
Impact of Autonomous Vehicles on the Car-Following Behaviour of Human 1 

Drivers 2 

Ruixuan Zhang1,2 , Sara Masoud3 , and Neda Masoud4 
3 

1Graduate Research Assistant, Civil and Environmental Engineering, University of Michigan Ann 4 

Arbor, Address: 2350 Hayward St, Ann Arbor, MI 48109, Email: ruixuanz@umich.edu 5 

2Intern, Advanced Engineering, Isuzu Technical Center of America, Address: 46401 Commerce 6 

Center Dr, Plymouth, MI 48170, Email: ruixuan.zhang@isza.com 7 

3Assistant Professor, Industrial and Systems Engineering, Wayne State University, Address: 4815 8 

4th St, Detroit, MI 48201, Email: saramasoud@wayne.edu 9 

4Assistant Professor, Civil and Environmental Engineering, University of Michigan Ann Arbor, 10 

Address: 2350 Hayward St, Ann Arbor, MI 48109, Email: nmasoud@umich.edu 11 

ABSTRACT 12 

The past few years have witness to an increase in autonomous vehicle (AV) development and 13 

testing. However, even with a fully developed and comprehensively tested AV technology, AVs 14 

are anticipated to share the roadway network with human drivers for the unforeseeable future. In 15 

such a mixed environment, we use naturalistic driving data from the Next Generation Simulation 16 

(NGSIM) and Lyft Level 5 (Lyft L5) prediction datasets to investigate whether the existence of 17 

AVs influences the car following behavior of human drivers. We use time headway time series as 18 

a proxy to capture the car following behaviour of human drivers. We then develop a nested fixed 19 

model to find possible changes in behaviour when human drivers are following different types of 20 

vehicles (i.e., human-driven vehicles or AVs). The factors included in this model are the platoon 21 

structure (a legacy vehicle following a legacy vehicle, and a legacy vehicle following an autonomous 22 

vehicle), road type (freeway and urban), time period (morning and afternoon), lane (right, middle, 23 
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and left), and the source of the data (NGSIM and Lyft L5). Results indicate a statistically significant 24 

difference between the car following behaviour of drivers when they follow a human-driven vehicle 25 

compared to an AV. This change in the car following behaviour of drivers is manifested in the form 26 

of a reduction in the mean and variance of time headways when human drivers follow an AV. These 27 

findings can bridge the gap between anticipated and real-world impacts of AVs on traffic streams 28 

and roadway stability and capacity, providing meaningful insights on the influence of AVs on the 29 

driving behavior of humans in a naturalistic driving environment. 30 

Author keywords: Autonomous vehicle-human driver interactions, Car-following behaviour 31 

INTRODUCTION 32 

The past few years have been a witness to an increase in autonomous vehicle (AV) development 33 

and testing, with many mobility-oriented companies as well as original equipment manufacturers 34 

(OEMS) attempting to either open AV divisions or partner with/acquire start-ups that focus on 35 

software or hardware development for AVs. This move toward a future autonomous transportation 36 

system is fueled by many anticipated benefits of AVs, such as increased safety and smoother traffic 37 

flow (Zhang et al. 2022a; Wyk et al. 2019; Zhang et al. 2022b; Zhang et al. 2021), which in turn 38 

leads to higher levels of fuel economy, less congestion, a wider range of mobility options, and 39 

curbing the environmental footprint of the transportation sector (Stern et al. 2018; Liu et al. 2020b; 40 

Liu et al. 2020a; Zhang et al. 2020; Ersal et al. 2020; Masoud and Jayakrishnan 2017; Abdolmaleki 41 

et al. 2021). It might, however, take several decades for a fully autonomous transportation system 42 

to be deployed. Many experts argue that even with a fully developed and comprehensively tested 43 

AV technology, there will still be individuals who either have a distrust in the technology or do not 44 

wish to cease driving for other personal reasons. Therefore, it is safe to assume that AVs would 45 

have to share the roadway network with human drivers for the unforeseeable future. 46 

Since the advent of personal automobiles traffic engineers have been interested in studying the 47 

car-following behaviour of human drivers, with Bruce Greenshields being credited with the first 48 

recorded set of experiments to scientifically measure this car-following behaviour (Greenshields 49 
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et al. 1934). The advent of AVs has given rise to an interesting research question: Will the car-50 

following behaviour of human drivers be affected when they knowingly follow an autonomous 51 

vehicle? Few attempts have been made in the literature to answer this question. (Rahmati et al. 52 

2019) set up two sets of experiments with a platoon of size three, where the third vehicle in the 53 

platoon was a human-driven vehicle. In the first set of experiments, the second vehicle was a human-54 

driven vehicle, and in the second set of experiments it was an AV. They recorded the trajectory of 55 

the third vehicle, and used data-driven and model-based approaches to discern any changes in the 56 

car-following behaviour of the third vehicle in reaction to its preceeding vehicle. They concluded 57 

that when following an AV, a human driver’s car-following behaviour is significantly different than 58 

following a human-driven vehicle. 59 

Conducting controlled field experiments allows for assessing the impact of a single factor at 60 

a time on the car-following behaviour of human drivers, while keeping all other factors fixed. 61 

However, controlled field experiments have a number of downsides. First, a combinatorial number 62 

of experiments are required to capture the impact of multiple factors changing at once. This 63 

could easily render comprehensive controlled field experiments impractical, since a wide range of 64 

environmental factors as well as the presence of other agents (e.g., other AVs or legacy vehicles, 65 

pedestrians, bicycles, etc.) may play a role in the car-following behaviour of drivers. As a result, 66 

the conclusions obtained from basic and contained field experiments, although insightful, may not 67 

be readily generalizable to a naturalistic driving environment. As such, in this paper we seek to 68 

investigate the car-following behavior of human drivers who follow an AV in a naturalistic driving 69 

environment using a naturalistic and large dataset that allows for making statistically significant 70 

conclusions. To this end, we use the Lyft Level 5 (Lyft L5) (Houston et al. 2020) data repository, in 71 

which a fleet of AVs travels on a fixed route in an urban environment, providing over 1,000 hours of 72 

