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We consider a family of periodic tight-binding models (combinatorial graphs) that have the minimal number of
links between copies of the fundamental domain. For this family we establish a local condition of second
derivative type under which the critical points of the dispersion relation can be recognized as global maxima or
minima. Under the additional assumption of time-reversal symmetry, we show that any local extremum of a
dispersion band is in fact a global extremum if the dimension of the periodicity group is 3 or less, or (in any
dimension) if the critical point in question is a symmetry point of the Floquet–Bloch family with respect to
complex conjugation. We demonstrate that our results are nearly optimal with a number of examples.

1. Introduction

Wave propagation through periodic media is usually studied using the Floquet–Bloch transform [Ashcroft
and Mermin 1976; Kuchment 2016], which reduces a periodic eigenvalue problem over an infinite domain
to a parametric family of eigenvalue problems over a compact domain. In the tight-binding approximation
often used in physical applications, the wave dynamics are described mathematically in terms of a periodic
self-adjoint operator H acting on ℓ2(0), where 0  is a Zd -periodic graph (see examples in Figure 1)
and d is the dimension of the underlying space. The Floquet–Bloch transform introduces d parameters
α =  (α1, . . . , αd ), called quasimomenta, which take their values in the torus T d  : =  Rd /(2π Z)d, called
the Brillouin zone. The transformed operator T (α) is an N ×  N Hermitian matrix function that depends
smoothly on α; here N is the number of vertices in a fundamental domain for 0. The graph of the
eigenvalues of T (α), when thought of as a multivalued function of α, is called the dispersion relation.
Indexing the eigenvalues in increasing order, we refer to the graph of the n-th eigenvalue, λn ( · ), as the
n-th branch of the dispersion relation. The range of λn ( · ) is called the n-th spectral band. The union of
the spectral bands is the spectrum of the periodic operator H on ℓ2(0), the set of wave energies at which
waves can propagate through the medium. The band edges mark the boundary1 between propagation
and insulation, and are thus of central importance to understanding physical properties of the periodic
material; see [Ashcroft and Mermin 1976; Kollár et al. 2020; Ozawa et al. 2019].

Naturally, the upper (or lower) edge of the n-th band is the maximum (or minimum) value of λn ( · ).
Since searching for the location of the band edges over the whole torus T d  can be computationally
intensive, the usual approach is to check several points of symmetry and lines between them. However,
as shown in [Harrison et al. 2007], extrema of the dispersion relation in d >  1 do not have to occur at
the symmetry points. Remarkably, in the present work we show that this problem can be overcome on
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1Assuming the bands do not overlap; if the edges for each band are found, this can be easily verified.
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F
F

Figure 1. The honeycomb lattice (left) and the Lieb lattice (middle) satisfy Definition 1.1,
while the augmented Lieb lattice (right) does not. In all figures, the vertices within the
dashed line show a possible choice of the fundamental domain F .

graphs that have one crossing edge per generator, a property which we now define. A  notable example of
a graph with this property is the graph found in [Harrison et al. 2007] and shown here in Figure 2.

Definition 1.1. Let 0  =  (V , �) be a Zd -periodic graph (see Definition 2.1), where V denotes the set of
vertices and � denotes the adjacency relation. 0  is said to have one crossing edge per generator if it is
connected and there exists a choice of a fundamental domain F  such that there are exactly 2d adjacent
pairs u � w with u � F  and w � V \  F .

By a fundamental domain F  we mean a subset of V containing exactly one representative from each
orbit generated by the group action of Zd. The choice of a fundamental domain is clearly nonunique.
In terms of the operator H, the edges (adjacency) denote the interacting pairs of vertices; see (2-2) for
details. We are thus talking about the models known in physics as nearest neighbor tight binding; we
stress, however, that our periodic graphs have arbitrary structure modulo the assumption of Definition 1.1.

To give some examples, the one crossing edge per generator assumption is satisfied by the Z d  lattice,
the honeycomb lattice shown in Figure 1, left, and the Lieb lattice in Figure 1, middle. The graph shown in
Figure 1, right, does not satisfy Definition 1.1. For further insight into Definition 1.1, see the discussion
around (2-1) and see Figure 2 for another example.

In this work we prove that for graphs with one crossing edge per generator, there is a simple local
criterion— a variation of the second derivative test— that detects if a given critical point of λn ( · ) is a
global extremum. In many cases we can conclude that any local extremum of a band of the dispersion
relation is in fact a global extremum. This does not imply uniqueness of, say, a local minimum, but it
does mean that every local minimum attains the same value; see, for example, Figure 6, left. In a sense, the
dispersion relation behaves as if it were a convex function (even though this can never be the case for a
continuous function on a torus). As a consequence, even if no local extrema are found among the points of
symmetry, it would be enough to run a gradient search-like method.

We now formally state our results. For each 1 ≤  n ≤  N, we are interested in the extrema of the
continuous function

α →  λ(α) : =  λn (T (α)).
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Assuming the eigenvalue is simple2 at a point α , λ(α) is a real analytic function of α in a neighborhood
of α , by [Kato 1976, Section II.6.4].

To look for the critical points of λ(α) and to test their local character, one can use the following
formulas (see Section 2B) for the first two derivatives of a simple eigenvalue λ(α):

�λ(α◦) =  B� f ◦, Hess λ(α◦) =  2 Re W, (1-1)
where

W : =  • −  B�(T (α◦ ) − λ(α◦ ))+ B , (1-2)

f ◦  is the normalized eigenvector corresponding to the eigenvalue λ(α◦ ) of T (α◦), B and • are respectively the
N × d  matrix of first derivatives and d × d  matrix of second derivatives of T (α) at α =  α◦  evaluated on f ◦ :

B : =  D(T (α) f ◦)|α=α◦ , • : =  2 Hess⟨ f ◦ ,  T (α) f ◦⟩|α=α◦ , (1-3)

and (T (α◦ ) − λ(α◦ ))+  denotes the Moore–Penrose pseudoinverse of T (α◦ ) − λ(α◦ ).
The textbook second derivative test tells us that a point α◦  with B� f ◦  =  0 and Re W >  0 is a local

minimum. It turns out that a lot more information can be gleaned from the matrix W itself, which may be
complex.

Theorem 1.2. Let 0  be a Zd -periodic graph with one crossing edge per generator, and let H be a
periodic self-adjoint operator acting on ℓ2(0). Suppose that the n-th branch, λ(α) =  λn (T (α)), of the
Floquet–Bloch transformed operator T (α) has a critical point at α◦  � Td . Suppose that λ(α◦ ) is a simple
eigenvalue of T (α◦ ) and that the corresponding eigenvector f ◦  is nonzero on at least one end of any
crossing edge. Let W be the matrix defined in (1-2).

(1) If W ≥  0, then λ(α) achieves its global minimal value at α =  α .

(2) If W ≤  0, then λ(α) achieves its global maximal value at α =  α .

We conjecture that W ≥  0 is also a necessary condition for the global minimum, and analogously for the
global maximum. In Section 5A3 we present an example that has a local minimum that is not a global
minimum; in this case Re W >  0, while W is sign-indefinite.

If we additionally assume that the periodic operator H is real symmetric (has time-reversal symmetry
in physics terminology), there are certain points in the Brillouin zone that are critical for every λ. These
are the points α� � T d  such that T (α) =  T (α� − α )  for all α � Td. We denote the set of these points by C
and refer to them informally as corner points; for the square parametrization (−π , π ]d of the Brillouin
zone used throughout the paper, we have C =  {0, π}d.

Theorem 1.3. Suppose, in addition to the hypotheses of Theorem 1.2, that H is real and α◦  � T d  is a
local extremum of λ(α). Then λ(α◦ ) is the global extremal value in each of the following circumstances:

(1) α◦  � C.

(2) d ≤  2.

(3) d =  3 and the extremum is nondegenerate.
2If the eigenvalue is multiple, then two or more branches touch. This situation is important in applications; there are fast

algorithms to find such points [Berkolaiko and Parulekar 2021; Dieci and Pugliese 2009; Dieci et al. 2013] which lie outside the
scope of this work.
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We therefore envision the following application of Theorems 1.2 and 1.3. In the setting of Theorem 1.2,
a gradient descent search for a local minimum of λ(α) is to be followed by a computation of W, using (1-2).
If W is nonnegative, Theorem 1.2 guarantees that the global minimum has been found. If W is sign-
indefinite, our conjecture requires the search to continue. In the setting of Theorem 1.3, one should first
check if any of the corner points C are a local minimum, possibly followed by the general gradient descent
search. But in any of the cases specified in the theorem, the search can stop at the first local minimum
found, without having to compute the matrix W.

We now comment on the assumptions of our theorems. One crossing edge per generator is a substantial
but common assumption: even for Z1-periodic graphs with real symmetric H, the well-known Hill
theorem fails in the presence of multiple crossing edges; see [Exner et al. 2010]. The restriction on the
dimension in Theorem 1.3 is also essential: in dimensions d =  4 and higher an internal point may be a
local but not a global extremum. In Section 5 we provide such an example. (Since Theorem 1.2 is valid for
any d, it follows that the corresponding W is sign-indefinite.)

Ideas of the proof and outline of the paper. The assumptions of Theorems 1.2 and 1.3 allow eigenvectors to
vanish on one side of a crossing edge. This situation is frequently encountered in examples, as we will
see in Section 5A, but the proofs are significantly more complicated since the matrix • in (1-3) is
degenerate in that case. Here we give an overview of the paper and illustrate the proof of Theorem 1.2 (1)
when • is invertible. This greatly simplifies the statements and proofs of many of our results; see
Remark 3.3 for further discussion.

In Section 2A we introduce notation and clarify our assumptions on the structure of 0. Next, in
Section 2B, we derive the first and second variation formulas (1-1). A  crucial observation is that the
operator W in (1-2), whose real part is the Hessian of λ, has the structure of a generalized Schur
complement— generalized because of the need to use the pseudoinverse in (1-2).

In Sections 2C and 3A we decompose the operator T (α) as T (α) =  S +  R(α ) + λ(α◦ ), where S has a
zero eigenvalue and does not depend on α and R(α) is a rank-d perturbation3 with the same signature as
•. The rank is a consequence of the one crossing edge per generator assumption. This decomposition allows
us to establish a global Weyl-type bound for the eigenvalues of T (α) in terms of eigenvalues of S; see
Lemma 3.5. If we further assume that • is positive, this simplifies to

λn (T (α)) ≥  λ(α◦ ) + λn (S) (1-4)

for all α � Td.
Next, in Section 3B we use a generalized Haynsworth formula (see the Appendix) to relate the indices

of S, T (α), • and the generalized Schur complement W. Again assuming • is positive, the relationship
simplifies to

i − (W ) =  i − ( S ) − i − (T (α◦ ) − λ(α ◦ )) ,

where i −  denotes the number of negative eigenvalues, i.e., the Morse index. This can be expressed
in words as the Morse index of W equals the spectral shift between S and the positive perturbation
S + R (α◦ ) = T (α◦ )−λ(α◦ ).  This idea is further developed for general self-adjoint operators in [Berkolaiko
and Kuchment 2022], where it is called the lateral variation principle.

3 R(α) corresponds to 
P  

Rj (αj ) in (3-6).
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To complete the proof of Theorem 1.2, in Section 3C we observe that W ≥  0 implies i − (W ) =  0, and
hence λ(α◦) saturates the lower global Weyl bound in (1-4). More precisely, we have

i − ( S ) =  i− (T (α◦ ) − λ(α◦ )) =  n − 1 ,

where the second equality holds because λ(α◦ ) is the n-th eigenvalue of T (α◦). Since we already observed
that 0 is an eigenvalue of S, we have λn (S) =  0. Substituting this into (1-4) gives λn (T (α)) ≥  λ(α◦) for all
α, as was to be shown. For a general nondegenerate (not necessarily positive) • the formulas are more
complicated due to the presence of i− (•), but the idea of the proof is identical. On the other hand, when • is
degenerate we need to project away from its null space, and the proof is more involved.

