
Practical Asynchronous Distributed Key Generation

Sourav Das∗, Thomas Yurek∗, Zhuolun Xiang∗, Andrew Miller∗, Lefteris Kokoris-Kogias†, and Ling Ren∗

∗University of Illinois at Urbana-Champaign, †IST Austria

{souravd2, yurek2, xiangzl, soc1024, renling}@illinois.edu, ekokoris@ist.ac.at

Abstract—Distributed Key Generation (DKG) is a technique
to bootstrap threshold cryptosystems without a trusted third
party and is a building block to decentralized protocols such
as randomness beacons, threshold signatures, and general
multiparty computation. Until recently, DKG protocols have
assumed the synchronous model and thus are vulnerable when
their underlying network assumptions do not hold. The recent
advancements in asynchronous DKG protocols are insufficient
as they either have poor efficiency or limited functionality,
resulting in a lack of concrete implementations.

In this paper, we present a simple and concretely efficient
asynchronous DKG (ADKG) protocol. In a network of n nodes,
our ADKG protocol can tolerate up to t < n/3 malicious nodes
and have an expected O(κn3) communication cost, where κ
is the security parameter. Our ADKG protocol produces a
field element as the secret and is thus compatible with off-
the-shelf threshold cryptosystems. We implement our ADKG
protocol and evaluate it using a network of up to 128 nodes
in geographically distributed AWS instances. Our evaluation
shows that our protocol takes as low as 3 and 9.5 seconds to
terminate for 32 and 64 nodes, respectively. Also, each node
sends only 0.7 Megabytes and 2.9 Megabytes of data during
the two experiments, respectively.

I. INTRODUCTION

A Distributed Key Generation (DKG) protocol enables

a set of mutually distrustful nodes to jointly generate a

public/private key pair. The private key is secret-shared

among the nodes via a threshold secret sharing scheme

and is never reconstructed or stored at a single node. The

secret-shared private keys can later be used in a threshold

cryptosystem, e.g., to produce threshold signatures [9], [31],

to decrypt ciphertexts of threshold encryption [21], [42] or to

generate common coins [12] for consensus [41], [29], [30],

[18], [32].

The increasing demand for decentralized Byzantine Fault

Tolerant (BFT) applications over the Internet revived in-

terests in DKG protocols. Many state-of-the-art BFT pro-

tocols use threshold signatures to improve communication

efficiency [57], [5], [44], [29] and/or threshold encryptions

to prevent censorship [45], [22], [44], [36]. For asynchronous

BFT protocols [45], [22], [27], [44], [36], [41] that assume

no bounded message delay, shared randomness is required to

circumvent the FLP impossibility [25]. All of these threshold

cryptographic primitives require nodes to have secret shares

of a private key. The naïve way to bootstrap them is to

rely on a trusted dealer whose corruption will break the

entire system. A DKG protocol is necessary to bootstrap

the above threshold cryptographic primitives while avoiding

any central trust or single point of failure.

Numerous DKG protocols are known when the underlying

network is synchronous [50], [13], [26], [14], [31], [47],

[37], [53], [35] (see §IX). In contrast, only a handful of

recent works have looked into DKG for asynchronous net-

works, which we call asynchronous DKG (ADKG) [43], [4],

[28], [19]. Kokoris et al. [43] presented the first ADKG pro-

tocol. Their construction uses n concurrent high-threshold

asynchronous complete secret sharing (ACSS) schemes to

construct an ADKG protocol that has an expected total

communication cost of O(κn4) and terminates in expected

O(n) rounds. Here κ is the security parameter. Recently,

Abraham et al. [4] proposed a special-purpose of ADKG

protocol with an expected total communication cost of

O(κn3 log n), which is later improved to O(κn3) by Gao et

al. [28] and Das et al. [19]. We say these ADKG schemes

are special-purpose because the distributed secret key is a

group element rather than a field element (i.e., gz rather than

z), so they cannot be used in most off-the-shelf threshold

encryption [21] or threshold signature protocols [9]. We

summarize existing works in Table I.

Our results. In this paper, we design a new simple and

concretely efficient ADKG protocol for discrete logarithm

based threshold cryptosystems. In an asynchronous network

of n ≥ 3t + 1 nodes, where at most t nodes could

be malicious, our ADKG protocol achieves an expected

communication cost of O(κn3) and terminates in expected

O(log n) rounds. Hence, our protocol improves upon the

prior known general-purpose ADKG protocol of Kokoris-

Kogias et al. [43] by a factor of n in communication and a

factor of n/log n in expected runtime. For setup assumption,

Kokoris-Kogias et al. [43] assumes Random Oracle (RO),

and our protocol assumes RO and PKI (PKI needed only

for our ACSS construction).

At the end of our protocol, each node receives a threshold

secret share of a randomly chosen secret z ∈ Zq , where Zq

is a field of size q. Thus, our protocol is compatible with

off-the-shelf discrete-logarithm based threshold cryptosys-

tems [21], [9], [31].

Our protocol also supports any reconstruction threshold

` ∈ [t + 1, n − t], i.e., ` nodes are required to use the

secret key z (e.g., to produce a threshold signature or decrypt

a threshold encryption). To get this property efficiently,

we design a new additively homomorphic high-threshold

2518

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Sourav Das. Under license to IEEE.
DOI 10.1109/SP46214.2022.00120

2
0
2
2
 I

E
E

E
 S

y
m

p
o
si

u
m

 o
n
 S

ec
u
ri

ty
 a

n
d
 P

ri
v
ac

y
 (

S
P

)
| 9

7
8
-1

-6
6
5
4
-1

3
1
6
-9

/2
2
/$

3
1
.0

0
 ©

2
0
2
2
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/S

P
4
6
2
1
4
.2

0
2
2
.9

8
3
3
5
8
4

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 05,2023 at 18:51:48 UTC from IEEE Xplore. Restrictions apply.

Table I: Comparison of existing DKG protocols. We use B(L) and R to denote the communication cost of Byzantine broadcast of L-bit
message and round complexity of Byzantine broadcast, respectively. We measure the computation cost in terms of number of group
exponentiations.

N
et

w
o

rk
m

o
d

el

F
au

lt
T

o
le

ra
n

ce

A
d

ap
ti

v
e

A
d

v
er

sa
ry

S
ec

re
t

k
ey

fr
o

m
a

F
ie

ld
?

H
ig

h
T

h
re

sh
o

ld

P
u

b
li

cl
y

V
er

ifi
ab

le

C
o

m
m

u
n

ic
at

io
n

C
o

st
(p

er
n

o
d

e)

C
o

m
p

u
ta

ti
o

n
C

o
st

(p
er

n
o

d
e)

T
o

ta
l

R
o

u
n

d
C

o
m

p
le

x
it

y

C
ry

p
to

g
ra

p
h

ic
A

ss
u

m
p

ti
o

n

S
et

u
p

A
ss

u
m

p
ti

o
n

Gennaro et al. [31] sync. 1/2 7 3 3 7 O(n · B(κ)) O(n2) O(R) DDH CRS

Canneti et al. [13] sync. 1/2 3 3 3 7 O(n · B(κ)) O(n2) O(R) DDH CRS

Fouque-Stern [26] sync. 1/2 7 3 3 3 O(B(κn)) O(n2) O(R) DCR RO & PKI

Neji et al. [47] sync. 1/2 7 3 3 7 O(n · B(κ)) O(n2) O(R) DDH CRS

Gurkan et al. [37] sync. logn 7 7 3 3 O(logn · B(κn) + n · B(κ)) O(n log2 n) O(R+ logn) SXDH RO & PKI

Groth [35] sync. 1/2 7 3 3 3 O(B(κn)) O(n2) O(R) DDH RO & PKI

Kate et al. [40] partial sync. 1/3 7 3 7 7 O(κn3) O(n3) O(n) DDH RO & PKI

Kokoris et al. [43] async. 1/3 7 3 3 7 O(κn3) O(n3) O(n) DDH RO

Abraham et al. [4], [28], [19] async. 1/3 7 7 7† 7 O(κn2) O(n2) O(1) SXDH RO & PKI

This work async. 1/3 7 3 3 7 O(κn2) O(n3)‡ O(logn) DDH RO & PKI

† These works do not explicitly discuss whether their protocols support high-
threshold or not. But we believe their protocols can be made to support
high-threshold with minor modification.

‡ In our protocol, for reconstruction threshold of t+1, in the common case
in practice, each node only incurs a quadratic computation (see §V)

ACSS scheme with an expected communication cost of

O(κn2). Our high-threshold ACSS assumes the hardness

of Decisional Composite Residuosity (DCR) in the Random

Oracle model and does not require a trusted setup. Our high-

threshold ACSS scheme improves the communication cost

by a factor of log n over the prior best scheme of [6]. This

result may be of independent interest.

Evaluation. We implement our ADKG protocol and

made our implementation available at https://github.

com/sourav1547/adkg. Our implementation supports both

curve25519 and bls12-381 elliptic curves and any recon-

struction threshold in the range [t + 1, n − t]. We evaluate

with up to 128 nodes in geographically distributed Amazon

EC2 instances. For a reconstruction threshold of t+ 1 with

32 nodes and either curve, our single-thread implementation

takes about 3 seconds and each node sends 0.7 Megabytes

of data. When the reconstruction threshold is n − t, for 32
nodes, our ADKG takes 38 and 41 seconds for curve25519

and bls12-381 elliptic curves, respectively, while each node

sends approximately 4.2 Megabytes of data.

Paper Organization. The rest of the paper is organized as

follows. In §II we describe our system model, define the

ADKG problem, and present an overview of our ADKG

protocol. We then describe preliminaries used in our protocol

in §III. We present the detailed design of our ADKG

protocol in §IV and analyze it in §V. In §VI we briefly

describe how to extend our ADKG protocol to support a

reconstruction threshold of up to n−t. We then describe our

new additively homomorphic high-threshold ACSS scheme

with quadratic communication cost in §VII. In §VIII we

provide implementation details and our evaluation results.

We discuss related work in §IX and conclude in §X.

II. SYSTEM MODEL AND OVERVIEW

A. Notations and System Model

We use κ to denote the security parameter. For example,

when we use a collision-resistant hash function, κ denotes

the size of the output of the hash function. We use |S| to

denote the size of a set S. Let Zq be a finite field of order

q. For any integer a, we use [a] to denote the ordered set

{1, 2, . . . , a}. Also, for two integers a and b where a < b,
we use [a, b] to denote the ordered set {a, a+ 1, . . . , b}.

Threat model and network assumption. We consider a

network of n nodes where every pair of nodes is connected

via a pairwise authenticated channel. We consider the pres-

ence of a malicious adversary A that can corrupt up to t
of the at least 3t + 1 nodes in the network. We assume

the network is asynchronous, i.e., A can arbitrarily delay

any message but must eventually deliver all messages sent

between honest nodes.

