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Abstract

Magnetic reconnection is ubiquitous in astrophysical systems, and in many such systems the plasma suffers from
significant cooling due to synchrotron radiation. We study relativistic magnetic reconnection in the presence of
strong synchrotron cooling, where the ambient magnetization, σ, is high and the magnetic compactness, ℓB, of the
system is of order unity. In this regime, e± pair production from synchrotron photons is inevitable, and this process
can regulate the magnetization σ surrounding the current sheet. We investigate this self-regulation analytically and
find a self-consistent steady state for a given magnetic compactness of the system and initial magnetization. This
result helps estimate the self-consistent upstream magnetization in systems where plasma density is poorly
constrained, and can be useful for a variety of astrophysical systems. As illustrative examples, we apply it to study
the properties of reconnecting current sheets near the supermassive black hole of M87, as well as the equatorial
current sheet outside the light cylinder of the Crab pulsar.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); Gamma-ray sources (633); Pulsars (1306);
Black holes (162); Compact objects (288)

1. Introduction

Magnetic reconnection is a fundamental plasma physics
process that dissipates magnetic energy into plasma heating and
nonthermal particle acceleration. Over the past decade,
significant progress in our understanding of collisionless
relativistic reconnection has been made through first-principles
particle-in-cell (PIC) simulations (e.g., Cerutti et al. 2012a;
Guo et al. 2014; Sironi & Spitkovsky 2014; Werner et al.
2016, 2018). This process accelerates particles into a power-
law energy distribution with index p and cutoff gmax that
depend on the upstream magnetization s p= B n m c4 e0

2
0

2

(e.g., Sironi & Spitkovsky 2014). In the ultra-relativistic limit
of very high σ? 1, the power-law index p of the accelerated
particles approaches unity, p→ 1 (Zenitani & Hoshino 2001;
Lyubarsky & Liverts 2008; Guo et al. 2014; Werner et al.
2016).
However, the effects of radiation and their feedback to the

process of magnetic reconnection have begun to be studied
only recently (e.g., Jaroschek & Hoshino 2009; Uzdensky &
McKinney 2011; Uzdensky et al. 2011; Cerutti et al.
2012a, 2014; Uzdensky & Spitkovsky 2014; Uzdensky 2016;
Beloborodov 2017; Schoeffler et al. 2019; Hakobyan et al.
2019; Werner et al. 2019; Sironi & Beloborodov 2020;
Mehlhaff et al. 2020; Sridhar et al. 2021; Mehlhaff et al.
2021). In extreme astrophysical environments, particles often
suffer from significant radiative cooling through synchrotron or
inverse Compton (IC) radiation. This can lead to significant
changes to the power-law index of the particle energy spectra
(Werner et al. 2016), and can produce observable intermittency
through kinetic beaming (Cerutti et al. 2012b, 2013; Mehlhaff
et al. 2020). In some systems, the radiated photons can be
energetic enough to produce e± pairs in the upstream or close

to the reconnecting current sheet, regulating the plasma supply
and the magnetization parameter σ. Such systems include
magnetospheres of rotation-powered pulsars (outside the light
cylinder; e.g., Lyubarskii 1996; Hakobyan et al. 2019),
magnetospheres and coronae of accreting black holes (e.g.,
Beloborodov 2017; Sironi & Beloborodov 2020; Sridhar et al.
2021; Mehlhaff et al. 2021), and active magnetospheres of
magnetars (Uzdensky 2011; Beloborodov 2021).
For many of these astrophysical systems, the magnetization

parameter σ can be poorly constrained, due to uncertainties in
either the local magnetic field strength or plasma density. For
example, the pair multiplicity injected by the Crab pulsar into
its pulsar wind nebula is a long-standing problem (see, e.g.,
Amato 2014). The plasma density near the light cylinder can be
quite uncertain and is likely regulated by local pair production
(Hakobyan et al. 2019; Hu & Beloborodov 2022). For
supermassive black holes, recent GRMHD simulations have
shown that magnetically arrested disks (MADs) can undergo
quasi-periodic eruptions that form transient current sheets in a
low-density region near the black hole horizon (e.g., Chashkina
et al. 2021; Ripperda et al. 2022; Scepi et al. 2022). However,
due to artificial mass injection in MHD codes, it is difficult to
constrain the magnetization in such an environment from first
principles through simulations. This makes it difficult to make
theoretical predictions about the radiative signatures of these
current sheets.
In this paper, we investigate the effect of e± pair production

