
Using Neural Networks to Model Main Belt Asteroid Albedos as a Function of Their
Proper Orbital Elements

Zachary Murray
Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA; zachary.murray@cfa.harvard.edu

Received 2023 January 12; revised 2023 May 4; accepted 2023 May 7; published 2023 May 22

Abstract

Asteroid diameters are traditionally difficult to estimate. When a direct measurement of the diameter cannot be
made through either occultation or direct radar observations, the most common method is to approximate the
diameter from infrared observations. Once the diameter is known, a comparison with visible light observations can
be used to find the visible geometric albedo of the body. One of the largest data sets of asteroid albedos comes from
the NEOWISE mission, which measured asteroid albedos both in the visible and infrared. We model these albedos
as a function of proper orbital elements available from the Asteroid Families Portal using an ensemble of neural
networks. We find that both the visible and infrared geometric albedos are significantly correlated with asteroid
position in the belt and occur in both asteroid families and in the background belt. We find that the ensemble’s
prediction reduces the average error in the albedo by about 37% compared to a model that simply adopts an
average albedo with no regard for the dynamical state of the body. We then use this model to predict albedos for
the half million main belt asteroids with proper orbital elements available in the Asteroid Families Portal and
provide the results in a catalog. Finally, we show that several presently categorized asteroid families exist within
much larger groups of asteroids of similar albedos—this may suggest that further improvements in family
identification can be made.

Unified Astronomy Thesaurus concepts: Small Solar System bodies (1469); Neural networks (1933); Albedo
(2321); Asteroid dynamics (2210)

1. Introduction

One of the most fundamental properties of an asteroid is its
diameter; it is a prerequisite to compute the asteroid’s bulk
density if the asteroid’s mass is known, or conversely, can be
used to infer the mass if its density can be otherwise estimated.
However, the diameter of an asteroid is often difficult to
estimate. Most surveys of asteroids occur in the visible portion
of the spectrum. These surveys record a flux from the object
which—when paired with knowledge of its orbit—can be used
to derive an absolute or H magnitude. Unfortunately, since the
observed flux of the asteroid in these wavelengths is reflected
light, an estimate of the diameter of the object cannot be made
without knowledge of the asteroid’s albedo.

Given this limitation, several different methods have been
developed to constrain asteroid albedos and diameters more
accurately. One of the most direct methods is through
occultations (e.g., Tanga & Delbo 2007; Herald et al. 2020).
In such an event, an asteroid passes in front of a distant star,
blocking its light from the perspective of an observer for a few
seconds. The asteroid’s diameter can then be directly estimated
from the duration of occultation and knowledge of the
asteroid’s orbit. Unfortunately, occultation events are relatively
rare, since they require precise alignment of the asteroid and
background star. Hence, occultation-derived diameters are not
available for most asteroids.

A second way to measure an asteroid’s diameter directly is
through radar observations. Such observations are often of
sufficiently high resolution to detect the angular extent of an

asteroid outright, which makes calculating the diameter
straightforward (e.g., Ostro et al. 2000, 2006). However, the
inverse square law limits radar observations to only relatively
close asteroids; consequently, the population of asteroids that
can be directly measured in this way is also rather small.
Finally, there are infrared observations. At infrared wave-

lengths the asteroid’s flux is primarily thermal emission and is
proportional to its surface area (e.g., Allen 1971). Hence, an
estimate of the diameter can be derived from these observa-
tions, with the albedo being estimated by comparison with the
visible reflected flux. In practice, this method is by far the most
productive way of estimating diameters, as infrared surveys can
easily cover large portions of the sky. The largest of these
surveys is the Wide-field Infrared Survey Explorer (WISE)/
Near-Earth Object Wide-field Infrared Survey Explorer (NEO-
WISE) survey, which has provided nearly 200,000 albedo
measurements of solar system bodies, including 125,217
unique main belt asteroids (e.g., Masiero et al. 2011; Grav
et al. 2012; Masiero et al. 2014, among others). Other infrared
missions have also contributed to the total of known
albedos, including the IRAS mission (Tedesco et al. 2002),
AKARI survey (Usui et al. 2011), and the Spitzer Space
Telescope (Gustafsson et al. 2019). This total, however, is a
fraction of all the asteroids cataloged by the Minor Planet
Center—which as of 2022 June number over a million.
Consequently, the albedos of most asteroids remain unknown.
This fraction will only decrease as new surveys discover more
asteroids, with the Rubin Observatory alone projected to
discover up to five million in the main belt (LSST Science
Collaboration et al. 2009).
Motivated by the observation of Masiero et al. (2014) that

asteroids belonging to the same family tend to have similar
albedos, we wish to understand how much information an
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asteroid’s proper orbital elements contain about its albedo. We
investigate this question by constructing a model to predict
albedo as a function of proper orbital elements for asteroids in
the main belt.

