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ABSTRACT

The past few years have witness to an increase in autonomous vehicle (AV) development and
testing. However, even with a fully developed and comprehensively tested AV technology, AVs
are anticipated to share the roadway network with human drivers for the unforeseeable future. In
such a mixed environment, we use naturalistic driving data from the Next Generation Simulation
(NGSIM) and Lyft Level 5 (Lyft LS) prediction datasets to investigate whether the existence of
AVs influences the car following behavior of human drivers. We use time headway time series as
a proxy to capture the car following behaviour of human drivers. We then develop a nested fixed
model to find possible changes in behaviour when human drivers are following different types of
vehicles (i.e., human-driven vehicles or AVs). The factors included in this model are the platoon
structure (a legacy vehicle following a legacy vehicle, and a legacy vehicle following an autonomous

vehicle), road type (freeway and urban), time period (morning and afternoon), lane (right, middle,
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and left), and the source of the data (NGSIM and Lyft LL5). Results indicate a statistically significant
difference between the car following behaviour of drivers when they follow a human-driven vehicle
compared to an AV. This change in the car following behaviour of drivers is manifested in the form
of a reduction in the mean and variance of time headways when human drivers follow an AV. These
findings can bridge the gap between anticipated and real-world impacts of AVs on traffic streams
and roadway stability and capacity, providing meaningful insights on the influence of AVs on the

driving behavior of humans in a naturalistic driving environment.

Author keywords: Autonomous vehicle-human driver interactions, Car-following behaviour

INTRODUCTION

The past few years have been a witness to an increase in autonomous vehicle (AV) development
and testing, with many mobility-oriented companies as well as original equipment manufacturers
(OEMS) attempting to either open AV divisions or partner with/acquire start-ups that focus on
software or hardware development for AVs. This move toward a future autonomous transportation
system is fueled by many anticipated benefits of AVs, such as increased safety and smoother traffic
flow (Zhang et al. 2022a; Wyk et al. 2019; Zhang et al. 2022b; Zhang et al. 2021), which in turn
leads to higher levels of fuel economy, less congestion, a wider range of mobility options, and
curbing the environmental footprint of the transportation sector (Stern et al. 2018; Liu et al. 2020b;
Liu et al. 2020a; Zhang et al. 2020; Ersal et al. 2020; Masoud and Jayakrishnan 2017; Abdolmaleki
et al. 2021). It might, however, take several decades for a fully autonomous transportation system
to be deployed. Many experts argue that even with a fully developed and comprehensively tested
AV technology, there will still be individuals who either have a distrust in the technology or do not
wish to cease driving for other personal reasons. Therefore, it is safe to assume that AVs would
have to share the roadway network with human drivers for the unforeseeable future.

Since the advent of personal automobiles traffic engineers have been interested in studying the
car-following behaviour of human drivers, with Bruce Greenshields being credited with the first

recorded set of experiments to scientifically measure this car-following behaviour (Greenshields
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et al. 1934). The advent of AVs has given rise to an interesting research question: Will the car-
following behaviour of human drivers be affected when they knowingly follow an autonomous
vehicle? Few attempts have been made in the literature to answer this question. (Rahmati et al.
2019) set up two sets of experiments with a platoon of size three, where the third vehicle in the
platoon was a human-driven vehicle. In the first set of experiments, the second vehicle was a human-
driven vehicle, and in the second set of experiments it was an AV. They recorded the trajectory of
the third vehicle, and used data-driven and model-based approaches to discern any changes in the
car-following behaviour of the third vehicle in reaction to its preceeding vehicle. They concluded
that when following an AV, a human driver’s car-following behaviour is significantly different than
following a human-driven vehicle.

Conducting controlled field experiments allows for assessing the impact of a single factor at
a time on the car-following behaviour of human drivers, while keeping all other factors fixed.
However, controlled field experiments have a number of downsides. First, a combinatorial number
of experiments are required to capture the impact of multiple factors changing at once. This
could easily render comprehensive controlled field experiments impractical, since a wide range of
environmental factors as well as the presence of other agents (e.g., other AVs or legacy vehicles,
pedestrians, bicycles, etc.) may play a role in the car-following behaviour of drivers. As a result,
the conclusions obtained from basic and contained field experiments, although insightful, may not
be readily generalizable to a naturalistic driving environment. As such, in this paper we seek to
investigate the car-following behavior of human drivers who follow an AV in a naturalistic driving
environment using a naturalistic and large dataset that allows for making statistically significant
conclusions. To this end, we use the Lyft Level 5 (Lyft L5) (Houston et al. 2020) data repository, in
which a fleet of AVs travels on a fixed route in an urban environment, providing over 1,000 hours of
AV trajectories, their surrounding agents, and the transportation network. The route encompasses
a variety of transportation facility types, including intersections and corridors. This dataset is the
first to enable analysis of the car-following behaviour of a heterogeneous set of drivers who follow

an AV in a naturalistic and dynamically changing driving environment.
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Despite the benefits of using naturalistic driving data in analyzing the changes in the car-
following behaviour of human drivers when following an AV, it also poses a unique set of challenges.
More specifically, the appearance of an AV is a key factor that can influence a human driver’s car-
following behavior. For the presence of an AV to change the behaviour of human drivers, they
should be able to discern that they are following an AV based on clear visual cues. Garnished by
lidars and cameras, AVs generally have a distinctive look that human drivers are likely to discern.
Additionally, a human driver’s car-following behaviour depends on their subjective opinion on how
an AV operates and its risk-taking attitude (Zhao et al. 2020). As such, to mitigate the risk of
unwanted bias in data collection, data should be collected within an extended period of time from
a diverse set of drivers.