B. Definition of ADKG

As mentioned in §I, in this paper, we focus on ADKG

for discrete logarithm-based cryptosystems such as ElGamal

encryption [23] and BLS signatures [10], [9]. Our definition

is inspired from the DKG definition from Gennaro et al. [31].

A distributed key generation protocol for a discrete log-

arithm cryptosystem amounts to secret sharing a uniformly

random value z ∈ Zq and making public the value y = hz ,

where h is a random generator of a group G of order q.

With n nodes, at the end of the protocol, each node outputs

a (n, `)-threshold Shamir share [54] of the secret z, where `
shares are needed to use z. More precisely, let p(·) ∈ Zq[x]
be a random polynomial of degree `−1 such that p(0) = z.

At the end of the DKG protocol, the ith node outputs its

2
2519

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 05,2023 at 18:51:48 UTC from IEEE Xplore. Restrictions apply.

share of the secret key zi = p(i), and every node outputs

the public key y = hz . A DKG protocol is called t-secure

if the following Correctness and Secrecy properties hold in

the presence of an adversary A that corrupts up to t nodes.

• Correctness:

(C1) All subsets of ` shares provided by honest parties

define the same unique secret key z.

(C2) All honest nodes output the same public key y = hz

where z is the unique secret guaranteed by (C1).

(C3) The secret key z is computationally indistinguishable

from a uniformly random element in Zq .

Additionally, applications of DKG such as threshold sig-

natures and threshold encryption require that in addition to

y, threshold public keys of all nodes are also publicly known.

So we add a fourth correctness requirement.

(C4) All honest nodes agree on and output the threshold

public keys of all nodes. The threshold public key of

node j is yj = hzj .

• Secrecy: No information about the secret z can be learned

by a computationally bounded adversary beyond the pub-

lic key y = hz .

We define the secrecy property in terms of simulatability:

for every probabilistic polynomial-time (PPT) adversary A
that corrupts up to t nodes, there exists a PPT simulator S ,

such that on input of a uniformly random element y ∈ G,

produces a view which is indistinguishable from A’s view

of a run of the ADKG protocol that ends with y as its public

key output.

Remark. Our property C3 is slightly weaker than the

property C3 defined in Gennaro et al. [31]. In particular,

Gennaro et al. require that the secret key is uniformly

random, whereas we only require the secret key to be

computationally indistinguishable from uniform random.

C. Overview of our Protocol

Existing DKG protocols have the following typical struc-

ture: Each node runs a concurrent instance of verifiable

secret sharing (VSS) to share a randomly chosen secret

with every other node. Once secret-sharing finishes for t+1
nodes, nodes locally aggregate their shares to compute the

share of the final secret key z. Briefly, the intuition is that

the aggregated secret key contains the contribution of at least

one honest node and thus remains hidden from the adversary.

Although the idea is simple, there are many challenges

for this idea to work in an asynchronous network. The

biggest challenge is to agree on which shares to aggregate

for the final secret key z. It is well-known that reaching

agreement under asynchrony requires randomness [25], of-

ten shared randomness [12], [46], [17]. However, existing

efficient mechanisms to generate shared randomness assume

threshold secret-shared keys, hence creating a circularity.

The inefficiency or lack of generality of prior works often

results from difficulties in tackling this circularity.

We address this circularity with a new approach illustrated

in Figure 1. After nodes finish their secret-sharing step, we

let each node i propose, using a reliable broadcast (RBC),

a set of nodes that i believes performed the secret-sharing

correctly. We refer to the set proposed by node i as the

ith intermediate key set and denote it using Ti. Then we

run n concurrent asynchronous Byzantine binary agree-

ment (ABA) instances. The ith ABA instance uses the ith

intermediate key set Ti to generate shared randomness. The

output of the ith ABA instance decides whether or not the

ith intermediate key set should be included in the final

key. Finally, once all ABA instances terminate, we use the

approach from Neji et al. [47] to compute the final public

key hz .

However, two challenges remain for the above approach.

Challenge 1. Ensure all honest nodes receive all the shares

required to generate shared randomness and to compute their

share of the final secret key z.

By definition, an asynchronous verifiable secret sharing

(AVSS) scheme allows a situation where enough, but not

all, honest nodes receive their shares from the dealer. Such

a situation usually arises when a malicious dealer sends

valid shares to a subset of honest nodes, and the corrupted

nodes also claim to have the shares so that all honest

nodes terminate the sharing phase. Hence, with AVSS, it is

possible that not all honest nodes received shares of every

AVSS instance included in an intermediate key set Ti. Such

situations prohibit nodes from aggregating AVSS instances

in Ti, which is required for generating shared randomness

and computing its share of the final secret key z.

We address this issue using two ideas. First, we use

asynchronous complete secret sharing (ACSS) instead of

AVSS. A crucial property of ACSS is that it ensures that

if it terminates successfully at one honest node, then all

honest nodes will eventually receive a valid share. Second,

an honest node i participates in the reliable broadcast (RBC)

of key set proposal Tj only after every ACSS instance in Tj

has terminated at node i. This ensures if a RBC instance

delivers Tj at any honest node, then every ACSS instance

in Tj will eventually terminate at all honest nodes, which

further ensures that honest nodes can construct the shared

randomness for jth ABA as well as the final secret key.

Challenge 2. Ensure all ABA instances terminate, even if

some malicious nodes do not send their intermediate key

sets.

There is a subtle liveness issue in the approach we

described so far. If a malicious node j does not propose

the jth intermediate key set, then there is no shared ran-

domness available for the jth ABA to circumvent the FLP

impossibility [25]. To resolve this issue, we make the crucial

observation that the FLP impossibility only applies when

the initial state is bivalent, i.e., honest nodes have different

inputs. For a univalent initial state, i.e., all honest nodes have

the same input, there is no impossibility, and agreement can

3
2520

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 05,2023 at 18:51:48 UTC from IEEE Xplore. Restrictions apply.

Node 1

Node 2

Node 3

Node 4

-parallel
ACSS

-parallel
RBC

-parallel
ABA

[1,0,1,0]

[1,0,1,0]

[1,0,1,0]

Interpolate and
output

Interpolate and
output

Interpolate and
output

Sharing Phase Key Set Proposal Phase Agreement Phase Key Derivation Phase

Figure 1: Overview of our ADKG protocol in a network of 4 nodes where node 4 is malicious. During the Sharing phase, each node
secret shares a random secret using a ACSS protocol. During the Key Set Proposal phase, each node waits till t + 1 ACSS terminates
locally. Let Ti be the set of t + 1 ACSS instances that terminated at node i. Node i then reliably broadcasts Ti. During the agreement
phase, nodes agree on which nodes proposed a valid key set using n-parallel ABAs. Also, for ith ABA nodes use the secrets of nodes
in Ti to generate shared randomness. Finally, once all ABA instances terminate, nodes reconstruct the final public key during the Key
Derivation phase.

terminate without any randomness. Therefore, we designed

our protocol to ensure that if a malicious node does not

propose an intermediate key set, it leads to a univalent

initial state for ABA. In particular, in such a situation, all

honest nodes input 0, and we need the ABA to output

0 without using randomness. We refer to this property as

Good-Case-Coin-Free, and indeed, the ABA protocol due to

Crain [17] (restated in Appendix B) has this property. Hence,

either all honest nodes input 0 to ABA and it terminates

deterministically or, thanks to ACSS, eventually all honest

nodes receive the intermediate key set and thus can generate

shared randomness to circumvent FLP.

III. PRELIMINARIES

In this section, we describe the preliminaries used in our

ADKG protocol. We summarize the notations used in the

paper in Table II.

Table II: Notations used in the paper

Notation Description

n Total number of nodes
t Maximum number of malicious nodes
Zq Field of order q where q is prime
G Group of order q where DDH is assumed to be hard
g, h Random and independent generators of G
z, hz ADKG secret and public key
zi Secret share of z output by node i
hzi Threshold public key of node i
` Reconstruction threshold of ADKG
κ Security parameter

pki, ski Public and secret keys of ith node.

si Secret chosen by ith node during sharing phase

pi(·) Polynomial chosen by ith node to share si
vi Feldman commitment of the polynomial pi(·)
si,j pi(j), i.e., pi(·) evaluated at j
vi,j Commitment of si,j computed as gsi,j

Ti Intermediate key set proposed by node i in RBC
T ′
i Indices of ACSS that terminates at node i

A. Validated Reliable Broadcast

Definition 1 (Reliable Broadcast [11]). A protocol for a

set of nodes {1,, n}, where a distinguished node called

the broadcaster holds an initial input M , is a reliable

broadcast (RBC) protocol, if the following properties hold

• Agreement: If an honest node outputs a message M ′ and

another honest node outputs M ′′, then M ′ = M ′′.

• Validity: If the broadcaster is honest, all honest nodes

eventually output the message M .

• Totality: If an honest node outputs a message, then every

honest node eventually outputs a message.

We will use the recent validated RBC protocol of [19].

For a message M , its communication cost is O(n|M |+κn2)
where |M | is the size of M and κ is the output size of a

collision-resistant hash function.

B. Asynchronous Complete Secret Sharing

Definition 2 (Asynchronous Complete Secret Sharing). An

ACSS protocol consists of two phases: Sharing and Recon-

struction. During the sharing phase, a dealer L shares a

secret s using Sh. During the reconstruction phase, nodes

use Rec to recover the secret. We say that (Sh,Rec) is a t-
resilient ACSS protocol if the following properties hold with

probability 1− negl(κ) against an adversary controlling up

to t nodes:

• Termination:

1) If the dealer L is honest, then each honest node will

eventually terminate the Sh protocol.

2) If an honest node terminates the Sh protocol, then every

honest node will eventually terminate Sh.

3) If all honest nodes start Rec, then each honest node will

eventually terminate Rec.

• Correctness:

1) If L is honest, then each honest node upon terminating

Rec, outputs the shared secret s.

4
2521

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 05,2023 at 18:51:48 UTC from IEEE Xplore. Restrictions apply.

2) If some honest node terminates Sh, then there exists a

fixed secret s′ ∈ Zq , such that each honest node upon

completing Rec, will output s′.

• Secrecy: If L is honest and no honest node has begun

executing Rec, then an adversary that corrupts up to t
nodes has no information about s.

• Completeness: If some honest node terminates Sh, then

there exists a degree t polynomial p(·) over Zq such that

p(0) = s′ and each honest node i will eventually hold a

share si = p(i). Moreover, when L is honest s′ = s.

We need to slightly relax the above standard secrecy

notion: for a uniformly random s ∈ Zq , we allow the ACSS

to reveal gs for a random generator g ∈ G. We prove in §V

that revealing gs does not affect the Secrecy property of our

ADKG protocol.

