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Abstract
The oscillation of a Laplacian eigenfunction gives a great deal of information about the
manifold on which it is defined. This oscillation can be encoded in the nodal deficiency, an
important geometric quantity that is notoriously hard to compute, or even estimate. Here we
compare two recently obtained formulas for the nodal deficiency, one in terms of an energy
functional on the space of equipartitions of the manifold, and the other in terms of a two-
sided Dirichlet-to-Neumann map defined on the nodal set. We relate these two approaches
by giving an explicit formula for the Hessian of the equipartition energy in terms of the
Dirichlet-to-Neumann map. This allows us to compute Hessian eigenfunctions, and hence
directions of steepest descent, for the equipartition energy in terms of the corresponding
Dirichlet-to-Neumann eigenfunctions. Our results do not assume bipartiteness, and hence
are relevant to the study of spectral minimal partitions.
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1 Introduction

Let (Mn, g) be a compact Riemannian manifold, and denote the eigenvalues of the Laplace–
Beltrami operator by λ1 < λ2 ≤ · · · , with corresponding eigenfunctionsψ1, ψ2, . . .. For any
eigenfunction ψ∗, Courant’s nodal domain theorem says that its number of nodal domains,
denoted ν(ψ∗), is bounded above by the minimal label of its eigenvalue, which is defined as
�(ψ∗) := min{k : λk = λ∗}. That is, any eigenfunction corresponding to the k-th eigenvalue
has at most k nodal domains.

Equivalently, the nodal deficiency

δ(ψ∗) := �(ψ∗) − ν(ψ∗) (1)

is nonnegative. Despite almost a century of intensive study, this quantity is still not very well
understood. Much attention has been paid to the so-called Courant sharp eigenfunctions—
those for which δ(ψ∗) = 0. It is well known that there are only finitely many of these on any
given domain [26]. There are many examples of domains where one can exhaustively list
the Courant sharp eigenfunctions; see, for instance, [4, 5, 18, 19, 24], as well as the survey
[12] and references therein. However, these examples are all highly symmetric, and their
analysis relies on explicit computation of the eigenfunctions and eigenvalues via separation
of variables.

The first general formula for nodal deficiency on manifolds appeared in [10], inspired by
similar results for quantum graphs [2]; see also [11] for the discrete graph setting. To describe
this result, we require some definitions, which will be elaborated on in Sect. 2. We say that
a k-partition P = {� j }kj=1 of M is an equipartition if

λ1(�1) = · · · = λ1(�k), (2)

where λ1(� j ) denotes the first eigenvalue of the Dirichlet Laplacian on � j . For an equipar-
tition P we define λ(P) to be the common value in (2). The set of equipartitions near a given
smooth (i.e. C∞) equipartition can be given the structure of a Hilbert manifold, on which
P �→ λ(P) is a smooth function. The nodal domains of a Laplacian eigenfunction are easily
seen to form a bipartite equipartition; see Definition 2. Conversely, it was shown in [10] that
a smooth, bipartite equipartition P is the nodal partition of an eigenfunction ψ∗ if and only
if P is a critical point of λ. Moreover, if the corresponding eigenvalue is simple1, then the
Hessian of λ at P is non-degenerate, and its Morse index equals the nodal deficiency,

n−
(
Hess λ(P)

) = δ(ψ∗). (3)

Here we recall that theMorse index of a symmetric bilinear form, denoted n−, is the maximal
dimension of a subspace on which the form is negative definite, and the nullity, n0, is the
dimension of the nullspace of the form. If the bilinear form corresponds to a self-adjoint
operator, then theMorse index and nullity equal the number of negative and zero eigenvalues,
respectively, counted with multiplicity.

It follows from (3) that smooth nodal partitions of Courant sharp eigenfunctions corre-
spond to local minima of the equipartition energy. On the other hand, an earlier result in
[17] showed that bipartite (globally) minimal partitions are precisely the nodal partitions of

1 It is an immediate consequence of our main result that (3) also holds for non-simple eigenvalues. In this
case the Hessian is degenerate, with nullity determined by the multiplicity of the eigenvalue, as in (8).
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Courant sharp eigenfunctions, under a mild regularity assumption on the partition boundary.
Combining this with (3), we have that
{
smooth, bipartite
local minima of λ

}
⇐⇒

{
smooth nodal partitions of
Courant sharp eigenfunctions

}
⇐⇒

{
smooth, bipartite
global minima of λ

}
.

That is, every smooth, bipartite local minimum of λ is in fact a global minimum. A similar
phenomenon was recently observed in the dispersion relations of periodic graphs [7].

The second explicit formula for the nodal deficiency appeared in [14]; see also [9, 20]. To
facilitate our comparison with (3), we will state the result in a stronger form, which is due
to [8]. Let P = {� j } be the nodal partition of an eigenfunction ψ∗, with energy λ(P) = λ∗.
We first introduce the two-sided Dirichlet-to-Neumann map �P associated to the eigenvalue
λ∗. This is an unbounded, self-adjoint operator, with domain dense in

SP :=
{

f ∈ L2(	) :
∫

∂� j

f
∂ψ j

∂ν j
= 0 for all j

}

, (4)

where ψ j denotes the ground state for the Dirichlet Laplacian on � j , ν j is the outward unit
normal, and 	 := ∪ j∂� j is the nodal set. A precise definition will be given in Sect. 3.2; for
now we just mention that

�P f = �SP

(
∂	u

)
(5)

for sufficiently smooth f ∈ SP , where ∂	u is a function on 	 given by ∂	u
∣∣
∂�i∩∂� j

:=
∂ui
∂νi

+ ∂u j
∂ν j

for i �= j , u j is any solution to the boundary value problem�u j +λ∗u j = 0 in� j

with u j
∣∣
∂� j

= f , and �SP is the L2(	)-orthogonal projection onto SP . Since νi = −ν j on

∂�i ∩ ∂� j , the function ∂	u measures the mismatch in normal derivatives across the nodal
set 	.