Proper orbital elements are essentially time-averaged
Keplerian orbital elements that serve as quasi invariants of
motion. They remain unchanged over long timescales
(Lemaitre 1993). It is useful to contrast these with the
osculating orbital elements, which are the instantaneous Kepler
elements of an asteroid at a given time. These elements change
over timescales as short as a few thousand years (except for the
mean anomaly, which changes over a single orbit), with the
change primarily being driven by gravitational perturbations
from other planets and asteroids. Although the instantaneous
difference between the two elements is typically small (see
examples in Knezevic et al. 2002), the stability of the proper
orbital elements make them particularly suitable for studying
asteroid families (e.g., Hirayama 1922; Lindblad & South-
worth 1971; Zappala et al. 1990; Zappalà et al. 1995). These
families are often tightly clustered in the space of proper orbital
elements, whereas examining the same family in the space of
osculating elements results in much looser clustering, due to
the short timescale differential change in the elements.

A variety of different methods to compute proper orbital
elements have been developed, including analytic models
(Yuasa 1973; Knezevic 1989; Milani & Knezevic 1994),
semianalytic models (Lemaitre & Morbidelli 1994; Gronchi &
Milani 2001; Fenucci et al. 2022), and numerical approaches
(Knežević & Milani 2000). In this paper, we concern ourselves
with the proper orbital elements provided by the Asteroid
Families Portal site (Novakovic & Radovic 2019).

2. The Model

The Asteroid Families Portal provides proper orbital
elements for nearly 600,000 numbered main belt asteroids,
computed with the methods of Knežević & Milani
(2000, 2003), and family classifications derived using the
hierarchical clustering method developed in Radović et al.

(2017). In our sample, we exclude the active main belt objects,
as their activity may result in variations in the measurement of
their fluxes or cause their albedos to change over time. We use
the results of the NEOWISE asteroid survey as our training
data set, as it is currently the largest such set of data
available (Mainzer et al. 2019). The overlap between the two
data sets is significant, not only including many main belt
asteroids, but also Hungaria and Hilda asteroids. Notably
absent here are the Jupiter Trojans, as proper orbital elements
for the Jupiter Trojans must be computed with different
methods than those outlined above—with interaction with
Jupiter taken into account. In addition, Grav et al. (2011)
suggests these Trojans are largely homogeneous in albedo
compared to the main belt. Hence there is likely less insight to
be gained by constructing a model that incorporates their
dynamical states. Our training sample thus consists of a total of
122,309 asteroids have both measured NEOWISE albedos and
computed proper orbital elements. Among these, several
asteroids were observed multiple times, and their albedos were
taken to be the average of the estimated albedos, with the
corresponding uncertainty computed by quadrature addition of
the individual errors. There was also a small sample of
asteroids with negative reported albedos—these were removed
from the sample.
As is common in the literature we work with the logarithm of

the albedos rather than the albedos themselves. This para-
meterization allows for more contrast between dark asteroids
with similar albedos. It is also particularly convenient for
determining the diameter, as the logarithm of the visible albedo
can be related directly to the logarithm of the diameter by

D p Hlog 3.123 6 0.5 log 0.2 , 1V10 10( ) ( ) ( )= - -

where pV is the visible geometric albedo, H the absolute visible
magnitude, and D the diameter in kilometers (e.g Harris &
Harris 1997). Figure 1 shows the distribution of the logarithms
of the visible and infrared albedos of the main belt asteroids as
measured by NEOWISE. As noted by many previous studies
(e.g., Morrison 1977; Masiero et al. 2011; Usui et al. 2013) the

Figure 1. Here we show the distribution of the logarithm of the visible and infrared albedos from the NEOWISE catalog. The distribution of both distributions are
bimodal, with the visible albedos peaking near pV = 0.05 and pV = 0.3 and the infrared albedos peaking near pIR = 0.1 and pIR = 0.4.