We also require the ACSS scheme to satisfy the following

Homomorphic-Partial-Commitment property.

• Homomorphic-Partial-Commitment: If some honest node

terminates Sh for a secret s, then every honest node

outputs commitments of si (as defined in Completeness)

for all i. Furthermore, these commitments are additively

homomorphic across different ACSS instances.

We require the Homomorphic-Partial-Commitment prop-

erty for two reasons: first, we need nodes to output the

threshold public key hzj of each node; second, we need

to aggregate commitments of distinct ACSS instances.

We observe that if an ACSS protocol outputs a Feldman

commitment of the underlying polynomial, then it guaran-

tees Homomorphic-Partial-Commitment. We briefly describe

the Feldman polynomial commitment next.

Feldman polynomial commitment. The commitment to a

random degree-d polynomial

p(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d

for uniformly random coefficients ak ∈ Zq for each k ∈
[0, d], is a vector v computed as:

v = [ga0 , ga1 , ga2 , . . . , gad]

It is easy to see that given the Feldman commitment v of

a polynomial p(·), we can compute gp(i), the commitment

of p(i) by interpolating p(i) in the exponent. Also, given

polynomial p(·) and p′(·), the commitments gp(i) and gp
′(i)

are additively homomorphic. Note that this commitment is

not completely hiding as it leaks gak for each k ∈ [0, d]. We

show in §V that revealing gak does not violate the secrecy

property of our ADKG. Also, the size of the commitment is

linear in d. Given a commitment v and a share si, a node

checks whether si = p(i) by checking whether

gsi =

d∏

k=1

vi
k

k (1)

In our paper, we use two different ACSS protocols; the

ACSS scheme from Das et al. [19] which improves upon

Yurek et al. [58], and our new ACSS scheme in §VII. We

will incorporate a Feldman commitment into each of them

to ensure the Homomorphic-Partial-Commitment property.

For the ACSS scheme of [19], we can simply use Feld-

man commitment instead of Pedersen’s commitment for the

underlying polynomial. Our high-threshold ACSS in §VII

outputs the Feldman commitment by construction.

C. Asynchronous Binary Agreement

Definition 3 (Asynchronous Binary Agreement). A proto-

col for a set of nodes {1,, n} each holding an initial

binary input b ∈ {0, 1}, is an Asynchronous Binary Agree-

ment (ABA) protocol, if the following properties hold under

asynchrony

• Agreement: No two honest nodes output different values.

• Validity: If all honest nodes have the same input value, no

honest node outputs a different value.

• Termination: Every honest node eventually outputs a

value.

All ABA protocols rely on randomization to circumvent

the FLP impossibility [25]. The most efficient approach is

to use shared randomness, provided by a common coin pro-

tocol [12]. Our ADKG protocol requires an ABA protocol

with the following additional property.

• Good-Case-Coin-Free: If all honest nodes input the same

value to the ABA, then all honest nodes output without

invoking the common coin.

The ABA protocol of Crain [17] has the Good-Case-Coin-

Free property. It uses O(n2) expected communication and

expected O(1) rounds. For completeness, we provide the

pseudocode of Crain’s ABA and explain why it satisfies the

Good-Case-Coin-Free property in Appendix B (Figure 5).

IV. DESIGN

Our ADKG protocol has four phases: Sharing, Key Set

Proposal, Agreement and Key Derivation. The first three

phases have a similar structure where we run n concurrent

instances of ACSS, RBC, and ABA, respectively, where each

node initiates one instance of ACSS and RBC, and each

ABA instance agrees on whether or not the corresponding

RBC terminates. We refer to the ACSS (RBC or ABA)

invoked by or associated with node i as the ith ACSS (RBC

or ABA). We give the pseudocode of our ADKG protocol

in Algorithm 1 and describe each phase next.

The public parameters for our ADKG protocol are a pair

of randomly and independently chosen generators (g, h) of

a group G of prime order q, in addition to any public

parameters of the ACSS protocol. In this section, we will

focus on the case of ` = t+ 1 (refer to §II-B).

5
2522

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 05,2023 at 18:51:48 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 ADKG for node i

OUTPUT: zi, h
z, {hzj} for each j ∈ [n]

PUBLIC PARAMETER: g, h, {pkj} for each j ∈ [n]

SHARING PHASE:

1: Sample a random secret s← Zq

2: ACSS(s)

KEY SET PROPOSAL PHASE:

11: Let Si = {};T
′
i = {}

12: upon termination of jth ACSS do
13: Let sj,i be the share of node i for jth ACSS.
14: Si := Si ∪ {sj,i}
15: T ′

i := T ′
i ∪ {j}

16: if |T ′
i |= t+ 1 then

17: Ti := T ′
i

18: RBC(Ti)

19: Participate in jth RBC when Tj ⊆ T ′
i

AGREEMENT PHASE:

21: upon termination of jth RBC do
22: Let Tj be the RBC output
23: upon T ′

i ⊇ Tj do

24: Input 1 to jth ABA . if it has not input any value
25: ui,j :=

∑
k∈Tj

sk,i . share of key for jth ABA coin.

26: Use ui,j for coin in jth ABA

27: T := {}
28: upon termination of jth ABA do
29: if jth ABA outputs 1 then
30: T := T ∪ Tj

31: Input 0 to all remaining ABAs

KEY DERIVATION PHASE:

41: Wait until all ABAs terminate
42: zi :=

∑
k∈T sk,i . share of final secret key z =

∑
k∈T sk

43: Let πi be the NIZK proof of logg g
zi = logh hzi

44: send 〈KEY, hzi , πi〉 to all

45: H = {}
46: upon receiving 〈KEY, hz′j , πj〉 from node j do
47: Derive gzj using the ACSS commitments

48: if πj is a valid NIZK proof of logg g
zj = logh hz′j then

49: H ← H ∪ {(j, hz′j)}
50: if |H|≥ ` then
51: Interpolate hz and any missing hzj for each j ∈ [n]
52: output zi, h

z , and hzj for each j ∈ [n]

A. Sharing Phase

During the sharing phase, each node i samples a uniformly

random secret si ∈ Zq and secret-shares it with all other

nodes using an ACSS scheme (lines 1-2 in Algorithm 1).

For ` = t + 1, we use the ACSS scheme from [19] but

replace its Pedersen polynomial commitment with a Feldman

polynomial commitment to achieve Homomorphic-Partial-

Commitment (refer to §III-B). This simply requires using

a zero-polynomial as the hiding polynomial in Pedersens’

polynomial commitment.

Let pi(·) be the degree-t polynomial where

pi(x) = si + ai,1x+ ai,2x
2 + . . .+ ai,tx

t (2)

where ai,k ← Zq are chosen at random. Due to the

completeness property of ACSS, once the ith ACSS instance

terminates, all honest nodes output an evaluation point

on pi(·). Each node additionally outputs vi, the Feldman

commitment of pi(·)

vi = [gsi , gai,1 , gai,2 , . . . , gai,t] (3)

B. Key Set Proposal Phase

During the key set proposal phase, each node i maintains

a set T ′
i of terminated ACSS instances (lines 11-15). In

particular, whenever the jth ACSS terminates at node i,
node i adds the index j to the set T ′

i (line 15), and add

its share sj,i = pj(i) (of the secret chosen by node j) to the

set Si (line 14). Let Ti be the first t+1 ACSS instances that

terminate at node i. Node i starts a RBC to broadcast Ti to

all other nodes (lines 16-18). Intuitively, Ti is the proposal

from node i for the set of nodes whose secrets are to be

aggregated for the final secret key z.

One crucial point to note here is that each node i
participates in the jth RBC only after Tj ⊆ T ′

i (line 19),

i.e., when all the ACSS instances specified in Tj have

terminated at node i. Hence, if RBC(Tj) terminates, then at

least t+1 honest nodes vouch that every ACSS instance in

Tj has terminated. Thus, due to the Completeness property

of ACSS, for every k ∈ Tj , the kth ACSS instance will

eventually terminate at all honest nodes, and every honest

node will eventually receive a valid share of the secret sk.

C. Agreement Phase

During the agreement phase, nodes try to agree on a

subset of valid key set proposals. We then use the union

of elements in these key set proposals to derive the final

secret key. As described before, the key set proposal Ti by

node i is valid if every ACSS instance in Ti has terminated.

To agree on a subset of key set proposals, nodes start n
concurrent ABA instances, where the jth ABA instance

seeks to decide whether or not the jth key set proposal is

valid. Node i inputs 1 to the jth ABA instance if the jth key

set proposal RBC successfully terminated at node i (lines

21-24). Moreover, if any shared randomness is required for

the jth ABA instance, nodes use Tj to generate the shared

randomness. More specifically, let uj be the following value

uj =
∑

k∈Tj

sk (4)

Then, during the jth ABA instance, whenever a common

coin is needed, nodes use the Diffie-Hellman threshold coin-

tossing protocol due to [12] with shared secret key uj (lines

25-26). Node i’s share of uj is ui,j =
∑

k∈Tj
sk,i. We can

then use the Homomorphic-Partial-Commitment property of

6
2523

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 05,2023 at 18:51:48 UTC from IEEE Xplore. Restrictions apply.

our ACSS to allow each node to locally compute guj and

gui,j for all i and j to finish the coin tossing setup.

As mentioned in challenge 2 of §II, if the jth node is

malicious and does not reliably broadcast a key set, nodes

will not have access to shared randomness in the jth ABA.

Fortunately, in this case, all honest nodes will input 0 to

that ABA, and that ABA will terminate without using a

common coin due to the Good-Case-Coin-Free property. For

the bivalent case where honest nodes input different values

to an ABA, at least one honest node inputs 1 to the ABA.

It implies that at least one honest node has received the

intermediate key set. By the Completeness of ACSS and

Totality of RBC, all honest nodes will eventually receive

the intermediate key set as well.

Finally, to ensure that not all ABAs terminate with 0, we

will use the elegant idea from Ben-Or et al. [8]. Briefly, each

honest node inputs 1 to all ABAs whose key set proposal

phase terminates successfully and refrains from inputting 0
to any ABA until at least one ABA terminates with 1 (lines

29-31). Once an ABA terminates with 1, every node inputs 0
to all the remaining ABAs for which it has not input anything

yet. Using an analysis similar to Ben-Or et al. [8], we show

in Lemma 1 that at least one ABA will terminate with 1.