The result from [8] can now be stated as follows: If P = {� j } is the nodal partition of an
eigenfunction ψ∗, with energy λ(P) = λ∗, then

n−(�P) = δ(ψ∗), n0(�P) = n0(� + λ∗) − 1. (6)

Comparing the formulas (3) and (6) for the nodal deficiency, we see that

n−
(
Hess λ(P)

) = n−(�P). (7)

The goal of this paper is to explain why this equality holds. We achieve this by giving an
explicit relationship between Hess λ(P) and �P . Namely, in Theorem 3, we prove that the
bilinear form Hess λ(P) generates a self-adjoint operator that is unitarily equivalent to �P .
We only consider smooth2 equipartitions, but we do not require them to be associated to
eigenfunctions that have simple eigenvalues. In particular, our results imply that (3) remains
valid for the nodal partition of an eigenfunction with non-simple eigenvalue, and also give
the equality

n0
(
Hess λ(P)

) = n0(� + λ∗) − 1 (8)

for the nullity of the Hessian.
Moreover, our results also apply to non-bipartite partitions, with a suitable modification of

�P . (Note that smooth, non-bipartite partitions can only exist onmultiply connected domains,
such as the torus.) This gives a powerful new tool in the study of spectral minimal partitions,

2 The non-smooth case is more involved and will be treated elsewhere; see the discussion at the end of Sect. 2.
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since our analysis provides explicit formulas relating the eigenfunctions of the Dirichlet-to-
Neumann map to the directions of steepest descent for the function λ. We illustrate this point
with an example in Sect. 6, where we see a compelling geometric connection between the
eigenfunctions of �P and the conjectured minimal 3-partition of the square.

2 Statement of results

To illustrate the relationship between the Hessian and the Dirichlet-to-Neumann map with
minimal technicalities, we assume that ∂M = ∅, and only deal with generic partitions, as
defined below. The case of non-generic partitions will be treated in a future work.

Definition 1 P = {� j } is said to be a generic k-partition of M if �1, . . . , �k are nonempty,

disjoint, open, connected subsets of M such that:

(1) each � j is a smooth manifold with boundary,
(2) M = �1 ∪ · · · ∪ �k ∪ 	, where 	 := ⋃k

j=1 ∂� j ,
(3) for each j , the normal derivative of the ground state ψ j for the Laplacian on � j is

nowhere vanishing on ∂� j .

These are generic properties in the sense that for a residual set of Riemannian metrics g
on M , every eigenfunction of the Laplace–Beltrami operator �g generates a nodal partition
satisfying Definition 1; see [27] for details. Generic partitions are by definition exhaustive.
The condition (1) is stronger than requiring the set	 to be a smoothly embeddedhypersurface.
A simple example is when M is a 2-torus and 	 ⊂ M is a smooth, non-separating loop, so
that � := M \ 	 is connected. In this case the topological boundary ∂� = 	 is smooth, but
� lies on both sides of 	, and hence is not a manifold with boundary.

We also recall the notion of a bipartite partition, emphasizing that generic partitions are
not required to satisfy this condition. First, we declare that two subdomains �i and � j , with
i �= j , are neighbors if ∂�i ∩ ∂� j �= ∅.

Definition 2 A generic partition P = {� j } is said to be bipartite if there exists a function
η : {� j } → {±1} such that η(�i ) = −η(� j ) whenever �i and � j are neighbors.

The nodal partition of an eigenfunction ψ is always bipartite—to prove this one simply
defines η(� j ) = sgn

(
ψ

∣∣
� j

)
.

Before calculating the Hessian of λ, we need to know the manifold structure of the space
of equipartitions. Let P = {� j } be a generic k-equipartition, and fix a number s > (n+3)/2.
One may endow the space of k-partitions near P with a smooth structure in which nearby
partitions are realized as perturbations of P , obtained by deforming	 in the normal direction
with the deformation parameterized by a function in Hs(	); see Sect. 3.1 for details. With
this structure in place, the set Es

P of equipartitions that are close to P is a smooth Hilbert
manifold, and it is shown in [10, Proposition 8] that the function λ : Es

P → R is smooth. In
addition, [10, Theorem 9] characterizes the critical points of λ, concluding that Dλ(P) = 0
if and only if there exist nonzero real numbers a1, . . . , ak such that

∣∣∣∣ai
∂ψi

∂νi

∣∣∣∣ =
∣∣∣∣a j

∂ψ j

∂ν j

∣∣∣∣ on ∂�i ∩ ∂� j (9)

for all i, j . We assume that the a j are normalized to have a21 + · · · + a2k = 1. This condition,
together with (9), determines each a j up to a sign. If P is bipartite, it is natural to fix the signs
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by choosing sgn a j = η(� j ) for each j . In this case the functionψ defined byψ
∣
∣
� j

= a jψ j

belongs to H2(M), and hence is a global Laplacian eigenfunction, which means P is a nodal
partition. However, we emphasize that in general we do not require P to be bipartite.