In Section 4 we give the proof of Theorem 1.3. The additional assumption of real symmetric H implies Re
W =  W if α◦  � C, and so W is completely determined by Hess λ(α◦) =  2 Re W. On the other hand, if α◦  �
C, then W may be complex. In this case we show that det W =  0; this allows us to estimate the spectrum
of W from the spectrum of Re W, but only in low dimensions.

Finally, in Section 5 the main results are illustrated with examples such as the honeycomb and Lieb
lattices. We give examples where some components of the eigenvectors vanish and conjecture that, under
the hypotheses of Theorem 1.2, W ≥  0 is also a necessary condition for α◦  to be a global minimum, and
similarly for a maximum. We also provide (counter-)examples showing that when our assumptions are
violated the theorems no longer hold. Specifically, we show that both Theorems 1.2 and 1.3 can fail if
there are multiple crossing edges per generator, and Theorem 1.3 no longer holds when d >  3.

2. Basic definitions and local behavior of λ(α)

In this section we introduce a matrix representation for the Floquet–Bloch transformed operator T (α)
(Section 2A), present a version of the Hellmann–Feynman variational formulas for the n-th eigenvalue
branch λn (T (α)) (Section 2B) and give a decomposition formula for T (α) that works under the one
crossing edge per generator assumption (Section 2C).

2A. Basic definitions. In this section we introduce a matrix representation for the Floquet–Bloch trans-
formed operator. To do this we first present the notation we will use for the vertices of the graph and the
generators of the group action.

Definition 2.1. A  Zd -periodic graph 0  =  (V , �) is a locally finite graph with a faithful cofinite group
action by the free abelian group G =  Zd.

In this definition, V is the set of vertices of the graph, and � denotes the adjacency relation between
vertices. It will be notationally convenient to postulate that v � v for any v � V. Each vertex is adjacent
to finitely many other vertices (locally finite). Any g � G defines a bijection v →  gv on V which
preserves adjacency: gu � gv if and only if u � v (action on the graph). For any g1, g2 � G we have
g1(g2v) =  (g1g2)v (group action). Also, 0 � G is the only element that acts on V as the identity ( faithful).
The orbit of v is the subset {gv : g � G} � V , and we assume that there are only finitely many distinct
orbits in V (cofinite).

The one crossing edge per generator assumption, introduced in Definition 1.1, is our central assumption
on the graph 0. In addition to the examples of Figure 1, the graph from [Harrison et al. 2007] in Figure 2
also satisfies the assumption. One can think of such graphs as having been obtained by decorating Z d
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v00

v1
F

v4 v5 v2 v4

v3

Figure 2. An example of a Z2-periodic graph 0  and its fundamental domain F . If g1

and g2 are the horizontal and vertical shifts generating the Z 2  symmetry, then v ′ =  g1v4

and v ′′ =  g2v3. The edges with end-vertices (v2, v ′ ) and (v1, v ′′) give rise to the crossing
edges, which are (v2, v4) and (v1, v3).

by pendant or spider decorations [Do et al. 2017; Schenker and Aizenman 2000]. The terminology one
crossing edge per generator comes from the following consideration. Definition 1.1 implies the existence

of a choice of d generators {gj }j =1 of G such that the fundamental domain is connected only to its nearest
neighbors with respect to the generator set. Namely,

u � gv, u, v � F =⇒ g � {id}�{gj }�{g−1}. (2-1)

Conversely (because the graph is connected), for any generator gj in {gj }j =1, there is a unique pair of
vertices u j , vj � F  such that u j � gj vj . The pair (u j , vj ) will be referred to as the j-th crossing edge.
We note that while the vertices u j and vj may not be adjacent in 0, they will become adjacent after the
Floquet–Bloch transform, which we describe next. We also note that uj and vj may not be distinct.

Let H be a periodic self-adjoint operator on ℓ2(0). In the present setting4

(H f )u =  
X  

Hu,v fv , Hu,v � C , Hv,u =  H u,v (2-2)
v�u

and
Hgu,gv =  Hu,v for any u, v � V, g � G. (2-3)

We also assume that if u, v are adjacent distinct vertices, then Hu,v =  0. Together with (2-2), this means
that there is a nonzero interaction between vertices if and only if there is an edge between them.

For a graph with one crossing edge per generator, the transformed operator T is a parameter-dependent
self-adjoint operator T (α) : ℓ2 ( F ) →  ℓ2(F ), α � Td, acting as

(T (α) f )u =
X

Hu,gvχα (g) fv , (2-4)
g�G, v�F

4Self-adjointness of more general graphs with Hermitian H was studied in [Colin de Verdière et al. 2011; Milatovic 2011].
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g2 F g2 F

F

g1 F F g1 F

Figure 3. Honeycomb embedding (left) and square embedding (right) of the same graph
into R  . The definition of the Floquet–Bloch transform in the physics literature usually
takes the geometry of the embedding into account, but the resulting T (α) only differs by
applying a linear transformation to the variables α.

where F  is a fundamental domain and
 χα (g)

=  
e±iα j

if g =  id,
if g =  g ±  .

(2-5)

The function χα  is the character of a representation of G; we do not need to list its values on the rest of
G because of condition (2-1). Continuing to denote by N the number of vertices in a fundamental
domain, this means that T (α) may be thought of as an N ×  N matrix. For a more general definition of the
Floquet–Bloch transform on graphs we refer the reader to [Berkolaiko and Kuchment 2013, Chapter 4].

Remark 2.2. It is important to note that we view a periodic graph as a topological object with an abstract
action by an abelian group. In physical applications there is usually a natural geometric embedding of
the graph into R d  and a geometric representation of the periodicity group (lattice). The lattice, in turn,
determines a particular parametrization of the Brillouin zone T d  via the dual lattice. This physical
parametrization may differ from the square lattice parametrization (2-4)–(2-5) by a linear change in
variables α, as illustrated in Figure 3. Our results do not depend on the choice of variables— in particular,
the test matrix W can be computed using any parametrization; see Lemma 2.4 below.

2B. Variational formulas for λ(α). Let T (α) be a real analytic family of N ×  N Hermitian matrices
parametrized by α � Td. Fix a point α◦  � Td, and suppose the n-th eigenvalue λn (T (α◦)) is simple with
eigenvector f . For α in a neighborhood of α , λn (T (α)) is simple, and the function α →  λn (T (α)) is
real analytic; see [Kato 1976, Section II.6.4]. To streamline notation, we will denote this function by λ(α).
We are interested in computing the gradient and Hessian of λ(α) at α =  α .

Let us introduce some notation and conventions. For a smooth enough scalar function u(α) on Td, its
gradient, �u, is a column vector of length d; its differential, Du, is a row vector of length d; and its
Hessian, Hess u, is a d × d  symmetric matrix. For vector-valued functions we define D componentwise:
if f : T d  →  R N, then D f is an N × d  matrix-valued function. According to this convention, the matrix B
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introduced in (1-3) is the N × d  matrix
B : =  D(T (α) f ◦)|α◦ =  ∂α1 

(T (α) f ◦)|α◦     · · ·
∂αd 

(T (α) f ◦)|α◦      , (2-6)

where each (∂/∂α j )(T (α) f ◦)|α◦ is a column vector of size N. We stress that f ◦  remains fixed when the
derivatives are taken with respect to α. We denote by B� the adjoint of B.

We will regularly use the Moore–Penrose pseudoinverse of a matrix A, denoted by A . If A is
Hermitian, it can be computed as

A+ h =  
X 1 ⟨h, fk ⟩ fk , (2-7)

λk ( A)=0

where { fk} is an orthonormal eigenbasis of A with corresponding eigenvalues {λk}. With these terms
defined, we now state a multiparameter version of the well-known Hellmann–Feynman eigenvalue
variation formulas.

Lemma 2.3. Let T (α) be an analytic family of N ×  N Hermitian matrices, parametrized over α � Td. Let
λ(α◦ ) be a simple eigenvalue of T (α◦), and let f ◦  be the corresponding normalized eigenvector. For B
and W defined in (1-2) and (1-3), respectively, we have

�λ(α◦) =  D⟨ f ◦ ,  T (α) f ◦⟩|α=α◦ =  B� f ◦,                                                (2-8)

Hess λ(α◦) =  2 Re W.                                                                (2-9)

Since it is already known that λ(α) is analytic, the proof simply consists of using the well-known
one-parameter version of the Hellmann–Feynman formula to compute directional derivatives. We include
the details here for completeness.

Proof. For fixed η � Rd , define λ(s) =  λ(α◦ + sη )  so that

ds (0) =  ⟨�λ(α◦), η⟩.

On the other hand, the one-dimensional Hellmann–Feynman formula (see [Kato 1976, Remark II.2.2,
p. 81]) says

dλ (0) =  ⟨ f ◦ ,  T (1) f ◦ ⟩,
where

T (1) f ◦  =  ds T (α◦ + sη )  f ◦ s =0  =  Bη.

It follows that ⟨�λ(α◦), η⟩ =  ⟨B� f ◦ , η⟩ for all η, which proves (2-8).
Computing similarly for the second derivative, again using [Kato 1976, Remark II.2.2], we find that

⟨η, [Hess λ(α◦)]η⟩ =  2[⟨ f ◦ ,  T (2) f ◦ ⟩ − ⟨T (1) f ◦ , (T (α◦ ) − λ(α◦ ))+ T (1)  f ◦⟩],
where

⟨ f ◦ ,  T (2) f ◦ ⟩ =  1 
ds2 ⟨ f 

◦ ,  T (α◦ + sη )  f ◦ ⟩s =0 =  ⟨η, •η⟩.

Substituting T (1) f ◦  =  Bη, it follows that

⟨η, [Hess λ(α◦)]η⟩ =  2⟨η, (• − B�(T (α◦ ) − λ(α◦ ))+ B )η⟩ =  2⟨η, Wη⟩
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for all η � Rd, and hence the symmetric parts of the matrices Hess λ(α◦) and 2W coincide:

Hess λ(α◦) + Hess λ(α◦)T =  2(W +  W T ).

Since the Hessian is real and symmetric and W is Hermitian, this simplifies to Hess λ(α◦) =  W +  W =
2 Re W, as claimed.                                                                                                                                                 □

We conclude this section by verifying the claim made in Remark 2.2, that the sign of W used in
Theorem 1.2 can be computed using any parametrization of the torus.

Lemma 2.4. Let φ : T d  →  T d  be a diffeomorphism, and define T (k) =  T (φ (k)). Let α =  α◦  be a critical
point of a simple eigenvalue λn (T (α)). For the matrix W computed from T (α) at α◦  according to (1-2),
and W similarly computed from T (k) at k ◦  : =  φ−1 (α◦ ), we have

W =  J T W J , (2-10)

where J  is the real invertible Jacobian matrix J  =  Dφ (k)|k=k ◦ .

Proof. Applying the chain rule to the definition of B, we get

B : =  D(T (k) f ◦)|k=k ◦  =  D(T (α) f ◦)|α=α◦  Dφ (k)|k=k ◦ =  B J .

