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Introduction: Damming has substantially fragmented and altered riverine
ecosystems worldwide. Dams slow down streamflows, raise stream and
groundwater levels, create anoxic or hypoxic hyporheic and riparian environments
and result in deposition of fine sediments above dams. These sediments represent a
good opportunity to study human legacies altering soil environments, for which we
lack knowledge on microbial structure, depth distribution, and ecological function.

Methods: Here, we compared high throughput sequencing of bacterial/ archaeal
and fungal community structure (diversity and composition) and functional genes
(i.e., nitrification and denitrification) at different depths (ranging from 0 to 4 m)
in riparian sediments above breached and existing milldams in the Mid-Atlantic
United States.

Results: We found significant location- and depth-dependent changes in
microbial community structure. Proteobacteria, Bacteroidetes, Firmicutes,
Actinobacteria, Chloroflexi, Acidobacteria, Planctomycetes, Thaumarchaeota,
and Verrucomicrobia were the major prokaryotic components while Ascomycota,
Basidiomycota, Chytridiomycota, Mortierellomycota, Mucoromycota, and
Rozellomycota dominated fungal sequences retrieved from sediment samples.
Ammonia oxidizing genes (amoA for AOA) were higher at the sediment surface but
decreased sharply with depth. Besides top layers, denitrifying genes (nosZ) were
also present at depth, indicating a higher denitrification potential in the deeper
layers. However, these results contrasted with in situ denitrification enzyme assay
(DEA) measurements, suggesting the presence of dormant microbes and/or
other nitrogen processes in deep sediments that compete with denitrification. In
addition to enhanced depth stratification, our results also highlighted that dam
removal increased species richness, microbial diversity, and nitrification.

Discussion: Lateral and vertical spatial distributions of soil microbiomes (both
prokaryotes and fungi) suggest that not only sediment stratification but also
concurrent watershed conditions are important in explaining the depth profiles
of microbial communities and functional genes in dammed rivers. The results
also provide valuable information and guidance to stakeholders and restoration
projects.

fragmented rivers, legacy sediments, prokaryotes and fungi, vertical distribution, dam
removal
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Introduction

Human civilizations originated along big rivers and their deltas,
and human activities have had a significant impact on the integrity
and function of rivers and their watersheds. Damming is one such
activity that has substantially fragmented and altered riverine
ecosystems worldwide (Zarfl et al., 2015; Anderson et al., 2018; Belletti
et al,, 2020; Maavara et al., 2020). In the United States (US), starting
in the 1700s, thousands of dams were built by early European settlers
for harnessing water power for mills, and were widely distributed on
streams and rivers across the eastern United States (Walter and
Merritts, 2008; Merritts et al., 2011). Although a majority of the dams
have breached or are under consideration for removal due to safety or
habitat considerations (Tonitto and Riha, 2016; Foley et al., 2017;
Magilligan et al., 2017), more than 14,000 dams still exist across the
Northeast United States (Martin and Apse, 2011). While the impacts
of dams on fluvial geomorphology and sediment transport (Csiki and
Rhoads, 2010; Rodriguez et al., 2020), hydrologic connectivity (Poff
et al., 2007; Magilligan et al., 2016), biogeochemical processing
(Maavara et al,, 2020; Zhang et al., 2021; Inamdar et al., 2022), and
aquatic habitat (Barbarossa et al., 2020; Pal et al., 2020) are increasingly
recognized, much less is known about how dams and fragmented river
systems affect the structure and functions of microbial communities.

Dams alter both the in-channel and the riparian environment in
riverine systems. Coupled with accelerated sediment erosion from
widespread land clearance and agriculture across the United States
(Costa, 1975; Meade, 1982), milldams resulted in large deposits of
fine-grained (silt and clay) legacy sediments that formed tall riparian
terraces upstream of the dams and with lower floodplains downstream
(Walter and Merritts, 2008; James, 2013). Upstream riparian terraces
can be many meters tall and are typically the height of the milldams
(Merritts et al., 2011). Milldams also alter the hydrologic environment
with high stream and groundwater levels upstream (typically equal to
the height of the dam) and lower levels and drier conditions
downstream (Sherman et al., 2022). The high-water levels and wet and
stagnant conditions upstream of the dams promote hypoxic and
anoxic conditions in stream and riparian sediments with consequences
for carbon and nitrogen biogeochemistry and cycling (Inamdar et al.,
2020, 2022; Hripto et al., 2022; Peck et al., 2022, 2023). In contrast,
when dams are removed, upstream stream and groundwater levels
drop rapidly resulting in drained and oxic riparian sediments (Lewis
et al., 2021) that are susceptible to fluvial and subaerial erosive
processes (Wolman, 1959; Fox et al., 2016; Gellis et al., 2017). Recent
studies have shown that the fine sediment particles and associated
nutrients (both dissolved and particulate forms) can serve as
important sources to annual sediment and nutrient export to
downstream aquatic ecosystems such as the Chesapeake Bay (Gellis
etal, 2017; Cashman et al., 2018; Miller et al., 2019; Jiang et al., 2020;
Lutgen et al., 2020).