AV trajectories, their surrounding agents, and the transportation network. The route encompasses 73 

a variety of transportation facility types, including intersections and corridors. This dataset is the 74 

first to enable analysis of the car-following behaviour of a heterogeneous set of drivers who follow 75 

an AV in a naturalistic and dynamically changing driving environment. 76 
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Despite the benefits of using naturalistic driving data in analyzing the changes in the car-77 

following behaviour of human drivers when following an AV, it also poses a unique set of challenges. 78 

More specifically, the appearance of an AV is a key factor that can influence a human driver’s car-79 

following behavior. For the presence of an AV to change the behaviour of human drivers, they 80 

should be able to discern that they are following an AV based on clear visual cues. Garnished by 81 

lidars and cameras, AVs generally have a distinctive look that human drivers are likely to discern. 82 

Additionally, a human driver’s car-following behaviour depends on their subjective opinion on how 83 

an AV operates and its risk-taking attitude (Zhao et al. 2020). As such, to mitigate the risk of 84 

unwanted bias in data collection, data should be collected within an extended period of time from 85 

a diverse set of drivers. 86 

The car-following behaviour of a driver can be reflected using a number of parameters, e.g., 87 

velocity, acceleration, and time headway (Wang et al. 2014). Here, we use time headway (THW)– 88 

defined as the time it takes for the following vehicle to reach its leading vehicle–to model car-89 

following behaviour. As such, we conduct change point analysis on THW of the following driver 90 

to identify the moment in time when the human driver has identified its leading AV. 91 

The remainder of the paper is organized as follows. We first present the existing work and 92 

list the contributions of this paper in the LITERATURE REVIEW section. Then, we provide the 93 

analytical approach in detail. After that, we lay out our analysis using Lyft L5 and NGSIM datasets 94 

and present our findings in the RESULTS AND DISCUSSION section. Finally, we conclude the 95 

paper by summarizing our findings. 96 

LITERATURE REVIEW 97 

In traffic modeling, car-following behavior has been intensively studied to establish how a 98 

vehicle interacts with its leading vehicle. The main idea is to work with longitudinal dynamics 99 

of the vehicle pair, such as velocity, acceleration, time headway, and time-to-collision inverse, to 100 

uncover the behavior patterns of the following vehicle in various driving scenarios. There are two 101 

main components involved in the study of car-following behavior: modeling and analysis. These 102 

two components are discussed in the following. 103 

4 



Modeling 104 

As the most commonly encountered driving maneuver in the real world, car-following behavior 105 

has been extensively studied in investigating many specific driving scenarios. To properly describe 106 

the interaction between the leading and following vehicles, several measures are proposed. Time-107 

to-collision (TTC) reflects human drivers’ perception of their safety for potential collision, and it is 108 

strongly related to longitudinal acceleration/deceleration (Jin et al. 2011). (Vogel 2003) compares 109 

time headway and TTC with real-world traffic data and concludes that time headway and TTC are 110 

independent but suitable for different usages. They also argue that time headway directly reflects 111 

potential danger and thus prevents risky TTC, while TTC should be used for actual danger, i.e., 112 

on-road obstacle or collision. (Boer 1999) also mentioned that time headway characterizes the 113 

safety margin in the situation where the preceding vehicle decelerates, while TTC denotes the time 114 

left for drivers to intervene to avoid a crash. Headway is not considered here as it can not include 115 

velocity-related information, which is necessary to learn the car-following behavior. As we are 116 

interested in human drivers’ reaction to on-road stimuli (the preceding AV) without evaluating an 117 

actual collision, in our study we select time headway to model the car-following behaviour. 118 

Several car-following behavior models are formulated using ordinary differential equations 119 

(ODE) that take positions and velocities of vehicles as inputs. The intelligent driving model (IDM) 120 

(Treiber et al. 2000) and optimal velocity model (OVM) (Sugiyama 1999) are two extensively-121 

applied ODE-based models capable of modeling nonlinear dynamics. Additionally, a linearized 122 

model can be further derived from ODEs via Taylor expansion. The full velocity difference model 123 

(FVDM) (Jiang et al. 2001) was developed based on OVM and the generalized force model (GFM) 124 

(Helbing and Tilch 1998) by taking both positive and negative velocity differences into account. 125 

It could obtain more precise predictions of vehicle motion in traffic jam density. Wiedemann 126 

74 (W-74) model and Wiedemann 99 (W-99) model (Durrani et al. 2016) are two car-following 127 

models developed by Rainer Wiedemann, where the drivers change their behaviors at discrete time 128 

steps only when certain thresholds (predefined for headway, speed, or relative speed) are reached. 129 

However, the values of parameters in W-99 are empirical, and no literature exists to indicate how 130 
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ranges for these parameter should be established, which prompted many related works (Durrani 131 

et al. 2016; Mathew and Radhakrishnan 2010; Gallelli et al. 2017) in calibrating the W-99 model. 132 

Newell’s car-following model (Newell 2002) applied a similar concept to W-99, assuming that a 133 

vehicle will maintain a minimum space and time gap between itself and its preceding vehicle. Some 134 

studies which pursue a more general way of modeling the car-following behavior are discussed in 135 

(Ro et al. 2017; Koutsopoulos and Farah 2012), where not only the car-following dynamics is 136 

considered, but also random human factors and different driving scenarios (such as following and 137 

emergency braking) were accounted for. Other car-following models such as adaptive cruise control 138 