2

The Planetary Science Journal, 4:90 (8pp), 2023 May Murray



distribution of visual albedo in the main belt is bimodal, with
peaks near 0.05 and 0.3, with the highest peak largely being
from the contribution of darker asteroids in the outer main belt.
The visible albedo pV and the infrared albedo pIR observed by
NEOWISE are generally highly correlated with each other,
with the former being smaller than the latter for most asteroids,
similar to what has been found among Trojan asteroids (Grav
et al. 2011).

We model the variation in both albedos as a function of the
proper eccentricity e, the sine of the proper inclination isin( ),
and the proper semimajor axis a. We conducted a variety of
preliminary tests by employing different machine-learning
techniques on the data set including polynomial regression, the
decision tree and random forest regressor algorithms in the
SCIKIT-Learn python module (Buitinck et al. 2013), in
addition to neural nets implemented with TensorFlow (Abadi
et al. 2015) to assess their suitability for making predictions on
the data set. We found that the decision tree and random forest
algorithms performed worse than the neural nets as measured
by the rms error residual. This is likely because predictions
made by these algorithms are based off a discrete criterion,
which is poorly suited for continuous variables like proper
orbital elements. Polynomial regression, while continuous,
lacked the needed complexity to fit the subtle detail in the belt.
Consequently, we use neural nets as our algorithm of choice for
this data set. This approach has also shown promise in
application to several other problems relevant to the study of
small solar system bodies, including taxonomy (Penttilä et al.
2021), image classification (Duev et al. 2021), and dynamics
(Carruba et al. 2022a, 2022b). We use a relatively shallow
network consisting of six layers of nodes with the ReLU
activation function implemented by TensorFlow. We assess the
quality of the fit with an rms error loss function and optimize
using stochastic gradient descent.

We simulate the effect of observation errors by rerunning the
fitting procedure 1000 times on randomly generated samples of

the data with each albedo being randomly chosen from a
distribution with probability given by
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- . Equation (2) is a
truncated normal distribution, which prevents unphysical
albedos from being generated. We use a training/validation
split fraction of 0.2 for each fit and track both the loss on the
training set and the validation set as a function of the training
epoch. As training proceeds, the loss on the test set decreases,
while the loss of the validation set reaches a minimum after
some time, as shown in Figure 2. After this point, the fit to the
training set improves while the loss on the validation set beings
to worsen, implying that the model is beginning to overfit. To
avoid overfitting we terminate training our model when the
error on the validation set is minimized and use the weights at
this epoch for our predictions. We perform this procedure on
both the visual albedos and the infrared albedos, since the
former are useful for predicting the diameter of asteroids and
the latter have shown promise for use as a proxy of asteroid
taxonomy (Masiero et al. 2014).

3. Results

We show a compilation of our results for the visible albedos
in Figure 3, including predictions and relevant errors. While we
will focus our discussion on the visible albedos pv, the tight
correlation between visible and infrared albedos ensures that all

Figure 2. Here we show both the training (black) and validation (red) rms error vs. epoch for a single representative sample of our ensemble of fits to the visible
albedos. The validation loss rapidly decreases at early epochs before starting to decrease more slowly after epoch 500. It reaches a shallow minimum near epoch 1100
before gradually increasing and overfitting at later epochs. The dashed vertical line denotes the epoch of minimum validation loss. The weights from this epoch are
used in the ensemble.