The car-following behaviour of a driver can be reflected using a number of parameters, e.g.,
velocity, acceleration, and time headway (Wang et al. 2014). Here, we use time headway (THW)-
defined as the time it takes for the following vehicle to reach its leading vehicle—to model car-
following behaviour. As such, we conduct change point analysis on THW of the following driver
to identify the moment in time when the human driver has identified its leading AV.

The remainder of the paper is organized as follows. We first present the existing work and
list the contributions of this paper in the LITERATURE REVIEW section. Then, we provide the
analytical approach in detail. After that, we lay out our analysis using Lyft L5 and NGSIM datasets
and present our findings in the RESULTS AND DISCUSSION section. Finally, we conclude the

paper by summarizing our findings.

LITERATURE REVIEW

In traffic modeling, car-following behavior has been intensively studied to establish how a
vehicle interacts with its leading vehicle. The main idea is to work with longitudinal dynamics
of the vehicle pair, such as velocity, acceleration, time headway, and time-to-collision inverse, to
uncover the behavior patterns of the following vehicle in various driving scenarios. There are two
main components involved in the study of car-following behavior: modeling and analysis. These

two components are discussed in the following.
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Modeling

As the most commonly encountered driving maneuver in the real world, car-following behavior
has been extensively studied in investigating many specific driving scenarios. To properly describe
the interaction between the leading and following vehicles, several measures are proposed. Time-
to-collision (TTC) reflects human drivers’ perception of their safety for potential collision, and it is
strongly related to longitudinal acceleration/deceleration (Jin et al. 2011). (Vogel 2003) compares
time headway and TTC with real-world traffic data and concludes that time headway and TTC are
independent but suitable for different usages. They also argue that time headway directly reflects
potential danger and thus prevents risky TTC, while TTC should be used for actual danger, i.e.,
on-road obstacle or collision. (Boer 1999) also mentioned that time headway characterizes the
safety margin in the situation where the preceding vehicle decelerates, while TTC denotes the time
left for drivers to intervene to avoid a crash. Headway is not considered here as it can not include
velocity-related information, which is necessary to learn the car-following behavior. As we are
interested in human drivers’ reaction to on-road stimuli (the preceding AV) without evaluating an
actual collision, in our study we select time headway to model the car-following behaviour.

Several car-following behavior models are formulated using ordinary differential equations
(ODE) that take positions and velocities of vehicles as inputs. The intelligent driving model (IDM)
(Treiber et al. 2000) and optimal velocity model (OVM) (Sugiyama 1999) are two extensively-
applied ODE-based models capable of modeling nonlinear dynamics. Additionally, a linearized
model can be further derived from ODEs via Taylor expansion. The full velocity difference model
(FVDM) (Jiang et al. 2001) was developed based on OVM and the generalized force model (GFM)
(Helbing and Tilch 1998) by taking both positive and negative velocity differences into account.
It could obtain more precise predictions of vehicle motion in traffic jam density. Wiedemann
74 (W-74) model and Wiedemann 99 (W-99) model (Durrani et al. 2016) are two car-following
models developed by Rainer Wiedemann, where the drivers change their behaviors at discrete time
steps only when certain thresholds (predefined for headway, speed, or relative speed) are reached.

However, the values of parameters in W-99 are empirical, and no literature exists to indicate how
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ranges for these parameter should be established, which prompted many related works (Durrani
et al. 2016; Mathew and Radhakrishnan 2010; Gallelli et al. 2017) in calibrating the W-99 model.
Newell’s car-following model (Newell 2002) applied a similar concept to W-99, assuming that a
vehicle will maintain a minimum space and time gap between itself and its preceding vehicle. Some
studies which pursue a more general way of modeling the car-following behavior are discussed in
(Ro et al. 2017; Koutsopoulos and Farah 2012), where not only the car-following dynamics is
considered, but also random human factors and different driving scenarios (such as following and
emergency braking) were accounted for. Other car-following models such as adaptive cruise control
(ACC) and cooperative adaptive cruise control (CACC) were designed for commercial vehicles,
applying automated longitudinal control by adjusting acceleration with a linear function to maintain
preset velocity and headway values.