(ACC) and cooperative adaptive cruise control (CACC) were designed for commercial vehicles, 139 

applying automated longitudinal control by adjusting acceleration with a linear function to maintain 140 

preset velocity and headway values. 141 

All of the aforementioned car-following models are based on mathematical formulations with 142 

longitudinal dynamics, taking advantage of traditional control theory. On the other hand, predictive 143 

techniques enable a data-driven approach and can directly learn the car-following behavior using 144 

real-world data. (Zhang et al. 2008) utilized time headway and time-to-collision inverse data 145 

and a back-propagation neural network to reproduce longitudinal accelerations. A long short-146 

term memory (LSTM) neural network in (Zhang et al. 2019) used the position information of 147 

surrounding vehicles to predict the car-following behavior with low longitudinal trajectory error. 148 

A deep deterministic policy gradient reinforcement learning car-following model was developed in 149 

(Zhu et al. 2018), where a mapping from speed, relative speed, and headway to acceleration regime 150 

of the following vehicle were obtained to deliver a human-like car-following model. A Gaussian 151 

mixture model (GMM) was developed in (Angkititrakul et al. 2011) to anticipate the future car-152 

following behavior based on velocity and headway. Such learning-based methods require a large 153 

amount of training data, and the quality of data significantly influences model performance. Neural 154 

network-based designs also require careful tuning when learning the longitudinal dynamics of 155 

vehicles (Da Lio et al. 2020). 156 

From the literature, it can be noticed that multiple longitudinal dynamics impact the car-157 
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following behaviors of both the following vehicle and the proceeding vehicle, among which relative 158 

distance and velocity are the two most essential factors. To leverage this finding and reduce the 159 

complexity of the model, we select time headway as the main feature for modeling car-following 160 

behavior as it accounts for both relative distance and velocity (Chen et al. 2015; Vogel 2002). 161 

Analysis 162 

Car-following behavior is of interest to transportation researchers as it can provide insights into 163 

the best ways to approach flow throughput control, on-road safety, and energy consumption, etc. 164 

There are two directions followed in the current literature to analyze the car-following behavior of 165 

drivers: one studies the stability (string stability and plant stability) of traffic flow, while the other 166 

quantifies the car-following behavior using statistical tools such as mean and variance. As this work 167 

focuses on patterns of interactions between human-driven vehicles and AVs, the analysis of string 168 

stability and plant stability is out of the scope this study. 169 

Car-following behavior may be affected by many factors such as road condition, weather, and 170 

vehicle type. When dealing with data relevant to multiple factors, Analysis of Variance (ANOVA) 171 

is a powerful tool to investigate the influence level of each factor. In (Liu et al. 2019), two one-way 172 

ANOVA tests were conducted, indicating that different speed limits have a significant influence on 173 

the time headway and headway, and the mean of time headway is closely centered around a fixed 174 

value. A factorial ANOVA analysis was conducted in (Hjelkrem 2015) to determine the interactions 175 

between area type, number of lanes, and vehicle type influencing the car-following behavior. Road 176 

condition is suggested to be a critical factor in influencing both headway and time headway by 177 

(Wang et al. 2015; Houchin 2015). Significant influence from vehicle type (2-door car v.s. 4-door 178 

vehicles, sedans v.s. trucks, vehicles v.s. motorcycles) is also observed in (Evans and Wasielewski 179 

1983; Houchin 2015; Amini et al. 2019). 180 

The literature on the analysis of car-following behavior mainly focuses on human-driven ve-181 

hicles, and AV-involved scenarios are rarely studied. Human-AV interactions at the microscopic 182 

level were first studied in (Rahmati et al. 2019), where a field experiment was conducted though 183 

setting up two two-vehicle platoon structures of human-following-human and human-following-184 
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AV. (Rahmati et al. 2019) showed that a shorter headway is selected when human drivers follow 185 

an AV. Other field experiments conducted by (Zhao et al. 2020) suggest that a driver’s subjective 186 

attitude toward to AV technology dominates the actual AV’s driving behavior in the speed-headway 187 

relationship. Observations from these two field experiments indicate that the limited data collected 188 

from field experiments degrades the robustness of the intersection effect(s). Recently, (Li et al. 189 

2021) leveraged the Lyft L5 dataset as the data source for operational safety analysis in human-AV 190 

interactions in car-following scenarios. In this study we utilize the Lyft L5 and NGSIM datasets 191 

to provide a comprehensive and robust evaluation of the car-following behaviour of humans, ac-192 

counting for multiple factors that may affect the car-following behaviour of human drivers. This 193 

naturalistic study serves as a necessary complement to the existing field experiments. 194 

Contribution 195 

The objective of this paper is to provide insights on the potential influence of AVs on the 196 

car-following behavior of human drivers. The contributions of this paper are two-fold: (𝑖) we 197 

conduct statistical analysis on time headway data from Lyft L5, using NGSIM datasets (US101, I-198 

80, Lankershim Blvd) as the control group, to find the influence of leading AVs on the car-following 199 

behaviour of following drivers; (𝑖𝑖) This naturalistic study provides evidence that human drivers 200 

are regulated as a result of introducing AVs, as evidenced by the statistically significant reduction 201 

in the mean value and variance of their time headways. 202 

METHODS 203 

The objective of this study is to investigate whether, and the extent to which, the existence of 204 

AVs in the traffic stream influences the car-following behaviour of human drivers. To answer this 205 

question, we propose a comprehensive framework demonstrated in Figure 1. Data used in this study 206 

is obtained from two public datasets: Lyft L5 (Houston et al. 2020) and NGSIM (NGS 2021). We 207 

use time headway time series in our analysis as a proxy to quantify the car-following behaviour of 208 

vehicles. Time headway between two vehicles is defined as the travel time from the centroid of the 209 

following vehicle to the centroid of the preceding/leading vehicle based on the following vehicle’s 210 

speed. In the rest of this paper, we denote a legacy vehicle following an autonomous vehicle as 211 
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LFA, and a legacy vehicle following a legacy vehicle as LFL. We refer to LFA and LFL as platoon 212 

structures. 213 

As displayed in Figure 1, the proposed framework consists of two main phases, namely, data 214 

acquisition and data analysis. These phases are described in the following sections. 215 