In particular, since α◦  is a critical point, B� f ◦  =  J T B� f ◦  =  0, cf. (2-8). Therefore k ◦  is a critical point of
the simple eigenvalue λn (T (k)). By a similar calculation, α◦  is a critical point of the scalar function 8 (α )
: =  ⟨ f ◦ ,  T (α) f ◦⟩. The Hessian at a critical point transforms under a diffeomorphism as

Hess 8(α(k))|k=k ◦  =  J T (Hess 8(α)|α=α◦ ) J , (2-11)

implying • =  J T • J . Putting it all together gives (2-10).                                                                               □

We remark that since J  is real, (2-10) implies Re W =  J T (Re W ) J . This could also have been obtained
by applying the transformation rule (2-11) to the function λ(α), which has Hessian proportional to Re W,
according to Lemma 2.3.

2C. The decomposition of T (α ). Lemma 2.3 is valid for any family T (α) of Hermitian matrices. We
now consider the specialized form of the T (α) appearing as the Floquet–Bloch transform of a graph
with one crossing edge per generator. For a graph satisfying Definition 1.1, there exists a choice of
fundamental domain and periodicity generators such that the Floquet–Bloch transformed operator T (α) is
given by (2-4) and the Brillouin zone T d  is parametrized by α � (−π , π ]d. Other physically relevant
parametrizations of T (α) may be obtained by a change of variables α; by Lemma 2.4, it is enough to
establish our theorems for a single parametrization.

The operator T (α) defined by (2-4) can be decomposed as

T (α) =  T0 +
X  

Tj (α j ), (2-12)
j =1

where T0 is a constant Hermitian matrix and each Tj has at most two nonzero entries. More precisely,
if {gj }j =1 are the generators for G, the j-th crossing edge is (u j , vj ) (see Section 2A) and

hj : =  Huj ,gj vj ,
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then
Tj (αj ) =  h j eiαj Eu j ,vj + h j e− i α j  Ev j ,u j , (2-13)

where Eu ,v denotes the N ×  N matrix with 1 in the u-v entry and all other entries equal to 0. If u j =  vj ,
then Tj (α j ) will have two nonzero entries, appearing in a 2 × 2 submatrix of the form

0 hj eiαj

h j e−iα j             0

If u j =  vj , then Tj (αj ) has a single nonzero entry, namely 2 Re(h j eiα j
 ), on the diagonal.

We now give explicit formulas for B, • and their combinations that will be useful later.

Lemma 2.5. Let T (α) be as in (2-12). Then for j = 1, . . . , d , the matrix B defined in (2-6) has j-th column

colj (B) =  i (h j eiα j fvj 
euj − h j e− i α j  fu j 

evj ),                                             (2-14)

where {eu }u=1 denotes the standard basis for C N. Consequently, by Lemma 2.3,

∂αj 
(α◦ ) =  −2 Im(h j eiα◦  

fvj 
fu j 

),

and α◦  is a critical point of λ if and only if

h j eiαj fvj 
fu j 

� R (2-15)
for each j =  1, . . . , d.

It was already observed in [Band et al. 2015, Lemma A.2] that (2-15) holds at a critical point; we
include a proof here for convenience since it follows easily from (2-14).

Proof. Using (2-13) we obtain

Tj (αj ) f ◦  =  h j eiαj f ◦  euj + h j e− i α j  f ◦  evj

for each j , and (2-14) follows. Then, from (2-8) and (2-14), we have

∂αj 
(α◦ ) =  ⟨colj (B), f ◦ ⟩ =  i (h j eiα j fvj 

fu j 
− h j e− i α ◦  

fuj 
fvj 

) =  −2 Im
(
h j eiα◦  

fvj 
fuj

 
),

which completes the proof. □

Lemma 2.6. For T (α) as in (2-12), the matrix • defined in (1-3) is diagonal, with

•j j =  − Re(h j eiα j  fvj 
fu j 

) (2-16)
for each j =  1, . . . , d.

Proof. As in the proof of Lemma 2.5, we compute

⟨Tj (αj ) f ◦ ,  f ◦ ⟩ =  h j eiαj f ◦  fu j 
+ h j e− i α j  fvj 

f ◦  =  2 Re(h j eiα j f ◦  fu j 
),

and the result follows. □

If α◦  is a critical point, (2-15) and (2-16) together imply that, for each j =  1, . . . , d ,

•j j =  −h j eiα j fvj 
fu j 

=  −h j e− i α j  fvj 
fu j 

. (2-17)
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In what follows we let J ′  denote the indices of nonzero diagonal entries of •, and let J ′ ′  be its
complement, namely

J ′  : =  { j : f ◦  f ◦  =  0} and J ′ ′  : =  { j : f ◦  f ◦  =  0}. (2-18)

Lemma 2.7. Let P =  PNull(•) be the orthogonal projection onto Null(•). If α◦  is a critical point of λ(α),
then

B•+ B� =  
j�J ′       

| f ◦  |2 Eu j
 ,u j + h j eiα j  Eu j

 ,vj + h j e− i α ◦  
Ev j  ,u j +  

| f ◦
 
|2 Ev j  ,vj      , (2-19)

B P B� = |hj|2(| f ◦  |2 Eu j ,u j + | f ◦  |2 Ev j  ,vj ). (2-20)
j�J ′′

Therefore, Ran(B P B�) is spanned by the vectors

{euj : fuj 
=  0, fvj 

=  0}�{evj : fvj 
=  0, fuj 

=  0}. (2-21)

Remark 2.8. If u j =  vj , the j-th summand in (2-19) is identically zero; otherwise it contains a nonzero
2 × 2 submatrix of the form

•jj| f ◦  |−2 h j eiα◦

h j e−iα◦           
•j j| f ◦  |−2

The off-diagonal part is precisely the matrix Tj (αj ) appearing in (2-12); this fact is essential to the proof
of Lemma 3.5 below.

Proof. The pseudoinverse • +  is diagonal, with
•−1 , j � J  ,

j j 0, j � J ′  .
It follows that

B•+ B� = •−1 colj (B) colj (B) .
j�J ′

Using (2-14) for colj (B) and (2-17) for •j j , we obtain (2-19). Similarly,
the orthogonal projection P onto Null(•) is diagonal, with

0, j � J  ,
j j 1, j � J ′  ,

and so
B P B� = colj (B) colj (B) . j�J ′′

Again, using (2-14) for colj (B), (2-20) follows.
Finally, note that the j-th summand in (2-20) contains at most one nonzero term, since either f ◦  =  0

or f ◦  =  0 for each j � J ′  . In particular, B P B� is diagonal, and the u-th entry is nonzero if and only if
either u =  uj for some j such that fu =  0 and fv =  0, or u =  vj for some j with fv =  0 and fu =  0.
This establishes (2-21) and completes the proof. □
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3. Global properties of λ(α): proof of Theorem 1.2

According to Lemma 2.3, the matrix Re W determines if λ(α) has a local extremum at a given critical
point α . We now turn to the proof of Theorem 1.2, which states that the global properties of λ(α◦) are
determined by the matrix W itself—without taking its real part.

The proof hinges on the fact that we can decompose5 T (α) =  S +  R(α), where R(α) is a rank-d
perturbation whose signature is determined by •. This yields global bounds on the eigenvalues of T (α),
given in Lemma 3.5. In subsequent sections we will show that if W is sign-definite at a critical point α ,
then these global bounds become saturated and we thus have a global extremum, proving Theorem 1.2.

3A. A Weyl bracketing for eigenvalues of T (α ). Let us introduce some notation that will be of use. The
inertia of a Hermitian matrix M is defined to be the triple

In( M ) : =  (i + ( M ), i− ( M ), i 0 ( M )) = :  (i + , i − , i 0 ) M (3-1)

of numbers of positive, negative, and zero eigenvalues of M correspondingly.6 The second notation will
sometimes be used to avoid repeatedly specifying the matrix M.

Define the subspace Q  � C N  by
Q  =  Null(B PNull(•) B�), (3-2)

and let Q denote the orthogonal projection onto Q. For an operator A, we denote by ( A)Q the operator
Q AQ� considered as an operator on the vector space Q. We highlight that we consider this operator
acting on Q  in order to make the dimensions arising in each of our statements below simple to
understand. We now define

S : =  (T (α ◦ ) − λ(α◦ ) −  B•+ B�)Q ,                                                (3-3)

i∞(S) : =  N − dim(Q),                                                                               (3-4)

where B and • are given by (1-3).

Remark 3.1. The subspace Q  is defined in order to make • invertible on B�(Q). If one considers
T (α ◦ ) − λ(α ◦ ) −  B•−1B� as a linear relation, then Q  is its regular part and i∞(S) is the dimension of its
singular part. Informally, i∞(S) is the multiplicity of ∞ as an eigenvalue of T (α◦ ) − λ(α◦ ) −  B•−1 B .

Remark 3.2. It follows from the formula for B P B� given in (2-20) that i∞(S) =  rk(B P B�) is the
dimension of the vector space spanned by {colj (B) : j � J ′′}; see also (2-21).

Remark 3.3. In the Introduction we gave an outline of the paper assuming that the eigenvector f ◦  is
nowhere-zero, and hence • is invertible. In that case the set J ′ ′  defined in (2-18) is empty and PNull(•) = 0.
As a result, the subspace Q  is the entire space C N, and so i∞(S) =  0. We invite the reader to first read
the following proofs with these stronger assumptions in place.

We first observe that S has a 0 eigenvalue; this fact will be used in the proofs of Theorems 1.2 and 1.3.

Lemma 3.4. If λ(α) =  λn (T (α)) has a critical point at α◦  and λ(α◦ ) is a simple eigenvalue, then 0 is an
eigenvalue of S as defined in (3-3).

5When • is invertible.
6This particular ordering appears to be traditional in the literature.
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Proof. Lemma 2.3 implies B� f ◦  =  0, so f ◦  � Q  and hence

S f ◦  =  (T (α◦ ) − λ(α◦ )) f ◦  =  0. □

The main result of this subsection is the following Cauchy–Weyl bracketing inequality between
S and T (α).

Lemma 3.5. Suppose that λ(α) = λn (T (α )) has a critical point at α◦  and that λ(α◦) is a simple eigenvalue.
Let f ◦  be the corresponding eigenvector and assume that f ◦  is nonzero on at least one end of any crossing
edge (see Section 2A). Then, for any α � Td, the eigenvalues of T (α) and S are related by

λn− i− (•)− i∞ ( S ) (S) ≤  λn (T (α )) − λ(α◦ ) ≤  λn +i + (•) (S). (3-5)

Proof. We recall that the crossing edges for the graph are denoted by (u j , vj ) with j =  1, . . . , d
(see Section 2A). Let J ′  =  { j : f ◦  fv =  0} and consider the matrix

S ′(α) : =  T (α ) − λ(α◦ ) −  
X  

Rj (α j ), (3-6)
j�J ′

with
Rj (αj ) : =  

| f ◦  |2 Eu j ,u j + h j eiα j  Eu j
 ,vj + h j e− i α j  Ev j  ,u j +  

| f ◦
 
|2 Ev j  ,vj . (3-7)

We note that at the point α =  α , the sum of Rj (αj ) matches the expression for B•+ B� obtained in
Lemma 2.7. If u j =  vj , the matrix Rj (α j ) has four nonzero entries, appearing in a 2 × 2 submatrix of the
form

◦  −2 iαj

h j e−iα j •j j| f ◦  |−2      . (3-8)

If u j =  vj , then Rj (α j ) has a single nonzero entry,

2 Re(h j eiα j − h j eiα j  ) , (3-9)
appearing on the diagonal.

The matrices Rj (αj ) have several crucial properties. First, they are the minimal-rank perturbations that
remove from S ′(α) any dependence on the αj with j�J . Second, once restricted to Q= Null( B PNull(•) B�),
the dependence on the remaining αj is eliminated and S ′(α) turns into S defined in (3-3). More precisely,
we will now show that

S =  (S ′ (α))Q. (3-10)

From (2-13), (2-19) and (3-7) we obtain
X  

Rj (α j ) =  
X

[ T j (α j ) −  Tj (α◦ )] + B•+ B� =  T (α ) −  T (α◦ ) −  
X

[ T j (α j ) −  Tj (α◦ )] + B•+ B�,
j�J ′ j�J ′ j�/ J ′

and so
S ′(α) =  T (α ◦ ) − λ(α ◦ ) −  B•+ B� +  

X
[ T j (α j ) −  Tj (αj )] (3-11)

j�J ′′

where J ′ ′  =  { j : f ◦  f ◦  =  0}. Each of the summands Tj (α j ) −  Tj (α◦) above is a linear combination of
the basis matrices Eu j ,vj and Ev j  ,u j . Fix an arbitrary j � J ′  . Since f ◦  is nonzero on at least one end of
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any crossing edge, we may assume without loss of generality that f ◦  =  0 and f ◦  =  0. From (2-21) we
have euj � Ran(B P B�) =  Null(B P B�)� =  Q�, so Qeuj =  0, where Q is the projection operator onto Q.
This implies Q Eu j ,vj =  0 and Ev j  ,u j Q =  0, and therefore

Q Eu j
 ,vj Q

� =  Q Evj ,u j Q
� =  0.