3

The Planetary Science Journal, 4:90 (8pp), 2023 May Murray



Figure 3. Here we show the true visible albedos as reported by NEOWISE (top row), the mean predicted visible albedos (second row), the averaged model uncertainty
(third row), and the stochasticity of the belt (final row) as a function of the proper orbital elements (note the difference in color scales between each row). We can see
that large groups of asteroids, corresponding to different families, tend to have low albedos, where these families make up a significant portion of the inner asteroid
belt. In addition, there is a clear, but highly structured gradient in albedo from the inner to outer main belt. The smoothing of the predicted albedos makes some
structure in the main belt more obvious, such as a large region of inclined asteroids with low albedos in the central main belt. The third row shows that the model
uncertainties due to observational errors tend to be largest in sparsely populated parts of the belt, whereas the final row shows that areas near asteroid families tend to
be relatively homogeneous in albedo.
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of the conclusions in this section generalize to the infrared
albedos as well. We generate our predictions by taking the
average of the predictions made by our ensemble of neural nets
on the training set. These predictions are shown in the second
row of Figure 3. This prediction necessarily smooths the true
albedos provided by NEOWISE. As a result of the smoothing,
significant structure in the main belt becomes more obvious,
with large groups of asteroids with similar albedos clearly
visible. In addition, several other subtle trends, including an
increase in the average albedo with inclination in the middle
belt, become more clearly visible. Our averaging procedure
also allows us to quantify the effects of measurement errors on
our mean predictions. Since each individual net in the ensemble
fits a slightly different data set with simulated noise, the
standard deviation of the individual predictions gives a
numerical measure of the effect of the NEOWISE measurement
errors on the predictions of the ensemble. As shown in the third
row of Figure 3, measurement errors tend to have the largest
impact on the predictions in regions of the belt where there are
few measured asteroids. In dense regions, like the outer belt,
there are enough observations that the prediction effectively
averages the errors in the measured albedos of individual
asteroids, leading to a small spread between the models and
higher-fidelity predictions. Overall, we find that the errors in
model prediction are relatively small, with σpred< 0.05 for
most of the belt.

While the spread in models gives us a notion of the
sensitivity to measurement errors, it does not take into account
the errors due to the inherent stochasticity of the albedos in the

belt. To quantify this we consider the absolute residuals
between our averaged prediction and the NEOWISE measured
albedos, and fit a neural network to them using the same
parameters as explained in Section 2, except for using a slightly
higher test training fraction of 0.3, chosen since the residuals
are noisier than the albedos themselves. As can be seen in
Figure 5, these residuals are nearly symmetric and almost
normally distributed; hence, the distribution of the absolute
residuals is very nearly that of a half-normal distribution.
Fitting with a neural net with our chosen loss function will act
like an adaptive moving average, however, statistical distribu-
tions are typically described using their standard deviations.
Hence, to convert the uncertainties due to stochasticity in the
belt into σbelt, we inflate the neural network predictions by a
factor of 2p , which is the appropriate factor for a half-
normal distribution. The scaled predictions from this net are
shown in the final row of Figure 3. σbelt is therefore the
uncertainty in the neural net prediction of the logarithm of the
albedo due to stochasticity in the belt. This reveals that the
parts of the belt near asteroid families and the outer belt tend to
be homogeneous in albedo; further, they reveal that the middle
belt (2.5–3.0 au) exhibits the largest diversity in asteroid albedo
particularly at very-low and very-high isin( ). These regions
likely exhibit greater diversity as they correspond to areas
where families of high-albedo asteroids mix with those of
lower albedo, a correspondence that can be seen in Figure 3,
where this diversity results in a broader local distribution of
albedo and a higher inferred σbelt. Finally, we find the intrinsic
stochasticity in the belt is larger, by nearly a factor of 5, than
the uncertainty in the mean prediction due to measurement
errors. Therefore, for most asteroids, the total error in the
albedo predictions for a certain set of proper orbital elements
can be approximated by σbelt alone. This implies that our
results are largely insensitive to the measurement errors and
that future improvements in measurement accuracy will not
have a large effect on the belt-wide predictions.
Outside of the illuminating structure in the belt, the main use

case for this model is to predict albedos of asteroids for which
infrared or other observations are not available but whose orbits
are known. These asteroids will be disproportionately small
and dim. Small bodies are subject to orbital perturbations from
YORP and Yarkovsky effects and radiation pressure, which
can cause significant changes in their orbital semimajor axes
and their proper orbital elements. These perturbations cause
asteroid families to spread and hence cause small bodies to drift
far from other bodies of similar albedos, weakening the
correlations with the proper orbital elements (Bottke et al.
2001).
These effects suggest that the accuracy of our predictions

may shrink for smaller asteroids, which are more susceptible to
these, and other, effects. To test for this we compute the mean
absolute residuals between our predictions and the NEOWISE
observations as a function of diameter. These diameters were
included in the set of NEOWISE observations and were
computed using the observed visible geometric albedos. We
find the residuals decrease approximately linearly with Dlog10( )
for increasing D, where D is the asteroid diameter over the
interval D< 20.0 km, with the effect over this range being
approximately described as p p c D clogtrue pred 1 10 2∣ ∣ ( )- = + ,
with c1= 0.2506 and c2=−0.0993. Since the residuals vary
widely with diameter we also compute the p value of the fit,
assuming the null hypothesis that the slope is zero. We find

