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Aerodynamics of Tsuji Burners with Augmented Fuel Injection
Brandon Li, José Grafia-Otero, Antonio L. Sdnchez, and Forman A. Williams

Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla,
California, USA

ABSTRACT ARTICLE HISTORY

Tsuji burners, in which flames may be anchored in the forward stagna- Received 11 September 2021
tion region of a cylindrical porous fuel injector placed in a uniform air Revised 19 November 2021
stream, are addressed here for moderately large Reynolds numbers. Accepted 8 December 2021

Attention is focused on conditions under which the fuel-injection KEYWORDS
velocity is not sufficiently small compared with the outer air velocity Counterflow flames;
for the boundary layer to remain attached to the forward part of the Nonpremixed combustion;
cylinder surface. In the resulting flow, the flame is embedded in the Tsuji burners
thin mixing layer that forms at the surface separating the outer air

stream from the fuel stream, both having, in general, different densi-

ties. The flow on the air side of the mixing layer is potential, while that

on the fuel side usually is rotational because exit conditions for the fuel

injection generate vorticity, for example, by imposing a requirement

that the fuel must emerge normal to the cylinder surface, which is the

condition analyzed herein. It is shown that introduction of a suitably
density-weighted stream function reduces the problem to that of
constant-density flow, with the density-square-root-weighted ratio of

injection velocity to free-stream velocity A emerging as the only con-

trolling parameter. The numerical solution, involving determination of

the vorticity distribution in the inviscid fuel flow through an iterative

scheme, provides the structure of the flow, including the mixing-layer

location and the inviscid-flow strain rate there. Numerical results are

presented for values of A ranging from small (A < 1) to large (A > 1)

injection velocities. The inviscid results in the limit of vanishingly small

injection velocities (A approaching zero) demonstrate that, unlike the

prediction of the potential-flow solution, when the fuel-side flow is

rotational the outer air velocity never approaches the classical solution

corresponding to potential flow around a solid cylinder (A = 0), a result

affecting the interpretation of analyses of experiments involving

flames stabilized on Tsuji burners as the boundary layer is blown off.

In particular, with rotational fuel-side flow, the streamline separating

the fuel and oxidizer regions lies farther from the cylinder surface,

resulting in a larger near-quiescent wake and a lower strain rate along

the separating streamline.

Introduction

Tsuji burners have been used to investigate laminar counterflow flames for over 50 years
(Tsuji and Yamaoka 1967). As indicated in the schematic diagram shown on the left-hand
side of Figure 1, the flame is established in the forward stagnation-point region of a porous
cylinder of radius a placed in a uniform air stream of velocity Uy, with the fuel released by
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injection perpendicular to the cylinder surface with velocity U;. Although the precise
direction of fuel injection may depend on details of construction of the porous cylinder,
outlet fuel-flow channels typically are considered to be narrow enough to force approxi-
mately normal exit flow. In most applications, the Reynolds number Re = p,Usa/u,
(based on the density p, and viscosity u, of the air stream) is large although not large
enough for the laminar flow to become unsteady near the cylinder surface, and the injection
velocity U; is small, of order U;~U,,/ Re'/2, so that the streamline separating the external
airflow from the fuel flow lies in the near-wall boundary layer of characteristic thickness
8 = a/Re'/? < a that develops over the forward side of the cylinder. Effects of molecular
transport are confined to this boundary layer, where the fuel and the air mix and react, while
the flow outside is nearly inviscid. The reacting boundary layer, containing the flame,
displays a self-similar structure near the forward stagnation point, determined by the
local value of the strain rate exerted by the outer flow. The flame continues developing
along the cylinder wall away from the stagnation region, until separation eventually occurs.

In analyzing the flame that develops near the forward stagnation point, it is customarily
assumed (Tsuji 1982) that the azimuthal velocity component on the outer edge of the
boundary layer corresponds to that of the potential-flow solution obtained by superposition
of a doublet and a uniform stream, an approximation that is known to be reasonably
accurate for configurations without fluid injection at the cylinder surface; see, e.g., Batchelor
(2000). Correspondingly, the value of the strain rate at the forward stagnation point, which
determines the local self-similar solution there, is simply given by 2U,/a. Effects of likely
departures from this widely used approximation are to be investigated as part of our
analysis.