Phase I: Data Acquisition 216 

The first phase starts by extracting time headways of LFL and LFA platoon structures. More 217 

precisely, we extract LFA time headways from the Lyft L5 dataset, and LFL time headways from 218 

both Lyft L5 and NGSIM datasets. Once the time headways are extracted, We use Bayesian change 219 

point analysis to filter out the portions of time headway data in the LFA platoon structure where 220 

the legacy vehicle is not aware of following an AV. 221 

Change Point Analysis 222 

Our objective in this study is to make a determination on whether the presence of an AV affects 223 

the car-following behaviour of its following vehicle in the LFA platoon structure. Consequently, 224 

we first need to identify scenarios in the Lyft L5 dataset where a legacy vehicle is following an 225 

AV, and more importantly, is aware that it is following an AV. To identify such scenarios, we first 226 

identify scenes from the Lyft L5 dataset where a legacy vehicle is immediately following an AV. 227 

Next, for each scene we conduct change point analysis to mark any changes in the time headway 228 

sequence of the legacy vehicle and the velocity sequence of its leading AV. The adopted Change 229 

point analysis is an online detection approach that provides uncertainty bounds on the number and 230 

location of change points across observations (Ruggieri and Antonellis 2016). This method strives 231 

to make fast inferences on the occurrence of new change points based on each new observation. 232 

Let us denote by 𝑐 ℎ
𝐿 the time instance when a change point is detected in the time headway 233 

time series of the legacy vehicle, and by 𝑐𝑣
𝐴 the time instance when a change point identified in 234 

the velocity time series of the AV. Let us denote by 𝑡𝑟 min and 𝑡𝑟 max the minimum and maximum 235 

reaction time of the legacy vehicle, i.e., the time period lapsed from the moment the AV changes 236 

its acceleration and the moment the acceleration of the legacy vehicle changes in response. When 237 

𝑡𝑟 min ≤ 𝑐 ℎ
𝐿 − 𝑐𝑣

𝐴 ≤ 𝑡𝑟 max, the change in the time headway of the legacy vehicle can be attributed 238 
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to its car-following behaviour. However, when 𝑐 ℎ
𝐿 is not proceeded with a 𝑐𝑣

𝐴 within the time 239 

interval [𝑡𝑟 min , 𝑡
𝑟 
max], i.e., the change point analysis detects a change in time headway of the legacy 240 

vehicle that cannot be attributed to its car-following behaviour, we postulate that this change can be 241 

attributed to the legacy vehicle having identified its proceeding vehicle as an AV, and only consider 242 

the trajectory of the legacy vehicle after this change point. In other instances where no such change 243 

point is detected, we assume that the legacy vehicle is aware of its leading AV due to the distinctive 244 

appearance of AVs in the Lyft L5 study. 245 

Owing to many factors, such as the driving environment, age, gender, and experience, the 246 

range for the reaction time can vary from case to case, as shown in (Johansson and Rumar 1971; 247 

McGehee et al. 2000; Summala 2000), where different field experiments and calibrated models 248 

find the minimum value (𝑡𝑟 min) can be as small as 0.3 seconds, and the maximum value (𝑡 𝑟 max) can249 

be as high as 2.4 seconds. Avoiding the extreme values where reaction times may slightly increase 250 

when the stimulus (e.g., following an AV instead of another legacy vehicle) is a surprise to drivers 251 

(Johansson and Rumar 1971; Mehmood and Easa 2009), or decrease at lower driving speeds (Calvi 252 

et al. 2018; Ruhai et al. 2010), in this study we set the minimum and maximum values of reaction 253 

time to 𝑡𝑟 min = 0.5 and 𝑡𝑟 max = 1 seconds, respectively, following the literature. 254 

For human drivers, there is a preferable time headway interval towards the preceding vehicle 255 

(Fuller 1981; Das and Maurya 2017). The preferable time headway is the most frequently adopted 256 

time headway when human drivers are in the car-following mode, which is used to baseline the 257 

car-following behavior of rational human drivers. Following the existing literature (e.g., (WINSUM 258 

and Heino 1996; Van Winsum and Brouwer 1997; Van Winsum 1998; Bham’ and Ancha 2006)), 259 

the preferable time headway is considered to be 1 to 2.5 seconds in this study. When time headway is 260 

shorter than the lower bound, drivers are more likely to slow down, while when the time headway is 261 

longer than the upper bound, drivers may either keep the current speed or accelerate to catch up with 262 

the preceding vehicle. The basic idea is that when the time headway is inside the interval, human 263 

drivers will feel comfortable and will not overreact unless there is an external disturbance. This 264 

preferable time headway may be influenced by many factors (e.g., road configuration, lane, etc.). 265 
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Generally, there is no universal standard, and this interval can be determined from the observed 266 

data itself. We use the distribution of time headway in the LFA dataset to define the preferable time 267 

headway. 268 

In the final step of phase I, the collected and filtered time headways from both Lyft L5 and 269 

NGSIM datasets are integrated and associated. In this step, each time headway is labeled based on 270 

platoon structure, road type, time period, data source, and lane, as shown in Figure 2. 271 

Phase II: Analysis 272 

Phase II focuses on analysis. In the first step, two samples of equal sizes are taken from LFA 273 

and LFL datasets. Next, partial autocorrelation analysis is employed to detect autocorrelation lags. 274 

Using these identified lags, differencing is applied to stationarize the randomly selected time series. 275 

Next, we define the factors of interest, which alongside time headway will be used for fitting the 276 

ANOVA model. 277 

Once the factors of interest are identified and before fitting the nested model, we first create 278 

balanced datasets. 279 

To obtain balanced datasets we sample time headways without replacement from LFL and LFA 280 

datasets so that the same number of data points will be available in each branch of the nested design. 281 