Assuming P is a critical partition, we choose {a j } as above and define a weight function

ρ : 	 → R, ρ
∣
∣
∂� j

:=
∣
∣
∣
∣a j

∂ψ j

∂ν j

∣
∣
∣
∣ . (10)

The criticality condition (9) ensures that ρ is well defined. We then define weighted spaces

L2
ρ(	) := {

φ : ρφ ∈ L2(	)
}
, 〈φ1, φ2〉L2

ρ(	) := 〈ρφ1, ρφ2〉L2(	) (11)

and

Hs
ρ(	) := {

φ : ρφ ∈ Hs(	)
}
, 〈φ1, φ2〉Hs

ρ (	) := 〈ρφ1, ρφ2〉Hs (	). (12)

The genericity assumption on P implies that both ρ and ρ−1 are smooth and bounded away
from zero, so the weighted and unweighted inner products are equivalent; see Remark 4 for
further discussion.

Finally, we let ν be a smooth unit normal vector field along 	. As explained in Sect. 3.1,
this allows us to parameterize Es

P using functions, rather than vector fields, on 	. We then
introduce a modified version of the two-sided Dirichlet-to-Neumann map, denoted �P,ν (see
Sect. 3.2 for a precise definition). While the operator �P,ν depends on the choice of ν, we
will see below that its index does not.

The main result of this paper describes the relationship between the modified Dirichlet-
to-Neumann map (a self-adjoint operator), the Hessian (a closable bilinear form), and the
self-adjoint operator generated by the closure of the Hessian. In what follows, we write3

FP,ν :=
{
φ ∈ L2

ρ(	) :
∫

∂� j

(ν · ν j )φ

(
∂ψ j

∂ν j

)2

= 0 for all j

}
. (13)

We will see below that if P is a critical partition, then Hs
ρ(	) ∩ FP,ν coincides with TPEs

P ,
the tangent space at P to the manifold Es

P of nearby equipartitions.

Theorem 3 Fix s > (n + 3)/2 and let P be a generic critical equipartition for λ : Es
P → R.

If ν is a smooth unit normal vector field along 	, then

Hess λ(P)(φ1ν, φ2ν) = 2〈�P,ν(ρφ1), ρφ2〉L2(	) (14)

for all φ1, φ2 ∈ Hs
ρ(	) ∩ FP,ν . The bilinear form h(φ1, φ2) := Hess λ(P)(φ1ν, φ2ν), with

dom(h) = Hs
ρ(	) ∩ FP,ν , is semibounded and closable on FP,ν , and therefore generates a

self-adjoint operator HP,ν , which is given by

HP,ν(φ) = 2ρ−1�P,ν(ρφ) (15)

and has domain

H1
ρ (	) ∩ FP,ν ⊆ dom(HP,ν) ⊆ H1/2

ρ (	) ∩ FP,ν . (16)

Remark 4 The weight ρ may appear to be unnecessary, since the L2 and L2
ρ norms are

equivalent, and similarly for Hs and Hs
ρ , so it does not affect the closability of h. However,

it is important for two reasons:

3 Throughout the paper, all integrals are with respect to the Riemannian volumemeasure on M , or the induced
surface measure on 	; we do not indicate the measure explicitly since it will always be clear from the context.
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(1) It ensures thatHP,ν is unitarily equivalent to�P,ν , and notmerely congruent (Corollary 5).
(2) In the non-generic case, where the nodal lines are allowed to intersect, the weight ρ will

vanish at these points. When this happens the norms are no longer equivalent, and one
must use the weighted norm to obtain a closable bilinear form.

Therefore, we describe the form domain in terms of the weighted space Hs
ρ , in order to be

consistent with future work where this distinction will be crucial [6].

We assume for the rest of this section that s and ν have been fixed. Since multiplication
by ρ gives an isometric isomorphism from L2

ρ(	) to L2(	), we get the following.

Corollary 5 If P is a generic critical equipartition, thenHP,ν is unitarily equivalent to 2�P,ν .

This allows us to compute eigenvalues and eigenfunctions of HP,ν using �P,ν . However,
we are ultimately interested in Hess λ(P), rather than its closure (or the corresponding self-
adjoint operator HP,ν), which is defined on a strictly larger domain. The domain inclusion
implies

n−
(
Hess λ(P)

) ≤ n−(HP,ν) = n−(�P,ν), (17)

and similarly for the nullity n0. For a generic partition we prove that this is actually an
equality.

Theorem 6 If P is a generic critical equipartition, then

n−
(
Hess λ(P)

) = n−(HP,ν ) = n−(�P,ν ), n0
(
Hess λ(P)

) = n0(HP,ν ) = n0(�P,ν ). (18)

This is essentially a regularity statement—we show that the eigenfunctions of HP,ν are
smooth, and hence contained in Hs(	) regardless of the choice of s.

It was shown in [8] that the Morse index of �P,ν equals the defect of the partition, a
quantity that generalizes the nodal deficiency in the non-bipartite case. Combining this with
Theorem6 therefore extends the results of [10], which only treated nodal (and hence bipartite)
partitions.

It is clear from (18) that the index and nullity of �P,ν (and also ofHP,ν) do not depend on
the choice of ν. We will see that different choices of ν lead to unitarily equivalent Dirichlet-
to-Neumann operators. In the bipartite case it follows that �P,ν is unitarily equivalent to �P

for any choice of ν; see Remarks 11 and 12.

