
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gcst20

Combustion Science and Technology

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gcst20

Aerodynamics of Tsuji Burners with Augmented
Fuel Injection

Brandon Li, José Graña-Otero, Antonio L. Sánchez & Forman A. Williams

To cite this article: Brandon Li, José Graña-Otero, Antonio L. Sánchez & Forman A. Williams
(2022): Aerodynamics of Tsuji Burners with Augmented Fuel Injection, Combustion Science and
Technology, DOI: 10.1080/00102202.2022.2041613

To link to this article:  https://doi.org/10.1080/00102202.2022.2041613

Published online: 25 Feb 2022.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gcst20
https://www.tandfonline.com/loi/gcst20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00102202.2022.2041613
https://doi.org/10.1080/00102202.2022.2041613
https://www.tandfonline.com/action/authorSubmission?journalCode=gcst20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gcst20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00102202.2022.2041613
https://www.tandfonline.com/doi/mlt/10.1080/00102202.2022.2041613
http://crossmark.crossref.org/dialog/?doi=10.1080/00102202.2022.2041613&domain=pdf&date_stamp=2022-02-25
http://crossmark.crossref.org/dialog/?doi=10.1080/00102202.2022.2041613&domain=pdf&date_stamp=2022-02-25


Aerodynamics of Tsuji Burners with Augmented Fuel Injection
Brandon Li, José Graña-Otero, Antonio L. Sánchez, and Forman A. Williams

Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, 
California, USA

ABSTRACT
Tsuji burners, in which flames may be anchored in the forward stagna
tion region of a cylindrical porous fuel injector placed in a uniform air 
stream, are addressed here for moderately large Reynolds numbers. 
Attention is focused on conditions under which the fuel-injection 
velocity is not sufficiently small compared with the outer air velocity 
for the boundary layer to remain attached to the forward part of the 
cylinder surface. In the resulting flow, the flame is embedded in the 
thin mixing layer that forms at the surface separating the outer air 
stream from the fuel stream, both having, in general, different densi
ties. The flow on the air side of the mixing layer is potential, while that 
on the fuel side usually is rotational because exit conditions for the fuel 
injection generate vorticity, for example, by imposing a requirement 
that the fuel must emerge normal to the cylinder surface, which is the 
condition analyzed herein. It is shown that introduction of a suitably 
density-weighted stream function reduces the problem to that of 
constant-density flow, with the density-square-root-weighted ratio of 
injection velocity to free-stream velocity Λ emerging as the only con
trolling parameter. The numerical solution, involving determination of 
the vorticity distribution in the inviscid fuel flow through an iterative 
scheme, provides the structure of the flow, including the mixing-layer 
location and the inviscid-flow strain rate there. Numerical results are 
presented for values of Λ ranging from small (Λ � 1) to large (Λ � 1) 
injection velocities. The inviscid results in the limit of vanishingly small 
injection velocities (Λ approaching zero) demonstrate that, unlike the 
prediction of the potential-flow solution, when the fuel-side flow is 
rotational the outer air velocity never approaches the classical solution 
corresponding to potential flow around a solid cylinder (Λ ¼ 0), a result 
affecting the interpretation of analyses of experiments involving 
flames stabilized on Tsuji burners as the boundary layer is blown off. 
In particular, with rotational fuel-side flow, the streamline separating 
the fuel and oxidizer regions lies farther from the cylinder surface, 
resulting in a larger near-quiescent wake and a lower strain rate along 
the separating streamline.
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Introduction