It follows that all the summands in (3-11) with j � J ′ ′  vanish when conjugated by the projection matrix Q.
This completes the proof of (3-10).

We now relate the eigenvalues of T (α) and S ′(α) by computing the signature of the Rj (αj ) perturbations.
If u j =  vj , it follows from (2-17) that the determinant of the matrix (3-8) vanishes, and so it has rank 1
with signature given by the sign of •j j .

On the other hand, if u j =  vj , the matrix has at most one nonzero entry. From Lemma 2.5 (in particular
(2-15) with f ◦  =  f ◦  ) we have h j eiαj � R ,  and so

Re(h j eiα j − h j eiα j )  =  h j eiαj Re(ei (α j −α j  ) − 1 )  =  h j eiαj [cos(αj − α ◦ ) − 1].

Since cos(αj − α j  ) <  1 for αj =  αj and •j j =  −h j eiα j  | f ◦  |2, we conclude that Rj (αj ) has the same sign
as •j j provided αj =  α .

Summing over all j � J  , we conclude that T (α ) − λ(α◦ ) −  S ′(α) has at most i − (•) negative and at
most i + (•) positive eigenvalues. It follows from the classical Weyl interlacing inequality that

λn− i− (•) (S ′ (α )) ≤  λn (T (α )) − λ(α◦ ) ≤  λn +i + (•) (S ′ (α )) (3-12)

for all α � Td.
Now, applying the Cauchy interlacing inequality (for submatrices or, equivalently, for restrictions to a

subspace) to S ′(α) and S =  (S ′ (α))Q , we get

λm−i∞ (S) (S) ≤  λm (S ′(α)) ≤  λm (S)

for all α � Td. Combining this with (3-12), we obtain the result. □

Remark 3.6. The hypothesis that f ◦  does not vanish identically on any crossing edge, which was used
in the proof of (3-10), can be weakened slightly. If fu =  fv =  0 for some j , the proof would still hold if we
can show that euj or evj belong to the range of B P B . The latter would hold if there exists another index k
such that uk coincides with either u j or vj and fvk 

=  0.

3B. Index formulas for W. In this subsection we study the relationship between the index of W and the
indices we have already encountered, namely i− (•), i + (•) and i∞(S). This is done by observing that W has
the structure of a Schur complement and then using a suitably generalized Haynsworth formula.

The following lemma applies to any matrices A, B and • satisfying the given hypotheses. In Section 3C
we will apply it specifically to A =  T (α◦ ) − λ(α◦ ), and B and • from (1-3).

Lemma 3.7. Suppose W =  • −  B�A+ B, where • and A are Hermitian matrices of size d × d  and N ×  N,
respectively, and B is an N × d  matrix satisfying

Null( A) � Ran(B)� =  Null(B�). (3-13)
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Let P =  PNull(•) be the orthogonal projection onto Null(•) and denote Q  : =  Null(B P B�). Define

S : =  ( A −  B•+ B�)Q ,
and

i∞(S) : =  rk(B P B�) =  N − dim(Q). (3-14)
Then,

i − (W ) =  i − (•) + i − ( S ) + i∞ ( S ) − i − ( A ),                                                   (3-15)

i0 (W ) =  i0 (•) + i 0  ( S ) − i∞ ( S ) − i 0  ( A),                                                  (3-16)

i + (W ) =  i + (•) + i + ( S ) + i∞ ( S ) − i + ( A )                                                    (3-17)

=  i + (•) − i − ( S ) − i 0 ( S ) + i − ( A) + i 0 ( A).                                      (3-18)

Remark 3.8. If • is strictly positive, (3-15) simplifies to

i − (W ) =  i − ( S ) − i − ( A).

We express this in words as the Morse index of W is the spectral shift at −0  between S and its positive
perturbation A =  S +  B•−1 B . This idea is further developed in [Berkolaiko and Kuchment 2022].

Remark 3.9. For i + (W ) we have two forms: (3-17) is similar to the previous equations, but (3-18) will be
directly applicable in our proofs. In addition, the renormalized form (3-18) (in the physics sense of
canceling infinities) is the one that retains its meaning if S and A are bounded below but unbounded
above, as they would be in generalizing this result to elliptic operators on compact domains.

Proof of Lemma 3.7. The definitions of the matrices W and S are reminiscent of the Schur complement,
and so to investigate their indices, it is natural to use the Haynsworth formula [1968]. For a Hermitian
matrix in block form, M =  B� C       with A invertible, the Haynsworth formula states that

In( M ) =  In( A) + In(C −  B�A−1 B), (3-19)

where the inertia triples add elementwise. Several versions of the formula are available for the case
when A is no longer invertible (see [Cottle 1974; Maddocks 1988]), but we could not find the form most
suitable for our purposes (equation (3-22) below) in the literature. For completeness, we provide its proof in
the Appendix. Denote by PA the orthogonal projection onto the nullspace of A and define

Q A =  Null(B�PA B) and i∞(M/ A) =  rk(B�PA B) =  dim(C ) − dim(Q A ), (3-20)

where M/ A is the generalized Schur complement of the block A,

M/ A : =  C  −  B�A+ B. (3-21)

Our generalized Haynsworth formula states that

In( M ) =  In( A) + InQ A
 ( M / A) + (i∞ , i∞ , −i∞ ) M / A , (3-22)

where InQ ( X ) stands for the inertia of X restricted to the subspace Q.
The result now follows by a double application of this formula to the block Hermitian matrix

 M
=  

B� • 
.
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Taking the complement with respect to •, we find

In( M ) =  In(•) + InQ• ( M / •) + (i∞ , i∞ , −i∞ ) M / • =  In(•) + In( S ) + (i∞ , i∞ , −i∞ ) S , (3-23)

because (M/ •)Q• =  S and i∞ ( M/ •) = rk( B P• B�) = i∞ (S). On the other hand, taking the complement
with respect to A, we find

In( M ) =  In( A) + InQ A
 ( M / A) + (i∞ , i∞ , −i∞ ) M / A =  In( A) + In(W ), (3-24)

because (3-13) implies PA B =  0, hence Q A =  Null(B�PA B) =  C d  and

i∞(M/ A) =  rk(B�PA B) =  0.

Comparing (3-23) and (3-24), we obtain

In(W ) =  In(•) + In( S ) − In( A) + (i∞ , i∞ , −i∞ ) S ,

which is precisely (3-15)–(3-17). To obtain (3-18) from (3-17) we use

i∞(S) =  N − dim(Q) =  (i + ( A) + i − ( A) + i 0 ( A)) − ( i + ( S ) + i − ( S ) + i 0 ( S )) . □

3C. Proof of Theorem 1.2. We are now ready to prove Theorem 1.2, which for convenience we restate
here in an equivalent form.

Theorem 3.10. Let T (α) be as in (2-12) and W be as defined in (1-2). Suppose λ(α) =  λn (T (α)) has a
critical point at α◦  such that λ(α◦ ) is simple and the corresponding eigenvector f ◦  is nonzero on at least
one end of any crossing edge.

If i − (W ) =  0, then
λ(α◦ ) ≤  λ(α) for all α � T d ; (3-25)

i.e., λ(α) achieves its global minimum at α .
If i + (W ) =  0, then

λ(α) ≤  λ(α◦ ) for all α � T d ; (3-26)

i.e., λ(α) achieves its global maximum at α .

Proof. Let
A : =  T (α◦ ) − λ(α◦ ).

Consider first the case i − (W ) =  0. From (3-15) in Lemma 3.7 we get

0 =  i − (•) + i − ( S ) + i∞ ( S ) − i − ( A) ,

and hence, using i − ( A) =  n − 1,
n − i − (•) − i∞ ( S )  =  i − ( S ) + 1.

By the definition of negative index, λ i− ( S )+1 (S) is the smallest nonnegative eigenvalue of S, which is 0
by Lemma 3.4. Then applying Lemma 3.5 we get

0 =  λ i − ( S )+1 (S) =  λn− i − (•)− i∞ ( S ) (S) ≤  λn (T (α )) − λ(α◦ ),

completing the proof of inequality (3-25).
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For the other case, i + (W ) =  0, we use Remark 3.8 and (3-18), together with the observation that

i − ( A) + i 0 ( A) =  n,
because λ(α◦ ) is simple, to obtain

n + i + (• )  =  i− ( S ) + i 0 ( S ).

Now observe that λi− ( S )+i 0 ( S ) (S) is the largest nonpositive eigenvalue of S, which is 0 by Lemma 3.4. To
complete the proof of (3-26), we use the upper estimate in Lemma 3.5 to obtain

λn (T (α )) − λ(α◦ ) ≤  λn +i + (•) (S ) =  λi− ( S )+i 0 ( S ) (S) =  0. □

4. Real symmetric case: proof of Theorem 1.3

From Lemma 2.3 and Theorem 1.2, we have the implications

local minimum at α◦      =⇒  Re W ≥  0 and W ≥  0 =⇒  global minimum at α◦,

and similarly for maxima. We now restrict our attention to the case of real symmetric H, with the goal of
relating the spectrum of W to the spectrum of its real part. At corner points this is always possible, since W
ends up being real. At interior points, W may be complex. However, for d ≤  3 the real part contains enough
information to control the spectrum of the full matrix. This is no longer true when d ≥  4. These
observations are at the heart of Theorem 1.3, whose proof we divide into two parts. Section 4A deals
with corner points, while Section 4B deals with interior points.

As in the rest of the manuscript, we fix an arbitrary 1 ≤  n ≤  N and consider λn (T (α)) as a function
of α, which we denote by λ(α).

4A. Corner points: proof of Theorem 1.3, case (1). The following lemma, combined with Theorem 1.2
and Lemma 2.3, yields the proof of Theorem 1.3 (1).

Lemma 4.1. Assume T (α) is the Floquet–Bloch transform of a real symmetric operator H. Let α◦  � C,
with C =  {0, π}d , and assume that λ(α◦) is simple. Then α◦  is a critical point of λ(α) and the correspond-ing
matrix W is real.