Corollary 7 If P is a generic bipartite critical equipartition, then

n−
(
Hess λ(P)

) = n−(�P), n0
(
Hess λ(P)

) = n0(�P). (19)

This is the desired equality (7) for generic nodal partitions. However, the significance of
our results goes far beyond establishing this equality. In particular, it gives us a means of
finding eigenfunctions of the Hessian in terms of the two-sided Dirichlet-to-Neumann map.
Indeed, we see that φ ∈ H1

ρ (	) is an eigenfunction of HP,ν if and only if

ρφ ∈ H1(	) (20)

is an eigenfunction of�P,ν . Therefore, we can find eigenfunctions ofHP,ν by computing�P,ν

eigenfunctions and then dividing by the weight ρ, which is nonvanishing by our genericity
assumption. An example of this procedure is given in Sect. 6.
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We expect these results will be useful in the study of spectral minimal partitions, which
are partitions that minimize the quantity

max
1≤ j≤k

λ1(� j ).

It is known that such minimal partitions always exist, are equipartitions, and satisfy certain
regularity properties; see [17] and references therein. However, they do not necessarily satisfy
the genericity conditions inDefinition 1. In particular, the set	may contain self intersections,
in which case it is not smooth.

Generalizing the above results to this case is significantly more involved, and will be
addressed in a future work [6]. Some difficulties of dealing with non-generic partitions
were explored in a recent series of papers on quantum graphs [21–23]. Here we mention
some of the difficulties that arise on manifolds. To begin with, the structure of the space
of partitions becomes more complicated when self-intersections are allowed. Moreover, the
weight function ρ will vanish at the points of intersection. Therefore, if f ∈ H1(	) is an
eigenfunction for �P,ν , it will still be the case that ρ−1 f ∈ H1

ρ (	) is an eigenfunction
for HP,ν , but we can no longer guarantee that ρ−1 f is smooth, which means it may not be
contained in the domain ofHess λ(P) (i.e. the tangent space to themanifold of equipartitions).
As a result, the inequality (17) may be strict. This suggests that there are “deformations” of
P that decrease the energy λ but are not smooth, e.g. they change the topology of the nodal
set.

Outline

In Sect. 3 we review some fundamental definitions and constructions from [8–10] and [14],
which form the basis for our analysis. In Sect. 4 we compute the Hessian of λ, establishing
(14). In Sect. 5 we describe the closure of the Hessian, which yields Theorem 3, and then
prove all of the corollaries. Finally, in Sect. 6 we illustrate our main results and formulas
with an example.

3 Preliminaries

Before proving our main results, we review the definitions of the objects that appear in
the statements of those results, namely the manifold of equipartitions and the two-sided
Dirichlet-to-Neumann map.

3.1 Themanifold of equipartitions

We first describe the set Ps
P of k-partitions close to P , and then the subset Es

P ⊂ Ps
P of

equipartions, which is a submanifold of codimension k − 1.
Assuming that P is a generic k-partition, with nodal set 	, we let Hs(	) denote the

Sobolev space of Hs functions on 	, and similarly for Hs(M). We also let Ds(M) denote
the set of Hs diffeomorphisms of M . It is natural to parameterize Ps

P using vector fields
defined along 	. We find it more convenient to work with functions, however, so we fix4 a
smooth unit normal vector field ν along	, and extend it arbitrarily to a smooth vector field ν̃

4 The smooth structure does not depend on the choice of unit normal, so we may assume that this is the same
ν that appears in the statement of Theorem 3.
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on all of M . (The extension ν̃ is allowed to vanish away from 	, so there are no topological
obstructions to its existence.)

We next fix a value of s > (n + 3)/2 and choose a bounded extension operator
Es : Hs(	) → Hs+1/2(M). For any φ ∈ Hs(	) we let ϕφ denote the flow along the
vector field (Esφ)ν̃, evaluated at time t = 1. Our choice of s guarantees that (Esφ)ν̃ is of
class Hs+1/2 with s + 1/2 > n/2 + 2, so [15, Theorem 3.1] implies ϕφ ∈ Ds+1/2(M). We
then define

Ps
P = {

ϕφ(P) : φ ∈ U}
, (21)

where U ⊂ Hs(	) is a neighborhood of zero. For U sufficiently small the map φ �→ ϕφ(P)

is injective, and hence gives a bijection from U onto Ps
P . This gives Ps

P the structure of a
smooth Hilbert manifold, and the tangent space at P can be identified with Hs(	).

Remark 8 The space Ps
P is automatically a smooth manifold because it can be covered by a

single coordinate chart, so there are no overlap/compatibility conditions to check. This is no
longer true if one considers the larger space

{
ϕ(P) : ϕ ∈ Ds+1/2

}
of all partitions that are

Hs-diffeomorphic (but not necessarily close) to P , but this distinction is irrelevant for the
current paper as we are only interested in local computations.

We now define the subset Es
P of equipartitions by

Es
P = {

P̃ = {�̃ j } ∈ Ps
P : λ1(�̃1) = · · · = λ1(�̃k)

}
. (22)

Defining a map � : Ps
P → R

k by �(P̃) = (
λ1(�̃1), . . . , λ1(�̃k)

)
, we have that Es

P ⊂ Ps
P is

the preimage of the diagonal in R
k , and it follows from a transversality argument, given in

[10, Section 3.1], that it is a smoothly embedded submanifold of codimension k − 1.
Recalling that TPPs

P can be identified with Hs(	), or equivalently Hs
ρ(	), the tangent

space to Es
P will consist of the variations that preserve the equipartition condition, meaning

the first variation of the ground state energy on each� j is the same. By Hadamard’s formula,
this is equivalent to requiring that the integrals

∫

∂� j

(φν) · ν j

(
∂ψ j

∂ν j

)2

(23)

coincide for all j = 1, . . . , k. The tangent space to Es
P at P can thus be described as

TPEs
P =

{

φ ∈ Hs
ρ(	) :