Tsuji burners have been used to investigate laminar counterflow flames for over 50 years 
(Tsuji and Yamaoka 1967). As indicated in the schematic diagram shown on the left-hand 
side of Figure 1, the flame is established in the forward stagnation-point region of a porous 
cylinder of radius a placed in a uniform air stream of velocity U1, with the fuel released by 
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injection perpendicular to the cylinder surface with velocity Ui. Although the precise 
direction of fuel injection may depend on details of construction of the porous cylinder, 
outlet fuel-flow channels typically are considered to be narrow enough to force approxi
mately normal exit flow. In most applications, the Reynolds number Re ¼ ρAU1a=μA 
(based on the density ρA and viscosity μA of the air stream) is large although not large 
enough for the laminar flow to become unsteady near the cylinder surface, and the injection 
velocity Ui is small, of order Ui,U1=Re1=2, so that the streamline separating the external 
airflow from the fuel flow lies in the near-wall boundary layer of characteristic thickness 
δ ¼ a=Re1=2 � a that develops over the forward side of the cylinder. Effects of molecular 
transport are confined to this boundary layer, where the fuel and the air mix and react, while 
the flow outside is nearly inviscid. The reacting boundary layer, containing the flame, 
displays a self-similar structure near the forward stagnation point, determined by the 
local value of the strain rate exerted by the outer flow. The flame continues developing 
along the cylinder wall away from the stagnation region, until separation eventually occurs.

In analyzing the flame that develops near the forward stagnation point, it is customarily 
assumed (Tsuji 1982) that the azimuthal velocity component on the outer edge of the 
boundary layer corresponds to that of the potential-flow solution obtained by superposition 
of a doublet and a uniform stream, an approximation that is known to be reasonably 
accurate for configurations without fluid injection at the cylinder surface; see, e.g., Batchelor 
(2000). Correspondingly, the value of the strain rate at the forward stagnation point, which 
determines the local self-similar solution there, is simply given by 2U1=a. Effects of likely 
departures from this widely used approximation are to be investigated as part of our 
analysis.

The flow structure depicted on the left-hand side of Figure 1, corresponding to injection 
velocities Ui,U1=Re1=2 � U1, changes drastically when the fuel is injected with velocities 
that are comparable to U1, displacing the stagnation point to distances of order a away 

Figure 1. A schematic view of the flow field in Tsuji burners with Ui,U1=Re1=2 (left plot) and with 
Ui,U1 (right plot). The shaded region represents the thin layer where air and fuel mix.
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from the cylinder surface, as shown on the right-hand side of Figure 1. For Re � 1, mixing 
and reaction occur only in a thin mixing layer of characteristic thickness δ ¼ a=Re1=2 � a 
localized at the fluid interface separating the incoming airflow from the injected fuel gas. At 
leading order in the limit Re � 1 the reacting mixing layer emerges as a free surface 
separating two regions of inviscid flow, as indicated in Figure 1. The outer flow is potential, 
because the air stream carries no vorticity, but the inner flow generally is rotational, because 
the injected fuel stream has vorticity, as needed for the injection velocity to be normal to the 
cylinder surface, for example, the situation addressed here for the first time. It is worth 
pointing out that the inviscid structure investigated here, involving a potential region and 
a rotational region, is reminiscent of that found in idealized nonplanar premixed flames, 
where vorticity production results from the flame deflection associated with the density 
jump across the reaction front (Zel’dovich et al, 1980). As discussed by Squires and Libby 
(1994), the flow description, involving jump conditions at the flame, is a challenging task 
that necessitates specific numerical methods accounting for the free-boundary character of 
the problem.

The Tsuji-burner analysis is formulated first for general order-unity values of the 
Reynolds number Re. Consideration of the limit Re � 1 will be seen to reduce the problem 
to that of inviscid flow, with the solution depending on two parameters, namely, the fuel-to- 
air density ratio ρF=ρA and the fuel-to-air velocity ratio Ui=U1. Use of a proper density- 
weighted vorticity/stream-function formulation (Carpio et al, 2017; Weiss, Coenen, 
Sánchez 2017) further reduces the problem to one of constant-density flow, with Λ ¼

ðρF=ρAÞ
1=2Ui=U1 entering as the only governing parameter. The solution involves deter

mination of the vorticity distribution on the cylinder surface, which is computed numeri
cally for different values of Λ. The solution provides the location of the forward stagnation 
point and the associated local value of the strain rate, relevant to determining the structure 
and extinction of a flame that may be located in the mixing layer surrounding the dividing 
streamline. Analyses of flame structures in such mixing layers have been reviewed by Linán 
and Williams (1993a). The shape of the streamline separating the two reactant streams and 
the streamwise variation of the velocity profiles will also be obtained.