from synchrotron photons in a reconnecting current sheet, and
study how the plasma density self-regulates to an equilibrium.
Section 2 defines the basic parameters of this problem and our
assumptions. Section 3 presents an analytic model that captures
the basic features of this self-regulation through pair produc-
tion. Section 4 applies the model to two astrophysical
scenarios: the supermassive black hole in M87 (Section 4.1)
and the Crab pulsar (Section 4.2). Section 5 compares our
results with previous works on related topics, and finally in
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Section 6 we discuss some of the potential shortcomings of this
model and possible future extensions.

2. Basic Parameters

One of the key dimensionless parameters that govern the
magnetic reconnection physics is the upstream plasma
magnetization:

( )s
pr

º
B

c4
, 10

2

0
2

where B0 is the reconnecting magnetic field strength, and ρ0c
2

is the rest-mass energy density of the upstream plasma. This
definition assumes that the upstream is cold, or kT=mec

2,
such that the relativistic enthalpy of the upstream plasma is
primarily given by its rest mass.4 This assumption is
appropriate in an environment with strong cooling. We also
limit our consideration to an e± plasma, which is appropriate in
an environment where copious pair production is expected.
Furthermore, we shall assume that reconnection proceeds in the
relativistic regime, marked by σ? 1, expected in extreme
astrophysical environments around black holes and neutron
stars. Finally, in this paper we will focus on reconnection
without a guide field, which is relevant to the applications that
we will discuss in Section 4.

Relativistic reconnection-driven nonthermal particle accel-
eration in this so-called zero-guide-field case in a pair plasma
has been well studied in many previous PIC studies, especially
in the nonradiative case (e.g., Jaroschek et al. 2004; Zenitani &
Hoshino 2007; Guo et al. 2014; Sironi & Spitkovsky 2014;
Werner et al. 2016). In particular, it was found that particles
undergo rapid primary acceleration in the elementary inter-
plasmoid current layers around the X-points to a power-law
energy distribution f (γ)∼ γ− p, with a σ-dependent power-law
index which approaches unity in the ultra-relativistic high-σ
limit, p(σ)→ 1 as σ→∞ (see, e.g., Zenitani & Hoshino 2001;
Larrabee et al. 2003; Lyubarsky & Liverts 2008; Werner et al.
2018). This primary power law extends up to around
g s~ 4max (see, e.g., Werner et al. 2016; Uzdensky 2022),
perhaps followed by a steeper higher-energy power-law
spectrum (e.g., Petropoulou & Sironi 2018; Hakobyan et al.
2021), and finally by an exponential cutoff (Lyubarsky &
Liverts 2008; Werner et al. 2016).
Synchrotron cooling introduces a second important dimen-

sionless parameter, the magnetic compactness, ℓB, which
measures the radiative energy loss rate of marginally relativistic
(γ∼ 1) electrons with respect to the light-crossing time of the
system:

( )s
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where σT is the Thomson cross section, p=U B 8B 0
2 is the

magnetic energy density, and L is the system size, which we
take to be the length of the current sheet.

For a given electron with Lorentz factor γ? 1 gyrating in a
magnetic field with pitch angle θ= π/2, its synchrotron

cooling time is

( )g
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Equating this with the light-crossing time of the system, L/c,
one can find that the electron will cool to a Lorentz factor of
γcool∼ 1/ℓB over the system light-crossing time if ℓB 1. If
ℓB> 1, the electron will become nonrelativistic before it leaves
the system. The time for a particle with arbitrary initial Lorentz
factor γ? 1 to cool down to γ∼ 1 is t∼ L/cℓB. In this paper,
we study systems where ℓB 1. In these systems synchrotron
cooling is efficient, and leptons accelerated in the reconnection
layer will cool to Lorentz factors γ∼ 1 before they exit the
system. This also provides reasonable justification for our
assumption that the upstream plasma is relativistically cold,
kT=mec