∫

∂�1

χ1φ

(
∂ψ1

∂ν1

)2

= · · · =
∫

∂�k

χkφ

(
∂ψk

∂νk

)2
}

, (24)

where we have defined

χ j : ∂� j → {±1}, χ j = ν · ν j (25)

for each j . If P is a generic critical equipartition, then all of the integrals in (23) will vanish,
and we obtain

TPEs
P = Hs

ρ(	) ∩ FP,ν , (26)

where FP,ν is defined in (13).
On each connected component of ∂� j we will have either χ j = 1 or χ j = −1, but it

is possible that both signs occur on different components of the boundary—if P is non-
bipartite this is inevitable. Some different choices of ν, and the resulting χ j , are shown for a
3-partition of the circle in Fig. 1.
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Ω1Ω2

Ω3

χ1 = 1χ2 = −1

χ2 = 1

χ3 = −1 χ3 = 1

χ1 = −1

Ω1Ω2

Ω3

χ1 = 1χ2 = −1

χ2 = 1

χ3 = −1 χ3 = −1

χ1 = 1

Fig. 1 Two different choices of unit normal ν, and the resulting χ j , for a 3-partition of the circle. In the left
figure none of the χ j are constant, i.e. each assumes both values ±1. In the right figure χ1 ≡ 1 and χ3 ≡ −1

are constant but χ2 changes sign. (In this example M = S1 is one-dimensional and 	 consists of three points)

Lemma 9 A generic partition P is bipartite if and only if there exists a choice of ν for which
every χ j is constant.

Proof If P is bipartite, we choose ν so that ν
∣∣
∂� j

= η(� j )ν j for each j . Definition 2

guarantees this is well defined: if �i and � j are neighbors, then η(�i )νi = η(� j )ν j , since
η(�i ) = −η(� j ) and νi = −ν j on ∂�i∩∂� j .With this choice of ν wehave thatχ j = η(� j )

is constant.
Conversely, if each χ j is constant, we define η(� j ) = χ j . To see that this satisfies

Definition 2,we simply observe that if�i and� j are neighbors, then νi = −ν j on ∂�i∩∂� j ,
and hence χi = −χ j . ��

3.2 The two-sided Dirichlet-to-Neumannmap

We now recall the definition of the two-sided Dirichlet-to-Neumann map �P,ν , with �P in
(5) appearing as a special case. The definition is complicated by the fact that λ∗ = λ(P) is
in the Dirichlet spectrum on each nodal domain; in [14] the Dirichlet-to-Neumann map was
defined for � + (λ∗ + ε) precisely to avoid this difficulty.

However, there are two advantages to working with ε = 0 directly: 1) it gives to a stronger
result in the case of a multiple eigenvalue, as recently observed in [8]; and 2) it is precisely
the operator that shows up in Theorem 3 when we compute the Hessian of λ.

Throughout this sectionwe assume that {� j } is a generic equipartitionwith energyλ(P) =
λ∗ and we fix a smooth unit normal vector field ν along 	. With {χ j } as in (25), we start by
defining the closed subspace

SP,ν :=
{
f ∈ L2(	) :

∫

∂� j

χ j f
∂ψ j

∂ν j
= 0 for all j

}
(27)

of L2(	). We will obtain �P,ν as the self-adjoint operator corresponding to a closed, semi-
bounded bilinear form on a dense subspace of SP,ν .

If f ∈ H1/2(	) ∩ SP,ν , the boundary value problem

�u j + λ∗u j = 0 in � j , u j
∣∣
∂� j

= χ j f , (28)
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has a solution for each j ; see, for instance [25, Theorem 4.10]. Moreover, there exists a
unique solution, which we denote u f

j , satisfying the additional constraint
∫
� j

u f
j ψ j = 0. We

then define the bilinear form

a( f , g) =
k∑

j=1

∫

� j

(∇u f
j · ∇ugj − λ∗u f

j u
g
j

)
, (29)

with domain H1/2(	) ∩ SP,ν dense in SP,ν . It is easily shown (see [1, 8]) that there are
constants C, c > 0 and m ∈ R such that

|a( f , g)| ≤ C‖ f ‖H1/2(	)‖g‖H1/2(	) (30)

and

a[ f ] ≥ c‖ f ‖2H1/2(	)
+ m‖ f ‖2L2(	)

(31)

for all f , g ∈ dom(a). This means a is closed and semibounded, so it generates a self-adjoint
operator, which we denote �P,ν , with dom(�P,ν) ⊆ H1/2(	) ∩ SP,ν .

To characterize the domain of�P,ν , we define the two-sided normal derivative distribution
∂	u

f ∈ H−1/2(	) by

∂	u
f := E1

(
χ1

∂u f
1

∂ν1

)
+ · · · + Ek

(
χk

∂u f
k

∂νk

)
, (32)

where ∂u f
j /∂ν j ∈ H−1/2(∂� j ) and

E j : H−1/2(∂� j ) → H−1/2(	) (33)

denotes the extension by zero. If u f is sufficiently smooth we will have ∂u f
j /∂ν j ∈ L2(∂� j )

for each j , in which case ∂	u
f is a function, given by

∂	u
f
∣∣
∂�i∩∂� j

= χi
∂u f

i

∂νi
+ χ j

∂u f
j

∂ν j

for i �= j .
It is easily seen that

dom(�P,ν) = {
f ∈ H1/2(	) ∩ SP,ν : ∂	u

f ∈ L2(	)
}
, (34)

and for any f ∈ dom(�P,ν) we have

�P,ν f = �SP,ν
(∂	u

f ). (35)

Remark 10 If f ∈ H1(	)∩ SP,ν , then [25, Theorem 4.24(i)] implies ∂	u
f ∈ L2(	), and we

conclude that H1(	) ∩ SP,ν ⊆ dom(�P,ν). We do not know if the reverse inclusion holds.
This amounts to a transmission regularity problem: if the two-sided normal ∂	u

f is contained
in L2(	), does it follow that f ∈ H1(	)? See Lemma 14 for a related result.