D. Key Derivation Phase

If the jth ABA terminates with 1, we say the jth key

set proposal is accepted. Let T be the set of nodes that are

included in at least one accepted key set proposal (lines 29-

30). Note that |T |≥ t+1. We then use T to derive the final

ADKG secret key z as

z =
∑

j∈T

sj (5)

To compute the final ADKG public key hz , each node

i locally computes hzi where zi =
∑

j∈T sj,i is its share

of the secret key z. Each node i also computes a NIZK

proof πi that logg g
zi = logh h

zi (line 43). Here logg and

logh denotes the discrete logarithm with base g and h,

respectively. We use the non-interactive variant of Chaum-

Pedersen’s protocol [16] for this purpose. Note that, for any

given i, due to Homomorphic-Partial-Commitment of our

ACSS, all honest nodes can compute gzi using the partial

commitments of each ACSS instance included in T .

Finally, each node i sends 〈KEY, hzi , πi〉 to all other nodes.

Upon receiving ` valid 〈KEY, hzi , πi〉 messages, a node can

compute the public key hz and the threshold public keys hzj

for each j ∈ [n] using Lagrange interpolation (line 49-51).

V. ANALYSIS

A. Correctness

To argue Correctness, we will first argue that our ADKG

protocol terminates at all honest nodes, and that upon

termination, all honest nodes agree on the set of nodes whose

inputs are included in the final secret key.

Lemma 1. Algorithm 1 terminates at all honest nodes, and

all honest nodes output the same set of nodes whose inputs

are to be included in the final secret key.

Proof: Since n− t ≥ 2t+1, it is easy to see that every

ACSS and RBC initiated by an honest node will terminate

at all nodes. Now we show that all ABA instances terminate

and at least one ABA instance terminates with 1.

We first argue that at least one ABA instance eventually

terminates with 1, and every honest node eventually inputs

to every ABA. The key set proposal RBC of all honest

nodes will eventually terminate at all honest nodes. Hence,

all honest nodes will input 1 to the corresponding ABA

instances unless they have already input 0 to some ABA.

Consider the first ABA instance to which all honest nodes

input a value. If all honest nodes input 1, then this ABA

terminates with 1 due to the Validity of ABA. Otherwise,

if some honest node inputs 0 to this ABA, according to

Algorithm 1, some other ABA has already terminated with 1.

Hence, at least one ABA instance in terminates with 1. Then,

all honest nodes input 0 to the rest of the ABA instances if

they have not input any value already.

Now we show all ABA instances terminate. If all honest

nodes input 0 to an ABA, then this ABA terminates due

to the Good-Case-Coin-Free property of Crain’s ABA [17].

Otherwise, if at least one honest node inputs 1, then due

to Totality of RBC and Completeness of ACSS, eventually

every honest node will have the key set to generate shared

randomness. Hence, the ABA will eventually terminate.

Lemma 2 (Correctness C1 and C2). All subsets of t + 1
shares of honest nodes define the unique secret key z.

Furthermore, all honest nodes output the same public key

y = hz .

Proof: Lemma 1 implies that all honest nodes agree

on and output T . The Completeness of ACSS ensures that

every k ∈ T corresponds to a polynomial pk(·) of degree at

most t. Define p̂(·) to be
∑

k∈T pk(x). Then, z = p̂(0), and

for node j, its share of z is zj = p̂(j). This implies every

set of (at least) t+1 valid shares {j, zj} interpolates to the

unique polynomial p̂(·).

Next, we show that honest nodes can tell apart correct

shares from incorrect ones. First, for each share zj , the value

gzj can be computed from output of the sharing phase:

gzj = g
∑

i∈T si,j =
∏

i∈T

gsi,j =
∏

i∈T

t+1∏

k=0

vj
k

i,k (6)

where vi,k is the kth element of vi and the last equality

follows from the Homomorphic-Partial-Commitment prop-

erty of the ACSS scheme. With gzj , when a node receives

〈KEY, hz′
j , πj〉 from node j, it can check whether zj = z′j

due to the Soundness property of the equality of discrete

logarithm NIZK proof πj .

7
2524

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 05,2023 at 18:51:48 UTC from IEEE Xplore. Restrictions apply.

1) For each honest node i ∈ H , S samples a uniformly secret
si ∈ Zq . Follow the protocol for every honest node till
(including) the agreement phase.

2) Let T be the set of ABA instances that terminates with
1. Let s =

∑
k∈T sk.

3) Let z1, z2, . . . , zt be the shares of s held by the malicious
nodes. S then extracts z1, z2, . . . , zt as follows.

- For each honest node in k ∈ T , S already knows the
corresponding shares held by malicious nodes. Let sk,i
be the share of adversarial node i.

- For each malicious node k ∈ T , S uses n − t
shares received during sharing phase to reconstruct the
polynomial pk(·). Evaluate pk(j) for each j ∈ [t] to
get the share sk,j . Then zj =

∑
k∈T sk,j

4) Let p̂(·) be a degree-t polynomial such that p̂(0) = z
and p̂(j) = zj for each j ∈ [t]. Compute hp̂(i) for each
i ∈ [n]. For each i = [t+1, n] use Lagrange interpolation

in the exponent to compute hp̂(i).
5) For each i ∈ [t + 1, n], generate NIZK proof πi for

equality of discrete logarithm of false statements that

logg g
zi = logh hp̂(i). S uses the simulator of Chaum-

Pedersen’s protocol as described in Appendix C.
6) For each honest node i, let πi be the generated NIZK

proof. S sends 〈KEY, hp̂(i), πi〉 to all nodes on behalf of
node i.

Figure 2: Description of the ADKG secrecy simulator S.

Thus, upon receiving ` valid KEY messages, each node

interpolates them in the exponent to compute hz .

Lemma 3 (Correctness C3). Assuming hardness of Deci-

sional Diffie-Hellman, the secret key z is computationally

indistinguishable from a uniformly random element in Zq .

We will prove Lemma 3 when we prove the Secrecy of

our ADKG protocol.

Lemma 4 (Correctness C4). All honest nodes agree on and

output the threshold public keys of all nodes. The threshold

public key of node j is yj = hzj .

Proof: From Lemma 2, for each j, every node can

compute gzj as in equation (6). Also, during the key

derivation phase, each node will eventually receive ` valid

〈KEY, hzj , πj〉 and can efficiently validate them. Upon re-

ceiving ` valid hzj nodes interpolate in the exponent to

compute hzk for the remaining nodes.

B. Secrecy

We prove Secrecy using simulatability. In particular, we

prove that for every probabilistic polynomial-time (PPT)

static adversary A that corrupts up to t nodes, there exists

a PPT simulator S that takes as input a uniformly random

element y ∈ G and produces a view that is indistinguishable

from A’s view of a run of the ADKG protocol that outputs y
as its public key. We assume a static adversary who picks the

set of nodes to corrupt upfront. Without loss of generality, let

[t] be the set of nodes A corrupts, and let pk1, pk2, . . . , pkt
be their public keys.

Lemma 5 (Secrecy S1). Assuming hardness of Decisional

Diffie-Hellman (DDH), a PPT adversary A that corrupts up

to t nodes learns no information about the secret z beyond

what is revealed from the public key y = hz .

We describe the simulator S in Figure 2 and summarize

it below. Upon input h and the ADKG public key y, the

simulator first simulates the sharing phase of our ADKG.

For each honest node i, S samples a uniformly random

secret si and secret shares it among all nodes using ACSS.

S then runs the key set proposal and agreement phase for

each honest node as per our protocol.

Once all n ABA instances terminate at any honest node,

S sets T to be the set of nodes chosen for the final secret

key, and s to be the accumulated secret:

s =
∑

i∈T

sk (7)

Let z1, z2, . . . , zt be shares of s held by adversarial nodes.

Then, S extracts them as follows. For each honest node

i ∈ T , S already knows shares of si held by adversarial

nodes. For all adversarial nodes j ∈ T , due to Completeness

of ACSS, S already knows n−t shares of sj . Thus, S can re-

construct the polynomial pj(·) and evaluates it at 1, 2, . . . , t
to recover the corresponding shares. Once S recovers all

the individual shares for all polynomials corresponding to

all k ∈ T , S sums them up to get z1, z2, . . . , zt.
Let p(·) be the aggregated polynomial such that p(0) = s

and p(j) = zj for j ∈ [n]. Let p̂(·) be a degree-t polynomial

such that p̂(0) = z = logh y and p̂(j) = p(j) for each

j ∈ [t]. Note that S needs to ensure that the ADKG public

key is hp̂(0). However, the aggregated secret is p(0). The S
addresses this issues by deviating from the specified protocol

in the following manner.

S first computes hp̂(i) for i ∈ [n]. For each j ∈ [t], S uses

zj to compute hp̂(j). Then, for each remaining j ∈ [t+1, n],
S uses Lagrange interpolation in the exponent to compute

hp̂(i) as follows.

hp̂(i) =

t∏

j=0

hγj ·p̂(j) (8)

where γj’s are the appropriate Lagrange coefficients. Then,

for each honest node j, i.e., for j ∈ [t+ 1, n], S computes

the NIZK proof πj for equality of the discrete logarithm

logg g
p(j) = logh h

p̂(j) for each j ∈ [t + 1, n]. S uses the

perfect zero-knowledge simulator of the Chaum-Pedersen

protocol to generate πj . Note that S here generates a proof of

false statement. We provide more details on how S generates

such a proof in Appendix C.

We next argue that if a PPT adversary A can distinguish

the simulated view generated by S from its view in a real

execution of the protocol, then we can use A to build

8
2525

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 05,2023 at 18:51:48 UTC from IEEE Xplore. Restrictions apply.

Given a DDH tuple (g, ga, gb, o) such that o is either gab or
gr for some random r ∈ Zq , our distinguisher simulates the
view of A as follows. We write gb as h.

1) For each honest node i, i.e., for each i ∈ [t+1, n], sample
a uniformly random ri ∈ Zq .

2) Implicitly set a + ri as the ACSS secret of node i ∈
[t + 1, n] and run sharing, key set proposal phase of
our ADKG protocol. In particular, for node i, sample
uniformly random ai,j ∈ Zq for each j ∈ [t]. Let pi(·)
be a degree-t polynomial such that pi(0) = a + ri and
also pi(j) = ai,j for each j ∈ [t].

3) Compute the Feldman polynomial commitment to pi(·)
as follows.

- Let vi,j = gai,j for each j ∈ [t]. Set vi,0 = ga+ri .
- Use Lagrange interpolation to compute vi,j for each
j ∈ [t+ 1, n], i.e.,

vi,j =
t∏

k=0

gγkai,k

here γj,k =
∏

j 6=k
j−l

j−k
is the kth Lagrange coefficient.

- For each j ∈ [t], use pi(j) as the secret share of node
j for the secret a+ ri.

- Run the ACSS step for every honest dealer.

4) For any honest node i, let Ti be the intermediate key
set proposed by node i. D uses the NIZK simulator
of equality of discrete logarithm protocol for generating
required proofs during the coin-tossing protocol for the
ith ABA instance.

