 321 statistically significant difference in their car-following behaviour based on time headway analysis.
 322 As a result, the lane levels simplified to the left (i.e., speeding) lane, the middle lanes, and the right
 323 (merging) lane. Note that the high occupancy vehicle lanes were filtered out in this study when
 324 present.

325 The factorial ANOVA relies on the underlying relationships between these different factors.
 326 Note that AVs are only present in the Lyft L5 dataset and the Lyft L5 data is limited to an urban
 327 environment. Furthermore, AV trajectories only appear on the right lane. As such, the values of the
 328 factors data source, lane, and road type are restricted to the values of the factor platoon structure,
 329 leading to the choice of a nested factorial ANOVA as shown in Equation (1).

$$Y_{l(ijknm)} = \mu + \alpha_i + \beta_j + (\alpha \times \beta)_{ij} + \gamma_{k(j)} + \lambda_{m(j)} + \theta_{n(j)} + \epsilon_{l(ijknm)},$$

for $i, j, k, m \in \{1, 2\}$ and $n \in \{1, 2, 3\}$ (1)

330 where μ represents the overall mean, and $\alpha_i, \beta_j, \gamma_{k(j)}, \lambda_{m(j)}$, and $\theta_{n(j)}$ capture the effects of
 331 time period, platoon structure, data source, road type, and lane, respectively. The parenthetical
 332 subscriptions illustrate the nesting structure of the model. The $(\alpha \times \beta)_{ij}$ models the interaction
 333 effects between factors time period and platoon structure. Here, $\epsilon_{l(ijknm)}$ represents the error term,
 334 which is assumed to follow $N(0, \sigma^2)$. In addition to the normality and constant assumptions

335 regarding the error term, the fitted model should also satisfy the following constraints:

$$\sum_i \alpha_i = 0 \quad (2a)$$

$$\sum_j \beta_j = 0 \quad (2b)$$

$$\sum_i (\alpha \times \beta)_{ij} = 0, \quad \forall j \in \{1, 2\} \quad (2c)$$

$$\sum_j (\alpha \times \beta)_{ij} = 0, \quad \forall i \in \{1, 2\} \quad (2d)$$

$$\sum_k \gamma_{k(j)} = 0, \quad \forall j \in \{1, 2\} \quad (2e)$$

$$\sum_m \lambda_{m(j)} = 0, \quad \forall j \in \{1, 2\} \quad (2f)$$

$$\sum_n \theta_{n(j)} = 0, \quad \forall j \in \{1, 2\} \quad (2g)$$

336 As the nested factorial model in Equation (1) is not identifiable, the additional sets of constraints
337 in Equation (2) help narrow down the solution space to a unique set of fitted parameters. Using a
338 single ANOVA model, we define several hypotheses tests to assess the significance of each factor,
339 with the null hypothesis in each case indicating that the mean time headways are similar for different
340 values of a given factor, and the alternative hypothesis indicating otherwise.

341 Nested factors (i.e., data source, lane, and road type) are added to absorb some of the unexplained
342 variability. As a result, specific hypothesis tests associated with nested factors are of lesser
343 importance.

344 Although a rejection of the null hypothesis in the ANOVA analysis signals the existence of
345 a significant effect (i.e., factor), it fails to identify the factor level that is significantly different,
346 specifically in the presence of interaction effects. As a result, ANOVA analyses are usually followed
347 by pairwise comparisons. While studying the effects of multiple factor levels, comparisons between
348 the individual means of either factor may be made using any pairwise comparison technique. We
349 use Least Square Means to investigate the significance of the factors and apply Tukey's HSD method
350 to adjust the significance level (Abdi and Williams 2010).

351 Multiple assumptions are made prior to fitting the nested fixed effect model. As a result, the
352 adequacy of the model relies on whether these assumptions hold true. These assumptions include
353 1) the normality of the residuals, i.e., $\epsilon_{l(ijknm)} \sim N(0, \sigma^2)$, and 2) the homogeneity of the residuals.
354 Many mathematical tests are developed for checking the normality and homogeneity of the residuals
355 (e.g., the Shapiro-Wilk test). One problem with such tests is that as the sample size increases, the
356 test results are more likely to fail for even minor departures from normality or homoscedasticity.
357 Therefore, in this paper we rely on visualization approaches instead.

358 **DATA**

359 The raw data within both repositories are collected using different sensors such as digital video
360 cameras, radars and lidars.

361 **Lyft L5 Dataset**

362 The Lyft L5 Prediction data repository was released by the Lyft Level 5 team in June 2020
363 (Houston et al. 2020). This data repository contains raw camera/lidar/radar data collected from a
364 fleet of 23 AVs operating along a fixed high-demand route in Palo Alto, CA, from October 2019 to
365 March 2020. An internal perception stack has already been applied to report information such as
366 the vehicle position based on a global coordinate system, velocity, and a unique ID for each agent.
367 We extract the time headway series of each legacy vehicle for the purpose of this study.