2, in our definition of upstream magnetization σ (see
Equation (1)).
When dealing with radiative reconnection, it is often

beneficial to define a radiation-reaction-limited Lorentz factor
by balancing the radiation reaction force with the accelerating
electric force due to the typical reconnection electric field,
Erec= βrecB0:

( )g
b
s

º
e B

U

3

4
, 4

T B
rad

rec 0

where βrec; 0.1 is the dimensionless collisionless relativistic
reconnection rate. Since this quantity does not involve the
system size L, it measures the local relative strength of
radiative cooling. Note that since particles are accelerated near
X-points deep inside the current layer, where the B field is
small, their Lorentz factors can exceed γrad locally (Kirk 2004;
Uzdensky et al. 2011; Cerutti et al. 2012a). Only once the
particles encounter regions of strong perpendicular magnetic
field, e.g., when they are captured in plasmoids, will they start
radiating away most of their energy. The critical energy, γrad, is
related to ℓB by the system size:

( )g b
r

=ℓ
L4

3
, 5Brad

2
rec

0

where ρ0=mec
2/eB0 is the nominal relativistic electron

Larmor radius in the upstream field.
Finally, given a characteristic magnetic field, B0, and

electron Lorentz factor, γ, the characteristic synchrotron photon
frequency is

( )w g w q=
3

2
sin , 6c B

2

where ωB= eB0/mec is the standard nonrelativistic electron
cyclotron frequency and θ is the particle’s pitch angle. The
synchrotron photon will be capable of creating an e± pair when
its energy is larger thanmec

2; or, in other words, when the
Lorentz factor of the emitting particle is larger than

( )g
q

=
B

B

2

3 sin
, 7c

Q

0

where º = ´B m c e 4.4 10 GQ e
2 3 13 is the quantum critical

(Schwinger) magnetic field. If the plasma magnetization
σ γc/4, so that g g cmax , then there will be an appreciable

4 Otherwise, one will need to also define the “hot” magnetization, σh, using
the full enthalpy of the upstream plasma, taking into account its relativistic
internal energy and pressure.
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number of reconnection-accelerated particles capable of
radiating photons that can convert to pairs through photon–
photon collisions.

3. Analytic Model

Consider a reconnecting current sheet with initial
σ0> γc? 1 and thus capable of pair production through
synchrotron photons. We are interested in the regime where
synchrotron cooling is efficient, ℓB 1. We expect that once
reconnection begins, synchrotron photons start to create pairs
in the vicinity of the current sheet, producing extra plasma that
will regulate the effective upstream magnetization σ, reducing
it from its initial, far-upstream value σ0. The effective
magnetization may then become smaller than γc, and this
would strongly suppress pair production since particles would
no longer be able to gain sufficient energy to emit pair-
producing photons. This may lead to a limit cycle behavior, as
was noted by Mehlhaff et al. (2021) in the case of IC radiation;
this behavior is somewhat similar to a pair-producing gap in the
magnetospheres of black holes and neutron stars (e.g., Chen &
Yuan 2020; Kisaka et al. 2020). Alternatively, the system may
be able to self-regulate to a quasi-steady state with an
equilibrium σ±. In this section, we quantitatively describe this
process using a simple analytic model, and evaluate whether an
asymptotic state will be reached.

Given an (assumed to be isotropic) photon distribution
nγ(ò)= nγfγ(ò), where ò= ÿωph/mec

2 is the dimensionless
photon energy and fγ is normalized to unity, the pair-production
rate can be calculated as

( ) ( ) ( ) ò n= g g gg   n n f d , 8

where νγγ is the γ–γ pair-production rate for a single photon of
energy ò (Gould & Schreder 1967):

∬( ) ( ) ( ) ( )n s q q q= ¢ - ¢gg g gg  n c d d
1

2
1 cos sin , 9

where σγγ is the total collision cross section for two photons of
energies ò and ¢ with relative angle θ. We assume magnetic
reconnection produces a power-law photon spectrum:

( )( )=g
a- + -  f A e , 101 max

which extends from min to max with an exponential cutoff
above max. The pair-production rate can then be written as
(Svensson 1987)5

( ) ( ) ( ) ( )n s h agg 



c

n 1
, 11T

where η(α) has an approximate form:

( ) ( ) ( ) ( )h a a a» + +- -7

6
2 1 . 121 5 3

The pair-production rate is dominated by the interaction of
photons of energies ò and 1/ò. By integrating over the whole
photon distribution, Equation (8) double-counts all potential
pair-producing energy combinations; therefore, it is useful to

set the lower limit of the integration to 1:
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where E1 is the exponential integral, defined as
( ) ò=

¥ - -E z t e dt
z

t
1

1 . It scales as ( )log max when  1max ,

and drops to zero exponentially when  1max . Physically this
means that n is exponentially suppressed when only the
photons with energies significantly above the exponential
cutoff are capable of producing pairs. Introducing an
exponential cutoff allows us to gracefully handle the transition
from > 1max to < 1max . If we were to adopt a power-law
distribution with a sharp cutoff atmax, then n would go to
zero as soon as max drops below unity, which may have led to
unrealistic conclusions. We have also assumed that

   1 min max min, such that the upper limit in the integral
in Equation (13) can be effectively taken to be infinity instead
of 1 min. This assumption holds for the astrophysical
applications that we explore in this paper.
We can estimate nγ in general terms as follows. Consider

reconnection as a process that converts a portion of magnetic
energy into particle energy and eventually into radiation. The
energy flux of photons away from the reconnection layer
should equal to a certain fraction of the dissipated magnetic
energy:

( )

q k kb
p

kb
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=

g m c n c S c
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B
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2
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2
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where S is the Poynting flux into the current sheet, á ñph is the
mean photon energy normalized tomec

2, and κ is an efficiency
factor that quantifies how much magnetic energy is converted
to synchrotron radiation. In a radiatively efficient system, most
of the dissipated magnetic energy is radiated away, hence κ

essentially measures the amount of energy that is given to the
plasma. PIC simulations have suggested that κ∼ 0.5 (see, e.g.,
Sironi & Beloborodov 2020), and we will adopt this fiducial
value for our estimates. Next, the factor qsin b accounts for the
fact that synchrotron emission may have a degree of beaming
with respect to the current sheet. We adopt qsin 0.5b in our
model, but acknowledge that it may be lower in reality. The
leading factor of 2 accounts for incoming Poynting flux from
both above and below the current sheet. Finally, βrec is the
normalized reconnection speed, which has been measured to be
close to βrec∼ 0.1 in PIC simulations of relativistic
reconnection.
Given the photon distribution described by Equation (10),

we can directly computeá ñph :
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For α< 1 and  max min, the expression simplifies to
( )aá ñ » G -a- A 1ph max

1 . In other words, the photon spectrum
is dominated by the high-energy end. In the opposite regime

5 This expression was derived without the exponential cutoff. However, in
our application we mainly use the pair-production rate when ò > 1, and n(1/ò)
samples the low-energy part of the spectrum, insensitive to the exponential
cutoff. Therefore we use this expression directly as an approximation.
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where α> 1, the spectrum is instead dominated by the low-
energy end, and ( )aá ñ » -a- A 1ph min

1 . In realistic astro-
physical systems where cooling is efficient, min can either
approach the photon energy corresponding to the electron
cyclotron frequency or be regulated by synchrotron self-
absorption. On the other hand, max is determined by the
nonthermal particle acceleration mechanism. The normalization
constant A will eventually cancel out with the same factor in
Equation (13).