All of the aforementioned car-following models are based on mathematical formulations with
longitudinal dynamics, taking advantage of traditional control theory. On the other hand, predictive
techniques enable a data-driven approach and can directly learn the car-following behavior using
real-world data. (Zhang et al. 2008) utilized time headway and time-to-collision inverse data
and a back-propagation neural network to reproduce longitudinal accelerations. A long short-
term memory (LSTM) neural network in (Zhang et al. 2019) used the position information of
surrounding vehicles to predict the car-following behavior with low longitudinal trajectory error.
A deep deterministic policy gradient reinforcement learning car-following model was developed in
(Zhu et al. 2018), where a mapping from speed, relative speed, and headway to acceleration regime
of the following vehicle were obtained to deliver a human-like car-following model. A Gaussian
mixture model (GMM) was developed in (Angkititrakul et al. 2011) to anticipate the future car-
following behavior based on velocity and headway. Such learning-based methods require a large
amount of training data, and the quality of data significantly influences model performance. Neural
network-based designs also require careful tuning when learning the longitudinal dynamics of
vehicles (Da Lio et al. 2020).

From the literature, it can be noticed that multiple longitudinal dynamics impact the car-
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following behaviors of both the following vehicle and the proceeding vehicle, among which relative
distance and velocity are the two most essential factors. To leverage this finding and reduce the
complexity of the model, we select time headway as the main feature for modeling car-following

behavior as it accounts for both relative distance and velocity (Chen et al. 2015; Vogel 2002).

Analysis

Car-following behavior is of interest to transportation researchers as it can provide insights into
the best ways to approach flow throughput control, on-road safety, and energy consumption, etc.
There are two directions followed in the current literature to analyze the car-following behavior of
drivers: one studies the stability (string stability and plant stability) of traffic flow, while the other
quantifies the car-following behavior using statistical tools such as mean and variance. As this work
focuses on patterns of interactions between human-driven vehicles and AVs, the analysis of string
stability and plant stability is out of the scope this study.

Car-following behavior may be affected by many factors such as road condition, weather, and
vehicle type. When dealing with data relevant to multiple factors, Analysis of Variance (ANOVA)
is a powerful tool to investigate the influence level of each factor. In (Liu et al. 2019), two one-way
ANOVA tests were conducted, indicating that different speed limits have a significant influence on
the time headway and headway, and the mean of time headway is closely centered around a fixed
value. A factorial ANOVA analysis was conducted in (Hjelkrem 2015) to determine the interactions
between area type, number of lanes, and vehicle type influencing the car-following behavior. Road
condition is suggested to be a critical factor in influencing both headway and time headway by
(Wang et al. 2015; Houchin 2015). Significant influence from vehicle type (2-door car v.s. 4-door
vehicles, sedans v.s. trucks, vehicles v.s. motorcycles) is also observed in (Evans and Wasielewski
1983; Houchin 2015; Amini et al. 2019).

The literature on the analysis of car-following behavior mainly focuses on human-driven ve-
hicles, and AV-involved scenarios are rarely studied. Human-AV interactions at the microscopic
level were first studied in (Rahmati et al. 2019), where a field experiment was conducted though

setting up two two-vehicle platoon structures of human-following-human and human-following-
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AV. (Rahmati et al. 2019) showed that a shorter headway is selected when human drivers follow
an AV. Other field experiments conducted by (Zhao et al. 2020) suggest that a driver’s subjective
attitude toward to AV technology dominates the actual AV’s driving behavior in the speed-headway
relationship. Observations from these two field experiments indicate that the limited data collected
from field experiments degrades the robustness of the intersection effect(s). Recently, (Li et al.
2021) leveraged the Lyft LS dataset as the data source for operational safety analysis in human-AV
interactions in car-following scenarios. In this study we utilize the Lyft L5 and NGSIM datasets
to provide a comprehensive and robust evaluation of the car-following behaviour of humans, ac-
counting for multiple factors that may affect the car-following behaviour of human drivers. This

naturalistic study serves as a necessary complement to the existing field experiments.

Contribution

The objective of this paper is to provide insights on the potential influence of AVs on the
car-following behavior of human drivers. The contributions of this paper are two-fold: (i) we
conduct statistical analysis on time headway data from Lyft L5, using NGSIM datasets (US101, I-
80, Lankershim Blvd) as the control group, to find the influence of leading AVs on the car-following
behaviour of following drivers; (i7) This naturalistic study provides evidence that human drivers
are regulated as a result of introducing AVs, as evidenced by the statistically significant reduction

in the mean value and variance of their time headways.

METHODS

The objective of this study is to investigate whether, and the extent to which, the existence of
AVs in the traffic stream influences the car-following behaviour of human drivers. To answer this
question, we propose a comprehensive framework demonstrated in Figure 1. Data used in this study
is obtained from two public datasets: Lyft LS (Houston et al. 2020) and NGSIM (NGS 2021). We
use time headway time series in our analysis as a proxy to quantify the car-following behaviour of
vehicles. Time headway between two vehicles is defined as the travel time from the centroid of the
following vehicle to the centroid of the preceding/leading vehicle based on the following vehicle’s

speed. In the rest of this paper, we denote a legacy vehicle following an autonomous vehicle as
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LFA, and a legacy vehicle following a legacy vehicle as LFL. We refer to LFA and LFL as platoon
structures.
As displayed in Figure 1, the proposed framework consists of two main phases, namely, data

acquisition and data analysis. These phases are described in the following sections.