368 **NGSIM Dataset**

369 The Next Generation Simulation (NGSIM) is a well-known dataset published by the U.S.
370 Department of Transportation Intelligent Transportation Systems Joint Program Office (JPO) (NGS
371 2021). This dataset includes detailed vehicle trajectory data collected in four sites: southbound
372 US 101 and Lankershim Boulevard in Los Angeles, CA, eastbound I-80 in Emeryville, CA, and
373 Peachtree Street in Atlanta, Georgia. The data is collected in different time periods from April 20,
374 2005 to November 9, 2006. The dataset contains vehicle ID, global coordinates of the vehicle,
375 vehicle type, velocity, acceleration, space headway, and time headway, among other attributes. We
376 extract the time headway series of each vehicle in each regular (non-carpool) lane at each site for

377 the purpose of this study.

378 **Data Processing Pipeline**

379 To fully leverage the abundant data in the Lyft L5 and NGSIM datasets for ANOVA, a modular
380 data processing pipeline is developed with three blocks: time headway calculation, change point
381 analysis, and down-sampling and filtering. A detailed explanation of the processing pipeline is
382 given for the Lyft L5 dataset.

- 383 • Time headway calculation: Realizing that the driving behavior in different lanes on the
384 same road may be different, the lane-specific time headway data is of interest to us. To
385 stay consistent with the NGSIM dataset, all the raw data in the Lyft L5 dataset is taken
386 from the multi-lane roads. By utilizing the provided semantic map with 8,500 discrete lane
387 segments, a customized semantic map is constructed by connecting any lanes that physically
388 belong to the same continuous lane (multiple lane segments in the original semantic map
389 may correspond to the same lane in the real world), referred as the augmented map. In
390 the multi-lane roads, three lane groups are identified (right, middle, and left). Given the
391 position information of vehicles, the augmented map can immediately match vehicles to the
392 corresponding lane groups. The time headway in the car-following mode is calculated as the
393 travel time from the centroid of the following vehicle to the centroid of the preceding/leading
394 vehicle based on the following vehicle's speed.
- 395 • Change point analysis: In investigating an AV's effect on the following behaviour of human
396 drivers, we need to construct a dataset in which the following human driver is aware that
397 the leading vehicle is an AV. To this end, we conduct a change point analysis as described
398 in section CHANGE POINT ANALYSIS.
- 399 • Down-sampling and filtering: The sampling frequency in both datasets is 10 Hz, and a high
400 correlation among data points is present under such a high-frequency sampling regime.
401 To ensure independence of observations, autocorrelation and partial autocorrelation are
402 evaluated, and down-sampling of the time headway sequence is implemented. According to

403 our evaluation results, 1 Hz is selected to be the updated sampling frequency. Furthermore,
404 a filtering step is introduced to ensure that the time headway sequence satisfies the minimum
405 length of containing at least 10 data points or 10-seconds of observation.

406 For the NGSIM dataset, as the lane information is readily available, only the down-sampling
407 and filtering module will be used.

408 RESULTS AND DISCUSSION

409 In this section, we present the results of our proposed framework. In accordance with the flow
410 of the framework, we first stationarize the time headway time series through differencing and partial
411 auto-correlation analysis. Then, we balance our dataset. Next, we test our hypotheses using nested
412 factorial ANOVA, followed by pairwise comparisons.

413 Down-sampling and Auto-correlation Analysis

414 Since the sample frequency in Lyft L5 and NGSIM datasets is high (10 Hz), data points may
415 correlate with each other at such high frequency and thus introduce unnecessary bias into the
416 results. A common approach to reduce autocorrelation is to down-sample the data at a slower
417 frequency. We test Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF)
418 at down-sampling frequencies of 2Hz and 1Hz, in comparison with the original data. Decreasing
419 sample frequency can significantly reduce both ACF and PACF at higher lags. Down-sampling
420 at 1 Hz can reduce the magnitude of the auto-correlation lags. Differencing at lag one further
421 stationarizes the time series. As the majority of the time series are not significantly auto-correlated
422 after lag 1 differencing, the non-stationary ones are dropped at this step.

423 Some interesting takeaways may be discussed before presenting the ANOVA results. In a
424 freeway driving environment, e.g., US 101 and I-80, after down-sampling at 1 Hz, there is still
425 a significant autocorrelation at lag 1 and neutrally-distributed partial autocorrelation (PAC) after
426 lag 2. In an urban driving environment, Lankershim Blvd and Lyft L5, a similar pattern can
427 be observed; however, at lag 1, a relative smaller ratio of data is correlated. An interpretation
428 for this difference is that in freeways, human drivers encounter fewer external disturbances and

429 therefore their behavior is more consistent and predictable. A neutral-distributed outbound PAC
430 after lag 2 indicates that the behaviors tend to be random in 2 seconds into the future. If we view
431 a human driver as a controller, s/he will control the time headway to the leading vehicle roughly at
432 some period, which can be determined by the lag where outbound PAC values are approximately
433 neutral-distributed.