Proof. At a corner point α◦  each eiαj is real. This means T (α◦ ) is a real symmetric matrix, so we can
assume that the eigenvector f ◦  is real. It then follows from (2-14) that the matrix B is purely imaginary, and
hence the vector B� f ◦  is as well. On the other hand, B� f ◦  is real, since it is the gradient of a real function
(by Lemma 2.3), so we conclude that B� f ◦  =  0 and hence α◦  is a critical point.
We similarly have that • is real (as the Hessian of a real function, see (1-3)), T (α◦ ) − λ(α◦ ) is real and

B is imaginary, so we conclude that W =  • −  B�(T (α◦ ) − λ(α◦ ))+ B is real.                                    □

Remark 4.2. The condition of H being real can be relaxed. If the matrix T0 appearing in the decom-
position (2-12) is real, then any complex phase in the coefficient h j can be absorbed as a shift of the
corresponding αj . Of course, that would shift the location of the corner points.

The condition of real T0 may turn out to hold after a change of gauge transformation. Combinatorial
conditions for the existence of a suitable gauge and a suitable choice of the fundamental domain were
investigated in [Higuchi and Shirai 1999; Korotyaev and Saburova 2017; 2020].
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Remark 4.3. On lattices whose fundamental domain is a tree, one can also test the local character of the
extremum at α◦  � C by counting the sign changes of the corresponding eigenvector. More precisely,
assuming f ◦  is the n-th eigenfunction of T (α◦ ) and is nonzero on any v, the Morse index of the critical
point α◦  � C was shown in [Berkolaiko 2013; Colin de Verdière 2013] (see also [Band et al. 2015,
Appendix A.1]) to be equal to φn − ( n  − 1),  where

φn =  #{(u, v) : Tu,v (α◦) f ◦  f ◦  >  0}.

4B. Interior points: proof of Theorem 1.3, cases (2) and (3). Next we deal with the case that α◦  � T d  is not a
corner point. In this case W is in general complex, so Hess λ(α◦) =  2 Re W may not contain enough
information to determine the indices i ± (W ). However, it turns out that if α◦  � T d  is not a corner point,
then 0 must be an eigenvalue of W. This provides enough information to obtain the desired conclusion in
dimensions d =  2 and 3, as claimed in cases (2) and (3) of Theorem 1.3.

Theorem 4.4. Assume T (α) is the Floquet–Bloch transform of a real symmetric operator H and α◦  is a
critical point of λ(α), such that λ(α◦ ) is simple and the corresponding eigenvector f ◦  is nonzero on at
least one end of each crossing edge (see Section 2A). Then, α◦  � T d  \ {0, π }d implies i0(W ) ≥  1.

This theorem shows an intriguing contrast between W and the Hessian of λ(α), the latter of which is
the real part of W and is conjectured to be generically nondegenerate; see [Do et al. 2020] for a thorough
investigation of diatomic graphs and [Filonov and Kachkovskiy 2018] for a positive result for elliptic
operators on R  .

For the proof, we will need the following observation.

Lemma 4.5. Under the assumptions of Theorem 4.4, the matrix S defined in (3-3) has real entries.

Proof. We recall that the crossing edges for the graph are denoted by (u j , vj ) with j =  1, . . . , d (see
Section 2A). We also continue to refer to J ′  and J ′ ′  as defined in (2-18). From the decomposition (2-12) we
have

T (α◦ ) − λ(α◦ ) =  T0 − λ (α ◦ ) + Tj (α◦ ) + Tj (α◦),
j�J ′ j�J ′′

with T0 and λ(α◦ ) real. It was shown in the proof of Lemma 3.5 that the summands with j � J ′ ′  vanish
when conjugated by the orthogonal projection Q onto Q  =  Null(B PNull(•) B�). Hence, it is enough to
show that

Tj (α◦ ) −  B•+ B�

j�J ′

is real. Using (2-19), we can write this as a sum of terms of the form
"

0 hj eiαj 
# "

•j j | f ◦  |
−

2 h j eiα◦ # "
•j j | f ◦  |

−
2 0

#

h j e−iα j              0                  h j e−iα j           •j j| f ◦  |−2                                 0           •jj| fvj 
|−2

which have real entries by Lemma 2.6. □

Proof of Theorem 4.4. We first rewrite (3-16) of Remark 3.8 as a sum of nonnegative terms,

i0(W ) =  (i 0 (•) − i∞ ( S )) + (i 0 ( S ) − 1),
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with S as defined in (3-3) and i0( A) =  i0(T (α◦) −  λ(α◦ )) =  1. The first term is nonnegative because
i0(•) =  rk(P) ≥  rk(B P B�) =  i∞(S), and the second term is nonnegative by Lemma 3.4.

First, suppose the real and imaginary parts of f ◦  are linearly independent. From Lemma 3.4 we
have f ◦  � Q. Because S is real, Re f ◦  and Im f ◦  are linearly independent null-vectors of S, so we have
i0(S) ≥  2 and hence i0(W ) ≥  1. Thus, for the remainder of the proof we can assume that the real and
imaginary parts of f ◦  are linearly dependent. Multiplying by a complex phase, this is the same as
assuming that f ◦  is real.

Since α◦  is not a corner point, we can assume, without loss of generality, that α1 �/ {0, π }. Using
(2-15), the criticality of α◦

 implies that f ◦  f ◦  eiα1 � R ,  and therefore f ◦  f ◦  =  0. Since f ◦  is nonzero on
at least one end of any crossing edge, we may assume that fu =  0 and fv =  0. From (2-14) we see that
the first column of B has a single nonzero entry, in the u1 component.

From the decomposition (2-12) we have T (α◦)u ,v =  h1eiα1 �/ R.  Considering the u1-th row of the
eigenvalue equation λ(α◦ ) f ◦  =  T (α◦ ) f , we find

0 =  λ(α◦) f ◦  =  T (α◦)u1 ,v1 f ◦  +  
X  

T (α◦)u1 ,v f ◦ .
v =v1

Since f ◦  is real and f ◦  =  0, this implies T (α◦)u1 ,v is nonreal for some v =  v1. This means that there
exists another crossing edge, say the j =  2 edge (u2, v2), such that u1 =  u2. Then fu     =  fu     =  0, so (2-
14) implies that the second column of B is zero except for the u1 component; hence the first and
second columns of B are linearly dependent. By Remark 3.2, this implies rk(P) >  rk(B P B�) and hence
i0 (•) − i∞ (S) ≥  1, which completes the proof. □

We now discuss what the two conditions, Re W ≥ 0  and det W = 0,  can tell us about the positivity of the
matrix W in dimensions d ≤  3. In dimension d =  1 we immediately get W =  0; hence, by Theorem 3.10, any
noncorner extremum λ(α◦ ) is both a global minimum and a global maximum of λ(α). Therefore, λ(α) is
a flat band, in agreement with the results in [Exner et al. 2010]. In dimensions d =  2 and 3 we have the
following results.

Lemma 4.6. Let W be a 2 × 2 Hermitian matrix with det W =  0. If Re W ≥  0, then W ≥  0.

Proof. If w is the (potentially) nonzero eigenvalue of W, we have

w =  tr W =  tr Re W ≥  0,

and therefore W ≥  0. □

Lemma 4.7. Let W be a 3 × 3 Hermitian matrix with det W =  0. If Re W >  0, then W ≥  0.

Proof. For convenience we write W =  A + i B , where A and B are real matrices with BT =  −B . The
imaginary part i B is a Hermitian matrix with zero trace and determinant. If B =  0, then i + (i B ) =
i− (i B ) =  i0(i B) =  1. Since A >  0, the Weyl inequalities (for W, as a perturbation of A by i B) yield

0 <  λ1( A) ≤  λ2(W ) ≤  λ3(W ),

forcing λ1(W ) =  0 and therefore W ≥  0. □

Theorem 1.3 now follows as a consequence of Theorems 1.2 and 4.4 and Lemmas 2.3, 4.1, 4.6 and 4.7.
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Remark 4.8. The strict inequality Re W >  0 in Lemma 4.7 is necessary when d =  3. To see this, consider
� 

ϵ i 0
�

W =  �− i  ϵ 0�
0 0 0

for any ϵ � (0, 1). The matrix W has eigenvalues −1 + ϵ , 0, 1 + ϵ ,  whereas Re W has eigenvalues 0, ϵ, ϵ .
That is, det W =  0 and Re W ≥  0, but W is not nonnegative.

When d =  4, even strict positivity of Re W is not enough to guarantee W ≥  0. This is illustrated in the
example of Section 5B2 below.

5. Examples

We present here some illustrative graphs that highlight features of our results, particularly regarding
vanishing components of the eigenvector and conjectured necessity of the criterion in Theorem 1.2
(Section 5A). We also demonstrate that the restrictions on the number of crossing edges, or, in the case of
Theorem 1.3 (3), on the dimension d, cannot be dropped without imposing further conditions (Section 5B).

5A. Examples: eigenvectors with vanishing components. A  significant effort in the course of the proofs
in Section 3 was devoted to treating eigenvectors with some zero components. We were motivated in
this effort by some well-known examples, which we discuss in Sections 5A1 and 5A2. In particular, we
demonstrate the use of the generalized Haynsworth formula (3-22), needed here because • is not invertible.
In Section 5A3 we revisit the example in [Harrison et al. 2007] and modify it to test our conjecture that
the condition in Theorem 1.2 is not only sufficient but also necessary for the global extremum.

5A1. Honeycomb lattice. We consider the honeycomb lattice as shown in Figure 1, left, whose funda-
mental domain consists of two vertices, denoted by A and B. The tight-binding model on this lattice
was used to study graphite [Wallace 1947] and graphene [Castro Neto et al. 2007; Katsnelson 2012].
For some discussions of the influence of symmetry on the spectrum of this model, see [Berkolaiko and

Comech 2018; Fefferman and Weinstein 2012]. We have

T
(
α

) 
=  

−1 − e − i α 1  − e − i α 2      

− 1 −  
q 

1 − ei α2

, (5-1)

where qA, qB are the on-site energies for each sublattice. There is an interior global maximum of the
bottom band, and an interior global minimum of the top band, at

α◦  =  
  

3 , −  3 ,

as well as their symmetric copies at −α  . The eigenvalues are simple unless qA =  qB, in which case the
so-called Dirac conical singularity is formed.

Assume without loss of generality that q e  <  q e, and consider λ =  λ1(T (α)). We have

λ(α◦ ) =  q e, f ◦  = ,

T (α◦ ) − λ(α◦ ) =  
0 qB − q A      

,       (T (α◦ ) − λ(α◦ ))+  =  
0 (q e − q e) − 1     

 .
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T (k) = A
B . (5-3)
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The derivative matrices B and • are

B =  
i e−2π i /3 i e2π i /3 and • =  

0 0 
.

As a result,
−2π i /3  W

=  −
q B  − q A       e

2π i /3           1
,

det(W ) =  0 (in agreement with Theorem 4.4) and W ≤  0 (in agreement with λ( · ) having the global
maximum at α◦). We also observe that

B P B� =  
0 2 

,

giving dim Q =  1,
S =  1 0

0 qB − q A 0 
=  0

and i∞(S) =  1.
To illustrate Lemma 3.7, we now have, with A =  T (α◦ ) − λ(α◦ ),

1 =  i− (W ) =  i − (•) + i − ( S ) + i∞ ( S ) − i − ( A)  =  0 + 0 + 1 − 0 ,

1 =  i0(W ) =  i 0 (•) + i 0 ( S ) − i∞ ( S ) − i 0 ( A) =  2 + 1 − 1 − 1 ,

0 =  i + (W ) =  i + (•) − i − ( S ) − i 0 ( S ) + i − ( A) + i 0 ( A) =  0 − 0 − 1 + 0 + 1.