Phase I: Data Acquisition

The first phase starts by extracting time headways of LFL and LFA platoon structures. More
precisely, we extract LFA time headways from the Lyft L5 dataset, and LFL time headways from
both Lyft LS and NGSIM datasets. Once the time headways are extracted, We use Bayesian change
point analysis to filter out the portions of time headway data in the LFA platoon structure where

the legacy vehicle is not aware of following an AV.

Change Point Analysis

Our objective in this study is to make a determination on whether the presence of an AV affects
the car-following behaviour of its following vehicle in the LFA platoon structure. Consequently,
we first need to identify scenarios in the Lyft L5 dataset where a legacy vehicle is following an
AV, and more importantly, is aware that it is following an AV. To identify such scenarios, we first
identify scenes from the Lyft LS dataset where a legacy vehicle is immediately following an AV.
Next, for each scene we conduct change point analysis to mark any changes in the time headway
sequence of the legacy vehicle and the velocity sequence of its leading AV. The adopted Change
point analysis is an online detection approach that provides uncertainty bounds on the number and
location of change points across observations (Ruggieri and Antonellis 2016). This method strives
to make fast inferences on the occurrence of new change points based on each new observation.

Let us denote by c’z the time instance when a change point is detected in the time headway

time series of the legacy vehicle, and by ¢', the time instance when a change point identified in

r

lax the minimum and maximum

the velocity time series of the AV. Let us denote by 7 . and ¢
reaction time of the legacy vehicle, i.e., the time period lapsed from the moment the AV changes

its acceleration and the moment the acceleration of the legacy vehicle changes in response. When

I < clz — €' < Ihax the change in the time headway of the legacy vehicle can be attributed
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to its car-following behaviour. However, when ¢ 7

is not proceeded with a ¢} within the time

interval [¢" ., #] ..

i ? ], i.e., the change point analysis detects a change in time headway of the legacy
vehicle that cannot be attributed to its car-following behaviour, we postulate that this change can be
attributed to the legacy vehicle having identified its proceeding vehicle as an AV, and only consider
the trajectory of the legacy vehicle after this change point. In other instances where no such change
point is detected, we assume that the legacy vehicle is aware of its leading AV due to the distinctive
appearance of AVs in the Lyft L5 study.

Owing to many factors, such as the driving environment, age, gender, and experience, the

range for the reaction time can vary from case to case, as shown in (Johansson and Rumar 1971;

McGehee et al. 2000; Summala 2000), where different field experiments and calibrated models

r

Thax) can

find the minimum value (7] . ) can be as small as 0.3 seconds, and the maximum value (¢
be as high as 2.4 seconds. Avoiding the extreme values where reaction times may slightly increase
when the stimulus (e.g., following an AV instead of another legacy vehicle) is a surprise to drivers
(Johansson and Rumar 1971; Mehmood and Easa 2009), or decrease at lower driving speeds (Calvi
et al. 2018; Ruhai et al. 2010), in this study we set the minimum and maximum values of reaction

time to¢ . = 0.5and 7, = I seconds, respectively, following the literature.

max

For human drivers, there is a preferable time headway interval towards the preceding vehicle
(Fuller 1981; Das and Maurya 2017). The preferable time headway is the most frequently adopted
time headway when human drivers are in the car-following mode, which is used to baseline the
car-following behavior of rational human drivers. Following the existing literature (e.g., (WINSUM
and Heino 1996; Van Winsum and Brouwer 1997; Van Winsum 1998; Bham’ and Ancha 2006)),
the preferable time headway is considered to be 1 to 2.5 seconds in this study. When time headway is
shorter than the lower bound, drivers are more likely to slow down, while when the time headway is
longer than the upper bound, drivers may either keep the current speed or accelerate to catch up with
the preceding vehicle. The basic idea is that when the time headway is inside the interval, human

drivers will feel comfortable and will not overreact unless there is an external disturbance. This

preferable time headway may be influenced by many factors (e.g., road configuration, lane, etc.).

10
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Generally, there is no universal standard, and this interval can be determined from the observed
data itself. We use the distribution of time headway in the LFA dataset to define the preferable time
headway.

In the final step of phase I, the collected and filtered time headways from both Lyft L5 and
NGSIM datasets are integrated and associated. In this step, each time headway is labeled based on

platoon structure, road type, time period, data source, and lane, as shown in Figure 2.

Phase II: Analysis

Phase II focuses on analysis. In the first step, two samples of equal sizes are taken from LFA
and LFL datasets. Next, partial autocorrelation analysis is employed to detect autocorrelation lags.
Using these identified lags, differencing is applied to stationarize the randomly selected time series.
Next, we define the factors of interest, which alongside time headway will be used for fitting the
ANOVA model.

Once the factors of interest are identified and before fitting the nested model, we first create
balanced datasets.