The flow structure depicted on the left-hand side of Figure 1, corresponding to injection
velocities U~ U, /Re!/? < U,,, changes drastically when the fuel is injected with velocities
that are comparable to Uy, displacing the stagnation point to distances of order a away

Figure 1. A schematic view of the flow field in Tsuji burners with U;~U,,/Re'/? (left plot) and with
Ui~Ux (right plot). The shaded region represents the thin layer where air and fuel mix.
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from the cylinder surface, as shown on the right-hand side of Figure 1. For Re >> 1, mixing
and reaction occur only in a thin mixing layer of characteristic thickness § = a/Re'/? < a
localized at the fluid interface separating the incoming airflow from the injected fuel gas. At
leading order in the limit Re > 1 the reacting mixing layer emerges as a free surface
separating two regions of inviscid flow, as indicated in Figure 1. The outer flow is potential,
because the air stream carries no vorticity, but the inner flow generally is rotational, because
the injected fuel stream has vorticity, as needed for the injection velocity to be normal to the
cylinder surface, for example, the situation addressed here for the first time. It is worth
pointing out that the inviscid structure investigated here, involving a potential region and
a rotational region, is reminiscent of that found in idealized nonplanar premixed flames,
where vorticity production results from the flame deflection associated with the density
jump across the reaction front (Zel’dovich et al, 1980). As discussed by Squires and Libby
(1994), the flow description, involving jump conditions at the flame, is a challenging task
that necessitates specific numerical methods accounting for the free-boundary character of
the problem.

The Tsuji-burner analysis is formulated first for general order-unity values of the
Reynolds number Re. Consideration of the limit Re >> 1 will be seen to reduce the problem
to that of inviscid flow, with the solution depending on two parameters, namely, the fuel-to-
air density ratio p./p, and the fuel-to-air velocity ratio U;/Ux. Use of a proper density-
weighted vorticity/stream-function formulation (Carpio et al, 2017; Weiss, Coenen,

Sénchez 2017) further reduces the problem to one of constant-density flow, with A =

(pr/p A)l/ 2U;/ Uy, entering as the only governing parameter. The solution involves deter-
mination of the vorticity distribution on the cylinder surface, which is computed numeri-
cally for different values of A. The solution provides the location of the forward stagnation
point and the associated local value of the strain rate, relevant to determining the structure
and extinction of a flame that may be located in the mixing layer surrounding the dividing
streamline. Analyses of flame structures in such mixing layers have been reviewed by Lindn
and Williams (1993a). The shape of the streamline separating the two reactant streams and
the streamwise variation of the velocity profiles will also be obtained.

Formulation of the problem

The porous-burner configuration investigated here is shown in Figure 2. The cylinder
radius a and external air velocity Uy, will be used to scale the length coordinates and
time in the problem, yielding dimensionless cylindrical coordinates (r, 8) and correspond-
ing velocity components v = (v,, vg). Following standard convention, the azimuthal angle 6
is to be measured counterclockwise from the horizontal rightward ray, with the uniform
airflow approaching from 6 = 7. Because of the existing symmetry, it suffices to give the
solution in the half plane 0 < 0 < 7.

General formulation for Re~1

The air density p, and temperature T, will be used to define a dimensionless density p and
a dimensionless temperature T. Similarly, the transport properties of the air stream will be
used to define a dimensionless viscosity y, thermal conductivity k, and molecular diffusivity
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Figure 2. lllustration of the flow configuration, with indication of relevant coordinates; the streamlines
shown correspond to A = 1.