Figure 4. We illustrate the increase of the mean absolute error among asteroids
with small diameters. The top panel shows the absolute error vs. Dlog10( ) for
each of the asteroids in our data set (gray points) and a binned average of that
error (red step function). The behavior over D < 20 km is modeled by a linear
function, shown here as a dashed green line. The horizontal dashed line is the
mean absolute error over the entire data set (0.182), whereas the horizontal
solid line is the mean absolute error if the predictions were taken to be a simple
mean (0.291) of the asteroid albedos (without accounting for their orbital
elements). The neural network decreases the mean absolute error by just over
37 %. The bottom panel shows a histogram of the gray points: there are very
few asteroids in the sample with diameters of more than 20 km, and we ignore
such bodies in our linear fit.
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p= 2.21× 10−13, hence our fit is significant. This effect is
illustrated graphically in Figure 4. Outside these bounds, the
mean absolute residuals vary in a more stochastic fashion due
to decreasing sample size. While we do observe that the model
becomes less effective at predicting the albedos for objects of
small diameters, even our smallest asteroids show improvement
compared to an approach where the asteroid’s dynamical state
is not taken into account. This implies that the albedos of most
small main belt asteroids are likely still significantly correlated
with their proper orbital elements. This result increases our
confidence that the model can generalize to even very small
asteroids (≈1 km) across the main belt.

3.1. The Role of Asteroid Families

Given the homogeneity in albedo among asteroid families, it
becomes natural to ask how much of our predictive power
comes from correctly modeling the albedos of different families
versus fitting subtle trends that extend across the belt. To test
this we divide the asteroids into families using the Asteroid
Families Portal classification scheme (Knežević et al. 2014;
Milani et al. 2014), and compute residuals independently for
each. The results of this test are displayed in Figure 5. These
residuals show that asteroid families do have significantly
smaller residuals than background asteroids. However, there is
still significant improvement in the residuals of the background
asteroids when compared to a naive prediction that assigns all
asteroids the average albedo of the data set. These background
asteroids have highly inhomogeneous albedos relative to those
in families. Hence, the efficacy of the neural net ensemble is
not solely due to predicting the albedos of homogeneous
families correctly, but that it also effectively fits subtle trends in
the highly inhomogeneous background asteroids of the
main belt.

Finally, in addition to being generalizable, our model
smooths the underlying structure observed by NEOWISE and
reveals subtle structure in the belt. For example, as shown in
Figure 6, homogeneity in albedos is not limited strictly to
asteroid families. Asteroids located near identified families—

but not in them—often share similar albedos with the asteroids
in those families, behavior that would be expected if these
families form by the collisional disruption of large asteroids
(Marzari et al. 1995; Bottke et al. 2005; Milani et al. 2014;
Spoto et al. 2015). For example, the Erigone family (near
a = 2.4, Isin 0.09( ) = in Figure 6) exists within a much larger
dynamical grouping of low-albedo asteroids. While this
tendency does not affect the quality of our fits, as they are
agnostic to the family classifications, it does beg for
explanation. It seems likely that the Asteroid Families Portal
family classifications are incomplete, or that certain collisional
families overlap with larger dynamical families of similar
properties, this might imply that larger numbers of asteroids are
members of families than currently thought. This is consistent
with previous work (Brož et al. 2013; Carruba et al. 2013;
Carruba 2013; Carruba et al. 2022), which find “halos” of
asteroids with similar properties but are often not found by
traditional hierarchical clustering methods.
It’s also worth examining how our results extend to features

of the belt on which we have not trained. One such test is to
examine our predictions over the z2 resonance near the Erigone
family. The z2 resonance is defined by a commensurability of
the precession frequencies of the asteroids contained in it and
Saturn. In this case 2 2 6 6   w w+ W = + W , where w and W are
the precessional frequencies of the asteroids and 6w and 6