Microorganisms are indicators for river and terrestrial ecosystem
functions because they are the major drivers for the most biogeochemical
cycles of nutrients globally. In addition to hydrological and
morphological discontinuities, river fragmentation and damming is
likely to disturb these nutrient-cycling pathways by reassembling and
reconstructing the microbial compositions. In a previous molecular
survey, our results showed that heterotrophic bacteria in the milldam-
associated legacy sediments were different from other soil environments
(Sienkiewicz et al., 2020). Distinct depth profiles of these microbes were
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also observed in their detailed structure composition and microbial
activities: higher carbon respiration in the surface sediment while lower
microbial enzyme activities in deeper layers (Weitzman et al., 2014;
Weitzman and Kaye, 2017). Our studies further confirmed this
observation by showing very low amended or unamended denitrification
enzyme activity (DEA; Peck et al., 2022), although higher denitrification
genes were found in deeper layers (Sienkiewicz et al., 2020). By
quantifying in-stream denitrification rates above and below milldams,
Hripto et al. (2022) concluded that milldams that were filled to capacity
with sediments had limited effects on nitrogen removal and transport
in stream ecosystems. However, there is still some debate on whether
legacy sediments serve as sources or sinks of nutrients (N, B, etc.); and
addressing this question is crucial for the decision-making process on
sediment removal and stream restoration (Inamdar et al., 2020).

These disagreements and arguments highlight critical knowledge
gaps and a lack of understanding of how river fragmentation with dams
impacts ecosystem functions, which are primarily manipulated by
microorganisms (e.g., Graham et al., 2016). Due to the backup of
stream water above dams, we hypothesize the elevated groundwater
and anoxia enhance the depth stratification of microbial communities
in the sediments. This is particularly so for milldams which have been
in place since the mid-1700s—representing more than 200years of
continuous saturation and anoxia in riparian sediments. When the
dams are removed, riparian sediments drain rapidly and become
oxic—representing an abrupt or instantaneous (at the geologic and
ecological time scales) change in the biogeochemical and microbial
environment. This sudden change likely alters the nitrifying and
denitrifying processes and associated microbial communities (e.g.,
Lewis et al., 2021). It is important to understand how these hydrologic
and biogeochemical changes pre and post dam removals affect the
microbial community structure and functions and their evolution
over time.

In this study, we collected sediment cores from riparian sediment
terraces above three milldams in the mid-Atlantic United States: two
with standing milldams (Roller and Cooch) and one recently-
breached dam site (Krady). Depth profiles (0-4m) of community
structures of bacteria/archaea and fungi were characterized with high
throughput sequencing of 16S rRNA genes and ITS regions.
Nitrification and denitrification genes were used to quantify the
functional measure in the sediment cores. We aim to further our
understanding of how dam-fragmented riverine systems impact
microbial assembly and function.

Materials and methods
Experimental design and sample collection

Three low-head milldam sites—Krady, Roller and Cooch were
selected for this study, Krady dam was breached and removed in July
2018, while Roller and Cooch are still standing and largely intact.
Krady (1.5m tall) and Roller (2.4 m tall) milldams are both on Chiques
Creek (Krady is 10km downstream of Roller) in Pennsylvania draining
into the Chesapeake Bay, while Cooch milldam (~4 m tall) is located
on Christina River in Delaware that drains into the Delaware Bay
(Figure 1). All of these dams are fairly representative of the types of
milldams constructed in the mid-Atlantic United States (Walter and
Merritts, 2008). Krady and Roller milldams were constructed in
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FIGURE 1

Maps showing the sampling locations for sediment collection. Krady and Roller dam sites are located at Chiques Creek in Pennsylvania (Chesapeake
watershed), and Cooch milldam site is located at Christina River in Delaware (Delaware watershed).

mid-1700s (exact date unknown) whereas the Cooch milldam was built
in 1792 (Inamdar et al., 2022). Thus, for Roller and Cooch, the riparian
sediments immediately upstream of the dam have been in a saturated
and hypoxic/anoxic condition for more than 200 years. For Krady, the
dam removal occurred in 2-4 h and riparian sediments drained within
days (Lewis et al., 2021). Riparian sediments above all the dams are
primarily fine-grained with lenses of coarse grained (sand) sediments
(Peck et al., 2022, 2023). Carbon dating of buried organic material at
depths of 3-4m suggest that much of the riparian legacy sediments
were deposited in the past 200-300years (Peck et al., 2022).

Chiques creek drains a primarily agricultural watershed while the
Christina River has a mixed landuse (urban and agriculture) above the
Cooch milldam (Inamdar et al., 2022; Peck et al., 2022). Above the
Krady dam site on the Chiques Creek, the major land uses are 68%
agricultural, 13% forested, 11% residential, and 7% grassland (USGS
National Landcover Database, 2011; Lewis et al., 2021). The Cooch
dam site is a more urbanized site near Newark in Delaware, consisting
of 47% urban/developed, 30% forested, and 23% agricultural land
(USGS National Landcover Database, 2011; Peck et al., 2022). Riparian
sediment and groundwater biogeochemistry above Cooch milldam on
Christina River is also affected by road salt (NaCl) inputs from a large
interstate highway (Inamdar et al., 2022). The Chiques watershed is
mostly dolomite/limestone (rich in Calcium and magnesium) and
shale, while the Christina River basin is dominated by gabbro and
gneiss. Chiques Creek and Christina River have a temperate weather,
with similar mean annual air temperatures (15.5 and 12.2°C,
respectively) and precipitation amounts (104 and 114 cm, respectively;
NOAA 2021). Both riparian areas are forested with dominant tree
species including sugar maple (Acer saccharum), black walnut (Juglans
nigra), and American sycamore (Platanus occidentalis).