Next, the ANOVA model is fitted using balanced datasets. Finally, we confirm the adequacy of the 282 

fitted model, and conduct follow-up pair-wise comparisons to isolate the effects that are significantly 283 

different, as displayed in Figure 1. The major steps of the analysis are detailed in the following. 284 

Analysis of Variance 285 

Analysis of Variance (ANOVA) is one of the most well-known statistical tools for evaluating the 286 

existence of significant differences between factor levels on a continuous measurement (Tabachnick 287 

and Fidell 2013). A factorial ANOVA can be implemented to examine the impacts of independent 288 

categorical factors on a continuous target variable. Factorial ANOVA is an suitable approach to 289 

study whether there exists a statistically significant difference in the time headway patterns of LFA 290 

and LFL platoon structures based on different factors and their levels. One of the main requirements 291 

of ANOVA is the independence of observations. The underlying sequential and time dependant 292 
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nature of time series data is a direct violation of this requirement. To address this issue, we apply 293 

a two-step data processing procedure. First, we randomly (without replacement) down-sample the 294 

time series to remove any potential dependencies. Next, we render the randomly selected time 295 

series approximately stationary through differencing to remove auto-correlation. 296 

Stationarity and Partial Auto-Correlation 297 

In time series, auto-correlation is the correlation between two observations at different time 298 

stamps, where these observations correlate with themselves repetitively at certain lags. Auto-299 

correlation and partial auto-correlation plots can be used to study the auto-correlation of time series. 300 

Although auto-correlation plots can measure and visualize the correlation between observations 301 

for a predefined set of lags, they fail to account for the propagation of correlation among successive 302 

lags. Partial auto-correlation analysis addresses this problem by isolating the auto-correlation 303 

lag. In this work, we use partial auto-correlation plots to identify auto-correlation lags, and apply 304 

differencing at the identified lags to stationarize the time headway time series. We discard data 305 

points that cannot be stationarized by first level differencing. 306 

Nested Fixed Effect Model 307 

The design of the fitted factorial ANOVA is highly dependent on the structure of the collected data. 308 

Fig. 2 displays the factors of interest. A total of five factors are considered in this study. The first 309 

factor, platoon structure, models whether the reported time headway profiles belong to an LFL or 310 

an LFA pair. The second factor, road type, represents whether the data is collected from an urban 311 

road network (i.e., Palo Alto, CA and Lankershim Blvd, CA) or a freeway (i.e., US 101, CA and 312 

I-80, CA). The third factor, time period, models whether the data in collected during the morning 313 

(i.e., 7:50am - 9:00am) or afternoon (i.e., 4:00pm - 5:30pm) peak period. 314 

The fourth factor studies whether the source of the collected data has any significant impact on 315 

human driving behavior. Data source is defined as a factor to account for the impact of different 316 

data collection techniques and locations in NGSIM and Lyft L5 datasets. The final factor, lane, 317 

represents the lane at which the data has been collected. This factor is considered because the 318 

lane in which a vehicle travels could impact its car-following behaviour. As the number of lanes is 319 
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different across data collection sites, we used one-way ANOVA to group lanes that failed to show a 320 

statistically significant difference in their car-following behaviour based on time headway analysis. 321 

As a result, the lane levels simplified to the left (i.e., speeding) lane, the middle lanes, and the right 322 

(merging) lane. Note that the high occupancy vehicle lanes were filtered out in this study when 323 

present. 324 

The factorial ANOVA relies on the underlying relationships between these different factors. 325 

Note that AVs are only present in the Lyft L5 dataset and the Lyft L5 data is limited to an urban 326 

environment. Furthermore, AV trajectories only appear on the right lane. As such, the values of the 327 

factors data source, lane, and road type are restricted to the values of the factor platoon structure, 328 

leading to the choice of a nested factorial ANOVA as shown in Equation (1). 329 

𝑌𝑙 (𝑖 𝑗 𝑘 𝑛𝑚) = 𝜇 + 𝛼𝑖 + 𝛽 𝑗 + (𝛼 × 𝛽)𝑖 𝑗 + 𝛾𝑘 ( 𝑗 ) 

+ 𝜆𝑚 ( 𝑗 ) + 𝜃𝑛( 𝑗 ) + 𝜖𝑙 (𝑖 𝑗 𝑘 𝑛𝑚) , 

for 𝑖, 𝑗 , 𝑘 , 𝑚 ∈ {1 } 𝑛 ∈ { , , } (1) , 2 and 1 2 3

where 𝜇 represents the overall mean, and 𝛼𝑖 , 𝛽 𝑗 , 𝛾𝑘 ( 𝑗 ) , 𝜆𝑚 ( 𝑗 ) , and 𝜃𝑛 ( 𝑗 ) capture the effects of 330 

time period, platoon structure, data source, road type, and lane, respectively. The parenthetical 331 

subscriptions illustrate the nesting structure of the model. The (𝛼 × 𝛽)𝑖 𝑗 models the interaction 332 

effects between factors time period and platoon structure. Here, 𝜖𝑙 (𝑖 𝑗 𝑘 𝑛𝑚) represents the error term, 333 

which is assumed to follow 𝑁 (0, 𝜎2). In addition to the normality and constant assumptions 334 
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regarding the error term, the fitted model should also satisfy the following constraints: 335 

∑︁ 

𝑖 
𝛼𝑖 = 0 (2a) ∑︁ 

𝑗 
𝛽 𝑗 = 0 (2b) ∑︁ 

𝑖 
(𝛼 × 𝛽)𝑖 𝑗 = 0, ∀ 𝑗 ∈ {1, 2} (2c) ∑︁ 

𝑗 
(𝛼 × 𝛽)𝑖 𝑗 = 0, ∀𝑖 ∈ {1, 2} (2d) ∑︁ 

𝑘 
𝛾𝑘 ( 𝑗 ) = 0, ∀ 𝑗 ∈ {1, 2} (2e) ∑︁ 

𝑚 
𝜆𝑚( 𝑗 ) = 0, ∀ 𝑗 ∈ {1, 2} (2f) ∑︁ 

𝑛 
𝜃𝑛( 𝑗 ) = 0, ∀ 𝑗 ∈ {1, 2} (2g) 