Formulation of the problem

The porous-burner configuration investigated here is shown in Figure 2. The cylinder 
radius a and external air velocity U1 will be used to scale the length coordinates and 
time in the problem, yielding dimensionless cylindrical coordinates ðr; θÞ and correspond
ing velocity components v ¼ ðvr; vθÞ. Following standard convention, the azimuthal angle θ 
is to be measured counterclockwise from the horizontal rightward ray, with the uniform 
airflow approaching from θ ¼ π. Because of the existing symmetry, it suffices to give the 
solution in the half plane 0 � θ � π.

General formulation for Re,1

The air density ρA and temperature TA will be used to define a dimensionless density ρ and 
a dimensionless temperature T. Similarly, the transport properties of the air stream will be 
used to define a dimensionless viscosity μ, thermal conductivity k, and molecular diffusivity 
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Di of species i. Buoyancy forces are neglected in the analysis, an appropriate simplification 
for small combustors with sufficiently large Froude numbers U2

1=ðgaÞ � 1. For the low- 
Mach-number conditions prevailing in applications, the steady form of the conservation 
equations (given, e.g., in Williams 1985) for a reacting gas mixture with constant specific 
heat cp reduce to 

Ñ � ðρvÞ ¼ 0 (1) 

ρv � Ñv ¼ �Ñp þ
1

Re
Ñ � ½μðÑv þ ÑvTÞ� (2) 

ρv � ÑT ¼
1

PrRe
Ñ � ðkÑTÞ �

X

N

mi

ðρAU1=aÞ

hi

ðcpTAÞ
; (3) 

ρv � ÑYi ¼
1

SciRe
Ñ � ðρDiÑYiÞ þ

mi

ρAU1=a
; (4) 

where p represents the spatial pressure differences scaled with ρAU2
1, Pr is the Prandtl 

number, and Yi, hi, and Sci denote the mass fraction, enthalpy of formation, and Schmidt 
number of species i. The rate of production of mass of chemical species i, _mi, identically zero 
in the feed streams, must be evaluated for a given chemistry description in terms of the local 
values of T and Yi. These differential equations must be supplemented with expressions for 
the temperature and composition dependences of the dimensionless transport coefficients 
k, μ, and Di and with the equation of state, written in the low-Mach-number form 

ρT
X

i
ðYiWA=WiÞ ¼ 1; (5) 

with Wi and WA denoting, respectively, the molecular mass of species i and the mean 
molecular mass of the air stream. To integrate the above differential equations, it is 
necessary to specify the temperature and composition of the air stream as r ! 1 and of 
the fuel stream at r ¼ 1, as well as the corresponding boundary velocity distributions, which 
are given by 

Figure 2. Illustration of the flow configuration, with indication of relevant coordinates; the streamlines 
shown correspond to Λ ¼ 1.

4 B. LI ET AL.



ðvr; vθÞ ! ðcos θ; sin θÞ as r ! 1

ðvr; vθÞ ! ðUi=U1; 0Þ at r ¼ 1

�

: (6) 

The limit Re � 1

In the inviscid limit Re � 1, molecular transport becomes negligible in (2)–(4). In the 
absence of mixing, the chemical reaction cannot proceed, so that (3) and (4) reduce to 
v � ÑT ¼ v � ÑYi ¼ 0, indicating that the temperature and composition of the steady flow, 
and therefore also the density according to (5), remain constant along streamlines. As 
a result, there exists a fluid interface, r ¼ rsðθÞ, separating an external region with density 
ρ ¼ 1 from an internal region with density ρ ¼ ρF=ρA. This separating interface r ¼ rsðθÞ is 
a tangential discontinuity, with the velocity on the outer and inner sides satisfying 

jvþj
2

¼ ðρF=ρAÞjv�j
2
; (7) 

as follows from conservation of head along the boundary streamlines, with the superscripts 
þ and � denoting conditions along the limiting streamlines in the air and fuel regions at 
r ¼ rþ

s and r ¼ r�
s , respectively.