Frontiers in Microbiology

Riparian sediments upstream of all milldams are about as thick
as the heights of the dams (Lewis et al., 2021; Inamdar et al., 2022)
and were sampled for this study. A total of five riparian sediment
cores were collected using a hand-operated auger to a depth of refusal
(~3-4m): two from Krady dam site (KMW1B and KMW3B), one
from Roller milldam (RMT1W1), and two from Cooch milldam
(CMT1W1 and CMT2W1). All of these cores were collected within
10m from the stream edge and detailed sampling sites, procedures,
and chemical analyses can be found in previous publications
(Inamdar et al., 2022; Peck et al., 2022, 2023; Sherman et al., 2022).
The cores were segmented to different depths on site, stored in
air-tight Whirl-Pak® bags and transported to the lab on ice (4°C;
Table 1). Samples from each depth were sent to labs for chemical
analysis and measurements (Supplementary Table S1), and a subset
of samples were saved in freezer (—80°C) for molecular analyses
(see below).

DNA extraction, high throughput
sequencing, and qPCR

Genomic DNA was extracted from sediment samples (0.25g,
wet weight) using DNeasy PowerSoil Pro Kits (Qiagen, Hilden,
Germany) following the manufacturer’s instructions. DNA
concentrations and purity were measured using an ND-20000
NanoDrop spectrometer (Thermo Fisher Scientific, Waltham,
United States).

High throughput sequencing was performed on a total of 29
samples to characterize detailed bacterial/archaeal (16S) and fungal
(ITS) communities. Library preparation followed the Sequencing
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TABLE 1 Location of sampling sites, sampling dates, depth, species richness, diversity and functional genes for the depth sediment profiles.

River/

Dam and

Bacteria/archaea (16S)

_ ; Fungi (ITS) AOA (10A4  nosZ (1074
Sampling location Sample Depth copies/g) +  copies/g) +
date ID (mbs) Chaol Shannon Shannon
KMW1B Chiques Creek/ | Krady KMWI1B_1 0.30 2040.0 10.06 96.09 1086.6 7.68 130.71 755.10+37.82 116.80 +20.60
Nov6,2019 dam/40°0408.2°N, KMWI1B_3 0.91 2082.2 10.01 104.30 674.4 7.77 95.17 114.53+18.23 5.3040.83
76729587 W KMWI1B_6 1.68 2158.8 10.07 117.56 7213 7.07 94.16 752741176 12.95+1.42
KMW1B_7 1.98 2264.0 10.04 139.49 178.0 6.33 4333 16.13£1.58 14.17£1.02
KMWI1B_8 244 22185 9.97 129.38 372.1 641 5751 2344025 1.15+0.16
KMW1B_10 2.90 2185.5 9.80 126.42 308.9 7.20 51.46 0.89+0.03 0.39£0.080
KMW3B Chiques Creek/ KMW3B_0 0 21512 10.16 100.20 14345 8.28 165.86 ND 119.93£11.10
Nov 6, 2019 KMWS3B_1 0.30 2008.0 10.03 97.58 11924 8.37 145.39 ND 110.23+13.60
KMW3B_2 0.61 1942.2 9.90 100.46 697.1 7.93 105.61 7384043 99.59+8.57
KMW3B_4 122 1978.2 9.87 107.42 659.4 6.65 95.86 25.15+2.66 25974228
KMW3B_5 1.52 1940.2 9.62 112.46 625.3 7.46 86.81 58.31+3.52 34.3312.73
KMW3B_6 1.83 1723.0 9.07 105.01 4615 7.96 69.47 68.36+18.56 78241342
KMW3B_7 2.13 2042.5 9.75 120.28 461.8 7.85 70.91 19.50+3.17 7.94+0.75
KMW3B_9 274 2089.2 9.70 128.21 195.7 5.55 43.59 0.86£0.13 0442011
RMTIW1 Chiques Creek/  Roller RMTIW1_0 0 1936.0 10.00 91.56 961.0 629 121.85 631.374224.19 152.83+7.88
Aug 30,2019 dam/40°0629"N, RMTIW1_2 0.61 1126.1 7.00 71.91 2712 3.01 47.77 40.96+12.23 40.63+14.10
7672635°W RMTIWI_4 122 1114.2 6.45 78.78 4145 5.66 69.32 2123451 101.43+4.33
RMTIWI_6 1.83 1112.0 6.10 74.76 386.8 7.00 61.65 26.08+6.48 124,98 +11.13
RMTIW1_8 244 1158.6 6.33 80.23 486.1 6.18 69.55 29.60+7.72 154.01+15.16
RMTIWI_10 3.05 819.1 5.32 60.50 3454 5.44 49.69 1.04+0.68 198.00+12.74
CMTIW1 Christina River/ | Cooch CMTIW1_0 0 18443 9.87 87.62 948.4 639 132.08 11.67+0.012 195.80 +32.08
Oct 25,2019 dam/39°38'44'N, CMTIW1_2 0.61 1659.1 8.64 107.77 322.0 454 50.81 54.3241.56 23.15+1.35
ToTEIW CMTIW1_3 0.91 1610.4 7.60 103.30 2455 552 4229 6.72£0.11 2.83£0.93
CMTIW1_5 152 1855.1 8.48 104.80 190.1 496 32.06 0.26+0.045 1.61£0.34
CMT2W1 Christina River/ CMT2W1_0 0.00 1898.0 9.96 89.92 881.4 6.07 111.77 214.76+38.71 140.32+28.42
Oct 25,2019 CMT2W1_3 091 1739.9 8.12 10335 230.1 3.17 37.02 235+0.65 0.39+0.071
CMT2W1_6 1.83 1506.2 8.22 93.00 317.2 430 46.13 0.22£0.036 1150+ 1.60
CMT2W1_9 2.74 1756.8 8.46 110.07 233.6 2.80 36.23 0.0055 +0.0026 0.93+0.21
CMT2W1_12 3.66 1897.9 8.09 117.24 2310 3.93 36.16 0.01140.0092 0.13£0.027