D; of species i. Buoyancy forces are neglected in the analysis, an appropriate simplification
for small combustors with sufficiently large Froude numbers U2 /(ga) > 1. For the low-
Mach-number conditions prevailing in applications, the steady form of the conservation
equations (given, e.g., in Williams 1985) for a reacting gas mixture with constant specific
heat ¢, reduce to

V-(pv) =0 (1)
pv-Vv=—-Vp+ év [u(Vv + V)] (2)
1 m hi
VT = —V . (kVT) — : 3
Py PrRe (kVT) XN: (PaUsc/a) (¢cpTa) 3)
VY;=— V- (pDVY;) + —i (4)
Py " SciRe priv L psUx/a’

where p represents the spatial pressure differences scaled with p, U2, Pr is the Prandtl
number, and Y, h;, and S¢; denote the mass fraction, enthalpy of formation, and Schmidt
number of species i. The rate of production of mass of chemical species i, r;, identically zero
in the feed streams, must be evaluated for a given chemistry description in terms of the local
values of T and Y;. These differential equations must be supplemented with expressions for
the temperature and composition dependences of the dimensionless transport coefficients
k, u, and D; and with the equation of state, written in the low-Mach-number form

PT Y (YiWa/Wi) =1, (5)

with W; and W, denoting, respectively, the molecular mass of species i and the mean
molecular mass of the air stream. To integrate the above differential equations, it is
necessary to specify the temperature and composition of the air stream as r — oo and of
the fuel stream at r = 1, as well as the corresponding boundary velocity distributions, which
are given by
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(v, vg) — (cosO,sinf) as r— oo
(6)

(vr,ve) = (Ui/Ux,0) at r=1

The limit Re > 1

In the inviscid limit Re >> 1, molecular transport becomes negligible in (2)-(4). In the
absence of mixing, the chemical reaction cannot proceed, so that (3) and (4) reduce to
v- VT =v-VY; =0, indicating that the temperature and composition of the steady flow,
and therefore also the density according to (5), remain constant along streamlines. As
a result, there exists a fluid interface, r = r,(6), separating an external region with density
p = 1 from an internal region with density p = p/p,. This separating interface r = r,(0) is
a tangential discontinuity, with the velocity on the outer and inner sides satisfying

P =(pp/p) VI (7)

as follows from conservation of head along the boundary streamlines, with the superscripts
+ and — denoting conditions along the limiting streamlines in the air and fuel regions at
r=r] and r = r_, respectively.

The problem can be formulated conveniently in terms of the stream function v, defined
such that

|v

1oy Oy
= ae and vg = o (8)

which serves to satisfy (1) automatically. For the planar flow investigated here, the vorticity

10 1 dv,
© =15 " aog ©)
satisfies
Ow vgOw
“or v o0 (10

as can be seen by taking the curl of the inviscid form of (2). Eq. (10) reveals that the vorticity
is conserved along streamlines, so that w = w(y). Use of (8) in (9) provides

12<8w> 1 0%y

o o) Troe - OW) v

or

as a Poisson equation for y with an unknown nonlinear source function w(y). The
boundary conditions needed for integrating (11) reduce to

v— (U;)/U)(@—7m)=0y/Or=0 atr=1 for0<0<m
y=0 at@=mn forl <r<oo
Y — rsinf asr — oo for0<f<m
v =—n(U;/Us) atfd=0 forl <r<oo

(12)
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when account is taken of the symmetry present in the problem. In (12), the arbitrary value
of y along r = r(6) has been selected to be y = 0, with the air/fuel sides corresponding to
positive/negative values of y, respectively. The separating surface r = r,(6) is an unknown
free boundary to be determined with use made of the additional boundary condition (7)
written in the form

+ -
AN AN AW ARG B
l(a) +1’_2<%) = a E +1’—2 % at 1//—0. (13)
The function w(y) is related to the unknown distribution of vorticity on the cylinder wall
w,,(6) through

_JO0 fory>0
w{ww[(Uoo/U,»)y/Jrn] for — (Us/Us) <y <0 (14)