The problem can be formulated conveniently in terms of the stream function ψ, defined 
such that 

vr ¼
1
r

@ψ
@θ

and vθ ¼ �
@ψ
@r

; (8) 

which serves to satisfy (1) automatically. For the planar flow investigated here, the vorticity 

ω ¼
1
r

@

@r
ðrvθÞ �

1
r2

@vr

@θ
(9) 

satisfies 

vr
@ω
@r

þ
vθ

r
@ω
@θ

¼ 0; (10) 

as can be seen by taking the curl of the inviscid form of (2). Eq. (10) reveals that the vorticity 
is conserved along streamlines, so that ω ¼ ωðψÞ. Use of (8) in (9) provides 

1
r

@

@r
r

@ψ
@r

� �

þ
1
r2

@2ψ
@θ2 ¼ �ωðψÞ; (11) 

as a Poisson equation for ψ with an unknown nonlinear source function ωðψÞ. The 
boundary conditions needed for integrating (11) reduce to 

ψ � ðUi=U1Þ θ � πð Þ ¼ @ψ=@r ¼ 0 at r ¼ 1 for 0 � θ � π
ψ ¼ 0 at θ ¼ π for 1 � r<1

ψ ! r sin θ as r ! 1 for 0< θ � π
ψ ¼ �πðUi=U1Þ at θ ¼ 0 for 1 � r<1

8
>><

>>:

(12) 
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when account is taken of the symmetry present in the problem. In (12), the arbitrary value 
of ψ along r ¼ rsðθÞ has been selected to be ψ ¼ 0, with the air/fuel sides corresponding to 
positive/negative values of ψ, respectively. The separating surface r ¼ rsðθÞ is an unknown 
free boundary to be determined with use made of the additional boundary condition (7) 
written in the form 

@ψ
@r

� �2

þ
1
r2

@ψ
@θ

� �2
" #þ

¼
ρF
ρA

� �
@ψ
@r

� �2

þ
1
r2

@ψ
@θ

� �2
" #�

at ψ ¼ 0: (13) 

The function ωðψÞ is related to the unknown distribution of vorticity on the cylinder wall 
ωwðθÞ through 

ω ¼
0 for ψ � 0
ωw½ðU1=UiÞψ þ π� for � πðUi=U1Þ � ψ � 0

�

: (14) 

Reduction to a problem with equal densities

The free-boundary problem defined in (11)–(14) determines ψðr; θÞ along with the vorticity 
distribution ωwðθÞ and the separating surface rsðθÞ for given values of Ui=U1 and ρF=ρA. As 
shown previously (Carpio et al, 2017; Weiss, Coenen, Sánchez 2017), the solution can be 
simplified by incorporating a renormalization factor ðρF=ρAÞ

1=2 in the definition of new 
kinematic variables 

ω̂ ¼ ðρF=ρAÞ
1=2ω and ψ̂ ¼

ψ for ψ > 0
ðρF=ρAÞ

1=2ψ for ψ< 0

�

: (15) 

The problem then reduces to the integration of 

1
r

@

@r
r

@ψ̂
@r

� �

þ
1
r2

@2ψ̂
@θ2 ¼ �ω̂ðψ̂Þ: (16) 

with boundary conditions 

ψ̂ � Λ θ � πð Þ ¼ @ψ̂=@r ¼ 0 at r ¼ 1 for 0 � θ � π
ψ̂ ¼ 0 at θ ¼ π for 1 � r<1

ψ̂ ! r sin θ as r ! 1 for 0< θ � π
ψ̂ ¼ �πΛ at θ ¼ 0 for 1 � r<1;

8
>><

>>:

(17) 

and the additional condition that the rescaled vorticity and its distribution on the cylinder 
surface ω̂wðθÞ are related by 

ω̂ ¼
0 for ψ̂ � 0
ω̂wðψ=Λ þ πÞ for � πΛ � ψ̂ � 0:

�

: (18) 

The dynamic condition (13) is automatically satisfied when written for the renormalized 
variables, thereby removing the need to consider the separating surface rsðθÞ as a free 
boundary, a greatly helpful simplification. It is seen that the reduced formulation depends 
only on the single governing parameter 
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Λ ¼
ρF
ρA

� �1=2 Ui

U1

; (19) 

the square root of the ratio of the dynamic pressure of the fuel feed stream to that of the 
incoming air stream for normal fuel injection, which may have been expected for this 
inviscid flow. The streamlines depicted in Figure 2 correspond to Λ ¼ 1.