mbs, meter below surface; AOA, ammonia oxidizing archaea; nosZ, nitrous oxide reductase gene; and ND, not detected.
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Library Preparation protocols from Illumina.! For bacteria and
archaea, the V4 variable region of the 16S rRNA genes was amplified
using the forward primer 515f (5'-GTGYCAGCMGCCGCGGTAA-3’;
Parada et al, 2016) and reverse primer 806r (5-GGACTA
CNVGGGTWTCTAAT-3"; Apprill et al., 2015) following the Earth
Microbiome Project protocol (Gilbert et al., 2010). For fungi, the
ITS2 region was amplified using the forward primer ITS3-F
(5-GCATCGATGAAGAACGCAGC-3’) and reverse primer ITS4-R
(5-TCCTCCGCTTATTGATATGC-3"; White et al,, 1990). PCR
contained 25pL 2x Premix Taq, 1pL each primer (10pM), 1puL
bovine serum albumin (BSA), and 50ng environmental DNA
template in a volume of 50 pL. 16S rRNA genes were amplified with
following thermocycling program: 5min at 94°C for initialization;
30cycles of 30's denaturation at 94°C, 30's annealing at 53°C, and 30s
extension at 72°C; followed by 8 min final elongation at 72°C. Fungal
ITS regions were amplified with following thermocycling program:
3 min at 95°C for initialization; 33 cycles of 20 s denaturation at 95°C,
20s annealing at 56°C, and 30's extension at 72°C; followed by 5 min
final elongation at 72°C. Sequencing libraries were prepared by using
NEBNext Ultra II DNA Library Prep Kit for Illumina (New England
Biolabs, Massachusetts, United States) following manufacturer’s
recommendations. High-throughput sequencing was performed at
Magigene (Magigene Biotechnology, Guangzhou, China) on an
Ilumina Nova6000 platform (paired-end 250-bp mode), following
the manufacturer’s guidelines. Raw sequencing data obtained in this
study are available through the GenBank database under the
accession number PRJNA925921.

Nitrogen transformation genes were used to determine functional
gene abundance for each depth—ammonia monooxygenase (amoA)
genes for ammonia oxidizing archaea (AOA) and nitrous oxide
reductase (nosZ) for denitrifying microorganisms. Previous surveys
concluded that AOA predominated the nitrifying microbes in
sediment and soil samples (Leininger et al., 2006; Sienkiewicz et al.,
2020), therefore, we used AOA to represent the nitrification
potential. The primer information, SYBR Green qPCR reactions, and
thermal programs were set up following previously described
protocols (Kan, 2018; Sienkiewicz et al., 2020). Briefly, ammonia
monooxygenase genes (amoA) were amplified with Arch-amoAfand
Arch-amoAr primers (Francis et al,, 2005), and nitrous-oxide
reductase genes (nosZ) were amplified by the primer set: nosF (Kloos
etal,, 2001) and nosZR'"? (Throba Ck et al., 2004). Each sample was
run in triplicates and 10-fold dilution series were generated from
corresponding plasmids (standard curves were shown in
Supplementary Figure S2). The copy number per gram of sediment
was calculated based on the concentration of plasmid DNA and
amplicon size used in the standard curves (Einen et al., 2008;
Kan, 2018).

Data analysis and statistics

Raw Illumina sequences were processed with the QIIME 2
software package (version 2021.11; Bolyen et al, 2019). After
demultiplexing, all raw sequence reads were carried out with quality

1 https://support.illumina.com/

Frontiers in Microbiology

10.3389/fmicb.2023.1161043

control, denoising, filtering, merging, and chimera removal through
q2-DADA2. Amplicon sequence variants (ASVs) were generated, and
a Naive Bayes classifier artifact® was applied to assign the ASVs to taxa
at 99% using the Silva classifier 132 (April 10 2018) for 16S rRNA
genes, and UNITE version 8.2 (February 20, 2020) for ITS regions.

The ASVs were normalized by rarefaction approach performed
with Qiime 2 pipeline, with cutoffs at 94,000 sequences for bacteria/
archaea and 53,000 for fungi (coverage >99.7% of the total diversity
for both, see Supplementary Figure S1). Normalized and aggregated
ASV tables were used to calculate Chaol richness (Chao, 1984),
Shannon diversity index (Shannon, 1948), and phylogenetic diversity
(Faith PD; Faith, 1992). Chaol, Shannon, and Faith PD were
calculated using the qiime2 q2-diversity plugin: Chaol and Shannon
used the “alpha” method, and Faith PD used the “alpha-phylogenetic”
method.’

In order to investigate the similarity/dissimilarity and distribution
of microbial communities across depths and sites, non-metric
multidimensional scaling (NMDS) was conducted using the MDS
procedure in SAS/STAT (v9.4, SAS Institute Inc., Cary, NC,
United States) based on Bray—Curtis dissimilarity index (Bray and
Curtis, 1957). The screen plot suggested that the first two dimensions
were sufficient in defining the overall dimensionality of the input data
with stress values close to or less than 0.1 (Clarke, 1993). Target or
microbial community groups of interest were visually identified based
on the screen plots, and similarity analysis between groups (ANOSIM)
was performed using the “anosim” functions in the “vegan” package
(version 3.6.1; Oksanen et al, 2018) under the R software
(version 4.1.2).