To obtain balanced datasets we sample time headways without replacement from LFL and LFA
datasets so that the same number of data points will be available in each branch of the nested design.
Next, the ANOVA model is fitted using balanced datasets. Finally, we confirm the adequacy of the
fitted model, and conduct follow-up pair-wise comparisons to isolate the effects that are significantly

different, as displayed in Figure 1. The major steps of the analysis are detailed in the following.

Analysis of Variance

Analysis of Variance (ANOVA) is one of the most well-known statistical tools for evaluating the
existence of significant differences between factor levels on a continuous measurement (Tabachnick
and Fidell 2013). A factorial ANOVA can be implemented to examine the impacts of independent
categorical factors on a continuous target variable. Factorial ANOVA is an suitable approach to
study whether there exists a statistically significant difference in the time headway patterns of LFA
and LFL platoon structures based on different factors and their levels. One of the main requirements

of ANOVA is the independence of observations. The underlying sequential and time dependant

11
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nature of time series data is a direct violation of this requirement. To address this issue, we apply
a two-step data processing procedure. First, we randomly (without replacement) down-sample the
time series to remove any potential dependencies. Next, we render the randomly selected time

series approximately stationary through differencing to remove auto-correlation.

Stationarity and Partial Auto-Correlation

In time series, auto-correlation is the correlation between two observations at different time
stamps, where these observations correlate with themselves repetitively at certain lags. Auto-
correlation and partial auto-correlation plots can be used to study the auto-correlation of time series.
Although auto-correlation plots can measure and visualize the correlation between observations
for a predefined set of lags, they fail to account for the propagation of correlation among successive
lags. Partial auto-correlation analysis addresses this problem by isolating the auto-correlation
lag. In this work, we use partial auto-correlation plots to identify auto-correlation lags, and apply
differencing at the identified lags to stationarize the time headway time series. We discard data

points that cannot be stationarized by first level differencing.

Nested Fixed Effect Model

The design of the fitted factorial ANOVA is highly dependent on the structure of the collected data.
Fig. 2 displays the factors of interest. A total of five factors are considered in this study. The first
factor, platoon structure, models whether the reported time headway profiles belong to an LFL or
an LFA pair. The second factor, road type, represents whether the data is collected from an urban
road network (i.e., Palo Alto, CA and Lankershim Blvd, CA) or a freeway (i.e., US 101, CA and
I-80, CA). The third factor, time period, models whether the data in collected during the morning
(i.e., 7:50am - 9:00am) or afternoon (i.e., 4:00pm - 5:30pm) peak period.

The fourth factor studies whether the source of the collected data has any significant impact on
human driving behavior. Data source is defined as a factor to account for the impact of different
data collection techniques and locations in NGSIM and Lyft L5 datasets. The final factor, lane,
represents the lane at which the data has been collected. This factor is considered because the

lane in which a vehicle travels could impact its car-following behaviour. As the number of lanes is

12
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different across data collection sites, we used one-way ANOVA to group lanes that failed to show a
statistically significant difference in their car-following behaviour based on time headway analysis.
As aresult, the lane levels simplified to the left (i.e., speeding) lane, the middle lanes, and the right
(merging) lane. Note that the high occupancy vehicle lanes were filtered out in this study when
present.

The factorial ANOVA relies on the underlying relationships between these different factors.
Note that AVs are only present in the Lyft L5 dataset and the Lyft L5 data is limited to an urban
environment. Furthermore, AV trajectories only appear on the right lane. As such, the values of the
factors data source, lane, and road type are restricted to the values of the factor platoon structure,

leading to the choice of a nested factorial ANOVA as shown in Equation (1).

Yigijknm) = m+ @i+ By + (@ X Bij + Yi())
+ ﬂm(j) + Qn(j) + €1(ijknm)»

fori,j,k,m e {1,2} andn € {1,2,3} (1)

where p represents the overall mean, and «;, B, Yi(j)» Am(;)> and 0, capture the effects of
time period, platoon structure, data source, road type, and lane, respectively. The parenthetical
subscriptions illustrate the nesting structure of the model. The (a X );; models the interaction
effects between factors time period and platoon structure. Here, €(;jknm) represents the error term,

which is assumed to follow N(0,c?). In addition to the normality and constant assumptions
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regarding the error term, the fitted model should also satisfy the following constraints:

Z a; = 0 (23)

> Bi=0 (2b)
J
D (ax Py =0, Vje{1,2} (2¢)
Z(axﬁ)ijzo, Vi e {1,2} (2d)
J
> vk =0, Vje{1,2} (2¢)
k
D Ay =0, Vje{1,2} (2f)
D 0y =0, Vje{1,2} 2g)

As the nested factorial model in Equation (1) is not identifiable, the additional sets of constraints
in Equation (2) help narrow down the solution space to a unique set of fitted parameters. Using a
single ANOVA model, we define several hypotheses tests to assess the significance of each factor,
with the null hypothesis in each case indicating that the mean time headways are similar for different
values of a given factor, and the alternative hypothesis indicating otherwise.