We also use this example to demonstrate one of the standard geometric embeddings of the graph. Here we
follow the conventions of [Berkolaiko and Comech 2018; Castro Neto et al. 2007; Fefferman and
Weinstein 2012]. A  slightly different (but unitarily equivalent) parametrization is traditionally used in
optical lattice studies, see for instance [Haldane 1988; Ozawa et al. 2019], though we note here that the
latter models often include next-to-nearest neighbors or further connections which are not covered by our
results.

The triangle Bravais lattice is the set of points 3  =  {n1a1 + n 2 a2 : (n1, n2) � Z2}, where the vectors

 3
!

 3
!

a1 = 2 and a2 = 2 (5-2)
2 2

represent the periodicity group generators g1 and g2. Vertices A are placed at locations  √  ,  1 T + 3 ,
while vertices B are placed at −  1 ,  1 + 3 ;  see Figure 4. This way the geometric graph is invariant
under rotation by 2π , while the reflection x →  − x  maps vertices A to B and vice versa.

The reciprocal (dual) lattice, 3  , consists of the set of vectors ξ such that eiv·ξ =  1 for every v � 3 .
The first Brillouin zone B, a particular choice of the fundamental domain in the dual space, is defined as
the Voronoi cell of the origin in the dual lattice. In this case it is hexagonal.

The Floquet–Bloch transformed operator parametrized by k � B  takes the form
q e −1 − ei k· a1  − ei k·a2

−1 − e− i k · a 1  − e− i k ·a2 q e
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Figure 4. Left: the fundamental domain of the geometric embedding of honeycomb
lattice resulting in the Floquet–Bloch representation (5-3). Right: the fundamental domain
of the Lieb lattice.

While it does not admit a decomposition of the form (2-12), it is related to T (α) of (5-1) by a linear
change of variables and so, by Remark 2.2 and Lemma 2.4, we can apply our theorems to the operator (5-
3) by directly computing the relevant derivatives in W with respect to the variable k. We display the
dispersion surfaces on the left of Figure 5.

5A2. Lieb lattice. For another key example of a model that fits into Theorem 1.3, we consider a version
of the Lieb Lattice graph seen in Figure 1, middle, consisting of three copies of the square lattice as in
Figure 4, right, with q A, qB , qC denoting the on-site energies for each sublattice [Guzmán-Silva et al.
2014; Marzuola et al. 2019; Mukherjee et al. 2015; Shen et al. 2010]. The Floquet–Bloch transformed
operator is given by �

q e −1−e i α 1      −1−e i α2
�

T (α) = −1−e − i α 1 q e 0 . (5-4)
−1−e − i α 2                  

 0               q e

Taking qA =  1 and qB =  qC =  −1,  this has eigenvalues

λ1(α) =  −  5 + 2 cos(α1) + 2 cos(α2), λ2(α) =  −1 and λ3(α) =  
p

5 +
 
2 cos(α1)

 
+ 2

 
cos(α2).

We display the dispersion surfaces on the right in Figure 5. In particular, λ3(α) has a minimum at
α◦  =  (π, π ), namely λ3(α◦) =  1, with an eigenvector f ◦  =  (1, 0, 0)T that vanishes on exactly one end of
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Figure 5. The dispersion surfaces of (5-3), left, and (5-4), right.
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each crossing edge. We have 
                                                                       � 

0      0
� 

•

=               =  •+,           B =  D(T (α) f ◦)|α=(π ,π ) =  �− i        0�
0 − i

and therefore
0 0 0 0 0 0

T (π , π ) − λ◦  −  B•+ B� =  �0 −2 0�      and     B P B� =  �0 1 0�,
0 0 −2 0 0 1

giving dim Q =  1. Then, �
0 0 0

��
1
�

S  =  1  0  0  �0  − 2 0 ��0 � =  0 ,
0 0 −2 0

and i∞(S) =  2. We also compute  W
=  • −  B�A+ B =  2     

1     .
2

We note that because α =  (π, π ) is a corner point, Theorem 4.4 (det W =  0) does not apply, but
Lemma 4.1 (W is real) does.

5A3. A magnetic modification of the example in [Harrison et al. 2007]. To give an illustration of
Theorem 1.2 with complex H, we modify the example in Figure 2 by adding a magnetic field. Consider the
Floquet–Bloch operator

0 0 eiα1 1 1+iβ
� 0 0 1 eiα2 1 �

Tβ (α) =  �e−iα1 1 0 1 0 �, (5-5)
1       e−iα2 1 0 1

1− iβ 1 0 1 0

which, with β =  0, reproduces the example considered in [Harrison et al. 2007]. It was observed in the
same work that the second dispersion band has two maxima at interior points, related by the symmetry
α →  −α  in the Brillouin zone; see Figure 6, left. Similarly, there are two internal minima. Nonzero β
adds a slight magnetic field term on the 1 →  5 edge of the form and breaks the symmetry in the dispersion
relation. One maximum becomes larger (and hence the global maximum) and the other one smaller
(merely a local maximum), as can be seen in Figure 6, right.

Taking β = 0.1, the locations of the two maxima of λ (T (α )) were numerically computed using Matlab
(both using an optimization solver fminunc and a root finder fsolve) to be at (αg , αg ) ≈ (1.0632, 5.2200)
and (αℓ , αℓ) ≈  (5.2534, 1.0298). Computing their corresponding eigenvectors f ◦  and using (2-8), the
gradient was verified to be zero with error of less than 4 × 10−16 for both critical points. For this model,
following Lemmas 2.5 and 2.6 we have

i eiα◦ f ◦ 0

•
 
=  

− Re(e
0

◦  
f ◦

 f1 ) 
− Re(e

0
◦  f ◦  f ◦ )

, B =  
�
− i e 

0

α1 f1    
 − i e  

0 
f4

f
 
◦

�
, (5-6)

0 0



                           

T (α) = ,

e e
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Figure 6. The second dispersion surface of (5-5) with β =  0, left, and with β =  0.1, right.

and as a result we can easily compute the eigenvalues of W =  • −  B�(T (α◦ ) − λ2 I )+ B . At the global
maximum, W is found to have two negative eigenvalues, {−0.3433, −0.0095}, whereas at the local
maximum W is sign-indefinite with eigenvalues {−0.3240, 0.0097}, the signs of which are determined
up to errors much larger than those in our calculations. Analogous results hold for the global and local
minima.

This example motivates the following.

Conjecture. Under the assumptions of Theorem 1.2, a critical point α◦  is a global minimum if and only if
W ≥  0 and a global maximum if and only if W ≤  0.

5B. (Counter)examples: multiple crossing edges and large dimensions. In this section we provide
examples showing that the assumptions in our theorems are necessary. First, in Section 5B1, we show
that the assumption in Theorems 1.2 and 1.3 that the graph has one crossing edge per generator is needed.
Next, in Section 5B2 we show that, even when H is real-symmetric, the conclusion of Theorem 1.3 fails
for d =  4.

The example in Section 5B1 demonstrates one of the simplest possible ways of adding multiple edges
per generator in the context of a 2 × 2 model T (α), but the form of the operator was motivated by the
Haldane model [1988], which includes next nearest neighbor complex hopping terms in the form of T (k)
given in (5-3). We will observe by directly computing the eigenvalues that the dispersion relation can
have a local minimum that is not a global minimum.

5B1. Multiple edges per generator. To see that the condition of one edge per generator is required, we
first consider a model similar to that of the Honeycomb lattice, but with another edge for one of the
generators, specifically given by  

−1 + t  cos(α2) −1−e i α1 −ei
α2

−1−e − i α 1 −e − i α 2          1− t  cos(α2)

where we have introduced multiple edges per generator and for simplicity chosen qA =  −1  and qB =  1.
For t sufficiently large, we observe that the branch for λ1(α) has a local minimum that is not a global
minimum. This is shown in the dispersion surface plotted in Figure 7, where we have taken t =  4 and

thus the lowest dispersion surface is described by the function

λ1(α) =  −
p

2[6 + cos(α1 )
 
+

 
cos(α1

 
− α2 )

 
− 3

 
cos(α2)

 
+ 4 cos(2α2)].
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Figure 7. An example of a dispersion band on a Z2-periodic graph 0  with a local (but
not global) minimum resulting from multiple edges per generator.

The local minimum here occurs at α =  (0, 0), which is a corner point, and hence we have that W =  Re W is
nonnegative. Therefore, this gives a counterexample to both Theorems 1.2 and 1.3 in the case of
multiple edges per generator.

This example was motivated by the Haldane model, which is Z2-periodic. However, even Z1-periodic
graph operators are not immune to this problem; see [Exner et al. 2010] and [Shipman 2014, Example 1].

5B2. Dimension d ≥ 4. We construct here a Z4-periodic graph that displays a local extremum that is not a
global extremum. The example was found by searching through positive rank-1 perturbations of a random
symmetric matrix having 1 as a degenerate eigenvalue; this ensured that 1 is a local (but not necessarily
global) maximum. We used the Conjecture in Section 5A3 as a trigger for terminating the search: the
matrix W was computed and the search was stopped when it was sign-indefinite. The resulting example
reveals the presence of a global maximum elsewhere, thus also serving as a numerical confirmation of the
conjecture’s veracity. We report it with all entries rounded off for compactness:

� 
2.556782 .104696 −.000742 −.049562 −.072260 

� �
0 eiα1     eiα2     −ei α3      eiα4 

�

� .104696 3.69455 −.436154 −.126495 −.571811 � � e−iα1 0 0 0 0 �

T (α) =  � −.000742 −.4361543 15.033535 .139015 −.363838 �+ � e−iα2 0 0 0 0 �.
� −.049562 −.126495 .139015 2.146425 .298246 � � −e − i α3 0 0 0 0 �

−.072260 −.571811 −.363838 .298246 9.097398                  e−iα4 0 0 0 0

Using the objective function of the form λ1(T (α)) and running a Newton BFGS optimization with
randomly seeded values of α, we find two distinct local maxima at α◦  ≈ (−1.488, −2.153, 1.553, −3.324)
and λ1(α◦) ≈  0.989459 (close but not equal to 1 due to rounding off the entries of the example matrix).
However, the observed global maximum is λ1(π, 0, π, 0) ≈  1.2467. Hence, we observe that the corner
point is a local maximum that is in fact a global maximum (as follows from Theorem 1.3 case (1)), but
the interior point is a local maximum that is not a global maximum. The minimum of the second band
appears to be 2.63496, hence there are no degeneracies arising between the first two spectral bands.

Appendix: A  generalized Haynsworth formula

The inertia of a Hermitian matrix M is defined to be the triple

In( M ) =  (i + ( M ), i− ( M ), i 0 ( M )) (A-1)
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of numbers of positive, negative and zero eigenvalues of M, respectively. For a Hermitian matrix in block
form,

M =  
B� C  

, (A-2)

the Haynsworth formula [1968] shows that, if A is invertible, then

In( M ) =  In( A) + In( M / A), (A-3)
where

M/ A : =  C  −  B�A−1B (A-4)

is the Schur complement of the block A. We are concerned with the case when the matrix A is singular. In
this case, inequalities extending (A-3) have been obtained by Carlson et al. [1974] and a complete formula
was derived by Maddocks [1988, Theorem 6.1]. Here we propose a different variant of Maddocks’
formula. Our variant makes the correction terms more transparent and easier to calculate; they are
motivated by a spectral flow picture. They are also curiously similar to the answers obtained in a
related question by Morse [1971] and Cottle [1974].