The solution to the problem defined above determines ψ̂ðr; θÞ as well as the vorticity 
distribution on the cylinder surface ω̂wðθÞ. The latter is ultimately determined by the 
condition that the fuel is injected perpendicular to the wall, in that there is a single 
distribution ω̂wðθÞ for which @ψ̂=@r ¼ 0 at r ¼ 1. If, instead, the fuel were injected 
with zero vorticity, then the stream function would be given by the potential-flow 
solution, a simple superposition of a doublet and source at the origin on 
a uniform flow, 

ψ̂p ¼ ðr � 1=rÞ sin θ þ Λðθ � πÞ; (20) 

which exhibits a nonzero azimuthal velocity � @ψ̂=@r ¼ �2 sin θ on the cylinder surface. 
This potential-flow solution, which neglects the presence of vorticity on the fuel side of the 
flame imposed by cylinder exit configurations that force no velocity components tangential 
to the cylinder surface, is to be compared with the complete inviscid solution determined by 
numerical integration of (16)–(18). Although experimental measurements of near-cylinder 
velocity fields with blown-off cylinder boundary layers are not available, it seems likely that 
they would be closer to those obtained from the present analysis than those for poten
tial flow.

Computational results

The problem defined in (16)–(18) was solved numerically using the iterative scheme 
described in the Appendix. Results were obtained for injection conditions corresponding 
to values of Λ in the range 0:1 � Λ � 10. Selected illustrative results are presented in 
Figures 3–6. The boundary streamline rsðθÞ is indicated in Figure 3 by a thicker line, 
which, for potential fuel-side flow, is 

rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ
ðπ � θÞΛ

2 sin θ

� �2
s

þ
ðπ � θÞΛ

2 sin θ
: (21) 

Explicit formulas such as this are not available for rotational flows, which require numerical 
integration.

As may be seen in Figure 3, for large values of Λ, the forward stagnation point is 
about twice as far upstream for the rotational flow than it is for the potential flow, the 
direction of this difference being understandable in view of the suppression of the 
downstream-directed azimuthal velocity components at the surface of the cylinder by 
the boundary conditions applies there for the rotational flow. The differences between 
the rotational-flow and potential-flow solutions are, however, found to be greatest for 
small injection velocities, Λ � 1, where the amount of vorticity needed at injection to 
satisfy the condition of zero tangential velocity is very large; as Λ decreases, the 
normal component of the injection velocity decreases, but the tangential component 
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remains unchanged to provide a potential flow, so that the difference between the 
tangential and normal velocity components increases with decreasing Λ for the poten
tial flow, thereby leading to the requisite greater decrease in the tangential velocity 
component of the rotational flow, compared with that of the potential flow, resulting 
in the increase in vorticity of the rotational flow with decreasing Λ. In the plot in 
Figure 3 for the small injection velocity, the boundary streamline of the potential-flow 
solution remains at distances of order rs � 1,Λ from the cylinder surface, but when 
the vorticity is present the boundary streamline is farther away, and a region of high 
vorticity separates from the surface at θ ’ 3π=4 and evolves downstream to produce 
a comparatively massive wake with vanishing fluid motion, markedly different from 
that encountered in the potential-flow solution.