Assessing specific taxonomic groups that drove a particular
NMDS result was examined by correlating (Spearman rank), the
relative abundance of each taxon against the NMDS dimension scores.
In a similar manner, the environmental parameters including soil
chemistry (Inamdar et al., 2022; Peck et al., 2022) were correlated with
NMDS structure by using SAS Version 9.4 (SAS Institute Inc.).
Significant correlations (p <0.05) indicate which taxa or environmental
variables are driving differences in bacteria/archaea or fungal
community structures.

Results
Environmental measurements across depth

When compared across all depths, %C, %N, and OM were higher
at both surface and deep sediments (Supplementary Table S1). C:N
ratios were significantly larger at Cooch than Roller and Krady sites
(p <0.01, Supplementary Table S1; Peck et al., 2022). Concentrations
of most M3 extracted minerals including P, Ca, Mg, Zn, Cu, B etc.
decreased with depth, while concentrations of Mn, Fe, and S were
higher in deeper layers. Na concentrations at Cooch dam site were
significantly higher than those at Krady and Roller dam site, which
were likely attributed to the road salt applications (Inamdar et al.,
2022). Nitrate-N concentrations peaked at the surface sediment and

2 https://github.com/qiime2/q2-featureclassifier
3 https://github.com/qgiime2/q2-diversity
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varied with depth at all three sites. In contrast, ammonium-N
concentrations peaked at deeper sediment depths at all three
sites, and these depth trends were significant (p <0.01;
Supplementary Table S1; Peck et al., 2022). Unamended DEA rates
and amended DEA rates were higher at surface than deep layers
across all three sites, while nitrification and mineralization were
higher at Krady than Roller and Cooch sites (Supplementary Table S1).
Detailed comparison of soil biogeochemistry across depths between
these sites were described in Peck et al. (2022).

Sequence data and diversity

After demultiplexing, a total of 4,195,000 reads were obtained for
16S rRNA genes and a total of 6,602,709 were obtained for ITS regions.
Quality control, denoising, filtering, merging, and chimera removal were
conducted through q2-DADA2, and resulted in 2,953,026 valid reads for
16S rRNA genes, and 3,766,814 for ITS regions. In order to minimize the
sampling effects, the original ASV tables were rarified to a depth of
94,000 sequences per sample for bacteria/archaea, and 53,000 sequences
per sample for fungi. Alpha rarefaction analyses were used to document
that samples were sequenced to a sufficient depth with coverages over
99.7% of the total diversity (Supplementary Figure S1). After rarefaction,
19,759 unique ASVs for bacteria/archaea and 7,888 unique ASVs for
fungi were identified.

From surface to depth, Shannon index for prokaryotes (bacteria
and archaea) decreased across all sites, but species richness (Chaol)
was higher at top and bottom layers compared to middle layers (except
samples from Roller dam; Table 1). Prokaryotic Faith PD increased
with depths at both Krady and Cooch dam sites, but decreased at
Roller dam. For fungi, both diversity index (Shannon and Faith PD)
and species richness showed decreasing trends with depths, where top
layers contained the highest unique ASV numbers and fungal diversity
(Table 1).

Microbial compositions across depths at
three dam sites

Regarding the community composition, the microbial assemblies
across three dam sites are generally similar: more than 19 major
bacterial/archaeal phyla were commonly found in the riparian
sediments, such as Proteobacteria (mainly subclasses alpha, gamma,
and delta), Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi,
Crenarchaeota, Euryarchaeota, Firmicutes, Gemmatimonadetes,
Latescibacteria, Nanoarchaeaeota, Nitrospirae, Omnitrophicaeota,
Patescibacteria, Planctomycetes, Rokubacteria, Spirochaetes,
Thaumarchaeota, and Verrucomicrobia (Figure 2A). Among them,
Actinobacteria and Firmicutes were more abundant at Cooch site while
the relative abundances of Deltaproteobacteria, Planctomycetes, and
Thaumarchaeota were higher at Krady and Roller sites. Distribution of
other major bacterial/archaeal phyla responded to depth across all the
sites (Figure 2) and most of them showed a clear trend of increasing or
decreasing. Relative abundance of Deltaproteobacteria, Chloroflexi,
Firmicutes, Spirochaetes, Crenarchaeota, and Euryarchaeota increased
with depth while Alphaproteobacteria, Acidobacteria, Actinobacteria,
Verrucomicrobia, and

Gemmatimonadetes, Rokubacteria,
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Thaumarchaeota showed negative correlations with depths (Figure 2).
Gammaproteobacteria dominated the total community at Roller mill
site (RMT1W1) and reached close to 50% of total community at most
layers (Figure 2A).