5) D waits till all ABA instances terminate at any honest
nodes. Also, let T be chosen at the end of the agreement
phase. Let s =

∑
k∈T sk.

6) For every adversarial node j ∈ T , D extracts the secrets
sj as described in Figure 2. Let Q ⊂ T be the set of
malicious nodes in T . Then, let u =

∑
k∈Q sk. Also, let

w = |T |−|Q|, i.e., the number of honest node included
in T . Then, the s can be written as:

s = u+ w · a+
∑

k∈T\Q

rk (9)

7) D extracts u as in Figure 2 and uses owhuh
∑

k∈T\Q rk

as the final public key. For each honest node, D uses the
NIZK simulator of dleq protocol for generating required
proofs during the key derivation phase.

Figure 3: Description of DDH distinguisher D

a distinguisher D, given in Figure 3, to break the DDH

assumption.

The distinguisher D gets an DDH tuple (g, ga, gb, o) as

input where either o = gab or o = gr for a random r ∈
Zq . D then runs our ADKG protocol with the adversary A
where D emulates the honest nodes. At the end of the ADKG

protocol, A outputs a bit β which is A’s guess of whether

the ADKG transcript is identical to the simulated transcript

or the transcript of a real execution of the protocol. D then

outputs β as its guess of whether o = gab or o = gr.

Next we prove the following claims about the transcript

of the interaction of A with D.

Claim 1. If o = gab, the distribution of transcript generated

due to A’s interaction with D is identical to the distribution

generated during a real execution of the protocol.

Proof: When o = gab then

owhuh
∑

k∈T\Q rk = gabwhuh
∑

k∈T\Q rk

= haw+u+
∑

k∈T\Q rk (10)

Since s = aw+u+
∑

k∈T\Q rk and the NIZK simulator of

dleq is perfect, the distribution generated by D is identical

to the real-world execution of our ADKG protocol.

Claim 2. If o = gr for a random r ∈ Zq the distribution

of transcript generated due to A’s interaction with D is

identical to the distribution generated by S .

Proof: When o = gr then

owhuh
∑

k∈T\Q rk = grwhuh
∑

k∈T\Q rk

= hr′whuh
∑

k∈T\Q rk ; (r′ = rb−1)

= hr′w+u+
∑

k∈T\Q rk (11)

Since r′ is uniformly random and independent of w, u and

rk’s, s = r′w+u+
∑

k∈T\Q rk is uniformly random. Hence,

the distribution generated by D is identical to the distribution

generate by S .

Proof of Lemma 5: From Claim 1 and 2, if A distin-

guishes these two distributions with probability 1/2+p, then

D will distinguish the DDH tuple with the same probability.

Thus, assuming the hardness of DDH, the view generated

by the S is indistinguishable from the view of the actual

protocol.

Proof of Lemma 3: It follows from the description

of the distinguisher D and the proof of Lemma 5 that

assuming hardness of DDH, the ADKG public key hz is

indistinguishable from a uniformly random element in G.

Since h is fixed and independent of z, this implies that z is

indistinguishable from a random element in Zq .

C. Performance

Lemma 6. The expected total communication cost of our

ADKG protocol is O(n3).

Proof: Let CACSS be the communication cost of one

ACSS instance. Let CABA be the expected communication

cost of one ABA instance. Let CRBC(L) be the communica-

tion cost of an RBC protocol on a message of size L. Then,

CACSS = O(κn2) ([58], §VII), CABA = O(κn2) [17],

[12], and CRBC(L) = O(nL + κn2) [19]. The expected

communication cost of our ADKG protocol is n · (CACSS+
CRBC(n) + CABA +O(κn2) = O(κn3).

Remark. Note that although the expected latency for n par-

allel instances of ABA to terminate is O(log n) rounds [7],

the expected communication cost is n · CABA = O(κn3).

9
2526

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 05,2023 at 18:51:48 UTC from IEEE Xplore. Restrictions apply.

Lemma 7. The expected computation cost per node in our

ADKG protocol is O(κn3), measured in number of elliptic

curve exponentiations.

We prove Lemma 7 in Appendix A.

Lemma 8. Our ADKG protocol terminates in O(log n)
rounds in expectation.

Proof: The sharing, key set proposal, and key derivation

phase of our ADKG protocol require O(1) rounds [19].

Although a single ABA instance terminates in O(1) rounds

in expectation, it takes O(log n) rounds in expectation for

all n parallel instances to terminate [7]. Thus, our ADKG

protocol runs in O(log n) rounds in expectation.

Remark. Although, in theory, our ADKG protocol may

take O(log n) rounds in expectation, in the common case in

practice, our protocol terminate within much fewer rounds.

This is due to the property of Crain’s ABA [17] that when

all honest nodes input the same value to an ABA instance,

that ABA instance will terminate within two iterations,

without using any common coin. For the same reason, in

the common case in practice, each node only incurs O(n2)
computation cost (as opposed to O(n3) in the worst-case)

because nodes need not compute the intermediate threshold

keys for generating common coins.

Combining all of the above, we get the following theorem.

Theorem 1 (ADKG). In a network of n ≥ 3t + 1 nodes

where up to t nodes could be malicious, assuming hard-

ness of Decisional Diffie-Hellman, Algorithm 1 implements

an ADKG protocol with expected communication cost of

O(κn3), expected computation cost of O(n3) per node and

expected O(log n) rounds (κ is the security parameter).

VI. HIGH-THRESHOLD ADKG

So far, we have discussed our ADKG protocol for a

threshold of ` = t + 1, i.e., the final secret key is secret

shared among nodes using a (n, t + 1) threshold secret

sharing. However, many applications [12], [57], [36] require

the secrer key to be shared by a (n, n− t) threshold secret

sharing. Here on, we will refer to an ADKG protocol that

shares the secret using a threshold of ` > t + 1 as a high-

threshold ADKG. In this section, we describe how to extend

our ADKG protocol to support high-threshold.

Design. The only change we need to get a high-threshold

ADKG is to use a high-threshold ACSS scheme with the

properties specified in §III-B in the sharing phase. The rest

of the protocol can proceed exactly as in §IV.

But designing an efficient high-threshold ACSS scheme

with our desired properties turns out to be challenging. The

prior best known high-threshold ACSS with these properties

is due to [43]. However, their ACSS has a communication

cost of O(κn3), which is too costly. The high-threshold

ACSS protocols of [6] and [19] have communication costs

of O(κn2 log n) and O(κn2), respectively, but do not pro-

vide the required Homomorphic-Partial-Commitment prop-

erty. We design a new high-threshold ACSS that adds the

Homomorphic-Partial-Commitment property to [19] while

retaining its O(κn2) communication complexity. We provide

more details on our high-threshold ACSS in §VII.

Analysis. Since the only change we introduce is to use a

high-threshold ACSS, the correctness of our high-threshold

ADKG follows directly from the correctness analysis in §V.

For secrecy, we need to ensure that given gs for a secret s,

the high-threshold ACSS scheme is simulatable.

VII. HIGH-THRESHOLD ACSS

This section describes a new high-threshold ACSS scheme

that adds the Homomorphic-Partial-Commitment property

to [19] while retaining its O(κn2) communication cost.

Briefly, we need verifiable encryption of discrete loga-

rithms, i.e., a CPA-secure encryption scheme that allows

an encrypter to prove in zero-knowledge about the correct

encryption of discrete logarithms of a known value. We use

the scheme due to Fouque [26] which assumes the hardness

of Decisional Composite Residuosity (DCR) [49].

A. Verifiable Encryption of Discrete Logs

The problem of verifiable encryption of discrete loga-

rithms involves three parties: a prover P , a verifier V , and

a receiver R. The receiver R has a public-private key pair

(pk, sk). Let G be an appropriate group and let g ∈ G

be a random generator of G. Given (g, x, c, pk), the prover

P wants to convince the verifier V that c is an public key

encryption of α under the public key pk such that gα = x
and P knows α.

Fouque and Stern’s protocol [26] for verifiable encryp-

tion of discrete logarithm is a “Σ-protocol” and is zero-

knowledge and knowledge sound. The protocol has the

following interfaces.

• KeyGen(1κ) → (pk, sk). KeyGen algorithm outputs a

public-private key pair for the encryption scheme.

• Decrypt(sk, c)→ α: Given a ciphertext c and a secret key

sk, Decrypt decrypts c using sk and outputs the message.

• EncAndProve(pk, g, α) → (c, x, π): EncAndProve func-

tion encrypts a uniformly random message α using the

public-key pk to get c, computes x = gα, and creates a

NIZK proof of knowledge π that the encryptor knows α
such that α = Decrypt(pk, c) and x = gα.

• VerifyDLog(pk, g, x, c, π) → 0/1. Given (pk, g, x, c, π),
the VerifyDLog(·) outputs 1 if π is a valid proof that there

exists α such that α = Decrypt(pk, c) and x = gα. Note

that the proof π needs to be verifiable without access to

the secret key or the underlying message α.

B. Design and Analysis

Our high-threshold ACSS is given in Algorithm 2. The

main difference between our Algorithm 2 and the high-

10
2527

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 05,2023 at 18:51:48 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Homomorphic high-threshold ACSS

PUBLIC PARAMETER: n, t, `, g, {pki} for i = 1, 2, . . . , n

SHARING PHASE:

// As dealer L with a uniform random input s:
1: Sample a (` − 1)-degree random polynomial p(·) such that

p(0) = s
2: Let vj , cj , πj ← EncAndProve(pkj , g, p(j)) for each j ∈ [n].
3: Let v = {v1, v2, .., vn}, c = {c1, c2, .., cn}, and π =
{π1, π2, .., πn}.

4: RBC(v, c,π) with predicate P (·).

5: procedure P (v, c,π) . predicate for node i during RBC
6: if v is commitment of a polynomial of degree ≤ `−1 then
7: if VerifyDLog(pkj , g,v[j], c[j],π[j]) is valid ∀j then
8: return True
9: return False

RECONSTRUCTION PHASE:

// every node i with key pki, ski
10: s̃i := Decrypt(ski, c[i])
11: send 〈RECONSTRUCT, s̃i〉 to all
12: upon receiving 〈RECONSTRUCT, s̃j〉 from node j do

13: if v[j] = gs̃j then
14: T = T ∪ {s̃j}
15: if |T |≥ ` then
16: output s using Lagrange interpolation and return

threshold ACSS of [19] is the way the dealer encrypts the

shares and computes the corresponding NIZK proofs.

During the sharing phase, to share a uniformly random

secret s ∈ Zq , the dealer L samples a random (`−1) degree

polynomial p(·) such that p(0) = s. Then for each j ∈ [n],
L computes (vj , cj , πj)← EncAndProve(pkj , g, p(j)). Let

v = {v1, . . . , vn}, c = {c1, . . . , cn}, and π = {π1, . . . , πn}.