434 **Factorial Analysis**

435 The processed dataset contains a total of 537,060 data points, out of which 5,774 (i.e., 1%)
436 of data points represent the LFA structure while the remaining 531,285 (i.e., 99%) belong to the
437 LFL platoon structure. In order to maximize the power of the factorial analysis, the dataset should
438 be balanced. In addition, balancing helps protect the analysis against small departures from the
439 assumptions. Although the balancing effort reduces the total size of the dataset (i.e., 25 data points
440 per each leaf in Figure 2) through random sampling, it improves the the distribution of the data
441 within different factor levels, including platoon structure: 85% for LFL and 15% LFA; Road type:
442 46% for freeway and 54% urban; Time period: 53% for morning and 45% afternoon; Lane: 31%
443 for left, 31% for middle and 38% right.

444 The nested factorial ANOVA introduced in Equation 1 is fitted and its results are displayed in
445 Table 1. The fitted model allows us to study whether there are statistically significant associations
446 between the time headway and the factors introduced in Figure 1. Table 1 reports findings on the
447 main effects (i.e., time period and platoon structure factors), nested effects (i.e., data source, road
448 type, and lane factors), as well the interaction effects between the time period and platoon structure
449 factors.

450 The first three rows in Table 1 correspond to hypotheses on time period, platoon structure,
451 and the interaction effect between time period and platoon structure factors. The next three rows
452 display the impact of data source, road type, and lane as nested factors of platoon structure,
453 respectively. The last row provides information regarding the residuals. For each one of the
454 hypotheses of interest, Table 1 reports the degree of freedom (DoF) of the test, sum of squared
455 errors (SSE), mean square errors (MSE), as well as the F-statistics, its corresponding p-value,

456 and the significance level at which a conclusion is made. The reported p-values can assess the
457 null hypotheses and determine whether the association between the time headway and the factors
458 of interest are statistically significant. Table 1 reports that only the platooning structure is of
459 significance at $\alpha = 0.001$. The results also highlights the fact that the collected time headway
460 data are not impacted by the differences in data collection techniques and locations in NGSIM and
461 Lyft L5 datasets at a statistically significant level. To further study the results reported in Table 1,
462 multiple follow up pairwise comparisons are conducted to understand which levels of the platoon
463 structure factor are significantly different given the nested structure. Table 2 illustrates the results
464 of the pairwise comparisons.

465 Although the platoon structure is the only significant factor as reported in Table 1, the interaction
466 effect between time period and platoon structure and the nesting factors may have obscured the
467 comparisons between the means of different levels of the platoon structure. As a result, the least
468 squared method is applied to the means of one of the factors, with the remaining factor set at a
469 particular level. In addition, as pairwise comparisons lead to inflation of the significance level, the
470 p-values within Table 2 are adjusted based on the Tukey method for comparing a family of multiple
471 estimators.

472 Table 2 reports the estimated difference between means (i.e., estimate), the standard error of
473 that estimate (i.e., SE), the T ratio, and its corresponding p-value along with the reported level of
474 significance α . The top half of Table 2 studies the pairwise comparisons between time period and
475 platoon structure. Here, results are averaged over the levels of lane (i.e., left, middle, and right),
476 road type (i.e., freeway and urban), and data source (i.e., NGSIM and Lyft L5). As shown in Table
477 2, when the same platoon structure is present (e.g., Morning LFL - Afternoon LFL and Morning
478 LFA - Afternoon LFA), no significant difference is observed in the mean time headway. Otherwise,
479 the remaining pairwise comparisons between time period and platoon structure are significant.

480 The bottom half of Table 2 studies the interaction between the nested factor lane and the main
481 factor platoon structure. Here, results are averaged over the levels of time period (i.e., morning
482 and afternoon), road type (i.e., freeway and urban), and data source (i.e., NGSIM and Lyft L5).

483 This table demonstrates that: (1) LFL behavior does not significantly differ within the middle, left,
484 and right lane groups; (2) LFL behavior significantly differs within the left, middle, and right lane
485 groups when compared to LFA in the right lane; (3) LFL and LFA display statistically different
486 behaviors in different lanes; and (4) LFL and LFA display statistically different behaviors within
487 the right lane.

488 Although the proposed nested factorial model recognizes that the factor platoon structure leads to
489 a statistically significant different car-following behaviour, and the follow-up pair-wise comparisons
490 further confirm this, none of these approaches can identify whether the THW of LFA is less than
491 or greater than LFL's THW. Figure 3 demonstrates that LFL has higher mean and variance THW
492 values when compared to LFA.

493 As displayed in Figure 3, LFA has lower median (1.38), mean (0.41), and variance (0.31) THW
494 values in comparison to the median (2.48), mean (0.85), and variance (1.05) of THW in LFL.
495 The reduction in the mean time headway manifests in less bumper-to-head distance, enabling more
496 vehicles to operate on the road and increasing road capacity. The reduction in the variance of time
497 headway leads to a more stable traffic flow.