As the nested factorial model in Equation (1) is not identifiable, the additional sets of constraints 336 

in Equation (2) help narrow down the solution space to a unique set of fitted parameters. Using a 337 

single ANOVA model, we define several hypotheses tests to assess the significance of each factor, 338 

with the null hypothesis in each case indicating that the mean time headways are similar for different 339 

values of a given factor, and the alternative hypothesis indicating otherwise. 340 

Nested factors (i.e., data source, lane, and road type) are added to absorb some of the unexplained 341 

variability. As a result, specific hypothesis tests associated with nested factors are of lesser 342 

importance. 343 

Although a rejection of the null hypothesis in the ANOVA analysis signals the existence of 344 

a significant effect (i.e., factor), it fails to identify the factor level that is significantly different, 345 

specifically in the presence of interaction effects. As a result, ANOVA analyses are usually followed 346 

by pairwise comparisons. While studying the effects of multiple factor levels, comparisons between 347 

the individual means of either factor may be made using any pairwise comparison technique. We 348 

use Least Square Means to investigate the significance of the factors and apply Tukey’s HSD method 349 

to adjust the significance level (Abdi and Williams 2010). 350 
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Multiple assumptions are made prior to fitting the nested fixed effect model. As a result, the 351 

adequacy of the model relies on whether these assumptions hold true. These assumptions include 352 

1) the normality of the residuals, i.e., 𝜖𝑙 (𝑖 𝑗 𝑘 𝑛𝑚) ∼ 𝑁 (0, 𝜎2), and 2) the homogeneity of the residuals. 353 

Many mathematical tests are developed for checking the normality and homogeneity of the residuals 354 

(e.g., the Shapiro-Wilk test ). One problem with such tests is that as the sample size increases, the 355 

test results are more likely to fail for even minor departures from normality or homoscedasticity. 356 

Therefore, in this paper we rely on visualization approaches instead. 357 

DATA 358 

The raw data within both repositories are collected using different sensors such as digital video 359 

cameras, radars and lidars. 360 

Lyft L5 Dataset 361 

The Lyft L5 Prediction data repository was released by the Lyft Level 5 team in June 2020 362 

(Houston et al. 2020). This data repository contains raw camera/lidar/radar data collected from a 363 

fleet of 23 AVs operating along a fixed high-demand route in Palo Alto, CA, from October 2019 to 364 

March 2020. An internal perception stack has already been applied to report information such as 365 

the vehicle position based on a global coordinate system, velocity, and a unique ID for each agent. 366 

We extract the time headway series of each legacy vehicle for the purpose of this study. 367 

NGSIM Dataset 368 

The Next Generation Simulation (NGSIM) is a well-known dataset published by the U.S. 369 

Department of Transportation Intelligent Transportation Systems Joint Program Office (JPO) (NGS 370 

2021). This dataset includes detailed vehicle trajectory data collected in four sites: southbound 371 

US 101 and Lankershim Boulevard in Los Angeles, CA, eastbound I-80 in Emeryville, CA, and 372 

Peachtree Street in Atlanta, Georgia. The data is collected in different time periods from April 20, 373 

2005 to November 9, 2006. The dataset contains vehicle ID, global coordinates of the vehicle, 374 

vehicle type, velocity, acceleration, space headway, and time headway, among other attributes. We 375 

extract the time headway series of each vehicle in each regular (non-carpool) lane at each site for 376 
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the purpose of this study. 377 

Data Processing Pipeline 378 

To fully leverage the abundant data in the Lyft L5 and NGSIM datasets for ANOVA, a modular 379 

data processing pipeline is developed with three blocks: time headway calculation, change point 380 

analysis, and down-sampling and filtering. A detailed explanation of the processing pipeline is 381 

given for the Lyft L5 dataset. 382 

• Time headway calculation: Realizing that the driving behavior in different lanes on the 383 

same road may be different, the lane-specific time headway data is of interest to us. To 384 

stay consistent with the NGSIM dataset, all the raw data in the Lyft L5 dataset is taken 385 

from the multi-lane roads. By utilizing the provided semantic map with 8.500 discrete lane 386 

segments, a customized semantic map is constructed by connecting any lanes that physically 387 

belong to the same continuous lane (multiple lane segments in the original semantic map 388 

may correspond to the same lane in the real world), referred as the augmented map. In 389 

the multi-lane roads, three lane groups are identified (right, middle, and left). Given the 390 

position information of vehicles, the augmented map can immediately match vehicles to the 391 

corresponding lane groups. The time headway in the car-following mode is calculated as the 392 

travel time from the centroid of the following vehicle to the centroid of the preceding/leading 393 

vehicle based on the following vehicle’s speed. 394 

• Change point analysis: In investigating an AV’s effect on the following behaviour of human 395 

drivers, we need to construct a dataset in which the following human driver is aware that 396 

the leading vehicle is an AV. To this end, we conduct a change point analysis as described 397 

in section CHANGE POINT ANALYSIS. 398 

• Down-sampling and filtering: The sampling frequency in both datasets is 10 Hz, and a high 399 

correlation among data points is present under such a high-frequency sampling regime. 400 