Remark 11 If each χ j is constant, it follows immediately that SP,ν = SP and �P,ν = �P .
Therefore, in the bipartite case there exists a choice of ν for which �P,ν = �P ; see Lemma
9.

Remark 12 If ν and ν̃ are two choices of unit normal along 	, the resulting Dirichlet-
to-Neumann maps are unitarily equivalent, where the unitary transformation on L2(	) is
multiplication by (ν · ν̃). In the bipartite case it follows that �P,ν is unitarily equivalent to
�P for any choice of ν.
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4 The second variation

We now compute the second variation of λ, leading to our explicit formula (14) relating the
Hessian to the Dirichlet-to-Neumann map.

We recall that for each � j , ψ j denotes the L2-normalized ground state and ν j is the
outward unit normal. Moreover, we let Hj = div ν j denote the mean curvature of ∂� j .
Our sign convention (which gives the sphere positive mean curvature) is irrelevant for the
following calculation; all that matters is that

Hi
∣
∣
∂�i∩∂� j

= −Hj
∣
∣
∂�i∩∂� j

(36)

whenever �i and � j are neighbors, since νi = −ν j on their common boundary.
We start with a simple lemma that allows us to compare a sum of integrals over ∂� j to a

single integral over 	. The proof is a direct calculation so we leave it out.

Lemma 13 If f j is a measurable function on ∂� j for each j , then

k∑

j=1

∫

∂� j

f j =
∫

	

F, (37)

where F
∣∣
∂�i∩∂� j

= fi
∣∣
∂� j

+ f j
∣∣
∂�i

for i �= j .

The Hessian of λ in the φν direction can be computed as

Hess λ(P)[φν] = d2

dt2
λ(ϕt (P))

∣∣∣
t=0

, (38)

where ϕt is any one-parameter family of diffeomorphisms ofM with ϕ0 = id, ϕ′
t

∣∣
	,t=0 = φν

and ϕt (P) ∈ Es
P for all t . (We can not assume that ϕt is the one-parameter group generated

by the vector field (Esφ)ν̃ on M , as described in Sect. 3.1, since there is no guarantee that
this flow will preserve the space of equipartitions.)

We start by differentiating λ1(ϕt (� j )) on the j th subdomain. From [16, eq. (151)] we
have

d2

dt2
λ1(ϕt (� j ))

∣∣∣
t=0

=
∫

∂� j

((
HjC

2
j − C ′

j

) (
∂ψ j

∂ν j

)2
+ 2w j

∂w j

∂ν j

)

, (39)

where C j and C ′
j denote the normal velocity of the flow and its t derivative, evaluated at

t = 0, and w j is the unique solution to

�w j + λ1(� j )w j = 0, w j
∣∣
∂� j

= −C j
∂ψ j

∂ν j
,

∫

� j

w jψ j = 0. (40)

The normal velocity at t = 0 is given by C j = (φν) · ν j = χ jφ. The precise value of the
derivative C ′

j is irrelevant; it only matters that it is an odd function, in the sense that

C ′
i

∣∣
∂�i∩∂� j

= −C ′
j

∣∣
∂�i∩∂� j

(41)

whenever�i and� j are neighbors. This follows from the observation that the normal velocity
is odd for all t , since νi = −ν j on the common boundary on �i and � j , and likewise for
their deformations ϕt (�i ) and ϕt (� j ).
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By the equipartition condition we have λ(ϕt (P)) = λ1(ϕt (� j )) for each j . For a1, . . . , ak
as in (9), using our assumption that a21 + · · · + a2k = 1, we can write

λ(ϕt (P)) =
k∑

j=1

a2jλ1(ϕt (� j )),

and hence

d2

dt2
λ(ϕt (P))

∣
∣
∣
t=0

=
k∑

j=1

a2j
d2

dt2
λ1(ϕt (� j ))

∣
∣
∣
t=0

.

Using (39) to evaluate each term on the right-hand side, we get

d2

dt2
λ(ϕt (P))

∣
∣
∣
t=0

=
k∑

j=1

a2j

∫

∂� j

(
(
HjC

2
j − C ′

j

)(
∂ψ j

∂ν j

)2
+ 2w j

∂w j

∂ν j

)

. (42)

Next, we use Lemma 13 to conclude that

k∑

j=1

a2j

∫

∂� j

(
HjC

2
j − C ′

j

)(
∂ψ j

∂ν j

)2
=

∫

	

F = 0,

because

F
∣∣
∂�i∩∂� j

= (
HiC

2
i − C ′

i

) (
ai

∂ψi

∂νi

)2
+

(
HjC

2
j − C ′

j

)(
a j

∂ψ j

∂ν j

)2
= 0 (43)

for all i �= j , on account of (9), (36) and (41). Substituting this into (42) and then integrating
by parts, using (40), yields

d2

dt2
λ(ϕt (P))

∣∣∣
t=0

= 2
k∑

j=1

a2j

∫

∂� j

w j
∂w j

∂ν j

= 2
k∑

j=1

∫

� j

(|a j∇w j |2 − λ∗(a jw j )
2).