Nested factors (i.e., data source, lane, and road type) are added to absorb some of the unexplained
variability. As a result, specific hypothesis tests associated with nested factors are of lesser
importance.

Although a rejection of the null hypothesis in the ANOVA analysis signals the existence of
a significant effect (i.e., factor), it fails to identify the factor level that is significantly different,
specifically in the presence of interaction effects. As a result, ANOVA analyses are usually followed
by pairwise comparisons. While studying the effects of multiple factor levels, comparisons between
the individual means of either factor may be made using any pairwise comparison technique. We
use Least Square Means to investigate the significance of the factors and apply Tukey’s HSD method

to adjust the significance level (Abdi and Williams 2010).
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Multiple assumptions are made prior to fitting the nested fixed effect model. As a result, the
adequacy of the model relies on whether these assumptions hold true. These assumptions include
1) the normality of the residuals, i.e., €;jknm) ~ N (O, o?), and 2) the homogeneity of the residuals.
Many mathematical tests are developed for checking the normality and homogeneity of the residuals
(e.g., the Shapiro-Wilk test ). One problem with such tests is that as the sample size increases, the
test results are more likely to fail for even minor departures from normality or homoscedasticity.

Therefore, in this paper we rely on visualization approaches instead.

DATA
The raw data within both repositories are collected using different sensors such as digital video

cameras, radars and lidars.

Lyft LS Dataset

The Lyft L5 Prediction data repository was released by the Lyft Level 5 team in June 2020
(Houston et al. 2020). This data repository contains raw camera/lidar/radar data collected from a
fleet of 23 AVs operating along a fixed high-demand route in Palo Alto, CA, from October 2019 to
March 2020. An internal perception stack has already been applied to report information such as
the vehicle position based on a global coordinate system, velocity, and a unique ID for each agent.

We extract the time headway series of each legacy vehicle for the purpose of this study.

NGSIM Dataset

The Next Generation Simulation (NGSIM) is a well-known dataset published by the U.S.
Department of Transportation Intelligent Transportation Systems Joint Program Office (JPO) (NGS
2021). This dataset includes detailed vehicle trajectory data collected in four sites: southbound
US 101 and Lankershim Boulevard in Los Angeles, CA, eastbound I-80 in Emeryville, CA, and
Peachtree Street in Atlanta, Georgia. The data is collected in different time periods from April 20,
2005 to November 9, 2006. The dataset contains vehicle ID, global coordinates of the vehicle,
vehicle type, velocity, acceleration, space headway, and time headway, among other attributes. We

extract the time headway series of each vehicle in each regular (non-carpool) lane at each site for
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the purpose of this study.

Data Processing Pipeline

To fully leverage the abundant data in the Lyft LS and NGSIM datasets for ANOVA, a modular
data processing pipeline is developed with three blocks: time headway calculation, change point
analysis, and down-sampling and filtering. A detailed explanation of the processing pipeline is

given for the Lyft L5 dataset.

* Time headway calculation: Realizing that the driving behavior in different lanes on the
same road may be different, the lane-specific time headway data is of interest to us. To
stay consistent with the NGSIM dataset, all the raw data in the Lyft L5 dataset is taken
from the multi-lane roads. By utilizing the provided semantic map with 8.500 discrete lane
segments, a customized semantic map is constructed by connecting any lanes that physically
belong to the same continuous lane (multiple lane segments in the original semantic map
may correspond to the same lane in the real world), referred as the augmented map. In
the multi-lane roads, three lane groups are identified (right, middle, and left). Given the
position information of vehicles, the augmented map can immediately match vehicles to the
corresponding lane groups. The time headway in the car-following mode is calculated as the
travel time from the centroid of the following vehicle to the centroid of the preceding/leading
vehicle based on the following vehicle’s speed.

* Change point analysis: In investigating an AV’s effect on the following behaviour of human
drivers, we need to construct a dataset in which the following human driver is aware that
the leading vehicle is an AV. To this end, we conduct a change point analysis as described
in section CHANGE POINT ANALYSIS.

* Down-sampling and filtering: The sampling frequency in both datasets is 10 Hz, and a high
correlation among data points is present under such a high-frequency sampling regime.
To ensure independence of observations, autocorrelation and partial autocorrelation are

evaluated, and down-sampling of the time headway sequence is implemented. According to
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our evaluation results, 1 Hz is selected to be the updated sampling frequency. Furthermore,
a filtering step is introduced to ensure that the time headway sequence satisfies the minimum

length of containing at least 10 data points or 10-seconds of observation.

For the NGSIM dataset, as the lane information is readily available, only the down-sampling

and filtering module will be used.

RESULTS AND DISCUSSION

In this section, we present the results of our proposed framework. In accordance with the flow
of the framework, we first stationarize the time headway time series through differencing and partial
auto-correlation analysis. Then, we balance our dataset. Next, we test our hypotheses using nested

factorial ANOVA, followed by pairwise comparisons.