Based on the relative abundance, Aphelidiomycota, Ascomycota,
Basidiomycota, Chytridiomycota, Glomeromycota, Mortierellomycota,
Mucoromycota, Rozellomycota, and Zoopagomycota were the major
fungal phyla found in the sediments (Figure 2B). For instance,
Ascomycota dominated all the samples across sites and depths with
relative abundance ranged from 40.23 to 91.49% except the sample from
0.6m depth at Roller (RMTIW1_2; 7.45%) in which the relative
abundance of Mortierellomycota reached 89.74%. Compared to bacteria
and archaea, fungal groups did not show clear increasing or decreasing
trends with depth, but certain groups of fungi were more abundant
in the surface soils, such as Blastocladiomycota, Kickxellomycota,
Entorrhizomycota, Olpidiomycota, and Zoopagomycota (Figure 2B). In
addition, two phyla, Mucoromycota and Rozellomycota were found
more dominant in deep layers (Figure 2B).

Non-metric Multidimensional Scaling plots confirmed spatial
patterns across watersheds, sampling sites, and sediment depths
(Supplementary Figures S3A,B). Both bacterial and fungal
communities across watersheds/sampling sites were separated mainly
along NMDS axis 2, while microbial communities within each site
were separated primarily by depth along NMDS axis 1
(Supplementary Figure S3). Analysis of Similarity (ANOSIM) showed
both bacterial and fungal communities were distinct between streams/
watersheds (Chiques Creek—Krady and Roller versus Christina
River—Cooch, p <0.05). Further, the compositions of bacteria/
archaea and fungi from each dam site (Krady vs. Roller vs. Cooch)
were also distinct (Table 2). The two depth profiles from the breached
dam site on Chiques Creek—Krady (KMW1B and KMW?3B) were
different from the existing dam site on the same creek—Roller
(RMTIW1).

Correlations of microbial taxa with NMDS patterns verified the
depth distribution of major bacteria and archaea as shown in
Figure 2: Alphaproteobacteria, Acidobacteria, Actinobacteria,
Gemmatimonadetes, Rokubacteria, Verrucomicrobia, and
Thaumarchaeota dominated in surface layer, and Deltaproteobacteria,
Chloroflexi,
Spirochaetes, Crenarchaeota, and Euryarchaeota were more abundant

Firmicutes, Omnitrophicaeota, Patescibacteria,
in deep layers (Figure 3A). Planctomycetes also showed a significant
correlation with the microbial distribution but they are more
enriched in top layers at Chiques sites (Figure 3A). In contrast, only
a few fungal groups showed positive (Mucoromycota and
Rozellomycota) or negative correlations (e.g., Blastocladiomycota,
Kickxellomycota, Entorrhizomycota, Olpidiomycota, and
Zoopagomycota) with soil depths (Figure 3B). Aphelidiomycota,
Basidiobolomycota, and Chytridiomycota were found more abundant
at Krady and Roller sites compared to Cooch site (Figure 3B).
Except depth and Fe concentration, environmental variables that
correlated with microbial distribution (both bacteria/archaea and
fungi) primarily differentiated the samples between watersheds, i.e.,
Chiques vs. Christina (Figures 3C,D). High concentrations of NH,-N,
Al, and Na occurred at Cooch site, but samples from Krady and Roller
sites contained higher NO;-N, %C, %N, and minerals (Cu, Zn, B, P,
Ca, Mg etc.). Base saturation (BaseSat), saturation percentage (PSat),

mineralization, nitrification, species richness, and Shannon diversity
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FIGURE 2

Distribution of major bacterial and archaeal phyla (A) and fungi (B) across depths. Bubble size represents the relative abundance of each taxa over the
total sequence reads. Phyla were included in the “Other” category if they failed to meet two criteria—either that the phylum present at >1% in any
sample, or that it was present at >0.1% in all samples. This category also included ASVs that were not identified to the phylum level.

RMT1W1 CMT1W1 CMT2W1

TABLE 2 ANOSIM results for NMDS separations of microbial communities.

16S bacteria and archaea KMW1B+KMW3B RMT1W1 ITS fungi KMW1B+KMW3B RMT1W1
RMT1IW1 R =0.4059 RMT1W1 R=0.3230
p =0.0015 p=0.0114
CMTIW1+CMT2W1 R=0.5382 R=0.3936 CMTIW1+CMT2W1 R =0.8900 R=0.8017
p=1le—04 p =0.0056 p=1e—04 p =5e—04

Significant differences (p <0.05) are shown in bold.

index were also higher at Krady and Roller sites than Cooch site
(Figures 3C,D).

Comparison between before vs. after dam
removal

By contrasting samples from Roller (existing dam) and Krady

(dam removed) sites (RMT1W1 vs. KMW 1B and KMW3B), we were
able to compare microbial communities before vs. after dam removal.
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The results showed both bacteria/archaea and fungi were different
between these two sites and a wider separation with depths at Krady
than Roller site (Figures 4A,B, Table 2). Samples from Krady site
contained high abundances of many bacterial (Alphaproteobacteria,
Acidobacteria, Actinobacteria, Nitrospirae, Verrucomicrobia etc.)
and fungal phyla (such as Blastocladiomycota, Glomeromycota,
Kickxellomycota, Olpidiomycota etc.) in the top layers. For deep
layers, abundant bacterial groups including Spirochaetes, Firmicutes
and archaea (Crenarchaeota, Euryarchaeota, and Nanoarchaeota)
and fungi (Ascomycota, Mucoromycota, and Rozellomycota) were
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FIGURE 3

Correlations of microbial groups and environmental parameters with NMDS separation of community structures: (A) and (C) for bacteria and archaea
and (B) and (D) for fungi. Only significant microbial phyla or environmental parameters (p <0.05) are shown with vectors.

retrieved from Krady sites. In contrast, only Gammaproteobacteria
and Bacteroidetes were found more abundant in samples from Roller
site (Figure 4A). Environmental measurements also differed between
sampling sites: Roller site contained higher NH,-N, Al, and S while
Krady site had higher NO;-N (Figures 4C,D). Samples from Krady
sites (after dam removal) also contain higher species richness,
microbial diversity as well as nitrification (Figure 4C). Across depths,
higher minerals (Ca, Cu, P, etc.) and 8N occurred in surface soils
and Fe was more abundant in deeper layers (Figures 4C,D).