Theorem A.1. Suppose M is a Hermitian matrix in the block form (A-2), and let P denote the orthogonal
projection onto Null( A). Then

In( M ) =  In( A) + InQ ( M / A) + (i∞ , i∞ , − i∞ ), (A-5)

where the subspace Q  is defined by
Q  =  Null(B�P B), (A-6)

InQ ( X ) stands for the inertia of X restricted to the subspace Q  and i∞ is given by

i∞ =  i∞(M/ A) =  rk(B�P B) =  dim(C ) − dim(Q). (A-7)

Remark A.2. If the matrix A is singular, (A-4) is not appropriate for defining the Schur complement. It
is usual to consider the generalized Schur complement

M/ A : =  C  −  B�A+ B,

where A +  is the Moore–Penrose pseudoinverse, which is what we have done in the main arguments above.
However, because of the restriction to Q, any reasonable generalization will work in (A-5). For example,

M/ Aϵ : =  C  −  B�(A + ϵ P )−1 B (A-8)

is well-defined for any ϵ =  0. Taking the limit ϵ →  ∞, we recover the definition with A . In fact, it can
be shown that

M/ Aϵ =  M/ A −  B�P B/ϵ,

with the last summand being identically zero on the subspace Q. It follows that the restriction ( M/ Aϵ )Q =
( M / A)Q is independent of ϵ, so the index InQ( M/ Aϵ ) is as well.

Remark A.3. The index i∞(M/ A) has a beautiful geometrical meaning: it is the number of eigenvalues
of M/ Aϵ which escape to infinity as ϵ →  0. Correspondingly, InQ (M/ A) counts the eigenvalues of
M/ Aϵ converging to positive, negative and zero finite limits as ϵ →  0.
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Remark A.4. As a self-adjoint linear relation, the Schur complement M/ A is well-defined even if A is
singular; see [Colin de Verdière 1999]. Then the index i∞(M/ A) has the meaning of the dimension of
the multivalued part, whereas InQ (M/ A) is the inertia of the operator part of the linear relation; see
[Schmüdgen 2012, Section 14.1] for relevant definitions.

The proof of Theorem A.1 follows simply from the following formula, which was proved in the
generality we require in [Jongen et al. 1987] (inspired by a reduced version appearing in [Han and
Fujiwara 1985]). The original proofs are of linear algebra type. For geometric intuition we will provide a
spectral flow argument in Section A1.

Lemma A.5 [Han and Fujiwara 1985; Jongen et al. 1987]. The inertia of the Hermitian matrix

M =  
B� C  

, (A-9)

where 0m is the m × m  zero matrix, is given by the formula

In( M ) =  InNull( B ) (C ) + (rk(B), rk(B), m − rk( B )). (A-10)

Proof of Theorem A.1. Take A and M as given by (A-2). Let V =  (V1 V0) be the unitary matrix of
eigenvectors of A, with V being the m =  dim Null( A) eigenvectors of eigenvalue 0. We have

V �AV =      
0 0m     

,

where 2  is the nonzero eigenvalue matrix of A and only the most important block size is indicated. We
recall that, with the above notation, the Moore–Penrose pseudoinverse is given by A +  =  V1 2−1 V �.

Conjugating M by the block-diagonal matrix diag(V , I ), we obtain the unitary equivalence
� 

2 0 V �B
�

M � � 0 0 V �B�.
B�V1 B�V0       C

Applying the Haynsworth formula to the invertible matrix 2 ,  we get
�

In( M ) =  In (2) + I n  
B�V0 C  −  B�V12−1 V1 B 

.

We now apply Lemma A.5 to get

In( M ) =  In(2) + In Q (C −  B�V1 2−1 V �B ) + (i∞ , i∞ , m − i∞ ) ,

since Null(V �B) =  Null(B�P B) =  Q  and rk(V �B) =  rk(B�P B) =  i∞. We finish the proof by observing
that In(2)  +  (0, 0, m) =  In( A) and C  −  B�V12−1 V �B is equal to the generalized Schur complement C
−  B�A+ B =  M/ A. □

A1. An alternative proof of Lemma A.5. To give a perturbation theory intuition behind Lemma A.5,
define

Mϵ =  ϵ I
�     

B . (A-11)
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For ϵ >  0, Mϵ is a nonnegative perturbation of M. When ϵ is small enough, none of the negative
eigenvalues of M will cross 0; therefore i− ( Mϵ ) =  i− ( M ). Applying the Haynsworth formula to the
invertible matrix ϵ I , we get

i − ( M ) =  i− ( Mϵ ) =  i − (ϵ I ) + i − (C  −  B�B/ϵ) =  i − (C  −  B�B/ϵ).

Due to the presence of 1/ϵ , some eigenvalue of M/ϵ : =  C  −  B�B/ϵ becomes unbounded. More precisely,
the Hilbert space on which C  is acting can be decomposed as

HC =  Ran(B�B) �Null(B�B). (A-12)

There are rk(B�B) eigenvalues of M/ϵ going to −∞  as ϵ →  0. The rest of the eigenvalues of M/ϵ
converge to eigenvalues of C  restricted to Null(B�B). Informally, the operator M/ϵ is reduced by the
above Hilbert space decomposition in the limit ϵ →  0. This argument can be made precise by applying the
Haynsworth formula to M/ϵ written out in the block form of the decomposition (A-12).

The negative eigenvalues of i− ( Mϵ ) thus come from rk(B�B) =  rk(B) eigenvalues going to −∞ ,  and
the negative eigenvalues of C  on Null(B�B) =  Null(B). This establishes the negative index in (A-10).
Positive eigenvalues are calculated similarly by considering small negative ϵ, and the zero index can be
obtained from the total dimension.

Acknowledgements

The authors gratefully acknowledge the American Institute of Mathematics SQuaRE program from
which this work developed. Berkolaiko acknowledges the support of NSF grant DMS-1815075. Canzani
acknowledges the support of NSF grant DMS-1900519 and the Alfred P. Sloan Foundation. Cox
acknowledges the support of NSERC grant RGPIN-2017-04259. Marzuola acknowledges the generous
support of NSF grants DMS-1352353 and DMS-1909035, as well as the MSRI for hosting him while part of
this work was completed. We are grateful to Peter Kuchment and Mikael Rechtsman for many useful
conversations about Bloch band structure and John Maddocks for kindly recalling to us the history of his
generalized Haynsworth formula. We thank Lior Alon, Ram Band, Ilya Kachkovsky, Stephen Shipman
and Frank Sottile for interesting discussions and insightful suggestions, and we also thank the referees for
their careful reading and helpful comments on the manuscript.

References

[Ashcroft and Mermin 1976] N. W. Ashcroft and N. D. Mermin, Solid state physics, Holt, Rinehart and Winston, New York,
1976. Zbl

[Band et al. 2015] R. Band, G. Berkolaiko, and T. Weyand, “Anomalous nodal count and singularities in the dispersion relation
of honeycomb graphs”, J. Math. Phys. 56:12 (2015), art. id. 122111, 1–20. MR

[Berkolaiko 2013] G. Berkolaiko, “Nodal count of graph eigenfunctions via magnetic perturbation”, Anal. PDE 6:5 (2013),
1213–1233. MR Zbl

[Berkolaiko and Comech 2018] G. Berkolaiko and A. Comech, “Symmetry and Dirac points in graphene spectrum”, J. Spectr.
Theory 8:3 (2018), 1099–1147. MR Zbl

[Berkolaiko and Kuchment 2013] G. Berkolaiko and P. Kuchment, Introduction to quantum graphs, Mathematical Surveys and
Monographs 186, Amer. Math. Soc., Providence, RI, 2013. MR Zbl

[Berkolaiko and Kuchment 2022] G. Berkolaiko and P. Kuchment, “Spectral shift via “lateral” perturbation”, J. Spectr. Theory
12:1 (2022), 83–104. MR Zbl

http://msp.org/idx/zbl/1118.82001
http://dx.doi.org/10.1063/1.4937119
http://dx.doi.org/10.1063/1.4937119
http://msp.org/idx/mr/3434868
http://dx.doi.org/10.2140/apde.2013.6.1213
http://msp.org/idx/mr/3125554
http://msp.org/idx/zbl/1281.35089
http://dx.doi.org/10.4171/JST/223
http://msp.org/idx/mr/3831157
http://msp.org/idx/zbl/1411.35092
http://dx.doi.org/10.1090/surv/186
http://msp.org/idx/mr/3013208
http://msp.org/idx/zbl/1318.81005
http://dx.doi.org/10.4171/jst/395
http://msp.org/idx/mr/4404808
http://msp.org/idx/zbl/07500897


A  L O C A L  T E S T  F O R G L O B A L E X T R E M A  IN T H E DISPERS ION R E L AT I O N OF A  PE R I ODIC GRAPH 285

[Berkolaiko and Parulekar 2021] G. Berkolaiko and A. Parulekar, “Locating conical degeneracies in the spectra of parametric
self-adjoint matrices”, SIAM J. Matrix Anal. Appl. 42:1 (2021), 224–242. MR Zbl

[Carlson et al. 1974] D. Carlson, E. Haynsworth, and T. Markham, “A generalization of the Schur complement by means of the
Moore–Penrose inverse”, SIAM J. Appl. Math. 26 (1974), 169–175. MR Zbl

[Castro Neto et al. 2007] A. Castro Neto, F. Guinea, N. Peres, K .  Novoselov, and A. Geim, “The electronic properties of
graphene”, Rev. Mod. Phys. 81 (2007), 109–162.

[Cottle 1974] R. W. Cottle, “Manifestations of the Schur complement”, Linear Algebra Appl. 8 (1974), 189–211. MR Zbl
[Dieci and Pugliese 2009] L.  Dieci and A. Pugliese, “Two-parameter SVD: coalescing singular values and periodicity”, SIAM J.

Matrix Anal. Appl. 31:2 (2009), 375–403. MR
[Dieci et al. 2013] L.  Dieci, A. Papini, and A. Pugliese, “Approximating coalescing points for eigenvalues of Hermitian matrices

of three parameters”, SIAM J. Matrix Anal. Appl. 34:2 (2013), 519–541. MR
[Do et al. 2017] N. T. Do, P. Kuchment, and B. Ong, “On resonant spectral gaps in quantum graphs”, pp. 213–222 in Functional

analysis and operator theory for quantum physics, edited by J. Dittrich et al., EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich,
2017. MR Zbl

[Do et al. 2020] N. Do, P. Kuchment, and F. Sottile, “Generic properties of dispersion relations for discrete periodic operators”,
J. Math. Phys. 61:10 (2020), art. id. 103502, 1–19. MR Zbl

[Exner et al. 2010] P. Exner, P. Kuchment, and B. Winn, “On the location of spectral edges in Z-periodic media”, J. Phys. A
43:47 (2010), art. id. 474022, 1–8. MR Zbl

[Fefferman and Weinstein 2012] C. L .  Fefferman and M. I. Weinstein, “Honeycomb lattice potentials and Dirac points”, J. Amer.
Math. Soc. 25:4 (2012), 1169–1220. MR Zbl

[Filonov and Kachkovskiy 2018] N. Filonov and I. Kachkovskiy, “On the structure of band edges of 2-dimensional periodic
elliptic operators”, Acta Math. 221:1 (2018), 59–80. MR Zbl

[Guzmán-Silva et al. 2014] D. Guzmán-Silva, C. Mejía-Cortés, M. A. Bandres, M. C. Rechtsman, S. Weimann, S. Nolte, M.
Segev, A. Szameit, and R. A. Vicencio, “Experimental observation of bulk and edge transport in photonic Lieb lattices”, New
J. Physics 16:6 (2014), art. id. 063061, 1–8.

[Haldane 1988] F. D. M. Haldane, “Model for a quantum hall effect without Landau levels: condensed-matter realization of the
"parity anomaly"”, Phys. Rev. Lett. 61 (1988), 2015–2018.