498 The final step is the verification of the fitted model's adequacy through Q-Q and residuals plots
499 as shown in Figure 4. To check the adequacy of the model, Q-Q plots of residuals and residuals
500 versus fitted values are shown in Figure 4. Q-Q plots are commonly used to confirm the normality
501 of the residuals, i.e., $\epsilon_{l(ijknm)} \sim N(0, \sigma^2)$. As a Q-Q plot is a scatter plot created by plotting the
502 actual quantiles of the residuals of the fitted model against the theoretical normally distributed ones,
503 a diagonal line is a confirmation that both sets of quantiles came from the same distribution. In the
504 Q-Q plot in Figure 4, the residuals roughly lie around the 45-degree line, suggesting that they are
505 approximately normally distributed. The homogeneity of the residuals can be validated using the
506 residuals plot. If the variance of the error term is homogeneous, not only should the residuals plot
507 show no pattern, but also the spread of residuals should be equal per group across corresponding
508 fitted values. The residuals plot in Figure 4 shows that the variances are approximately homogeneous
509 since the residuals are distributed approximately equally above and below zero.

510 **CONCLUSIONS**

511 In this study we proposed a nested factorial model to study the potential effects of AVs on human
512 drivers' car-following behavior using naturalistic driving data (i.e., NGSIM and Lyft L5 prediction
513 datasets). The objective of this study was to bridge the gap between anticipated and real-world
514 impacts of AVs on traffic streams and roadway capacity. The proposed nested model studied the
515 impact of different factors such as platoon structure (i.e., whether a human driver follows a legacy
516 vehicle or an AV), time period, traveling lane, and road type on the time headway between two
517 vehicles, which is considered as a proxy for the car-following behaviour of the following vehicle.
518 The results indicate that the platoon structure affects the car-following behavior of human drivers
519 in a statistically significant manner, allowing us to conclude that in a real-world setting, a human
520 driver's car-following behaviour when following a legacy vehicle is different from following an AV.
521 Furthermore, our analysis illustrates that the difference in the car-following behaviour of human
522 drivers is significantly present regardless of the traveling lane or the time period.

523 **DATA AVAILABILITY STATEMENT**

524 Some of models, or code that support the findings of this study are available from the corre-
525 sponding author upon reasonable request; All data used during the study are available in repositories
526 online in accordance with the funder's data retention policies.

527 **ACKNOWLEDGMENTS**

528 This work has been supported by Midwest US-DOT Center for Connected and Automated
529 Transportation (award number: 69A3551747105) and National Science Foundation (award number:
530 1837245).

531 **REFERENCES**

532 (2021). "U.s. department of transportation federal highway administration. (2016) next generation
533 simulation (ngsim) vehicle trajectories and supporting data. [dataset]. provided by its datahub
534 through data.transportation.gov.

535 Abdi, H. and Williams, L. J. (2010). "Tukey's honestly significant difference (hsd) test." *Encyclo-*
536 *pedia of research design*, 3(1), 1–5.

537 Abdolmaleki, M., Shahabi, M., Yin, Y., and Masoud, N. (2021). "Itinerary planning for cooperative
538 truck platooning." *Transportation Research Part B: Methodological*, 153, 91–110.

539 Amini, E., Tabibi, M., Khansari, E. R., and Abhari, M. (2019). "A vehicle type-based approach
540 to model car following behaviors in simulation programs (case study: Car-motorcycle following
541 behavior)." *IATSS research*, 43(1), 14–20.

542 Angkititrakul, P., Miyajima, C., and Takeda, K. (2011). "Modeling and adaptation of stochas-
543 tic driver-behavior model with application to car following." *2011 IEEE Intelligent Vehicles*
544 *Symposium (IV)*, IEEE, 814–819.

545 Bham', G. H. and Ancha, S. R. P. (2006). "Statistical models for preferred time headway and
546 time headway of drivers in steady state car-following." *Applications of Advanced Technology in*
547 *Transportation*, 344–349.

548 Boer, E. R. (1999). "Car following from the driver's perspective." *Transportation Research Part F:*
549 *Traffic Psychology and Behaviour*, 2(4), 201–206.

550 Calvi, A., Benedetto, A., and D'Amico, F. (2018). "Investigating driver reaction time and speed dur-
551 ing mobile phone conversations with a lead vehicle in front: A driving simulator comprehensive
552 study." *Journal of Transportation Safety & Security*, 10(1-2), 5–24.

553 Chen, X. M., Li, L., and Shi, Q. (2015). "A markov model based on headway/spacing distributions."
554 *Stochastic Evolutions of Dynamic Traffic Flow*, Springer, 49–79.

555 Da Lio, M., Bortoluzzi, D., and Rosati Papini, G. P. (2020). "Modelling longitudinal vehicle
556 dynamics with neural networks." *Vehicle System Dynamics*, 58(11), 1675–1693.

557 Das, S. and Maurya, A. K. (2017). "Time headway analysis for four-lane and two-lane roads."
558 *Transportation in developing economies*, 3(1), 9.

559 Durrani, U., Lee, C., and Maoh, H. (2016). "Calibrating the wiedemann's vehicle-following model
560 using mixed vehicle-pair interactions." *Transportation research part C: emerging technologies*,
561 67, 227–242.

562 Ersal, T., Kolmanovsky, I., Masoud, N., Ozay, N., Scruggs, J., Vasudevan, R., and Orosz, G. (2020).
563 “Connected and automated road vehicles: state of the art and future challenges.” *Vehicle system*
564 *dynamics*, 58(5), 672–704.