We will refer to v, c,π as the commitment, encryption

and proof vector, respectively. Then, the dealer sends the

tuple (v, c,π) using a validated RBC protocol (e.g., [19]).

In a validated RBC protocol, nodes participate only if the

predicate P (·) returns true. In our case, this requires (i) v is a

commitment to a polynomial of degree at most `−1; and (ii)

for each tuple (vj , cj , πj), VerifyDLog(pkj , g, vj , cj , πj) =
1, i.e., cj is an encryption of logg vj under pkj , the public

key of node j. For checking the degree of the polynomial

commitment v, we use the approach from [15].

During the reconstruction phase, each node i decrypts c[i]
to recover its share s̃i := Decrypt(ski, c[i]). Node i then

multi-casts s̃i to all other nodes. A node j, upon receiving s̃i
from node i, checks whether v[i] equals gs̃i . After receiving

` or more valid shares, a node reconstructs the secret using

Lagrange interpolation.

We now analyze our ACSS scheme in Algorithm 2. Termi-

nation of our ACSS follows from the Termination property

of RBC and Completeness property of the EncAndProve.

Similarly, the Completeness of our ACSS follows from the

Soundness of EncAndProve and Totality of RBC. Correct-

ness of our ACSS follows directly from the Soundness of

the underlying zero-knowledge protocols. Furthermore, our

ACSS has the Homomorphic-Partial-Commitment property

because the dealer reliably broadcasts the Feldman commit-

ment of the polynomial. We next provide a proof sketch for

Secrecy.

Lemma 9. For a uniformly random s, given gs, assuming

hardness of Decisional Composite Residuosity and the ex-

istence of a Random Oracle, there exists a PPT simulator

that can simulate the view of any static PPT adversary.

Proof Sketch: Let A be a static PPT adversary that

corrupts up to ` nodes. Without loss of generality, let A
corrupts the first ` nodes. Let pki for i ∈ [n] be the public

key of node i. Given gs for a random secret s, the simulator

S chooses `− 1 random points si ∈ Zq for each i ∈ [`− 1]
and sets vi = gsi . For each i ∈ [`, n], S constructs vi using

Lagrange interpolation in the exponent. S then encrypts the

share of the each node j ∈ [`− 1]. For each node j ∈ [`, n],
S uses encryptions of 0 as the encryption of shares of node

j. Note that due to CPA security of the encryption scheme,

the encryptions of 0 are indistinguishable from encryption

of actual shares of nodes in [`, n]. Next, S uses the zero-

knowledge simulator of the EncAndProve to construct the

proofs πj for each j ∈ [`, n]. It is easy to see that the

view of A in its interaction with the S is computationally

indistinguishable from its view in the actual protocol.

Now, let us analyze the communication cost of our high-

threshold ACSS. Observe that each v, c and π are κn
bits long. Hence, using the RBC protocol due to [19], the

communication cost of the sharing phase in O(κn2). During

the reconstruction phase, each node multi-casts O(κ) bits,

so the reconstruction phase has a communication cost of

O(κn2). Hence, the total communication cost is O(κn2).

VIII. IMPLEMENTATION AND EVALUATION

A. Implementation Details

We have implemented a prototype of our ADKG protocol

for any reconstruction threshold ` ∈ [t + 1, n − t] using

python 3.7.6 on top of the open-source hbACSS library [3].

We use Rust libraries for elliptic curve operations and

asyncio for concurrency, though our prototype only runs

on a single processor core. For ` = t + 1, we use the

ACSS protocol from [19]. For ` ≥ t + 1, we implement

the ACSS protocol from §VII. Here on, we refer to the

former as the low threshold ACSS and the latter as the high

threshold ACSS. We use the python phe library with default

parameters for DCR operations [20]. We also implement

Crain’s ABA protocol [17] and Das et al.’s RBC [19].

In our implementation, we use both the curve25519 and

bls12-381 elliptic curves. We use the Ristretto group over

curve25519 implementation from [2] and the bls12-381

implementation from Zcash [34] (with a python wrapper

11
2528

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 05,2023 at 18:51:48 UTC from IEEE Xplore. Restrictions apply.

16 32 64 128

0

20

40

60

80

100

Number of nodes

B
an

d
w

id
th

u
sa

g
e

(i
n

M
B

) t+ 1, curve25519 t+ 1, bls12-381 2t+ 1, curve25519 2t+ 1, bls12-381 drand, bn256

Figure 4: Bandwidth usage, amount of data sent by a node during
ADKG protocol.

16 32 64 128

0

50

100

150

Number of nodes

R
u

n
ti

m
e

(i
n

se
co

n
d

s)

Figure 5: Average runtime as measured the average time difference
between the start of the ADKG and the time a node output keys.

around each) for primitive elliptic curve operations. Note

that bls12-381 supports pairing, so our implementation

can be used for pairing-based threshold cryptosystems such

as [9]. However, a downside of pairing friendly curves is

that they are less efficient for applications that do not need

them, in terms of both communication and computation

costs. For example, a group element in curve25519 is 32

bytes, whereas group elements in bls12-381 are 48 and 96

bytes. Furthermore, our micro-benchmark illustrates that a

group exponentiation in bls12-381 is 6× slower than that

of curve25519.

We improve the bandwidth usage and runtime per node

of our ADKG protocol under the common case, i.e., when

all nodes are honest and the network has a small delay. We

implement the following optimizations: (1) The data dissem-

ination step of the RBC protocol [19, Algorithm 3], which

involves error correction and two rounds of communication,

can be omitted unless some nodes trigger it. This reduces

the bandwidth usage by approximately 50% in the common

case; (2) Most of the ABA instances terminate without a coin

in the common case; hence, we never explicitly compute the

threshold keys for those ABA instances. We observe that

this optimization reduces the runtime by about 65% for our

ADKG implementation with ` = t+1 in the common case.

B. Evaluation Setup

We evaluate our ADKG implementation with a varying

number of nodes: 16, 32, 64, 128. For a given n ≥ 3t+ 1,

we evaluate with two reconstruction thresholds: t + 1 and

2t+ 1. We run all nodes on Amazon Web Services (AWS)

t3a.medium virtual machines (VM) with one node per VM.

Each VM has two vCPUs and 4GB RAM and runs Ubuntu

20.04.

We place nodes evenly across eight different AWS re-

gions: Canada, Ireland, N. California, N. Virginia, Oregon,

Ohio, Singapore, and Tokyo. We create an overlay network

among nodes where all nodes are pair-wise connected, i.e.,

they form a complete graph.

Baselines. Since no implementation of any ADKG exists,

we only compare with the synchronous DKG of Gennaro

et al. [31] as implemented in Drand [1]. To our knowledge,

Drand is the only DKG protocol in use today. Other imple-

mentations of synchronous DKG focus on the cryptography

part and do not implement the networking part. We evaluate

Drand with its default reconstruction threshold of n/2 + 1.

We could only run Drand with up to 64 nodes; Drand with

128 nodes keeps aborting in our experiments.

C. Evaluation Results

With our evaluation we aim to demonstrate that our

ADKG protocol scales well with the number of nodes and

has reasonable runtime and bandwidth usage.

Runtime. We measure the time difference between the start

of the ADKG protocol and when a node outputs the shared

public key and its secret share. We then average this time

across all nodes to compute the runtime of our ADKG

protocol. We report the results in Figure 5.

For ` = t+1, our ADKG protocol takes approximately 10

seconds for 64 nodes, which is only 19% of Drand. When

` = 2t+1, however, our ADKG protocol takes much longer:

160 seconds for 64 nodes, about 3× of Drand.

Upon close inspection, we found that when ` = t + 1,

various miscellaneous steps account for most of the runtime,

whereas when ` = 2t + 1, Paillier operations dominate

the runtime. This is confirmed in Table III. Specifically,

one instance of high threshold ACSS requires O(n) Paillier

operations per node, resulting in O(n2) Paillier operations

per node in the sharing phase of our high-threshold ADKG.

Running time of sharing phase. We measure the per node

running time of the sharing phase of our ADKG protocol.

More specifically, we first measure the running time of the

dealer and non-dealer nodes separately. We then calculate

the running time of sharing phase as the sum of one dealer

node’s running time and the running time of n non-dealer

node. We report the results in Table III. Observe that when

` = t + 1, even with 128 nodes, the running time of the

sharing phase is less than 7% of the total running time of

our ADKG protocol. However, with ` = 2t+1, for 64 nodes,

the computation time of ACSS step is more than 80% of the

total running time.

12
2529

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 05,2023 at 18:51:48 UTC from IEEE Xplore. Restrictions apply.

Table III: Computation cost of ACSS phase measured in time taken
(in seconds) with varying number of nodes.

Time taken (in seconds)

Elliptic Curve ` n = 16 n = 32 n = 64 n = 128

curve25519 t+ 1 0.01 0.02 0.07 0.19
bls12-381 t+ 1 0.07 0.21 0.71 2.52
curve25519 2t+ 1 8.50 32.53 127.54 504.47
bls12-381 2t+ 1 8.96 34.43 134.66 531.22

Bandwidth usage. We measure bandwidth usage as the

amount of bytes sent by a node in the entire ADKG protocol.

We report bandwidth usage per node in Figure 4. Consistent

with the analysis from §V, the bandwidth usage of our

protocol increases quadratically with the number of nodes.

Our bandwidth usage is significantly lower than Drand.

Using the 64 nodes experiment, for example, each node in

Drand sends 93.8 Megabytes of data; In our ADKG, when

` = t + 1, each node only sends 2.96 Megabytes, which is

only 1/30th of Drand; when ` = 2t + 1, each node sends

19.2 Megabytes, still only 1/5th of Drand. We note that

the higher bandwidth usage for high-threshold again comes

from the high-threshold ACSS scheme.

We also note that, although in bls12-381 group elements

are 16 bytes longer than in curve25519, this does not

noticeably affect the total protocol bandwidth usage due

to the comparable costs of other data, such as DCR group

elements, field integers, and hashes.

IX. RELATED WORK

Starting from the seminal work of Pedersen [50], nu-

merous works have studied the problem of Distributed Key

Generation with various cryptographic assumptions, network

conditions and with other properties [13], [14], [26], [31],

[47], [37], [35], [53], [39], [40], [43], [4], [28], [19]. We will

roughly categorize prior works into two categories based on

the network assumption: Synchrony and Asynchrony.