An explicit quantification of the vorticity generated in the fuel-injection process is 
given in Figure 4. As explained above, the amount of vorticity decreases with 
increasing injection velocities. To further quantify this effect, use can be made of 
the potential-flow solution (20) to evaluate the tangential-to-normal velocity ratio on 
the cylinder surface, yielding 2 sin θ=Λ. Since this ratio is inversely proportional to Λ, 
becoming infinite as Λ approaches zero, the local spin needed to deflect the injection 

Figure 3. The upper half of each panel represents the streamlines and vorticity distribution correspond
ing to different values of Λ obtained by integration of (16) with boundary conditions (A2). The lower half 
shows the streamlines of the corresponding potential flow, evaluated with use made of (20). The spacing 
used for the stream function is δψ̂ ¼ 2 on the air side ψ̂> 0 and δψ̂ ¼ ð0:1; 1; 2Þ for Λ ¼ ð0:1; 2; 10Þ on 
the fuel side ψ̂< 0, except for the inset corresponding to Λ ¼ 0:1, which uses δψ̂ ¼ 0:05.
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velocity to a direction normal to the surface is smaller for larger Λ. The vorticity 
maximum on the surface for Λ ¼ 0:1, about ten times that for Λ ¼ 1, occurs, 
consistent with the results shown in Figure 3, approximately at θ ’ 3π=4, upstream 
from the midpoint where it resides for larger values of Λ, causing the relative bulging 
of the low-velocity wake to be smaller. The asymmetry of the vorticity distribution 
on the surface understandably decreases with increasing injection velocity.

Figure 5 shows the stagnation-point radial location rsðπÞ and the associated strain 
rate Âo, which can be evaluated from the local value of � r�1

s @2ψ̂=@r@θ and would be 
relevant for analyzing flames stabilized in this stagnation region. For the potential-flow 
solution, 

rsðπÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ ðΛ=2Þ
2

q

þ Λ=2; (22) 

and the corresponding stagnation-point strain rate is 

Âo ¼ �
1
r

@2ψ̂p

@r@θ
¼

r2
s ðπÞ þ 1

r3
s ðπÞ

: (23) 

Figure 4. The function ωðψÞ ¼ ωwðθÞ for selected values of Λ.

Figure 5. The radial location of the stagnation point and corresponding strain rate obtained by 
integration of (16) (solid curves) and from evaluation of the potential-flow stream-function expressions 
(20) (dashed curves).
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The comparison in the figure indicates that the strain rate for the potential-flow solution is 
appreciably larger than that for rotational flow for all values of Λ, with relative differences 
becoming greater for increasing injection velocities. At small injection velocities Λ � 1, the 
strain rate computed numerically approaches a limiting value Âo ’ 1:35, markedly different 
from the potential-flow prediction Âo ¼ 2.

As indicated in the introduction, in the limit Re � 1, mixing and reaction are confined 
to the mixing layer that separates the two streams. The structure and extinction of a flame in 
the mixing layer can be analyzed using as local coordinates the distance s measured along 
the dividing streamlines rsðθÞ and the associated transverse coordinate n, both indicated in 
Figure 2. The velocities on the air and fuel side of the mixing layer satisfy (7). The 
corresponding equations for the strained mixing layer, given for instance in Linán and 
Williams (1993b), depend on the outer flow through the local value of the strain rate, which 
can be computed from the streamwise variation of the velocity on the air and fuel sides of 
the separating streamline @jvþj=@s and @jv�j=@s, where jvþj ¼ j@ψ̂=@njs and 
jv�j ¼ j@ψ̂=@njsðρA=ρFÞ

1=2, with j@ψ̂=@njs denoting the magnitude of the gradient of ψ̂ at 
rsðθÞ. In view of this application, the variation of the velocity j@ψ̂=@njs with s is shown in 
Figure 6. As previously anticipated, the largest slope is found at s ¼ 0, corresponding to the 
forward stagnation point, where the flame would be subject to the highest strain rate. The 
gradient at the stagnation point is largest at the smallest values of Λ, as is to be expected 
from the smaller effective cylinder radius at lower fuel-injection rates, whence flame 
extinction may be achieved by decreasing Λ, that is, either by increasing the air velocity 
or by decreasing the fuel flow rate.