Recent progress in PIC simulations of relativistic reconnec-
tion can inform us about the dependence of max and α on the
upstream magnetization σ, since this synchrotron photon field
is produced by the nonthermal particles accelerated in the
current sheet. As discussed in Section 2, it has been shown that
in the ultra-relativistic limit of very high σ? 1, the particles
are promptly accelerated to a hard power-law distribution of
index p∼ 1. This is the limit that is appropriate for the
magnetospheres of compact objects, which we are ultimately
interested in (see Section 4). However, since all leptons in the
system will be fast-cooling if ℓB 1, the cooled particle
spectrum becomes p∼ 2 and the radiation spectrum then has a
power-law index α= (p− 1)/2∼ 0.5. In reality, the instanta-
neous particle spectrum in radiative reconnection is likely
highly variable (see, e.g., Werner et al. 2019; Hakobyan et al.
2019), but the overall radiation spectrum is dominated by the
times when the particle spectrum is hardest. Thus, α∼ 0.5 can
be a good approximation to the time-averaged photon
spectrum, and we shall adopt this value in our analysis. In
this limit, the mean photon energy becomes

( )á ñ A1.77 . 16ph max
0.5

The maximum extent of the power-law photon distribution,
max, is directly determined by the maximum extent, gmax, of the
particle energy power law:

( )g q= b sin , 17max max
2

where b≡ B0/BQ is the dimensionless ratio of the upstream
magnetic field to the Schwinger magnetic field, and θ is the
average pitch angle of the particle distribution. For simplicity,
we take a typical value of q =sin 1 2. How the power-law

cutoff gmax depends on the reconnection physics is still an
actively debated issue. The first serious study of this maximum
extent of the power-law distribution was conducted by Werner
et al. (2016), who found that g s~ 4max , above which the
particle distribution transitions to an exponential cutoff. More
recently, Petropoulou & Sironi (2018) and Hakobyan et al.
(2021) found that over time the system may develop a
secondary power law above 4σ due to plasmoid compression;
however, this effect was only demonstrated in 2D and it is not
clear whether it persists in strongly radiative environments. In
this paper we will adopt g s= 4max and come back to this issue
in Section 6. Under this assumption, the maximum extent of the
power-law photon distribution can be written as  s b8max

2 .
We can now introduce á ñph and max back into Equation (8)

to recover an equation that only depends on the physical
parameters of the reconnection layer and the upstream
magnetization σ:
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where we have made the substitutions κ≈ 0.5, βrec≈ 0.1,
α≈ 0.5, and q »sin 0.5b .
The balance between pair production and escape will

determine the equilibrium plasma density and upstream
magnetization. The pairs produced through collisions of
synchrotron photons will in general escape in two ways: they
will either stream along the upstream magnetic field at the
speed of light and exit the system, or they will drift into the
reconnecting current sheet at vrec; 0.1c and participate in the
reconnection process. If pairs are predominately produced at a
distance, d, from the current sheet that is larger than βrecL, then
they will tend to escape the system before drifting into the
reconnection layer, whereas if d< βrecL the pairs will escape
through drifting into the current sheet. In an environment with
magnetic compactness ℓB∼ 1, the characteristic optical depth to
pair production can be estimated as

( )t s b= ~ ~ <g
L

l
n L ℓ 1. 19T Bph

ph
rec

As a result, e± pairs are typically produced far away from the
current sheet and escape the system at the speed of light. This is
the assumption that we will adopt in this analytic model. Under
this assumption, the equilibrium number density of e± pairs is
simply   n n L c. This equilibrium density defines an
effective magnetization via the equation6

( ) ( )

[( ) ]
( )

s
q

k b h a

s
s

~ =
á ñ

´







-





U

n m c ℓ A E

b

ℓ E b

sin

16 1

6 10
8

. 20

B

e

b

B

B

2

2

2
rec
2 2

ph
2

1 max

2
2

1
2 1

Equation (20) is a transcendental algebraic equation for the
effective magnetization, σ±, after synchrotron pair production

Figure 1. Example left- and right-hand sides of Equation (20), evaluated for
ℓB = 1, α = 0.5, and B = 100 G. There are two solutions for σ where the two
curves cross. The lower solution is stable while the upper solution is unstable.

6 Here we have also assumed that the density of created pairs is much higher
than the ambient pair density (which thus becomes irrelevant), dominating the
final plasma density. This assumption holds in the applications examined in
Section 4.
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has come to an equilibrium. In essence, we are looking for a
pair-production equilibrium in a system where the number of
pairs created directly correlates with the efficiency of
nonthermal acceleration. Magnetic reconnection is an example
of such a system, where the maximum particle acceleration
correlates with σ, which in turn is determined by the numbers
of e± pairs produced.