Nitrification and denitrification genes

We quantified AOA and nosZ genes to estimate nitrification and
denitrification potentials for different layers. In general, nitrifying
genes were abundant at the top and decreased with depths except
KMW?3B site where the AOA peaked at 1.83 m below surface (Table 1).
Most denitrifying genes nosZ were also found at the top layers but
moderate amounts were observed in the middle or bottom layers. At
Roller site, nosZ genes increased with depths and the highest quantity
was at 3m deep (Table 1). In contrast, the denitrifying genes were low
in deeper layers at Cooch site. These results demonstrated that, in
addition to depth and oxygen gradients, the vertical distribution of

Frontiers in Microbiology

nitrifying and denitrifying microbes was likely influenced by other
environmental conditions. For instance, hydrology and soil
biogeochemistry at the Cooch site are affected by road salt application
from an interstate highway, and the potential impact of which on soil
microbial processes is under investigation.

Discussion

Spatial distribution across depth and
watershed: local land use and concurrent
conditions

Given the origin, accumulation process and hydrological
interactions, the legacy sediments are distinct geochemically
compared to forest wetland or agriculture soils (Walter and Merritts,
2008; James, 2013; Jiang et al., 2020; Lutgen et al., 2020). Typical soil
bacteria, archaea and fungi have been found in the sediment samples,
such as Acidobacteria, Proteobacteria (Alpha-, Gamma-, and Delta-),
Chloroflexi,
Euryarchaeota, Basidiomycota, Ascomycota, and among others

Nitrospirae,  Verrucomicrobia, Crenarchaeota,

(Janssen, 2006; Bergmann et al., 2011; reviewed by Fierer, 2017 and
the references therein), but the detailed microbiome composition and
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distribution in dam-associated legacy sediments differed from other
soil environments (Koval, 2011; Weitzman et al., 2014; Sienkiewicz
et al,, 2020). Distinct depth profiles of sediment microbiomes were
observed for both prokaryotes and fungi in this study, suggesting
environmental selection and enrichment of microbes in dammed
environments. Similarly, previous studies have also demonstrated
strong effect of depth on microbial structure (Fierer et al., 2003;
Allison et al., 2007; Eilers et al., 2012; Leewis et al., 2022). The
distinctness of microbial distribution at depths was highlighted
through the associations between major microbial taxa and
environmental parameters (Figure 3). This study confirmed our
previous observation and speculations that soil moisture, redox, Fe,
carbon and nitrogen content play key roles in shaping the microbiome
structure and distribution across depth in legacy sediments (e.g.,
Figures 3C,D; Sienkiewicz et al., 2020). All these matrices are limiting
factors influencing and shifting the microbial assembly and
distribution (e.g., Fierer and Jackson, 2006; Fierer, 2017; Weitzman
and Kaye, 2017; Jansson and Hofmockel, 2020).

The microbiomes (both bacteria/archaea and fungi) differed between
watersheds (Supplementary Figure S3), reflecting the impact from local
land use, geology and sediment lithology, and concurrent stream
conditions (Sienkiewicz et al., 2020). Chiques Creek is an agriculture
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stream running through Lancaster County in Pennsylvania while the
Cooch dam site is a more urbanized site near Newark in Delaware.
Previous studies for the Roller and Cooch riparian sediments indicated
significant differences in biogeochemistry (Inamdar et al., 2022; Peck
etal, 2022, 2023). The sediment samples from Chiques Creek contained
higher %C, %N, nitrate-N, and metals (Cu, Zn, Ca etc.) indicating the
influence of agriculture inputs and sediment lithology (Peck et al., 2022,
2023). In contrast, Cooch sediments contained higher Na and Fe
concentrations, with the elevated Na concentrations likely due to road salt
applications (Inamdar et al., 2022; Peck et al., 2023). Thus, microbiome
fingerprints in riparian legacy sediments upstream of the dams reflect
human activities, watershed conditions, as well as land uses (Bissett et al.,
2014; Ding et al., 2022).

Impact of dam removal on microbial
assembly and function

A schematic diagram based on our observations of changes before
and after dam removal was summarized in Figure 5. In the presence
of the milldam, upstream riparian sediments are saturated and
persistently hypoxic or anoxic, especially below 1 m depth (Inamdar
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FIGURE 5