Reduction to a problem with equal densities

The free-boundary problem defined in (11)-(14) determines y(r, 8) along with the vorticity
distribution w,, (6) and the separating surface r;(6) for given values of U;/ U, and py/p,,. As
shown previously (Carpio et al, 2017; Weiss, Coenen, Sinchez 2017), the solution can be
simplified by incorporating a renormalization factor (p,/p A)l/ ® in the definition of new
kinematic variables

. 12 -y for y>0
W= w and = . (15)
(Pu/pa) P={ oy toweo
The problem then reduces to the integration of
10 [ oy 10y ..
with boundary conditions
V—AO—n)=0y/or=0 atr=1 for0<0<n
=0 atd=n forl <r<oo (17)
¥ — rsin6 asr — oo for0<f<m
v =—nA at0=0 forl <r<oo,

and the additional condition that the rescaled vorticity and its distribution on the cylinder
surface @,,(0) are related by

. [0 fory>0
w_{d)w(w/A—i-ﬂ) for —nA <y <0." (18)

The dynamic condition (13) is automatically satisfied when written for the renormalized
variables, thereby removing the need to consider the separating surface r,(0) as a free
boundary, a greatly helpful simplification. It is seen that the reduced formulation depends
only on the single governing parameter
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1/2 7
A= (p_F) ﬂ’ (19)
Pa Uso

the square root of the ratio of the dynamic pressure of the fuel feed stream to that of the
incoming air stream for normal fuel injection, which may have been expected for this
inviscid flow. The streamlines depicted in Figure 2 correspond to A = 1.

The solution to the problem defined above determines §/(r, 6) as well as the vorticity
distribution on the cylinder surface @,,(0). The latter is ultimately determined by the
condition that the fuel is injected perpendicular to the wall, in that there is a single
distribution @, (6) for which dy/dr =0 at r = 1. If, instead, the fuel were injected
with zero vorticity, then the stream function would be given by the potential-flow
solution, a simple superposition of a doublet and source at the origin on
a uniform flow,

¥, = (r—1/r)sin6 + A(6 — ), (20)

which exhibits a nonzero azimuthal velocity — dy/0r = —2sin 6 on the cylinder surface.
This potential-flow solution, which neglects the presence of vorticity on the fuel side of the
flame imposed by cylinder exit configurations that force no velocity components tangential
to the cylinder surface, is to be compared with the complete inviscid solution determined by
numerical integration of (16)-(18). Although experimental measurements of near-cylinder
velocity fields with blown-off cylinder boundary layers are not available, it seems likely that
they would be closer to those obtained from the present analysis than those for poten-
tial flow.

Computational results

The problem defined in (16)-(18) was solved numerically using the iterative scheme
described in the Appendix. Results were obtained for injection conditions corresponding
to values of A in the range 0.1 < A < 10. Selected illustrative results are presented in
Figures 3-6. The boundary streamline r,(0) is indicated in Figure 3 by a thicker line,
which, for potential fuel-side flow, is

rs:\/1+[(”_6)Ar+(ﬂ_6)A. 21)

2sinf 2sinf

Explicit formulas such as this are not available for rotational flows, which require numerical
integration.

As may be seen in Figure 3, for large values of A, the forward stagnation point is
about twice as far upstream for the rotational flow than it is for the potential flow, the
direction of this difference being understandable in view of the suppression of the
downstream-directed azimuthal velocity components at the surface of the cylinder by
the boundary conditions applies there for the rotational flow. The differences between
the rotational-flow and potential-flow solutions are, however, found to be greatest for
small injection velocities, A < 1, where the amount of vorticity needed at injection to
satisfy the condition of zero tangential velocity is very large; as A decreases, the
normal component of the injection velocity decreases, but the tangential component
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-0

Figure 3. The upper half of each panel represents the streamlines and vorticity distribution correspond-
ing to different values of A obtained by integration of (16) with boundary conditions (A2). The lower half
shows the streamlines of the corresponding potential flow, evaluated with use made of (20). The spacing
used for the stream function is 8¢ = 2 on the air side ¢/>0 and 8¢ = (0.1, 1,2) for A = (0.1,2,10) on
the fuel side ) <0, except for the inset corresponding to A = 0.1, which uses 6 = 0.05.