Synchronous DKG. DKG in the synchronous network

has been studied for decades [50], [26], [13], [14], [31],

[47], [37], [35], [53]. Pedersen proposed the first DKG

protocol [50] using a verifiable secret sharing. Gennaro et

al. [31] showed that the Pedersen protocol allows an attacker

to bias the public-key distribution and proposed a scheme

without this issue but at a higher cost. Neji et al. [47]

proposed a simple mechanism to mitigate the bias-attack

illustrated by [31]. We adopted their idea, but we found the

proof presented in their original paper [47] skipped some

details of the simulator. In this paper, we present a new

proof of secrecy.

Canetti et al. [13] presented extended Gennaro et al. [31]

to be secure against an adaptive adversary. Fouque and

Stern [26] used publicly verifiable secret sharing (PVSS) in-

stead of VSS to make the protocol non-interactive. Gurkan et

al. [37] designed a PVSS-based DKG protocol with a linear

size public-verification transcript. However, their protocol

can only tolerate O(log n) faulty nodes. Moreover, in their

protocol, the secret key is a group element instead of a field

element. As a result, their protocol is incompatible with off-

the-shelf threshold signature or encryption schemes. Very

recently, Groth [35] designed a new DKG protocol based

on a new PVSS scheme; the protocol is non-interactive,

assuming the existence of a broadcast channel. Moreover,

the secret key in his protocol is a field element.

Asynchronous DKG. Only a handful of works studied the

DKG problem in partially synchronous or asynchronous

networks [40], [43], [4], [28], [19]. Kate et al. [40] extended

Pedersen’s DKG to a partially synchronous network. The

protocol has O(κn4) total communication cost, tolerates up

to one-third malicious nodes, and relies on synchrony for

termination. Tomescu et al. [56] lowered the computational

cost of Kate et al. [40] by a factor of O(n/log n) at a

logarithmic increase in communication cost.

Kokoris et al. [43] designed the first asynchronous DKG

scheme with a total communication cost of O(κn4) and an

expected round complexity of O(n). Abraham et al. [4]

proposed an ADKG protocol with a communication cost

of O(κn3 log n). Gao et al. [28] and Das et al. [19] gave

two methods to lower the communication cost of [4] to

O(κn3). Since Abraham et al. uses the PVSS scheme of

Gurkan et al. [37], all three constructions [4], [28], [19]

inherit the limitation that the secret key is a group element

and the ADKG is not compatible with off-the-shelf threshold

encryption or signature schemes.

The setup phase of Aleph’s randomness beacon [27] used

different sources of coins for different ABA instances. Their

work inspired the key set proposal phase of our design. But

note that Aleph’s setup phase is not a ADKG protocol and

our ADKG protocol differs significantly from it.

DKG implementations. The increasing popularity of

threshold signatures has led to many DKG implementa-

tions [53], [52], [48], [38], [1], [33], [55]. All these im-

plementations assume synchronous networks.

X. CONCLUSION

In this paper, we presented a simple and concretely

efficient asynchronous distributed key generation protocol

for discrete logarithm based threshold cryptosystem. In a

network of n nodes, our ADKG protocol incurs a commu-

nication cost of O(κn3) and terminates in expected O(log n)
rounds. Our protocol uses many fundamental asynchronous

primitives such as ACSS, RBC, threshold common coin, and

ABA in a modular way. As a result, an improved protocol

for these primitives, especially high-threshold ACSS, would

immediately improve our ADKG protocol. We formally

prove the security and correctness of our ADKG protocol.

We provide a prototype implementation and evaluate our

prototype atop up to 128 geographically distributed nodes

to illustrate the practicality of our ADKG protocol.

13
2530

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 05,2023 at 18:51:48 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

The authors would like to thank Amit Agarwal, Adithya

Bhat, Kobi Gurkan, Dakshita Khurana, Nibesh Shrestha, and

Gilad Stern for the helpful discussions related to the paper.

Also, the authors would like to thank Sylvain Bellemare for

helping with the hbACSS codebase and Nicolas Gailly for

helping with running the Drand experiments.

REFERENCES

[1] “Drand - a distributed randomness beacon daemon,” 2020,
https://github.com/drand/drand.

[2] “curve25519-dalek: A pure-rust implementation of group
operations on ristretto and curve25519,” 2021, https://github.
com/dalek-cryptography/curve25519-dalek.

[3] “hbacss,” 2021, https://github.com/tyurek/hbACSS.

[4] I. Abraham, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern,
and A. Tomescu, “Reaching consensus for asynchronous
distributed key generation,” in Proceedings of the 2021 ACM
Symposium on Principles of Distributed Computing, 2021, pp.
363–373.

[5] I. Abraham, D. Malkhi, and A. Spiegelman, “Asymptotically
optimal validated asynchronous byzantine agreement,” in
Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, 2019, pp. 337–346.

[6] N. Alhaddad, M. Varia, and H. Zhang, “High-threshold avss
with optimal communication complexity,” in International
Conference on Financial Cryptography and Data Security.
Springer, 2021, pp. 479–498.

[7] M. Ben-Or and R. El-Yaniv, “Resilient-optimal interactive
consistency in constant time,” Distributed Computing, vol. 16,
no. 4, pp. 249–262, 2003.

[8] M. Ben-Or, B. Kelmer, and T. Rabin, “Asynchronous se-
cure computations with optimal resilience,” in Proceedings
of the thirteenth annual ACM symposium on Principles of
distributed computing, 1994, pp. 183–192.

[9] A. Boldyreva, “Threshold signatures, multisignatures and
blind signatures based on the gap-diffie-hellman-group sig-
nature scheme,” in International Workshop on Public Key
Cryptography. Springer, 2003, pp. 31–46.

[10] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from
the weil pairing,” in International conference on the the-
ory and application of cryptology and information security.
Springer, 2001, pp. 514–532.

[11] G. Bracha, “Asynchronous byzantine agreement protocols,”
Information and Computation, vol. 75, no. 2, pp. 130–143,
1987.

[12] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in
constantinople: Practical asynchronous byzantine agreement
using cryptography,” Journal of Cryptology, vol. 18, no. 3,
pp. 219–246, 2005.

[13] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Ra-
bin, “Adaptive security for threshold cryptosystems,” in An-
nual International Cryptology Conference. Springer, 1999,
pp. 98–116.

[14] J. Canny and S. Sorkin, “Practical large-scale distributed key
generation,” in International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2004,
pp. 138–152.

[15] I. Cascudo and B. David, “Scrape: Scalable randomness
attested by public entities,” in International Conference on
Applied Cryptography and Network Security. Springer, 2017,
pp. 537–556.

[16] D. Chaum and T. P. Pedersen, “Wallet databases with ob-
servers,” in Annual International Cryptology Conference.
Springer, 1992, pp. 89–105.

[17] T. Crain, “Two more algorithms for randomized signature-
free asynchronous binary byzantine consensus with t < n/3
and o(n2) messages and o(1) round expected termination,”
arXiv preprint arXiv:2002.08765, 2020.

[18] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegel-
man, “Narwhal and tusk: a dag-based mempool and efficient
bft consensus,” in Proceedings of the Seventeenth European
Conference on Computer Systems, 2022, pp. 34–50.

[19] S. Das, Z. Xiang, and L. Ren, “Asynchronous data dissem-
ination and its applications,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications
Security, 2021.

[20] C. Data61, “Python paillier library,” https://github.com/
data61/python-paillier, 2013.

[21] Y. G. Desmedt, “Threshold cryptography,” European Trans-
actions on Telecommunications, vol. 5, no. 4, pp. 449–458,
1994.

[22] S. Duan, M. K. Reiter, and H. Zhang, “Beat: Asynchronous
bft made practical,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
2018, pp. 2028–2041.

[23] T. ElGamal, “A public key cryptosystem and a signature
scheme based on discrete logarithms,” IEEE transactions on
information theory, vol. 31, no. 4, pp. 469–472, 1985.

[24] A. Fiat and A. Shamir, “How to prove yourself: Practical solu-
tions to identification and signature problems,” in Conference
on the theory and application of cryptographic techniques.
Springer, 1986, pp. 186–194.

[25] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility
of distributed consensus with one faulty process,” Journal of
the ACM (JACM), vol. 32, no. 2, pp. 374–382, 1985.

[26] P.-A. Fouque and J. Stern, “One round threshold discrete-
log key generation without private channels,” in International
Workshop on Public Key Cryptography. Springer, 2001, pp.
300–316.

14
2531

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 05,2023 at 18:51:48 UTC from IEEE Xplore. Restrictions apply.

[27] A. Gągol, D. Leśniak, D. Straszak, and M. Świętek, “Aleph:
Efficient atomic broadcast in asynchronous networks with
byzantine nodes,” in Proceedings of the 1st ACM Conference
on Advances in Financial Technologies, 2019, pp. 214–228.

[28] Y. Gao, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Efficient
asynchronous byzantine agreement without private setups,”
arXiv preprint arXiv:2106.07831, 2021.

[29] R. Gelashvili, L. Kokoris-Kogias, A. Sonnino, A. Spiegel-
man, and Z. Xiang, “Jolteon and ditto: Network-adaptive
efficient consensus with asynchronous fallback,” in Interna-
tional conference on financial cryptography and data security.
Springer, 2022.

[30] R. Gelashvili, L. Kokoris-Kogias, A. Spiegelman, and Z. Xi-
ang, “Brief announcement: Be prepared when network goes
bad: An asynchronous view-change protocol,” in Proceedings
of the 2021 ACM Symposium on Principles of Distributed
Computing, 2021, pp. 187–190.

[31] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure
distributed key generation for discrete-log based cryptosys-
tems,” Journal of Cryptology, vol. 20, no. 1, pp. 51–83, 2007.

[32] N. Giridharan, L. Kokoris-Kogias, A. Sonnino, and
A. Spiegelman, “Bullshark: Dag bft protocols made practi-
cal,” arXiv preprint arXiv:2201.05677, 2022.

[33] GNOSIS, “Distributed key generation,” 2020, https://www.
nongnu.org/dkgpg/.

[34] J. Grigg and S. Bowe, “zkcrypto/pairing,”
https://github.com/zkcrypto/pairing.

[35] J. Groth, “Non-interactive distributed key generation and key
resharing.” IACR Cryptol. ePrint Arch., vol. 2021, p. 339,
2021.

[36] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous bft protocols,” in Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 803–818.

[37] K. Gurkan, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern,
and A. Tomescu, “Aggregatable distributed key generation,”
in Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques. Springer, 2021, pp.
147–176.

[38] T. Hanke, M. Movahedi, and D. Williams, “Dfinity tech-
nology overview series, consensus system,” arXiv preprint
arXiv:1805.04548, 2018.

[39] A. Kate and I. Goldberg, “Distributed key generation for the
internet,” in 2009 29th IEEE International Conference on
Distributed Computing Systems. IEEE, 2009, pp. 119–128.