565 Evans, L. and Wasielewski, P. (1983). “Risky driving related to driver and vehicle characteristics.”
566 *Accident Analysis & Prevention*, 15(2), 121–136.

567 Fuller, R. G. (1981). “Determinants of time headway adopted by truck drivers.” *Ergonomics*, 24(6),
568 463–474.

569 Gallelli, V., Iuele, T., Vaiana, R., and Vitale, A. (2017). “Investigating the transferability of
570 calibrated microsimulation parameters for operational performance analysis in roundabouts.”
571 *Journal of Advanced Transportation*, 2017.

572 Greenshields, B. D., Thompson, J., Dickinson, H., and Swinton, R. (1934). “The photographic
573 method of studying traffic behavior.” *Highway Research Board Proceedings*, Vol. 13.

574 Helbing, D. and Tilch, B. (1998). “Generalized force model of traffic dynamics.” *Physical review*
575 *E*, 58(1), 133.

576 Hjelkrem, O. A. (2015). “Determining influential factors on the threshold of car-following behav-
577 ior.” *Report no.*

578 Houchin, A. J. (2015). “An investigation of freeway standstill distance, headway, and time gap data
579 in heterogeneous traffic in iowa.

580 Houston, J., Zuidhof, G., Bergamini, L., Ye, Y., Chen, L., Jain, A., Omari, S., Iglovikov, V., and
581 Ondruska, P. (2020). “One thousand and one hours: Self-driving motion prediction dataset.”
582 *arXiv preprint arXiv:2006.14480*.

583 Jiang, R., Wu, Q., and Zhu, Z. (2001). “Full velocity difference model for a car-following theory.”
584 *Physical Review E*, 64(1), 017101.

585 Jin, S., Huang, Z.-y., Tao, P.-f., and Wang, D.-h. (2011). “Car-following theory of steady-state traffic
586 flow using time-to-collision.” *Journal of Zhejiang University-SCIENCE A*, 12(8), 645–654.

587 Johansson, G. and Rumar, K. (1971). “Drivers’ brake reaction times.” *Human factors*, 13(1), 23–27.

588 Koutsopoulos, H. N. and Farah, H. (2012). “Latent class model for car following behavior.”

589 *Transportation research part B: methodological*, 46(5), 563–578.

590 Li, T., Han, X., Ma, J., Ramos, M., and Lee, C. (2021). “Operational safety of automated and
591 human driving in mixed traffic environments: A perspective of car-following behavior.” *Pro-*
592 *ceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability*,
593 1748006X211050696.

594 Liu, T. et al. (2019). “Comparison of car-following behavior in terms of safety indicators between
595 china and sweden.” *IEEE Transactions on Intelligent Transportation Systems*, 21(9), 3696–3705.

596 Liu, X., Masoud, N., and Zhu, Q. (2020a). “Impact of sharing driving attitude information: A
597 quantitative study on lane changing.” *2020 IEEE Intelligent Vehicles Symposium (IV)*, IEEE,
598 1998–2005.

599 Liu, X., Zhao, G., Masoud, N., and Zhu, Q. (2020b). “Trajectory planning for connected and
600 automated vehicles: Cruising, lane changing, and platooning.” *arXiv preprint arXiv:2001.08620*.

601 Masoud, N. and Jayakrishnan, R. (2017). “Autonomous or driver-less vehicles: Implementation
602 strategies and operational concerns.” *Transportation research part E: logistics and transportation*
603 *review*, 108, 179–194.

604 Mathew, T. V. and Radhakrishnan, P. (2010). “Calibration of microsimulation models for nonlane-
605 based heterogeneous traffic at signalized intersections.” *Journal of Urban Planning and Devel-*
606 *opment*, 136(1), 59–66.

607 McGehee, D. V., Mazzae, E. N., and Baldwin, G. S. (2000). “Driver reaction time in crash
608 avoidance research: Validation of a driving simulator study on a test track.” *Proceedings of the*
609 *human factors and ergonomics society annual meeting*, Vol. 44, Sage Publications Sage CA: Los
610 Angeles, CA, 3–320.

611 Mehmood, A. and Easa, S. M. (2009). “Modeling reaction time in car-following behaviour based on
612 human factors.” *International Journal of Civil and Environmental Engineering*, 3(9), 325–333.

613 Newell, G. F. (2002). “A simplified car-following theory: a lower order model.” *Transportation*
614 *Research Part B: Methodological*, 36(3), 195–205.

615 Rahmati, Y., Khajeh Hosseini, M., Talebpour, A., Swain, B., and Nelson, C. (2019). “Influence

616 of autonomous vehicles on car-following behavior of human drivers.” *Transportation research*
617 *record*, 2673(12), 367–379.

618 Ro, J. W., Roop, P. S., Malik, A., and Ranjitkar, P. (2017). “A formal approach for modeling and
619 simulation of human car-following behavior.” *IEEE transactions on intelligent transportation*
620 *systems*, 19(2), 639–648.