Down-sampling and Auto-correlation Analysis

Since the sample frequency in Lyft LS and NGSIM datasets is high (10 Hz), data points may
correlate with each other at such high frequency and thus introduce unnecessary bias into the
results. A common approach to reduce autocorrelation is to down-sample the data at a slower
frequency. We test Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF)
at down-sampling frequencies of 2Hz and 1Hz, in comparison with the original data. Decreasing
sample frequency can significantly reduce both ACF and PACF at higher lags. Down-sampling
at 1 Hz can reduce the magnitude of the auto-correlation lags. Differencing at lag one further
stationalizes the time series. As the majority of the time series are not significantly auto-correlated
after lag 1 differencing, the non-stationary ones are dropped at this step.

Some interesting takeaways may be discussed before presenting the ANOVA results. In a
freeway driving environment, e.g., US 101 and I-80, after down-sampling at 1 Hz, there is still
a significant autocorrelation at lag 1 and neutrally-distributed partial autocorrelation (PAC) after
lag 2. In an urban driving environment, Lankershim Blvd and Lyft L5, a similar pattern can
be observed; however, at lag 1, a relative smaller ratio of data is correlated. An interpretation

for this difference is that in freeways, human drivers encounter fewer external disturbances and
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therefore their behavior is more consistent and predictable. A neutral-distributed outbound PAC
after lag 2 indicates that the behaviors tend to be random in 2 seconds into the future. If we view
a human driver as a controller, s/he will control the time headway to the leading vehicle roughly at
some period, which can be determined by the lag where outbound PAC values are approximately

neutral-distributed.

Factorial Analysis

The processed dataset contains a total of 537,060 data points, out of which 5,774 (i.e., 1%)
of data points represent the LFA structure while the remaining 531,285 (i.e., 99%) belong to the
LFL platoon structure. In order to maximize the power of the factorial analysis, the dataset should
be balanced. In addition, balancing helps protect the analysis against small departures from the
assumptions. Although the balancing effort reduces the total size of the dataset (i.e., 25 data points
per each leaf in Figure 2) through random sampling, it improves the the distribution of the data
within different factor levels, including platoon structure: 85% for LFL and 15% LFA; Road type:
46%% for freeway and 54% urban; Time period: 53% for morning and 45% afternoon; Lane: 31%
for left, 31% for middle and 38% right.

The nested factorial ANOVA introduced in Equation 1 is fitted and its results are displayed in
Table 1. The fitted model allows us to study whether there are statistically significant associations
between the time headway and the factors introduced in Figure 1. Table 1 reports findings on the
main effects (i.e., time period and platoon structure factors), nested effects (i.e., data source, road
type, and lane factors), as well the interaction effects between the time period and platoon structure
factors.

The first three rows in Table 1 correspond to hypotheses on time period, platoon structure,
and the interaction effect between time period and platoon structure factors. The next three rows
display the impact of data source, road type, and lane as nested factors of platoon structure,
respectively. The last row provides information regarding the residuals. For each one of the
hypotheses of interest, Table 1 reports the degree of freedom (DoF) of the test, sum of squared

errors (SSE), mean square errors (MSE), as well as the F-statistics, its corresponding p-value,
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and the significance level at which a conclusion is made. The reported p-values can assess the
null hypotheses and determine whether the association between the time headway and the factors
of interest are statistically significant. Table 1 reports that only the platooning structure is of
significance at @« = 0.001. The results also highlights the fact that the collected time headway
data are not impacted by the differences in data collection techniques and locations in NGSIM and
Lyft LS datasets at a statistically significant level. To further study the results reported in Table 1,
multiple follow up pairwise comparisons are conducted to understand which levels of the platoon
structure factor are significantly different given the nested structure. Table 2 illustrates the results
of the pairwise comparisons.

Although the platoon structure is the only significant factor as reported in Table 1, the interaction
effect between time period and platoon structure and the nesting factors may have obscured the
comparisons between the means of different levels of the platoon structure. As a result, the least
squared method is applied to the means of one of the factors, with the remaining factor set at a
particular level. In addition, as pairwise comparisons lead to inflation of the significance level, the
p-values within Table 2 are adjusted based on the Tukey method for comparing a family of multiple
estimators.

Table 2 reports the estimated difference between means (i.e., estimate), the standard error of
that estimate (i.e., SE), the T ratio, and its corresponding p-value along with the reported level of
significance @. The top half of Table 2 studies the pairwise comparisons between time period and
platoon structure. Here, results are averaged over the levels of lane (i.e., left, middle, and right),
road type (i.e., freeway and urban), and data source (i.e., NGSIM and Lyft L5). As shown in Table
2, when the same platoon structure is present (e.g., Morning LFL - Afternoon LFL and Morning
LFA - Afternoon LFA), no significant difference is observed in the mean time headway. Otherwise,
the remaining pairwise comparisons between time period and platoon structure are significant.