remains unchanged to provide a potential flow, so that the difference between the
tangential and normal velocity components increases with decreasing A for the poten-
tial flow, thereby leading to the requisite greater decrease in the tangential velocity
component of the rotational flow, compared with that of the potential flow, resulting
in the increase in vorticity of the rotational flow with decreasing A. In the plot in
Figure 3 for the small injection velocity, the boundary streamline of the potential-flow
solution remains at distances of order r; — 1~A from the cylinder surface, but when
the vorticity is present the boundary streamline is farther away, and a region of high
vorticity separates from the surface at 6 ~ 37/4 and evolves downstream to produce
a comparatively massive wake with vanishing fluid motion, markedly different from
that encountered in the potential-flow solution.

An explicit quantification of the vorticity generated in the fuel-injection process is
given in Figure 4. As explained above, the amount of vorticity decreases with
increasing injection velocities. To further quantify this effect, use can be made of
the potential-flow solution (20) to evaluate the tangential-to-normal velocity ratio on
the cylinder surface, yielding 2sin 6/A. Since this ratio is inversely proportional to A,
becoming infinite as A approaches zero, the local spin needed to deflect the injection
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6
K
Am
Figure 4. The function w(y) = w,(0) for selected values of A.

velocity to a direction normal to the surface is smaller for larger A. The vorticity
maximum on the surface for A = 0.1, about ten times that for A =1, occurs,
consistent with the results shown in Figure 3, approximately at 0 ~ 37/4, upstream
from the midpoint where it resides for larger values of A, causing the relative bulging
of the low-velocity wake to be smaller. The asymmetry of the vorticity distribution
on the surface understandably decreases with increasing injection velocity.

Figure 5 shows the stagnation-point radial location r,(7) and the associated strain
rate A,, which can be evaluated from the local value of — r.10%§/0rd0 and would be
relevant for analyzing flames stabilized in this stagnation region. For the potential-flow

solution,
ri(m) =\/1+ (A)2)* + A/2, (22)

and the corresponding stagnation-point strain rate is

. >y 2
A __l WP_VS(T[)"Fl (23)

T rordd  ri(m)

Figure 5. The radial location of the stagnation point and corresponding strain rate obtained by
integration of (16) (solid curves) and from evaluation of the potential-flow stream-function expressions
(20) (dashed curves).
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Figure 6. The distribution of velocity along the separating streamline ¢ = 0 for selected values of A.

The comparison in the figure indicates that the strain rate for the potential-flow solution is
appreciably larger than that for rotational flow for all values of A, with relative differences
becoming greater for increasing injection velocities. At small injection velocities A < 1, the
strain rate computed numerically approaches a limiting value A, ~ 1.35, markedly different
from the potential-flow prediction A, = 2.

As indicated in the introduction, in the limit Re >> 1, mixing and reaction are confined
to the mixing layer that separates the two streams. The structure and extinction of a flame in
the mixing layer can be analyzed using as local coordinates the distance s measured along
the dividing streamlines r,(0) and the associated transverse coordinate 7, both indicated in
Figure 2. The velocities on the air and fuel side of the mixing layer satisfy (7). The
corresponding equations for the strained mixing layer, given for instance in Lindn and
Williams (1993b), depend on the outer flow through the local value of the strain rate, which
can be computed from the streamwise variation of the velocity on the air and fuel sides of
the separating streamline J|v'|/Js and J|v~|/Js, where |v'|=|0y/0n|, and
v| = |81]//8n|5(pA/pF)1/2, with [0y/0n|, denoting the magnitude of the gradient of ¥ at
rs(6). In view of this application, the variation of the velocity |0y/9n|, with s is shown in
Figure 6. As previously anticipated, the largest slope is found at s = 0, corresponding to the
forward stagnation point, where the flame would be subject to the highest strain rate. The
gradient at the stagnation point is largest at the smallest values of A, as is to be expected
from the smaller effective cylinder radius at lower fuel-injection rates, whence flame
extinction may be achieved by decreasing A, that is, either by increasing the air velocity
or by decreasing the fuel flow rate.