621 Ruggieri, E. and Antonellis, M. (2016). “An exact approach to bayesian sequential change point
622 detection.” *Computational Statistics & Data Analysis*, 97, 71–86.

623 Ruhai, G., Weiwei, Z., and Zhong, W. (2010). “Research on the driver reaction time of safety
624 distance model on highway based on fuzzy mathematics.” *2010 International Conference on*
625 *Optoelectronics and Image Processing*, Vol. 2, IEEE, 293–296.

626 Stern, R. E., Cui, S., Delle Monache, M. L., Bhadani, R., Bunting, M., Churchill, M., Hamilton,
627 N., Pohlmann, H., Wu, F., Piccoli, B., et al. (2018). “Dissipation of stop-and-go waves via
628 control of autonomous vehicles: Field experiments.” *Transportation Research Part C: Emerging*
629 *Technologies*, 89, 205–221.

630 Sugiyama, Y. (1999). “Optimal velocity model for traffic flow.” *Computer Physics Communications*,
631 121, 399–401.

632 Summala, H. (2000). “Brake reaction times and driver behavior analysis.” *Transportation Human*
633 *Factors*, 2(3), 217–226.

634 Tabachnick, B. G. and Fidell, L. S. (2013). “Using multivariate statistics upper saddle river.

635 Treiber, M., Hennecke, A., and Helbing, D. (2000). “Congested traffic states in empirical observa-
636 tions and microscopic simulations.” *Physical review E*, 62(2), 1805.

637 Van Winsum, W. (1998). “Preferred time headway in car-following and individual differences in
638 perceptual-motor skills.” *Perceptual and motor skills*, 87(3), 863–873.

639 Van Winsum, W. and Brouwer, W. (1997). “Time headway in car following and operational
640 performance during unexpected braking.” *Perceptual and motor skills*, 84(3_suppl), 1247–1257.

641 Vogel, K. (2002). “What characterizes a “free vehicle” in an urban area?.” *Transportation research*
642 *part F: traffic psychology and behaviour*, 5(1), 15–29.

643 Vogel, K. (2003). "A comparison of headway and time to collision as safety indicators." *Accident*
644 *analysis & prevention*, 35(3), 427–433.

645 Wang, J., Xiong, C., Lu, M., and Li, K. (2015). "Longitudinal driving behaviour on different
646 roadway categories: an instrumented-vehicle experiment, data collection and case study in
647 china." *IET Intelligent Transport Systems*, 9(5), 555–563.

648 Wang, W., Xi, J., and Chen, H. (2014). "Modeling and recognizing driver behavior based on driving
649 data: A survey." *Mathematical Problems in Engineering*, 2014.

650 WINSUM, W. V. and Heino, A. (1996). "Choice of time-headway in car-following and the role of
651 time-to-collision information in braking." *Ergonomics*, 39(4), 579–592.

652 Wyk, F. v., Khojandi, A., and Masoud, N. (2019). "A path towards understanding factors affecting
653 crash severity in autonomous vehicles using current naturalistic driving data." *Proceedings of
654 SAI Intelligent Systems Conference*, Springer, Cham, 106–120.

655 Zhang, E., Masoud, N., Bandegi, M., Lull, J., and Malhan, R. K. (2022a). "Step attention: Sequen-
656 tial pedestrian trajectory prediction." *IEEE Sensors Journal*, 22(8), 8071–8083.

657 Zhang, E., Masoud, N., Bandegi, M., and Malhan, R. K. (2022b). "Predicting risky driving in a
658 connected vehicle environment." *IEEE Transactions on Intelligent Transportation Systems*.

659 Zhang, E., Pizzi, S., and Masoud, N. (2021). "A learning-based method for predicting heterogeneous
660 traffic agent trajectories: implications for transfer learning." *2021 IEEE International Intelligent
661 Transportation Systems Conference (ITSC)*, IEEE, 1853–1858.

662 Zhang, L., Wang, J., Li, K., Yamamura, T., Kuge, N., and Nakagawa, T. (2008). "Driver car-
663 following behavior modeling using neural network based on real traffic experimental data." *15th
664 World Congress on Intelligent Transport Systems and ITS America's 2008 Annual MeetingITS
665 AmericaERTICOITS JapanTransCore*.

666 Zhang, X., Sun, J., Qi, X., and Sun, J. (2019). "Simultaneous modeling of car-following and lane-
667 changing behaviors using deep learning." *Transportation research part C: emerging technologies*,
668 104, 287–304.

669 Zhang, Z., Tafreshian, A., and Masoud, N. (2020). "Modular transit: Using autonomy and modular-

670 ity to improve performance in public transportation.” *Transportation Research Part E: Logistics*
671 and *Transportation Review*, 141, 102033.

672 Zhao, X., Wang, Z., Xu, Z., Wang, Y., Li, X., and Qu, X. (2020). “Field experiments on longitudinal
673 characteristics of human driver behavior following an autonomous vehicle.” *Transportation*
674 *research part C: emerging technologies*, 114, 205–224.