The bottom half of Table 2 studies the interaction between the nested factor lane and the main
factor platoon structure. Here, results are averaged over the levels of time period (i.e., morning

and afternoon), road type (i.e., freeway and urban), and data source (i.e., NGSIM and Lyft L5).
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This table demonstrates that: (1) LFL behavior does not significantly differ within the middle, left,
and right lane groups; (2) LFL behavior significantly differs within the left, middle, and right lane
groups when compared to LFA in the right lane; (3) LFL and LFA display statistically different
behaviors in different lanes; and (4) LFL and LFA display statistically different behaviors within
the right lane.

Although the proposed nested factorial model recognizes that the factor platoon structure leads to
a statistically significant different car-following behaviour, and the follow-up pair-wise comparisons
further confirm this, none of these approaches can identify whether the THW of LFA is less than
or greater than LFL’s THW. Figure 3 demonstrates that LFL has higher mean and variance THW
values when compared to LFA.

As displayed in Figure 3, LFA has lower median (1.38), mean (0.41), and variance (0.31) THW
values in comparison to the median (2.48), mean (0.85), and variance (1.05) of THW in LFL.
The reduction in the mean time headway manifests in less bumper-to-head distance, enabling more
vehicles to operate on the road and increasing road capacity. The reduction in the variance of time
headway leads to a more stable traffic flow.

The final step is the verification of the fitted model’s adequacy through Q-Q and residuals plots
as shown in Figure 4. To check the adequacy of the model, Q-Q plots of residuals and residuals
versus fitted values are shown in Figure 4. Q-Q plots are commonly used to confirm the normality
of the residuals, i.e., €(;jknm) ~ N(0, 0?). As a Q-Q plot is a scatter plot created by plotting the
actual quantiles of the residuals of the fitted model against the theoretical normally distributed ones,
a diagonal line is a confirmation that both sets of quantiles came from the same distribution. In the
Q-Q plot in Figure 4, the residuals roughly lie around the 45-degree line, suggesting that the they are
approximately normally distributed. The homogeneity of the residuals can be validated using the
residuals plot. If the variance of the error term is homogeneous, not only should the residuals plot
show no pattern, but also the spread of residuals should be equal per group across corresponding
fitted values. The residuals plot in Figure 4 show that the variances are approximately homogeneous

since the residuals are distributed approximately equally above and below zero.
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CONCLUSIONS

In this study we proposed a nested factorial model to study the potential effects of AVs on human
drivers’ car-following behavior using naturalistic driving data (i.e., NGSIM and Lyft L5 prediction
datasets). The objective of this study was to bridge the gap between anticipated and real-world
impacts of AVs on traffic streams and roadway capacity. The proposed nested model studied the
impact of different factors such as platoon structure (i.e., whether a human driver follows a legacy
vehicle or an AV), time period, traveling lane, and road type on the time headway between two
vehicles, which is considered as a proxy for the car-following behaviour of the following vehicle.
The results indicate that the platoon structure affects the car-following behavior of human drivers
in a statistically significant manner, allowing us to conclude that in a real-world setting, a human
driver’s car-following behaviour when following a legacy vehicle is different from following an AV.
Furthermore, our analysis illustrates that the difference in the car-following behaviour of human

drivers is significantly present regardless of the traveling lane or the time period.
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TABLE 1. Results of the nested fixed model

Factor DoF | SSE MSE | F Statistics | P-Value a
Time Period 1 1.46 1.46 1.55 0.21

Platoon Structure 1 49.86 | 49.86 | 52.81 2.88e-12 | 0.001
Platoon Structure X Time 1 1.09 1.09 1.16 0.28

Platoon Structure: Data Source 1 0.03 0.03 0.04 0.85

Platoon Structure: Road Type 1 1.92 1.92 | 2.03 0.15

Platoon Structure: Lane 2 0.01 0.006 | 0.006 0.99

Residuals 317 | 299.28 | 0.94
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TABLE 2. Pairwise comparisons using least square means

\ Estimate \ SE \ T Ratio \ P-Value \ a

Time Period (Morning vs Afternoon) : Platoon Structure (LFL vs LFA)
Morning LFL - Afternoon LFL -0.132 0.132 -0.996 0.7519
Morning LFL - Morning LFA 0.944 0.215 4.39 0.0001 0.001
Morning LFL - Afternoon LFA 1.055 0.215 4.91 <.0001 0.001
Afternoon LFL - Morning LFA 1.075 0.218 4.93 <.0001 0.001
Afternoon LFL - Afternoon LFA | 1.187 0.218 5.44 <.0001 0.001
Morning LFA - Afternoon LFA 0.112 0.275 0.40 0.9774

Lane (Left vs Middle vs Right) : Platoon Structure (LFL vs LFA)

Left LFL - Middle LFL 0.013 0.138 0.098 0.9997
Left LFL - Right LFL 0.016 0.158 -0.103 0.9996
Left LFL - Right LFA 1.073 0.0171 6.279 <.0001 0.001
Middle LFL - Right LFL -0.003 0.160 -0.022 1.000
Middle LFL - Right LFA 1.061 0.171 6.279 <.0001 0.001
Right LFL - Right LFA 1.057 0.191 6.20 <.0001 0.001
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Fig. 1. The proposed framework to study the car-following behavior of drivers in LFL and LFA
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