A schematic diagram summarizing the potential impacts of dam removal on microbial assembly and function.
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etal,, 2022). Sherman et al. (2022) also found that groundwaters in the
near-stream riparian zones at Roller and Cooch were poorly mixed.
In contrast, following dam removal (as in case of Krady), the
sediments drain rapidly and become oxic in a few hours or days
(Lewis et al,, 2021). The hydrological connectivity and mixing impacts
soil moisture and redox gradients, and therefore drive and shift
microbial community composition and related biogeochemical
processes (Argiroff et al., 2017). For instance, high moisture content
is likely associated with greater microbial biomass (Serna-Chavez
et al., 2013; Fierer, 2017). Increases in soil moisture level affect nutrient
connection and cycling and therefore impact microbial interactions
and population structure (Barnard et al, 2013; Jansson and
Hofmockel, 2020). Along with groundwater fluctuation, redox
changes also play import roles in manipulating microbial assembly in
many different ways such as navigation of energy taxis (Alexandre
et al., 2004) and shifts between active and inactive biomass (Khurana
etal., 2022). Increased abundances of Deltaproteobacteria (Figures 3A,
4A) such as iron reducing bacteria Geobacter and Fe" concentrations
at the depths also indicate reducing conditions (Childers et al., 2002;
Duval and Hill, 2007; Lutgen et al., 2020). Following hydrological
disruption and redox kinetics, further changes in carbon and nitrogen
processing will gradually and continuously alter microbial
composition and their functional properties (Fierer and Jackson, 2006;
Kaushal et al., 2008; Argiroff et al., 2017; Weitzman and Kaye, 2017).

In this study, we were not able to collect samples before the breach
of Krady dam, but we used the Roller dam, located 10km upstream,
as comparison to represent conditions in the presence of the dam. Our
results clearly revealed important differences between sediments from
the Krady vs. Roller site (Figures 4, 5). After dam removal, higher
species richness and diversity, Nitrospirae, Deltaproteobacteria,
Glomeromycota, and Ascomycota were found at the Krady site. The
higher abundance of Acidobacteria and Verrucomicrobia in Krady

Frontiers in Microbiology

sediments, post dam removal, could be associated with the more
dynamic riparian groundwater regime which allowed for greater
variation of soil moisture with rewetting of the riparian soils from
rainfall and flood events. This would agree with observations from
Barnard et al. (2013), who showed that these two bacterial phyla
increased with re-wetting events. Gammaproteobacteria and
Bacteroidetes were more abundant at the Roller site (existing dam)
with persistently saturated soil conditions, suggesting they are possibly
sensitive to drying conditions, which corroborate the previous results
and observations (Zeglin et al., 2011; Barnard et al, 2013). In
comparison, Actinobacteria are more tolerant to desiccation and favor
in drying conditions or low humidity (Barnard et al., 2013; Barka
et al,, 2016). For this study, Actinobacteria was abundant in surface
sediments but did not differ between the Krady and the Roller sites,
suggesting that the microbial distribution could also be affected by
other environmental factors. Lastly, since the samples were not
collected at the same dam site (Krady) before and after dam removal,
we could not completely exclude the potential for spatial heterogeneity
between the two sites. But based on our previous survey, the
differences between the adjacent sites on the same stream and within
the same watershed should be minor (Sienkiewicz et al., 2020).
Nitrification/denitrification and their associated genes are the most
sensitive pathways in response to water level fluctuations (Zhang et al.,
2021). Our results support the hypothesis that dam removal enhances
nitrification process (Figure 4C). Higher nitrification separated the
samples from Krady site, where they were taken 16 months after the
dam breached (Lewis et al., 2021). We also hypothesized that the dam
removal inhibited denitrification due to water drop with loss of
saturation and anoxic conditions (Barnard et al., 2013; Jansson and
Hofmockel, 2020; Lewis et al., 2021). However, neither amended nor
unamended DEA showed strong correlations with the microbial
distributions. Meanwhile, higher concentrations of NO;-N and 8"°N
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supported reduced denitrification in sediment samples after the dam
removal (Lewis et al,, 2021). Lewis et al. further confirmed that
denitrification in riparian sediments did decrease after dam removal,
but the N concentrations in groundwaters and stream waters did not
increase (Lewis et al., 2021). Low DEA measurements contradicted the
quantification of denitrifying genes in this study, and could
be attributed to dormant denitrifying microorganisms in these
sediments (Jones and Lennon, 2010). The gPCR approach we used did
not differentiate between active vs. dormant denitrifiers. In addition,
the fact that the anoxic sediments behind standing dam at Roller site
contained higher concentrations of ammonium-N and lower nitrate-N
(Figure 4; Inamdar et al., 2022) led us to infer that other nitrogen
processes (such as dissimilatory nitrate reduction to ammonia, DNRA)
could be influencing denitrification and associated microbial
communities in the deeper sediments (Pandey et al., 2020; Wang et al.,
2020; Inamdar et al., 2022; Peck et al.,, 2022). All these potential
pathways and processes warrant further investigations. In fact,
microbial communities and process rates for denitrification and DNRA
associated with milldam sediments are currently being investigated in
our ongoing projects and incubation experiments.

Conclusion

Taken together, our findings reveal important differences in the
composition and distribution of bacteria/archaea and fungi in riparian
legacy sediments above dams. Both prokaryotic communities and fungi
show clear spatial patterns across watersheds and sediment depths. In
addition to vertical gradients, microbial community assembly and
distribution are also driven by location and co-current conditions,
suggesting the microbiomes in the accumulated sediments record past
human activities and contemporary land uses. Dam removal and
associated changes in hydrologic and biogeochemical regimes reinforce
depth distribution of soil microbiomes and influence microbial diversity,
composition, and function. Our data support that dam removal
enhanced nitrification. The discrepancy between the measured
denitrification enzyme assay (DEA) and the quantification of nosZ genes
(via gPCR) indicates the occurrence of dormant denitrifying microbes
or other nitrogen-competing processes such as DNRA. Further research
into how microbial communities and functions change after dam
removal will improve our understanding of microbial ecology in
fragmented river systems. Results will also provide valuable information
and guidance to stakeholders and restoration projects.
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