Figure 1 illustrates the general behavior of Equation (20).
The right-hand side is a convex function and goes to infinity
both when σ→ 0 and σ→∞ . There are in general two
solutions of the equation when the right-hand side crosses
identity. The lower solution occurs close to the exponential
suppression of the pair-production rate, where g g~ cmax , while
the upper solution occurs at a much larger σ, such that
 1max . In the latter limit, ( ) ( ) E 1 log1 max max , and the

solution of Equation (20) approaches σ±∼ ℓB/600b.
However, the upper solution may not always be physical.

Taking the result in Figure 1, for example, the upper solution is
close to σ∼ 1.4× 1010, at which point ~ ´ 3.6 10max

9, far
higher than the synchrotron burn-off limit of 160MeV. In
general, this solution is self-consistent only when the resulting
σ is not too far above γrad, so that the high-energy extent of the
particle power law is controlled by σ and not by radiative
cooling. Even when this upper solution is within the physical
applicability of the model, it is still unstable: increasing σ from
there decreases the pair-production rate (Equation (8)),
triggering further increase of σ until reaching the
background σ0. This is because above this magnetization the
hard radiation spectrum implies that there are not enough low-
energy targets for the high-energy synchrotron photons to pair-
create on. Decreasing σ from the upper solution, on the other
hand, increases the pair-production rate and further decreases σ
from the freshly generated e± plasma.

On the other hand, the lower solution is stable, and it is the
solution that we seek. As mentioned above, this solution
typically arises when gmax is close to the pair-production
threshold Lorentz factor γc (see Equation (7)), and further
decreasing σ causes an exponential suppression in the pair-
production rate. As long as the system starts off with a
magnetization σ0 between the two solutions, it will be driven
toward the stable lower solution by self-regulated synchrotron
pair production. Even though the initial σ0 may be higher than
the radiation-limited Lorentz factor γrad, we find that this final
equilibrium σ± is much smaller than γrad for a wide range of
magnetic field strengths.

Figure 2 shows how the self-regulated magnetization σ±
(lower solution) depends on upstream magnetic field B and the
system compactness. The solution is obtained numerically
using Newton’s method. For a given magnetic compactness,
Equation (20) ceases to have a solution when B is large enough,
as its right-hand side no longer intersects with the identity line
on Figure 1. In general, the two solutions approach each other
at higher B fields. One can also see from Figure 2 that the
equilibrium σ± depends much more sensitively on the magnetic
field strength B than on the system size which manifests as ℓB.
Qualitatively, this is because the lower solution is always
pushed close to the pair-production threshold γc due to
exponential suppression of the pair-production rate below it,
and γc scales as b−1/2 (see Equation (7)). In contrast, the
equilibrium magnetization depends weakly on other parameters
such as α and ℓB.

Note, however, that these results rely on the assumption that
α< 1, so that the photon spectrum peaks at the high-energy
end. At high ℓB? 1 or very strong cooling, this assumption
may break; unfortunately, both the reconnection-accelerated
particle spectrum and the radiation spectrum in this regime
have not yet been sufficiently well studied in first-principles
radiative PIC simulations and are thus still poorly understood.
On the other hand, when ℓB= 1, there is a spectral break for
the synchrotron spectrum at low energies since particles with
Lorentz factors γ< 1/ℓB do not cool appreciably before leaving
the system. The spectral break changes the target photon
distribution, and our simple assumption of Equation (11) needs
to be replaced. Our analytic model proposed in this section
works best when ℓB is not too far from unity.

4. Astrophysical Applications

We will now apply the analytic model described in Section 3
to two specific astrophysical scenarios where this process may
prove to be relevant: a reconnecting current sheet in the
magnetosphere of the central supermassive black hole of M87,
and the equatorial current sheet outside the light cylinder of the
Crab pulsar.