W are
those of Saturn, in this case taken from Carruba &
Michtchenko (2009). We pick out asteroids near the z2 secular
resonance by considering only those asteroids with semimajor
axes between 2.3 and 2.45 au, e≈ 0.2, and isin 0.1( ) » . When
points are plotted in the space of their semimajor axis versus
relevant precessional frequency, the secular resonance corresp-
onding to the Erigone family appears as a horizontal line and
can be seen in Figure 7. We can now compare our predictions
to the ground truth. We select a band of 1 0 yr−1 about 6w and

6
W and consider all the asteroids in this band as being in the
secular resonance. The average of the observed albedos in this
region is pV = 0.07, whereas the average predicted albedo is
slightly larger at pV = 0.08. This suggests our model

Figure 5. In the left panel, we show the residuals for the neural net for all the asteroids in our sample (all bodies), the residuals for those in recognized asteroid families
(families), those not known to belong to an asteroid family (background), and the residuals for a prediction based on the average albedo. We contrast them with a naive
prediction that simply assigns the average albedo to every asteroid regardless of its dynamical state. We can see that the residuals from the neural net ensemble are
significantly smaller than that of the naive prediction. In the right panel, we show the distribution of σbelt for asteroids in and outside families. We recover the relative
homogeneity of albedos in the asteroid families compared to those of the background belt. Note that the small displacement of the residuals from zero comes from the
errors being given in terms of the albedo itself, rather than its log. The transformation between these causes a small asymmetry in the error which shows up here as a
small shift away from zero.
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generalizes rather well even to situations where it has not been
trained. However, as can be readily seen in Figure 6,
contamination from nearby sources is significant and hence
the diversity in the albedo distribution in secular resonances
may be overestimated due to this contamination.

4. Conclusion

In this paper, we developed a neural-network-based model
for predicting asteroid albedos from their proper orbital
elements. Our model predicts asteroid albedos significantly
more accurately than the naive approach of assuming an
average albedo for the entire belt, lowering the mean absolute
error by around 37% compared to that approach. We find our
model’s predictive power is not limited to asteroid families

with homogeneous albedos but also fits weaker trends over the
more-diverse background asteroids in the main belt. As a
consequence of this fitting, the model also uncovers a large
amount of structure in the asteroid belt, with many of these
structures correlating with known asteroid families; the
relationship between these regions and the asteroid families is
a subject for future work. This modeling may prove invaluable
as future surveys discover more asteroids for which albedo
measurements are not otherwise available.

We are grateful to Matt Holman for helpful discussions. This
publication makes use of data products from the Near-Earth
Object Wide-field Infrared Survey Explorer (NEOWISE),
which is a joint project of the Jet Propulsion Laboratory/
California Institute of Technology and the University of

Figure 6.We show plog V10( ) for asteroid families in the left panel, and the background of asteroids not in families in the right panel, shown in the plane of isin( ) and a
proper orbital elements. We can see the classified families only comprise a portion of the regions with similar albedos.

Figure 7. We show the observed plog V10( ) albedos of asteroids near the z2 resonance in the left panel, and the predicted plog V10( ) albedos of asteroids in the same
region in the right panel, shown in the plane of proper a and 2  w + W proper precessional frequencies. We outline the secular resonance with a horizontal dashed line
2 6 6 w + W and consider all those asteroids in the shaded region as part of the resonance.
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Arizona. NEOWISE is funded by the National Aeronautics and
Space Administration. Finally, we are thankful for the input of
the anonymous reviewers, whose feedback and suggestions
significantly improved this manuscript.

Data Availability

In addition to our neural net ensemble, we also produce a
catalog created by using our trained model on the full set of
asteroids with proper orbital elements given by the Asteroid
Families Portal. The Asteroid Families Portal contains 585,174
unique numbered main belt asteroids with recorded proper
orbital elements and predicted albedos. Hence this catalog
extends the NEOWISE albedos by nearly a factor of five. This
catalog includes entries for the mean neural net prediction, σbelt
and σpred, for both the visible and infrared albedos and is
available doi:10.5281/zenodo.7796841. The weights used by
the neural net are available on GitHub via https://github.com/
r-zachary-murray/Asteroid-Albedos.
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