Finally, recalling the definition of ρ in (10), we note that

a jw j
∣∣
∂� j

= −χ j a j
∂ψ j

∂ν j
φ = ±χ jρφ,

where the ± sign is consistent over the entire boundary of ∂� j . This means for each j the
function u j := a jw j satisfies the boundary value problem

�u j + λ∗u j = 0 in � j , u j
∣∣
∂� j

= ±χ jρφ,

and so

Hess λ(P)[φν] = 2
k∑

j=1

∫

� j

(|∇u j |2 − λ∗u2j
) = 2a(ρφ, ρφ),

where a is the bilinear form that generates �P,ν , as in (29). This completes the proof of (14).
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5 Closing the Hessian

Having computed the Hessian of λ, we are now ready to prove our main results.

Proof of Theorem 3 From (14) we have

h(φ1, φ2) = Hess λ(P)(φ1ν, φ2ν) = 2a(ρφ1, ρφ2) (44)

for all φ1, φ2 ∈ Hs
ρ(	) ∩ FP,ν . We then define a form h̄(φ1, φ2) = 2a(ρφ1, ρφ2) with

dom(h̄) = H1/2
ρ (	) ∩ FP,ν = {φ : ρφ ∈ dom(a)}.

It is clear that dom(h̄) is dense in FP,ν . Using (30) and (31), we conclude that h̄ is closed and
semibounded, and hence generates a self-adjoint operator, which we denoteHP,ν . Moreover,
using the fact that φ ∈ FP,ν if and only if ρφ ∈ SP,ν , we find that

dom(HP,ν) = {
φ : ρφ ∈ dom(�P,ν)

}
,

and HP,νφ = 2ρ−1�P,ν(ρφ). Finally, using the fact that

H1(	) ∩ SP,ν ⊆ dom(�P,ν) ⊆ H1/2(	) ∩ SP,ν ,

we obtain (16), completing the proof. ��
Corollary 5 follows immediately from Theorem 3. To prove Theorem 6, we will show that

the eigenfunctions ofHP,ν are smooth, and hence are contained in the domain of Hess λ(P).
The main ingredient in the proof is the following transmission regularity result.

Lemma 14 [25, Theorem 4.20] Suppose �i and � j are neighbors. If ui ∈ H1(�i ) and
u j ∈ H1(� j ) satisfy �ui ∈ Hr (�i ), �u j ∈ Hr (� j ),

ui
∣∣
∂�i∩∂� j

− u j
∣∣
∂�i∩∂� j

∈ Hr+3/2(∂�i ∩ ∂� j )

and

∂ui
∂νi

+ ∂u j

∂ν j
∈ Hr+1/2(∂�i ∩ ∂� j )

for some r ≥ 0, then ui ∈ Hr+2(�i ) and u j ∈ Hr+2(� j ).

Proof of Theorem 6 Since (17) always holds, we just need to prove the reverse inequality,

n−
(
Hess λ(P)

) ≥ n−(HP,ν). (45)

Let m = n−(HP,ν), and denote by φ1, . . . , φm ∈ dom(HP,ν) the first m eigenfunctions of
HP,ν . To prove (45) it suffices to show that

φi ∈ dom
(
Hess λ(P)

) = Hs
ρ(	) ∩ FP,ν

for i = 1, . . . ,m, since this implies that Hess λ(P) is negative definite on span{φ1, . . . , φm}
and hence n−

(
Hess λ(P)

) ≥ m. In fact, we will prove that every eigenfunction ofHP,ν is in
C∞(	), and hence is contained in Hs(	) regardless of the choice of s.

Therefore, let φ be an eigenfunction for HP,ν . It follows from Corollary 5 that f = ρφ

is an eigenfunction for �P,ν . We let μ denote the corresponding eigenvalue. Fix i �= j
with ∂�i ∩ ∂� j �= ∅, and let ci , c j ∈ {±1} denote the constants ci := χi

∣∣
∂�i∩∂� j

and

123



203 Page 14 of 17 G. Berkolaiko et al.

c j := χ j
∣
∣
∂�i∩∂� j

. We then have functions ui ∈ H1(�i ) and u j ∈ H1(� j ) such that

�ui + λ∗ui = 0, �u j + λ∗u j = 0,

ci ui
∣
∣
∂�i∩∂� j

= c j u j
∣
∣
∂�i∩∂� j

= f ,

and

ci
∂ui
∂νi

+ c j
∂u j

∂ν j
= �P,ν f = μ f ∈ H1/2(∂�i ∩ ∂� j ).

It follows from Lemma 14 with r = 0 that ci ui ∈ H2(�i ), and hence f = ci ui
∣
∣
∂�i∩∂� j

∈
H3/2(∂�i ∩ ∂� j ). This implies

ci
∂ui
∂νi

+ c j
∂u j

∂ν j
= μ f ∈ H3/2(∂�i ∩ ∂� j ),

so we can apply Lemma 14 with r = 1 to obtain ci ui ∈ H3(�i ). Proceeding inductively, we
find that f is smooth. Since ρ is smooth and nowhere vanishing, it follows that φ = ρ−1 f
is smooth, as was to be shown. ��

Corollary 7 is now an immediate consequence of Theorem 6, Lemma 9 and Remark 11.

6 Example: the (3, 1)mode on the square

We conclude by studying the nodal partition generated by ψ∗(x, y) = sin(3πx) sin(π y) on
the unit square, with Dirichlet boundary conditions. We refer to ψ∗ as the (3, 1) mode, and
its nodal set as the (3, 1) nodal set. Similarly, the (1, 3) mode refers to the eigenfunction
sin(πx) sin(3π y) with the same eigenvalue. While this example does not strictly satisfy the
requirements of Theorem 3, which for simplicity was only formulated on manifolds without
boundary, it can be shown that the theorem remains valid in this case, as will be described in
[6].