4.1. The Magnetosphere of M87

Recent GRMHD models and their comparison with the
observations of the Event Horizon Telescope have significantly
improved our understanding of the structures of accretion flow
and the magnetic field close to the event horizon of the
supermassive black hole at the center of M87 (Event Horizon
Telescope Collaboration et al. 2019). MAD models seem to be
favored by the recent polarization measurements (Event
Horizon Telescope Collaboration et al. 2021). These MAD
models tend to predict a magnetic field of B∼ 1–30 G in the
millimeter-emission region. Depending on the numerical
models, the magnetic field at the horizon can be as high as
B∼ 20–200 G (Yao et al. 2021; Ripperda et al. 2022). At the
same time, GRMHD simulations of the MAD model tend to

Figure 2. Dependence of the lower solution σ± on the upstream magnetic field
B at different magnetic compactness ℓB, at α = 0.5. For a wide range of
magnetic field strengths, this solution is below the radiation-limited Lorentz
factor γrad. Note that with increasing B field, the two solutions become closer
and beyond a certain point there is no longer a solution to Equation (20), which
is close to where the curves terminate. For smaller compactness ℓB, this
transition occurs at a lower magnetic field strength.
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observe large-scale current sheets that can form in the
equatorial plane near the event horizon during an eruption
(see, e.g., Dexter et al. 2020; Chashkina et al. 2021; Porth et al.
2021; Scepi et al. 2022; Ripperda et al. 2022). High-resolution
simulations show that these current sheets can be tearing-
unstable and undergo magnetic reconnection, breaking up into
a self-similar plasmoid chain (Ripperda et al. 2022). The length
scales of these current sheets can be comparable to the black
hole gravitational radius rg. Taking B∼ 200 G and
L∼ rg∼ 1015 cm, we can estimate the system’s magnetic
compactness to be ℓB∼ 1.3; therefore, synchrotron pair
production can be an important factor that regulates local
magnetization. The threshold Lorentz factor for synchrotron
pair production under these conditions is γc∼ 4× 105

(Equation (7)), and the radiation-reaction-limited Lorentz factor
is γrad∼ 2× 106 (Equation (4)).

For these current sheet parameters, the two roots of
Equation (20) are σ1≈ 6× 104 and σ2≈ 2× 1010. The initial
magnetization σ0 in the magnetic bubble formed in an eruption
of the MAD disk is very poorly constrained. Since the bubble
material is torn from the low-density jet funnel, an upper limit
for σ0 can be estimated using the minimum Goldreich–Julian
charge density, which screens local electric field (Goldreich &
Julian 1969). For M87 near the horizon, σGJ∼ 1013 (Yao et al.
2021). However, it is unrealistic to expect that the plasma
density is simply characterized by the Goldreich–Julian charge
density, since Comptonized photons from the accretion disk
can produce e± pairs in the jet funnel as well as in the vicinity
of the horizon. This process is often called the “pair drizzle.”
Wong et al. (2021) recently calculated the pair-production rate
from this drizzle mechanism and estimated that for M87
parameters  ~n n c r10 g

4
GJ , which implies a much lower

initial magnetization σ0∼ 109. Since this falls below our upper
solution σ2, our model predicts that pair production from
synchrotron photons emitted by the particles accelerated in the
reconnecting current layer will lower the magnetization to an
equilibrium value of σ±∼ 6× 104, which puts g s~ 4max
close to γc and much lower than γrad. This also implies a pair
multiplicity of = ~ ´ n n 2 10GJ

8 over the minimum
Goldreich–Julian density. This result is similar in magnitude to
what was estimated by Ripperda et al. (2022) and Kimura et al.
(2022). However, our model predicts that the upstream
magnetization will stabilize around this equilibrium value σ±,
which has implications for the M87 very-high-energy (VHE)
gamma-ray flares.