Conclusions

When the fuel injection in Tsuji burners is strong enough to blow the boundary layer away 
from the cylinder surface, analysis in the limit Re � 1 reveals two inviscid regions separated 
by a mixing layer, an air region having potential flow and a fuel region where the flow is 
quite liable to be rotational. A formulation for describing the flow in these two regions has 
been derived that reduces the flow to one dependent on only a single parameter, a density- 

Figure 6. The distribution of velocity along the separating streamline ψ ¼ 0 for selected values of Λ.
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weighted injection velocity, defined in (19). For all fuel-injection velocities, the analysis 
reveals significant differences between the potential-flow solution, which involves a nonzero 
tangential velocity component on the surface of the porous cylinder, and the solution with 
fuel injection normal to the cylinder surface, likely prevailing in most applications of this 
type. In the limit of small injection velocities, for the latter (rotational) fuel-side flow, 
computations reveal early separation of a high-vorticity region from the vicinity of the 
cylinder, leading to the formation of a large wake, with the result that the rotational solution 
everywhere differs appreciably from that for potential fuel flow. In particular, in this limit of 
Λ approaching zero, the strain rate at the forward stagnation point approaches the classical 
value 2U1=a for potential fuel flow but approaches only slightly more than 2/3 times that 
value when the fuel is injected normal to the cylinder surface. In general, with fuel injection 
normal to the cylinder surface, the streamline separating the fuel and air streams lies farther 
from the cylinder surface and experiences smaller strain rates. These results emphasize the 
importance of paying close attention to the fuel exit conditions in applying Tsuji burners in 
this manner to investigate diffusion-flame structures.
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Appendix: The numerical scheme

The stream function is expressed in the form ψ̂ ¼ ψ̂p þ ψ̂r , where ψ̂p is the potential-flow solution 
given by (20), and ψ̂r is the rotational component, the latter determined by integration of 

1
r

@

@r
r

@ψ̂r
@r

� �

þ
1
r2

@2ψ̂r

@θ2 ¼ �ω̂ðψ̂p þ ψ̂rÞ: (A1) 

with boundary conditions 

ψ̂r ¼ @ψ̂r=@r þ 2 sin θ ¼ 0 at r ¼ 1 for 0 � θ � π
ψ̂r ¼ 0 at θ ¼ π for 1 � r<1

ψ̂r ! 0 as r ! 1 for 0 � θ � π
ψ̂r ¼ 0 at θ ¼ 0 for 1 � r<1:

8
>><

>>:

(A2) 

The injection velocity Λ does not appear in the boundary conditions for ψ̂r; it enters only through ψ̂p, 
which may offer a simplification. The general strategy is to first guess a function � ω̂ðθÞ at r ¼ 1 for 
0< θ< π, then solve the Poisson equation for ψ̂r and calculate @ψ̂r=@r at r ¼ 1 for 0< θ< π to 
evaluate the difference Δ between that function and � 2 sin θ, on that boundary, which must vanish 
to satisfy the first boundary condition. The assumed function � ω̂ðθÞ is then increased by an amount 
proportional to this difference, and the solution process is repeated, again and again, until the 
difference Δ is less than at least 10�2. Because of the dependence of the solution on Λ, a useful initial 
guess for � ω̂ðθÞ is sin θ=ð10ΛÞ, and the increase at each step may best be taken to be the difference Δ 
divided by Λ; usually, only a small number (5 or 10) of iterations is needed, but that number increases 
substantially as Λ decreases below 0.1.

In the indicated procedure, the constancy of the vorticity along streamlines enables the source term 
in the Poisson equation to be evaluated throughout the field as a function of the stream function, but 
to solve the Poisson equation that source term must be known as a function of r and θ. That 
necessitates an inner sub-iteration in which, for each Poisson-equation solution, the stream function 
of the source term is evaluated as a function of r and θ from the previous solution. This sub-iteration 
should be continued until subsequent solutions throughout the field change by less than two 
significant figures, and in this work, it was continued until the change was less than 10�5. 
Generally, a larger number of these sub-iterations is needed than the number of main iterations, 
and stability problems often were encountered, which were overcome by forcing the stream function 
of the source term to change by a sufficiently small amount from one iteration to the next, using in 
that source term a weighted mean of the current ψ̂r and the previous ψ̂r . Occasionally, especially for 
large or small values of Λ, stability was achieved only when 90%, or even 99%, of the weight was 
ascribed to the previous ψ̂r . Convergence was, however, obtained in all cases.
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