Thismeanswecanuse (20) to relate eigenfunctions of the two-sidedDirichlet-to-Neumann
map �P,ν to eigenfunctions of the self-adjoint operator HP,ν generated by Hess λ(P). This
is useful because the Dirichlet-to-Neumann eigenfunctions can be computed explicitly in
this case, and by taking the eigenfunction corresponding to the most negative eigenvalue, we
obtain the direction of steepest descent for the equipartition energy λ. In Fig. 3 we plot the
resulting deformation of the (3, 1) nodal partition, and observe that it is moving towards the
conjectured minimal 3-partition of the square, which was investigated numerically in [13].

The nodal set of ψ∗ is 	 = {1/3, 2/3}× [0, 1]. We choose ν so that ν
∣∣
x=1/3 = (1, 0) and

ν
∣∣
x=2/3 = (−1, 0), hence χ1 = χ3 = 1 and χ2 = −1. In this case the subspace SP,ν defined

in (27) coincides with

SP =
{
f ∈ L2(	) :

∫ 1

0
f
( 1
3 , y

)
sin(π y) dy =

∫ 1

0
f
( 2
3 , y

)
sin(π y) dy = 0

}
, (46)

and the weight is ρ(x, y) = 1√
3
sin π y.

Separating variables, one finds that σ is an eigenvalue of �P if there exists u(x, y) =
g(x)h(y) satisfying �u + λ3,1u = 0 in � \ 	, with the boundary conditions g(0) = g(1) =
h(0) = h(1) = 0, the continuity conditions g

( 1
3+) = g

( 1
3−) and g

( 2
3+) = g

( 2
3−), and the
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jump conditions

g′( 1
3+) − g′( 1

3−) = σ g
( 1
3 ), g′( 2

3+) − g′( 2
3−) = σ g

( 2
3 ). (47)

The first two eigenfunctions have h(y) = sin(2π y). It can be shown that the g(x) giving
the most negative value of σ is even with respect to x = 1/2, so g

( 1
3 ) = g

( 2
3 ), and the

corresponding eigenfunction of �P , denoted f1, is thus given by

f1
( 1
3 , y

) = f1
( 2
3 , y

) = sin(2π y). (48)

Similarly, the second eigenvalue corresponds to g(x) that is odd with respect to x = 1/2,
hence

f2
( 1
3 , y

) = − f2
( 2
3 , y

) = sin(2π y). (49)

Finally, the third eigenvalue of�P , which is zero, has g(x) = sin(π y) and h(y) = sin(3π y),
hence

f3
( 1
3 , y

) = f3
( 2
3 , y

) = sin(3π y). (50)

These formulas for the first three eigenfunctions can also be obtained using the spectral flow
method from [9]; we do not elaborate on this here, but refer the reader to [3], where a similar
computation is carried out in detail.

Using (20), we therefore obtain (up to an overall normalization) the HP eigenfunctions

φ1
( 1
3 , y

) = φ1
( 2
3 , y

) = sin(2π y)

sin(π y)
, (51)

φ2
( 1
3 , y

) = −φ2
( 2
3 , y

) = sin(2π y)

sin(π y)
, (52)

φ3
( 1
3 , y

) = φ3
( 2
3 , y

) = sin(3π y)

sin(π y)
. (53)

The deformations of the nodal partition P along the vector fields φ1ν, φ2ν and φ3ν are
illustrated in Fig. 2, from left to right.

The appearance of the eigenfunction φ3 in the kernel of HP is easily understood. For
any t , ψt (x, y) = sin(3πx) sin(π y)+ t sin(πx) sin(3π y) is a Laplacian eigenfunction, with
eigenvalue λ3,1 independent of t . Letting Pt denote the corresponding nodal partition, we
have that λ(Pt ) is constant in t , hence Hess λ(P0)(φν, Y ) = 0 for any normal vector field Y
along 	, where φν is the infinitessimal generator of the family Pt . Recalling that the normal
derivative ν · ∇ is ∂/∂x at x = 1/3 and −∂/∂x at x = 2/3, we find that

φ(x, y) = − sin(πx) sin(3π y)

ν · ∇(sin(3πx) sin(π y))

∣∣∣∣
x=1/3,2/3

=
√
3

6π

sin(3π y)

sin(π y)
, (54)

is proportional to φ3, as expected.
On the other hand, the eigenfunction φ1 corresponds to the most negative eigenvalue of

�P , and so φ1ν gives the direction of steepest descent for the equipartition energy λ. The
deformation of the nodal partition P along this direction is shown in Fig. 3. The left panel
shows the original partition, and themiddle panel shows its deformation byφ1ν, which pushes
apart the nodal lines for y > 1

2 and brings them closer together for y < 1
2 . The far right panel

is an illustration of the conjectured minimal partition, which was computed numerically in
[13].
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Fig. 2 Deformations of the (3, 1) nodal set along the Hessian eigenfunctions φ1, φ2 and φ3 (pictured from
left to right). The associated eigenvalues are negative for φ1 and φ2 and zero for φ3, which corresponds to
deformation along the (1, 3) mode

Fig. 3 From left to right: the (3, 1) nodal set, its deformation along φ1 (the direction of steepest descent), and
the conjectured minimal 3-partition

These figures suggest that the gradient flow of λ, with respect to a suitable Riemannian
structure on the manifold Es

P , will asymptotically approach the conjectured minimum. How-
ever, the initial partition and the conjectured minimum have different topology—the former
is smooth and bipartite while the latter is not—and so the resolution of this problem will
require a more detailed study of the space of general (i.e. non-generic) equipartitions. This
structure will be investigated in a future work [6].
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