To ensure independence of observations, autocorrelation and partial autocorrelation are 401 

evaluated, and down-sampling of the time headway sequence is implemented. According to 402 
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our evaluation results, 1 Hz is selected to be the updated sampling frequency. Furthermore, 403 

a filtering step is introduced to ensure that the time headway sequence satisfies the minimum 404 

length of containing at least 10 data points or 10-seconds of observation. 405 

For the NGSIM dataset, as the lane information is readily available, only the down-sampling 406 

and filtering module will be used. 407 

RESULTS AND DISCUSSION 408 

In this section, we present the results of our proposed framework. In accordance with the flow 409 

of the framework, we first stationarize the time headway time series through differencing and partial 410 

auto-correlation analysis. Then, we balance our dataset. Next, we test our hypotheses using nested 411 

factorial ANOVA, followed by pairwise comparisons. 412 

Down-sampling and Auto-correlation Analysis 413 

Since the sample frequency in Lyft L5 and NGSIM datasets is high (10 Hz), data points may 414 

correlate with each other at such high frequency and thus introduce unnecessary bias into the 415 

results. A common approach to reduce autocorrelation is to down-sample the data at a slower 416 

frequency. We test Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) 417 

at down-sampling frequencies of 2Hz and 1Hz, in comparison with the original data. Decreasing 418 

sample frequency can significantly reduce both ACF and PACF at higher lags. Down-sampling 419 

at 1 Hz can reduce the magnitude of the auto-correlation lags. Differencing at lag one further 420 

stationalizes the time series. As the majority of the time series are not significantly auto-correlated 421 

after lag 1 differencing, the non-stationary ones are dropped at this step. 422 

Some interesting takeaways may be discussed before presenting the ANOVA results. In a 423 

freeway driving environment, e.g., US 101 and I-80, after down-sampling at 1 Hz, there is still 424 

a significant autocorrelation at lag 1 and neutrally-distributed partial autocorrelation (PAC) after 425 

lag 2. In an urban driving environment, Lankershim Blvd and Lyft L5, a similar pattern can 426 

be observed; however, at lag 1, a relative smaller ratio of data is correlated. An interpretation 427 

for this difference is that in freeways, human drivers encounter fewer external disturbances and 428 
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therefore their behavior is more consistent and predictable. A neutral-distributed outbound PAC 429 

after lag 2 indicates that the behaviors tend to be random in 2 seconds into the future. If we view 430 

a human driver as a controller, s/he will control the time headway to the leading vehicle roughly at 431 

some period, which can be determined by the lag where outbound PAC values are approximately 432 

neutral-distributed. 433 

Factorial Analysis 434 

The processed dataset contains a total of 537,060 data points, out of which 5,774 (i.e., 1%) 435 

of data points represent the LFA structure while the remaining 531,285 (i.e., 99%) belong to the 436 

LFL platoon structure. In order to maximize the power of the factorial analysis, the dataset should 437 

be balanced. In addition, balancing helps protect the analysis against small departures from the 438 

assumptions. Although the balancing effort reduces the total size of the dataset (i.e., 25 data points 439 

per each leaf in Figure 2) through random sampling, it improves the the distribution of the data 440 

within different factor levels, including platoon structure: 85% for LFL and 15% LFA; Road type: 441 

46% for freeway and 54% urban; Time period: 53% for morning and 45% afternoon; Lane: 31% 442 

for left, 31% for middle and 38% right. 443 

The nested factorial ANOVA introduced in Equation 1 is fitted and its results are displayed in 444 

Table 1. The fitted model allows us to study whether there are statistically significant associations 445 

between the time headway and the factors introduced in Figure 1. Table 1 reports findings on the 446 

main effects (i.e., time period and platoon structure factors), nested effects (i.e., data source, road 447 

type, and lane factors), as well the interaction effects between the time period and platoon structure 448 

factors. 449 

The first three rows in Table 1 correspond to hypotheses on time period, platoon structure, 450 

and the interaction effect between time period and platoon structure factors. The next three rows 451 

display the impact of data source, road type, and lane as nested factors of platoon structure, 452 

respectively. The last row provides information regarding the residuals. For each one of the 453 

hypotheses of interest, Table 1 reports the degree of freedom (DoF) of the test, sum of squared 454 

errors (SSE), mean square errors (MSE), as well as the F-statistics, its corresponding p-value, 455 
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and the significance level at which a conclusion is made. The reported p-values can assess the 456 

null hypotheses and determine whether the association between the time headway and the factors 457 

of interest are statistically significant. Table 1 reports that only the platooning structure is of 458 

significance at 𝛼 = 0.001. The results also highlights the fact that the collected time headway 459 

data are not impacted by the differences in data collection techniques and locations in NGSIM and 460 

Lyft L5 datasets at a statistically significant level. To further study the results reported in Table 1, 461 

multiple follow up pairwise comparisons are conducted to understand which levels of the platoon 462 

structure factor are significantly different given the nested structure. Table 2 illustrates the results 463 

of the pairwise comparisons. 464 

Although the platoon structure is the only significant factor as reported in Table 1, the interaction 465 

effect between time period and platoon structure and the nesting factors may have obscured the 466 

comparisons between the means of different levels of the platoon structure. As a result, the least 467 

squared method is applied to the means of one of the factors, with the remaining factor set at a 468 

particular level. In addition, as pairwise comparisons lead to inflation of the significance level, the 469 

p-values within Table 2 are adjusted based on the Tukey method for comparing a family of multiple 470 

estimators. 471 

Table 2 reports the estimated difference between means (i.e., estimate), the standard error of 472 

that estimate (i.e., SE), the T ratio, and its corresponding p-value along with the reported level of 473 

significance 𝛼. The top half of Table 2 studies the pairwise comparisons between time period and 474 

platoon structure. Here, results are averaged over the levels of lane (i.e., left, middle, and right), 475 

road type (i.e., freeway and urban), and data source (i.e., NGSIM and Lyft L5). As shown in Table 476 

2, when the same platoon structure is present (e.g., Morning LFL - Afternoon LFL and Morning 477 

LFA - Afternoon LFA), no significant difference is observed in the mean time headway. Otherwise, 478 

the remaining pairwise comparisons between time period and platoon structure are significant. 479 