675 Zhu, M., Wang, X., and Wang, Y. (2018). “Human-like autonomous car-following model with deep
676 reinforcement learning.” *Transportation research part C: emerging technologies*, 97, 348–368.

677	List of Tables	
678	1	Results of the nested fixed model 29
679	2	Pairwise comparisons using least square means 30

TABLE 1. Results of the nested fixed model

Factor	DoF	SSE	MSE	F Statistics	P-Value	α
Time Period	1	1.46	1.46	1.55	0.21	
Platoon Structure	1	49.86	49.86	52.81	2.88e-12	0.001
Platoon Structure \times Time	1	1.09	1.09	1.16	0.28	
Platoon Structure: Data Source	1	0.03	0.03	0.04	0.85	
Platoon Structure: Road Type	1	1.92	1.92	2.03	0.15	
Platoon Structure: Lane	2	0.01	0.006	0.006	0.99	
Residuals	317	299.28	0.94			

TABLE 2. Pairwise comparisons using least square means

	Estimate	SE	T Ratio	P-Value	α
Time Period (Morning vs Afternoon) : Platoon Structure (LFL vs LFA)					
Morning LFL - Afternoon LFL	-0.132	0.132	-0.996	0.7519	
Morning LFL - Morning LFA	0.944	0.215	4.39	0.0001	0.001
Morning LFL - Afternoon LFA	1.055	0.215	4.91	<.0001	0.001
Afternoon LFL - Morning LFA	1.075	0.218	4.93	<.0001	0.001
Afternoon LFL - Afternoon LFA	1.187	0.218	5.44	<.0001	0.001
Morning LFA - Afternoon LFA	0.112	0.275	0.40	0.9774	
Lane (Left vs Middle vs Right) : Platoon Structure (LFL vs LFA)					
Left LFL - Middle LFL	0.013	0.138	0.098	0.9997	
Left LFL - Right LFL	0.016	0.158	-0.103	0.9996	
Left LFL - Right LFA	1.073	0.0171	6.279	<.0001	0.001
Middle LFL - Right LFL	-0.003	0.160	-0.022	1.000	
Middle LFL - Right LFA	1.061	0.171	6.279	<.0001	0.001
Right LFL - Right LFA	1.057	0.191	6.20	<.0001	0.001

680 **List of Figures**

681	1	The proposed framework to study the car-following behavior of drivers in LFL and	
682		LFA platoon structures.	32
683	2	The Structure of the proposed nested model.	33
684	3	The distribution of time headway over factor levels.	34
685	4	Adequacy check of the fitted nested fixed effect model: (a) Q-Q plot; and (b)	
686		residuals v.s. fitted values	35

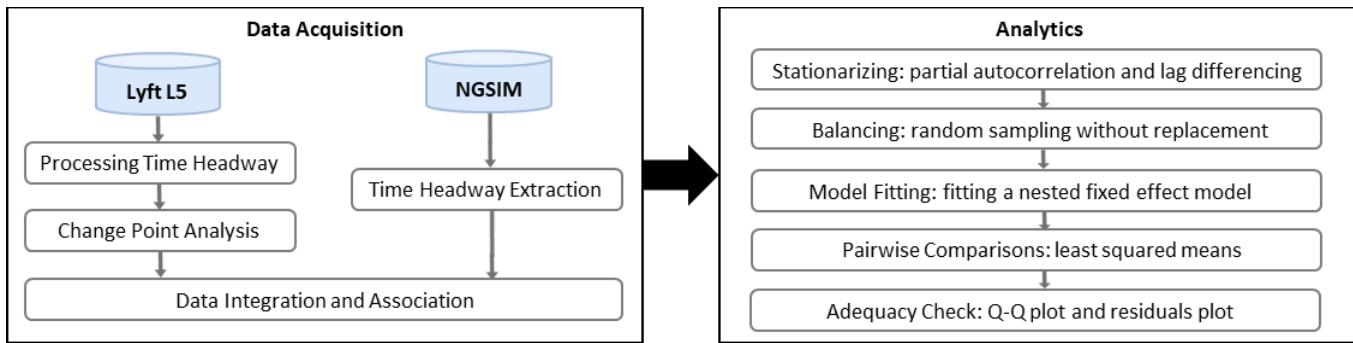


Fig. 1. The proposed framework to study the car-following behavior of drivers in LFL and LFA platoon structures.