[Han and Fujiwara 1985] S.-P. Han and O. Fujiwara, “An inertia theorem for symmetric matrices and its application to nonlinear
programming”, Linear Algebra Appl. 72 (1985), 47–58. MR

[Harrison et al. 2007] J. M. Harrison, P. Kuchment, A. Sobolev, and B. Winn, “On occurrence of spectral edges for periodic
operators inside the Brillouin zone”, J. Phys. A 40:27 (2007), 7597–7618. MR Zbl

[Haynsworth 1968] E. V. Haynsworth, “Determination of the inertia of a partitioned Hermitian matrix”, Linear Algebra Appl.
1:1 (1968), 73–81. MR Zbl

[Higuchi and Shirai 1999] Y.  Higuchi and T. Shirai, “The spectrum of magnetic Schrödinger operators on a graph with periodic
structure”, J. Funct. Anal. 169:2 (1999), 456–480. MR Zbl

[Jongen et al. 1987] H. T. Jongen, T. Möbert, J. Rückmann, and K.  Tammer, “On inertia and Schur complement in optimization”,
Linear Algebra Appl. 95 (1987), 97–109. MR Zbl

[Kato 1976] T. Kato, Perturbation theory for linear operators, 2nd ed., Grundl. Math. Wissen. 132, Springer, 1976. MR Zbl
[Katsnelson 2012] M. I. Katsnelson, Graphene: carbon in two dimensions, Cambridge University Press, 2012.
[Kollár et al. 2020] A. J. Kollár, M. Fitzpatrick, P. Sarnak, and A. A. Houck, “Line-graph lattices: Euclidean and non-Euclidean

flat bands, and implementations in circuit quantum electrodynamics”, Comm. Math. Phys. 376:3 (2020), 1909–1956. MR Zbl
[Korotyaev and Saburova 2017] E. Korotyaev and N. Saburova, “Magnetic Schrödinger operators on periodic discrete graphs”,
J. Funct. Anal. 272:4 (2017), 1625–1660. MR Zbl

[Korotyaev and Saburova 2020] E. Korotyaev and N. Saburova, “Invariants for Laplacians on periodic graphs”, Math. Ann.
377:1-2 (2020), 723–758. MR Zbl

[Kuchment 2016] P. Kuchment, “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc. (N.S.) 53:3 (2016), 343–414.
MR Zbl

http://dx.doi.org/10.1137/20M134174X
http://dx.doi.org/10.1137/20M134174X
http://msp.org/idx/mr/4222187
http://msp.org/idx/zbl/1467.65028
http://dx.doi.org/10.1137/0126013
http://dx.doi.org/10.1137/0126013
http://msp.org/idx/mr/347843
http://msp.org/idx/zbl/0245.15002
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1016/0024-3795(74)90066-4
http://msp.org/idx/mr/354727
http://msp.org/idx/zbl/0284.15005
http://dx.doi.org/10.1137/07067982X
http://msp.org/idx/mr/2530255
http://dx.doi.org/10.1137/120898036
http://dx.doi.org/10.1137/120898036
http://msp.org/idx/mr/3054590
http://msp.org/idx/mr/3677013
http://msp.org/idx/zbl/1372.81069
http://dx.doi.org/10.1063/5.0018562
http://msp.org/idx/mr/4157425
http://msp.org/idx/zbl/1454.81060
http://dx.doi.org/10.1088/1751-8113/43/47/474022
http://msp.org/idx/mr/2738117
http://msp.org/idx/zbl/1204.81063
http://dx.doi.org/10.1090/S0894-0347-2012-00745-0
http://msp.org/idx/mr/2947949
http://msp.org/idx/zbl/1316.35214
http://dx.doi.org/10.4310/ACTA.2018.v221.n1.a2
http://dx.doi.org/10.4310/ACTA.2018.v221.n1.a2
http://msp.org/idx/mr/3877018
http://msp.org/idx/zbl/1407.35072
http://dx.doi.org/10.1088/1367-2630/16/6/063061
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1016/0024-3795(85)90141-7
http://dx.doi.org/10.1016/0024-3795(85)90141-7
http://msp.org/idx/mr/815251
http://dx.doi.org/10.1088/1751-8113/40/27/011
http://dx.doi.org/10.1088/1751-8113/40/27/011
http://msp.org/idx/mr/2369966
http://msp.org/idx/zbl/1141.82340
http://dx.doi.org/10.1016/0024-3795(68)90050-5
http://msp.org/idx/mr/223392
http://msp.org/idx/zbl/0155.06304
http://dx.doi.org/10.1006/jfan.1999.3478
http://dx.doi.org/10.1006/jfan.1999.3478
http://msp.org/idx/mr/1730561
http://msp.org/idx/zbl/1073.47517
http://dx.doi.org/10.1016/0024-3795(87)90028-0
http://msp.org/idx/mr/907394
http://msp.org/idx/zbl/0642.90091
http://msp.org/idx/mr/0407617
http://msp.org/idx/zbl/0342.47009
http://dx.doi.org/10.1017/CBO9781139031080
http://dx.doi.org/10.1007/s00220-019-03645-8
http://dx.doi.org/10.1007/s00220-019-03645-8
http://msp.org/idx/mr/4104540
http://msp.org/idx/zbl/1481.81007
http://dx.doi.org/10.1016/j.jfa.2016.12.015
http://msp.org/idx/mr/3590247
http://msp.org/idx/zbl/1355.81081
http://dx.doi.org/10.1007/s00208-019-01842-3
http://msp.org/idx/mr/4099624
http://msp.org/idx/zbl/1454.47038
http://dx.doi.org/10.1090/bull/1528
http://msp.org/idx/mr/3501794
http://msp.org/idx/zbl/1346.35170


286 G R E G O RY B E R K O L A I K O ,  YA I Z A  C A N Z A N I , GR AHA M C O X A N D J E R E M Y L O UI S M A R Z U O L A

[Maddocks 1988] J. H. Maddocks, “Restricted quadratic forms, inertia theorems, and the Schur complement”, Linear Algebra
Appl. 108 (1988), 1–36. MR Zbl

[Marzuola et al. 2019] J. L .  Marzuola, M. Rechtsman, B. Osting, and M. Bandres, “Bulk soliton dynamics in bosonic topological
insulators”, preprint, 2019. arXiv 1904.10312

[Milatovic 2011] O. Milatovic, “Essential self-adjointness of magnetic Schrödinger operators on locally finite graphs”, Integral
Equ. Oper. Theory 71:1 (2011), 13–27. MR Zbl

[Morse 1971] M. Morse, “Subordinate quadratic forms and their complementary forms”, Proc. Nat. Acad. Sci. U.S.A. 68 (1971),
579. MR Zbl

[Mukherjee et al. 2015] S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P. Öhberg, E. Andersson, and R. R. Thomson,
“Observation of a localized flat-band state in a photonic Lieb lattice”, Phys. Rev. Lett. 114 (2015), art. id. 245504, 1–5.

[Ozawa et al. 2019] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L .  Lu, M. C. Rechtsman, D. Schuster, J. Simon,
O. Zilberberg, and I. Carusotto, “Topological photonics”, Rev. Mod. Phys. 91 (2019), art. id. 015006, 1–76.

[Schenker and Aizenman 2000] J. H. Schenker and M. Aizenman, “The creation of spectral gaps by graph decoration”, Lett.
Math. Phys. 53:3 (2000), 253–262. MR Zbl

[Schmüdgen 2012] K .  Schmüdgen, Unbounded self-adjoint operators on Hilbert space, Graduate Texts in Mathematics 265,
Springer, 2012. MR Zbl

[Shen et al. 2010] R. Shen, L.  B. Shao, B. Wang, and D. Y.  Xing, “Single Dirac cone with a flat band touching on line-centered-
square optical lattices”, Phys. Rev. B 81 (2010), art. id. 041410.

[Shipman 2014] S. P. Shipman, “Eigenfunctions of unbounded support for embedded eigenvalues of locally perturbed periodic
graph operators”, Comm. Math. Phys. 332:2 (2014), 605–626. MR Zbl

[Colin de Verdière 1999] Y.  Colin de Verdière, “Déterminants et intégrales de Fresnel”, Ann. Inst. Fourier (Grenoble) 49:3
(1999), 861–881. MR Zbl

[Colin de Verdière 2013] Y.  Colin de Verdière, “Magnetic interpretation of the nodal defect on graphs”, Anal. PDE 6:5 (2013),
1235–1242. MR Zbl

[Colin de Verdière et al. 2011] Y.  Colin de Verdière, N. Torki-Hamza, and F. Truc, “Essential self-adjointness for combinatorial
Schrödinger operators III—Magnetic fields”, Ann. Fac. Sci. Toulouse Math. (6) 20:3 (2011), 599–611. MR

[Wallace 1947] P. R. Wallace, “The band theory of graphite”, Phys. Rev. 71 (1947), 622–634. Zbl

Received 29 Mar 2021. Revised 13 Dec 2021. Accepted 26 Jan 2022.

G R E G O RY B E R K O L A I K O :  berko@math.tamu.edu
Department of Mathematics, Texas A&M University, College Station, TX,  United States

YA I Z A  C A N Z A N I : canzani@email.unc.edu
Department of Mathematics, University of North Carolina, Chapel Hill, NC, United States

GR A H A M C O X : gcox@mun.ca
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL, Canada

J E R E M Y  L O U I S M A R Z U O L A : marzuola@math.unc.edu
Department of Mathematics, University of North Carolina, Chapel Hill, NC, United States

mathematical sciences publishers                                                                                                                                                       msp

http://dx.doi.org/10.1016/0024-3795(88)90177-2
http://msp.org/idx/mr/959695
http://msp.org/idx/zbl/0653.15020
http://msp.org/idx/arx/1904.10312
http://dx.doi.org/10.1007/s00020-011-1882-3
http://msp.org/idx/mr/2822425
http://msp.org/idx/zbl/1234.35077
http://dx.doi.org/10.1073/pnas.68.3.579
http://msp.org/idx/mr/287558
http://msp.org/idx/zbl/0221.15023
http://dx.doi.org/10.1103/PhysRevLett.114.245504
http://dx.doi.org/10.1103/RevModPhys.91.015006
http://dx.doi.org/10.1023/A:1011032212489
http://msp.org/idx/mr/1808253
http://msp.org/idx/zbl/0990.47006
http://dx.doi.org/10.1007/978-94-007-4753-1
http://msp.org/idx/mr/2953553
http://msp.org/idx/zbl/1257.47001
http://dx.doi.org/10.1103/PhysRevB.81.041410
http://dx.doi.org/10.1103/PhysRevB.81.041410
http://dx.doi.org/10.1007/s00220-014-2113-y
http://dx.doi.org/10.1007/s00220-014-2113-y
http://msp.org/idx/mr/3257657
http://msp.org/idx/zbl/1301.39015
http://dx.doi.org/10.5802/aif.1696
http://msp.org/idx/mr/1703428
http://msp.org/idx/zbl/0920.35042
http://dx.doi.org/10.2140/apde.2013.6.1235
http://msp.org/idx/mr/3125555
http://msp.org/idx/zbl/1281.35090
http://dx.doi.org/10.5802/afst.1319
http://dx.doi.org/10.5802/afst.1319
http://msp.org/idx/mr/2894840
http://dx.doi.org/10.1103/PhysRev.71.622
http://msp.org/idx/zbl/0033.14304
mailto:berko@math.tamu.edu
mailto:canzani@email.unc.edu
mailto:gcox@mun.ca
mailto:marzuola@math.unc.edu
http://msp.org