The bottom half of Table 2 studies the interaction between the nested factor lane and the main 480 

factor platoon structure. Here, results are averaged over the levels of time period (i.e., morning 481 

and afternoon), road type (i.e., freeway and urban), and data source (i.e., NGSIM and Lyft L5). 482 
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This table demonstrates that: (1) LFL behavior does not significantly differ within the middle, left, 483 

and right lane groups; (2) LFL behavior significantly differs within the left, middle, and right lane 484 

groups when compared to LFA in the right lane; (3) LFL and LFA display statistically different 485 

behaviors in different lanes; and (4) LFL and LFA display statistically different behaviors within 486 

the right lane. 487 

Although the proposed nested factorial model recognizes that the factor platoon structure leads to 488 

a statistically significant different car-following behaviour, and the follow-up pair-wise comparisons 489 

further confirm this, none of these approaches can identify whether the THW of LFA is less than 490 

or greater than LFL’s THW. Figure 3 demonstrates that LFL has higher mean and variance THW 491 

values when compared to LFA. 492 

As displayed in Figure 3, LFA has lower median (1.38), mean (0.41), and variance (o.31) THW 493 

values in comparison to the median (2.48), mean (0.85), and variance (1.05) of THW in LFL. 494 

The reduction in the mean time headway manifests in less bumper-to-head distance, enabling more 495 

vehicles to operate on the road and increasing road capacity. The reduction in the variance of time 496 

headway leads to a more stable traffic flow. 497 

The final step is the verification of the fitted model’s adequacy through Q-Q and residuals plots 498 

as shown in Figure 4. To check the adequacy of the model, Q-Q plots of residuals and residuals 499 

versus fitted values are shown in Figure 4. Q-Q plots are commonly used to confirm the normality 500 

of the residuals, i.e., 𝜖𝑙 (𝑖 𝑗 𝑘 𝑛𝑚) ∼ 𝑁 (0, 𝜎2). As a Q-Q plot is a scatter plot created by plotting the 501 

actual quantiles of the residuals of the fitted model against the theoretical normally distributed ones, 502 

a diagonal line is a confirmation that both sets of quantiles came from the same distribution. In the 503 

Q-Q plot in Figure 4, the residuals roughly lie around the 45-degree line, suggesting that the they are 504 

approximately normally distributed. The homogeneity of the residuals can be validated using the 505 

residuals plot. If the variance of the error term is homogeneous, not only should the residuals plot 506 

show no pattern, but also the spread of residuals should be equal per group across corresponding 507 

fitted values. The residuals plot in Figure 4 show that the variances are approximately homogeneous 508 

since the residuals are distributed approximately equally above and below zero. 509 
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CONCLUSIONS 510 

In this study we proposed a nested factorial model to study the potential effects of AVs on human 511 

drivers’ car-following behavior using naturalistic driving data (i.e., NGSIM and Lyft L5 prediction 512 

datasets). The objective of this study was to bridge the gap between anticipated and real-world 513 

impacts of AVs on traffic streams and roadway capacity. The proposed nested model studied the 514 

impact of different factors such as platoon structure (i.e., whether a human driver follows a legacy 515 

vehicle or an AV), time period, traveling lane, and road type on the time headway between two 516 

vehicles, which is considered as a proxy for the car-following behaviour of the following vehicle. 517 

The results indicate that the platoon structure affects the car-following behavior of human drivers 518 

in a statistically significant manner, allowing us to conclude that in a real-world setting, a human 519 

driver’s car-following behaviour when following a legacy vehicle is different from following an AV. 520 

Furthermore, our analysis illustrates that the difference in the car-following behaviour of human 521 

drivers is significantly present regardless of the traveling lane or the time period. 522 
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TABLE 1. Results of the nested fixed model 

Factor DoF SSE MSE F Statistics P-Value 𝛼 
Time Period 1 1.46 1.46 1.55 0.21 
Platoon Structure 1 49.86 49.86 52.81 2.88e-12 0.001 
Platoon Structure × Time 1 1.09 1.09 1.16 0.28 
Platoon Structure: Data Source 1 0.03 0.03 0.04 0.85 
Platoon Structure: Road Type 1 1.92 1.92 2.03 0.15 
Platoon Structure: Lane 2 0.01 0.006 0.006 0.99 
Residuals 317 299.28 0.94 
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TABLE 2. Pairwise comparisons using least square means 

Estimate SE T Ratio P-Value 𝛼 
Time Period (Morning vs Afternoon) : Platoon Structure (LFL vs LFA) 

Morning LFL - Afternoon LFL -0.132 0.132 -0.996 0.7519 
Morning LFL - Morning LFA 0.944 0.215 4.39 0.0001 0.001 
Morning LFL - Afternoon LFA 1.055 0.215 4.91 <.0001 0.001 
Afternoon LFL - Morning LFA 1.075 0.218 4.93 <.0001 0.001 
Afternoon LFL - Afternoon LFA 1.187 0.218 5.44 <.0001 0.001 
Morning LFA - Afternoon LFA 0.112 0.275 0.40 0.9774 

Lane (Left vs Middle vs Right) : Platoon Structure (LFL vs LFA) 
Left LFL - Middle LFL 0.013 0.138 0.098 0.9997 
Left LFL - Right LFL 0.016 0.158 -0.103 0.9996 
Left LFL - Right LFA 1.073 0.0171 6.279 <.0001 0.001 
Middle LFL - Right LFL -0.003 0.160 -0.022 1.000 
Middle LFL - Right LFA 1.061 0.171 6.279 <.0001 0.001 
Right LFL - Right LFA 1.057 0.191 6.20 <.0001 0.001 
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Fig. 1. The proposed framework to study the car-following behavior of drivers in LFL and LFA 
platoon structures. 
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Fig. 2. The Structure of the proposed nested model. 
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Fig. 3. The distribution of time headway over factor levels. 
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(a) (b) 

Fig. 4. Adequacy check of the fitted nested fixed effect model: (a) Q-Q plot; and (b) residuals v.s. 
fitted values 
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