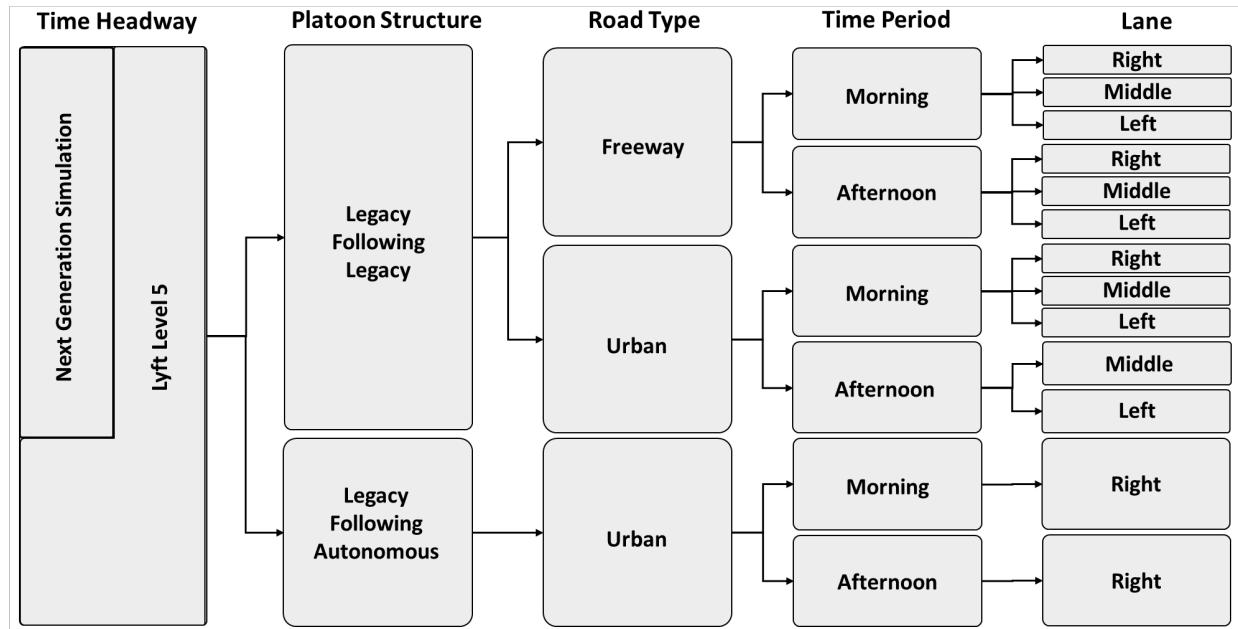


Fig. 2. The Structure of the proposed nested model.

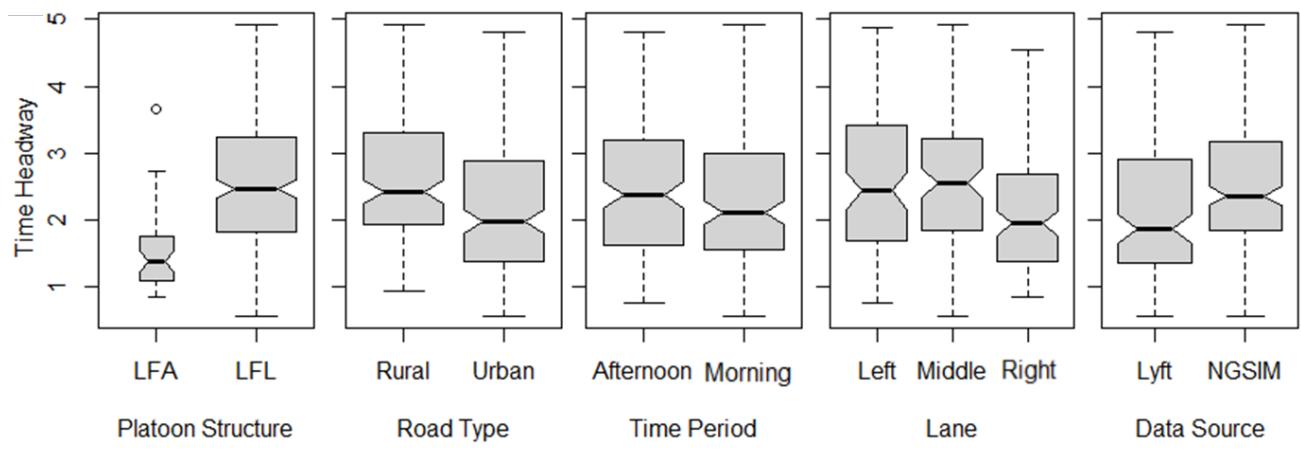
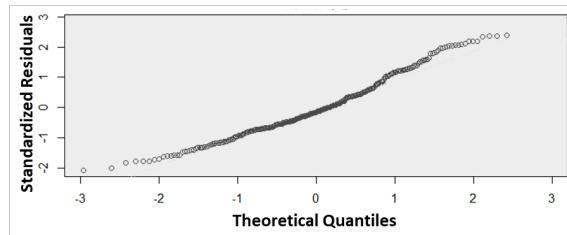
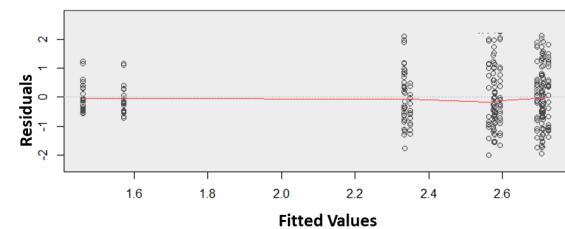


Fig. 3. The distribution of time headway over factor levels.



(a)



(b)

Fig. 4. Adequacy check of the fitted nested fixed effect model: (a) Q-Q plot; and (b) residuals v.s. fitted values