Conclusions

When the fuel injection in Tsuji burners is strong enough to blow the boundary layer away
from the cylinder surface, analysis in the limit Re >> 1 reveals two inviscid regions separated
by a mixing layer, an air region having potential flow and a fuel region where the flow is
quite liable to be rotational. A formulation for describing the flow in these two regions has
been derived that reduces the flow to one dependent on only a single parameter, a density-
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weighted injection velocity, defined in (19). For all fuel-injection velocities, the analysis
reveals significant differences between the potential-flow solution, which involves a nonzero
tangential velocity component on the surface of the porous cylinder, and the solution with
fuel injection normal to the cylinder surface, likely prevailing in most applications of this
type. In the limit of small injection velocities, for the latter (rotational) fuel-side flow,
computations reveal early separation of a high-vorticity region from the vicinity of the
cylinder, leading to the formation of a large wake, with the result that the rotational solution
everywhere differs appreciably from that for potential fuel flow. In particular, in this limit of
A approaching zero, the strain rate at the forward stagnation point approaches the classical
value 2U, /a for potential fuel flow but approaches only slightly more than 2/3 times that
value when the fuel is injected normal to the cylinder surface. In general, with fuel injection
normal to the cylinder surface, the streamline separating the fuel and air streams lies farther
from the cylinder surface and experiences smaller strain rates. These results emphasize the
importance of paying close attention to the fuel exit conditions in applying Tsuji burners in
this manner to investigate diffusion-flame structures.
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Appendix: The numerical scheme

The stream function is expressed in the form ¢ = y, + ¥, where , is the potential-flow solution
given by (20), and ¥, is the rotational component, the latter determined by integration of

10 ( 09\ 18,

with boundary conditions

Vv, =0y, /0r+2sin0=0 atr=1 for0<0<n

v, =0 at0=n forl<r<oo (A2)
¥y, —0 asr— oo for0<O0<m
v, =0 at0=0 forl<r<oo.

The injection velocity A does not appear in the boundary conditions for ¥,; it enters only through ¥,
which may offer a simplification. The general strategy is to first guess a function — @(6) atr = 1 for
0 <0<, then solve the Poisson equation for §, and calculate 9y, /0r at r =1 for 0<0<m to
evaluate the difference A between that function and — 2 sin 6, on that boundary, which must vanish
to satisfy the first boundary condition. The assumed function — @(0) is then increased by an amount
proportional to this difference, and the solution process is repeated, again and again, until the
difference A is less than at least 1072, Because of the dependence of the solution on A, a useful initial
guess for — @(6) is sin 6/(10A), and the increase at each step may best be taken to be the difference A
divided by A; usually, only a small number (5 or 10) of iterations is needed, but that number increases
substantially as A decreases below 0.1.

In the indicated procedure, the constancy of the vorticity along streamlines enables the source term
in the Poisson equation to be evaluated throughout the field as a function of the stream function, but
to solve the Poisson equation that source term must be known as a function of r and 6. That
necessitates an inner sub-iteration in which, for each Poisson-equation solution, the stream function
of the source term is evaluated as a function of r and 6 from the previous solution. This sub-iteration
should be continued until subsequent solutions throughout the field change by less than two
significant figures, and in this work, it was continued until the change was less than 107°.
Generally, a larger number of these sub-iterations is needed than the number of main iterations,
and stability problems often were encountered, which were overcome by forcing the stream function
of the source term to change by a sufficiently small amount from one iteration to the next, using in
that source term a weighted mean of the current §, and the previous §,. Occasionally, especially for
large or small values of A, stability was achieved only when 90%, or even 99%, of the weight was
ascribed to the previous §,. Convergence was, however, obtained in all cases.
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