[40] A. Kate, Y. Huang, and I. Goldberg, “Distributed key gener-
ation in the wild.” IACR Cryptol. ePrint Arch., vol. 2012, p.
377, 2012.

[41] I. Keidar, E. Kokoris-Kogias, O. Naor, and A. Spiegelman,
“All you need is dag,” in Proceedings of the 2021 ACM
Symposium on Principles of Distributed Computing, 2021,
pp. 165–175.

[42] E. Kokoris-Kogias, E. C. Alp, L. Gasser, P. Jovanovic, E. Syta,
and B. Ford, “Calypso: private data management for de-
centralized ledgers,” Proceedings of the VLDB Endowment,
vol. 14, no. 4, pp. 586–599, 2020.

[43] E. Kokoris Kogias, D. Malkhi, and A. Spiegelman, “Asyn-
chronous distributed key generation for computationally-
secure randomness, consensus, and threshold signatures.”
in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, 2020, pp. 1751–
1767.

[44] Y. Lu, Z. Lu, Q. Tang, and G. Wang, “Dumbo-mvba: Optimal
multi-valued validated asynchronous byzantine agreement, re-
visited,” in Proceedings of the 39th Symposium on Principles
of Distributed Computing, 2020, pp. 129–138.

[45] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The
honey badger of bft protocols,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 31–42.

[46] A. Mostéfaoui, H. Moumen, and M. Raynal, “Signature-free
asynchronous binary byzantine consensus with t< n/3, o (n2)
messages, and o (1) expected time,” Journal of the ACM
(JACM), vol. 62, no. 4, pp. 1–21, 2015.

[47] W. Neji, K. Blibech, and N. Ben Rajeb, “Distributed key
generation protocol with a new complaint management strat-
egy,” Security and communication networks, vol. 9, no. 17,
pp. 4585–4595, 2016.

[48] O. Network, “Dkg for bls threshold signature scheme on the
evm using solidity,” 2018, https://github.com/orbs-network/
dkg-on-evm.

[49] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in International conference on
the theory and applications of cryptographic techniques.
Springer, 1999, pp. 223–238.

[50] T. P. Pedersen, “A threshold cryptosystem without a trusted
party,” in Workshop on the Theory and Application of of
Cryptographic Techniques. Springer, 1991, pp. 522–526.

[51] D. Pointcheval and J. Stern, “Security proofs for signature
schemes,” in International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 1996,
pp. 387–398.

[52] P. Schindler, “Ethereum-based distributed key generation pro-
tocol,” 2020, https://github.com/PhilippSchindler/ethdkg.

[53] P. Schindler, A. Judmayer, N. Stifter, and E. R. Weippl,
“Ethdkg: Distributed key generation with ethereum smart
contracts.” IACR Cryptol. ePrint Arch., vol. 2019, p. 985,
2019.

[54] A. Shamir, “How to share a secret,” Communications of the
ACM, vol. 22, no. 11, pp. 612–613, 1979.

[55] H. Stamer, “Distributed privacy guard,” 2018, https://github.
com/gnosis/dkg.

15
2532

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 05,2023 at 18:51:48 UTC from IEEE Xplore. Restrictions apply.

[56] A. Tomescu, R. Chen, Y. Zheng, I. Abraham, B. Pinkas,
G. Gueta, and S. Devadas, “Towards scalable threshold cryp-
tosystems,” in 2020 IEEE Symposium on Security and Privacy
(SP), 2020, pp. 877–893.

[57] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abra-
ham, “Hotstuff: Bft consensus with linearity and respon-
siveness,” in Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing. ACM, 2019, pp. 347–
356.

[58] T. Yurek, L. Luo, J. Fairoze, A. Kate, and A. Miller, “hbacss:
How to robustly share many secrets,” in Proceedings of
the 29th Annual Network and Distributed System Security
Symposium, 2022.

APPENDIX A.

PROOF OF LEMMA 7

Proof of Lemma 7: Each node incurs the computation

cost of one ACSS dealer and n − 1 ACSS non-dealer

node. During the key-set proposal phase, each node incurs

the computation cost of one RBC broadcaster and n − 1
RBC non-broadcaster node. During the agreement phase, in

addition to the computation cost of n parallel ABA instances,

each node needs to derive n different sets of threshold keys.

Finally, during the key-derivation phase, each node verifies

O(n) shares and interpolate O(n) threshold keys.

Thus, in our ADKG protocol, each node incurs O(n2)
elliptic curve exponentiations except for the key set pro-

posal phase and the key derivation step of the agreement

phase [19], [12], [17]. During the key set proposal phase, in

the worst case, each node incurs O(n3 log n) computation

cost. However, these costs are due to Reed-Solomon de-

coding and do not involve any elliptic curve operations and

hence are not a bottleneck. Furthermore, each node incurs

O(n3) elliptic curve operations to derive the intermediate

threshold keys for the agreement phase.

APPENDIX B.

ABA OF [17]

In this section we briefly describe the ABA protocol of

Crain ([17], Figure 3). The ABA protocol of Crain [17]

improves the round complexity of Mostefaoui et al. [46],

from 13 rounds per epoch to 8 rounds per epoch, assuming

the common-coin uses a single round. If no honest node

has terminated so far, the probability of termination in an

epoch is 1/2 in both protocols, assuming the common-coin

is unbiased. Each message sent by a node in [17] contains

a single bit and a tag. Crain’s ABA incurs a expected

communication cost of O(n2) and terminates in O(1) rounds

in expectation.

As we describe earlier, in addition to the standard ABA

properties, we crucially rely on the following property of

Crain’s ABA.

Good-Case-Coin-Free: If all honest nodes input the same

value to the ABA, then all honest nodes output without

invoking the common coin.

Algorithm 3 BV_Broadcast(v)

1: bin_values← ∅
2: send BVAL(v) to all
3: return bin_values . bin_values has not necessarily

reached its final value when returned

4: upon receiving BVAL(v) do
5: if BVAL(v) received from t+ 1 different nodes then
6: send BVAL(v) to all (if haven’t done already)

7: if BVAL(v) received from 2t+ 1 different nodes then
8: bin_values← bin_values ∪ {v}

Algorithm 4 SBV_Broadcast(v)

1: bin_values← BV_Broadcast(v)
2: wait until bin_values 6= ∅
3: send AUX(w) for w ∈ bin_values to all . bin_values has

not necessarily reached its final value when returned

4: wait until ∃ a set view such that (i) view ⊆ bin_values; and
(ii) contained in AUX(·) messages received from n − t

nodes;
5: return (view, bin_values)

We restate Crain’s ABA in Algorithm 5. Here we briefly

explain why it has the Good-Case-Coin-Free property. When

all honest nodes have the same input value v, it is not hard to

verify that for the first round r = 1, view[1, 0], view[1, 1]
and view[1, 2] will all equal to {v}. Hence, every honest

node will decide v in line 12 without invoking the common

coin. We also need to argue that every honest node knows

that no other honest nodes need the common coin, so that

it does not need to participate in the common coin to help

other honest nodes. This is guaranteed by SBV_Broadcast,

which ensures that if an honest node has {v} as the output of

SBV_Broadcast, then no honest node will have {v′} where

v 6= v′ as the output. Therefore, if the condition on line 11

gets satisfied at any honest node, then no honest node will

enter the conditional branch on line 14, i.e., no honest node

will need the common coin.

APPENDIX C.

ZERO KNOWLEDGE PROOF OF EQUALITY OF DISCRETE

LOGARITHM

Our ADKG protocol has a step that requires nodes to

produce zero-knowledge proofs about the equality of dis-

crete logarithms for a tuple of publicly known values. In

particular, given a group G of prime order q, two uniformly

random generators g, h← G and a tuple (g, x, h, y), a prover

P wants to prove to a probabilistic polynomial time verifier

V , in zero-knowledge, the knowledge of a witness α such

that x = gα and y = hα.

We will use the Chaum-Pedersen "Σ-protocols" [16],

which assumes the hardness of the Discrete Logarithm

problem.

Protocol for equality of discrete logarithm. For any given

tuple (g, x, h, y), the Chaum-Pedersen protocol proceeds as

16
2533

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 05,2023 at 18:51:48 UTC from IEEE Xplore. Restrictions apply.

Algorithm 5 ABA protocol of [17] Figure 3 (Restated)

1: input: v
2: est← v; r ← 0
3: while true do
4: r ← r + 1
5: (view[r, 0], bin_values[r])← SBV_Broadcast(est)
6: send AUXSET[r](view[r, 0]) to all
7: wait until ∃ a set view[r, 1] such that

(i) view[r, 1] ⊆ bin_values; and
(ii) contained in AUXSET(·) messages received from n− t

nodes;

8: if view[r, 1] = {w} then est← w
9: else est← ⊥

10: view[r, 2]← SBV_Broadcast(est)
11: if view[r, 2] = {v}, v 6= ⊥ then decide(v); est← v
12: else Coin() = sign(pk,#ABA‖#round)

13: if view[r, 2] = {v,⊥} then est← v

14: if view[r, 2] = {⊥} then est← Coin()

follows.

1) P samples a random element β ← Zq and sends

(a1, a2) to V where a1 = gβ and a2 = gβ .

2) V sends a challenge e← Zq .

3) P sends a response z = β − αe to V .

4) V checks whether a1 = gzxe and a2 = hzye and

accepts if and only if both the equality holds.

This protocol guarantees completeness, knowledge sound-

ness, and zero-knowledge. The knowledge soundness im-

plies that if P convinces the V with non-negligible proba-

bility, there exists an efficient (polynomial time) extractor

that can extract α from the prover with non-negligible

probability.

This above protocol can be made non-interactive in the

Random Oracle model using the Fiat-Shamir heuristic [24],

[51]. In our ADKG, we use the non-interactive variant of

the protocol. For any given tuple (g, x, h, y) where x =
gs and y = hs, dleq.Prove(s, g, x, h, y) generates the non-

interactive zero proof π. The proof π is O(κ) bits long.

Given a proof π and (g, x, h, y), dleq.Verify(π, g, x, h, y)
verifies the proof.

Simulating a proof without the secret. We will use

programmability of random oracle to generate an convincing

NIZK proof without having access to the corresponding

secret. Furthermore, we use the same approach to gen-

erate NIZK proof for false statements. Given the tuple

(g, gx, h, hy), the simulator works as follows.

1) Sample uniformly random z, c ∈ Zq .

2) Compute a1 = gzgx·c and a2 = hzhy·c.

3) Set c = hash(a1, a2).
4) Output π = (a1, a2, z)

Note that the distribution of proof generated by the

simulator is identical to the distribution of proof of a

correct statement generated by an honest prover during a

real execution of the dleq protocol.

17
2534

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on July 05,2023 at 18:51:48 UTC from IEEE Xplore. Restrictions apply.