It was proposed by Ripperda et al. (2022) that the MAD
eruption events that form large-scale reconnecting current
sheets may be a promising mechanism for powering the TeV
flares observed fromM87. However, our results disfavor this
proposition, since synchrotron pair production will quickly
lower the magnetization from its uncertain initial value to
∼6× 104, which limits the extent of the power-law energy
distribution to g ~ ´3 10max

5. Electrons at this Lorentz factor
are energetically incapable of producing TeV gamma rays,
even if Compton scattering occurs in the deep Klein–Nishina
regime. As a result, it is difficult for the system to produce a
single power-law radiation spectrum that extends from
several GeV up to several TeV. Since the equilibrium σ±
scales approximately as B−1/2 (Figure 2), a significantly lower
magnetic field of B∼ 2 G near the horizon is required to
increase σ± to 6× 105, which would then allow the particle
energy power law to extend beyond a few TeV. However, such

a low magnetic field would lead to a much lower dissipation
power through the reconnection process:

b~ ~ ´ -L U r c 5 10 erg sB grec
2

rec
38 1. This is much lower than

the isotropic equivalent luminosity observed in M87 TeV
flares, which can reach up to ∼1042 erg s−1 (Abramowski et al.
2012).
Our synchrotron model does not take into account pairs

produced by gamma-ray photons from IC scattering by the
accelerated particles. These gamma-ray photons can be emitted
through either the synchrotron self-Compton (SSC) mechanism
or by electrons scattering the ambient lower-energy photons
from the accretion disk. However, additional channels of pair
production will only lower the final equilibrium magnetization,
since there are more ways to generate plasma. This will, in
general, make it even more difficult for the current sheet to
produce TeV emission after pair production kicks in. We will
discuss more about the potential role of SSC photons in
Section 6.

4.2. Crab Pulsar

At the light cylinder of the Crab pulsar, the magnetic field is
approximately BLC∼ 4× 106 G (Uzdensky & Spit-
kovsky 2014). This is computed from the spin-down-inferred
dipole moment and the rotation period of the pulsar. The size of
the current sheet is given by the characteristic length scale,
which is the light cylinder radius RLC∼ 1.6× 108 cm. The
resulting system compactness is ℓB∼ 30, close to the regime
discussed in Section 3. The nominal magnetization σ0 at the
light cylinder is mostly determined by the copious e± outflow
from the polar cap, and is generally believed to be 103–105

(Hakobyan et al. 2019). Fortunately, our analytic model is
insensitive to this initial magnetization, as long as it lies within
the two roots of Equation (20). For the parameters quoted
above, the two roots are σ1≈ 5× 102 and σ2≈ 9× 106. This
implies that if the current sheet starts with a magnetization
within this range, synchrotron pair production will drive σ
toward the lower root, which is σ±≈ 500.
The Crab pulsar was observed to emit pulsed VHE gamma

rays that form a power law extending up to TeV energies
(Ansoldi et al. 2016). This puts the properties of its pulsed
emission close to that of M87. Our predicted low σ±∼ 500
would seemingly rule out the possibility that pairs accelerated
in the equatorial current sheet can emit TeV gamma rays, even
with a relativistic bulk-flow boost of Γ∼ 100. However, only a
small fraction of the spin-down power of the Crab is needed to
power the pulsed VHE emisssion, whereas in M87 the
luminosity of VHE gamma-ray flares can be comparable to
the jet power. It may be possible that these gamma rays are
produced before the equilibrium σ± is reached.
Outside the light cylinder of the Crab pulsar, the current

sheet feeds off the Y-point and always starts with plasma
flowing from the inner magnetosphere with initial pair density
n0? nGJ. This flow determines the initial magnetization σ0
surrounding the current sheet that is much higher than our
predicted σ±. As pair production kicks in, the outflow
magnetization will gradually drop and stabilize at around the
self-regulated equilibrium σ± at some distance downstream of
the Y-point. Since the gamma-ray spectrum from GeV to TeV
appears to be a single power law (Ansoldi et al. 2016), we
argue that almost all of these gamma rays are produced during
this time, before the pair equilibrium is established. One can
estimate a characteristic timescale for reaching this pair
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equilibrium by computing the time it takes for the initial plasma
density to double, normalized to the system light-crossing time:

( )
t =

n n

L c
. 210

One can evaluate this timescale using the pair-production rate
(Equation (8)) and the initial magnetization σ0. For Crab
parameters, if we take an initial σ0∼ 106, which is required for
particle acceleration up to TeV energies, this characteristic
timescale is τ±∼ 0.15. One can take this dimensionless scale
as the characteristic fraction of energy dissipated in the current
sheet that can be emitted in high-energy (HE) to VHE gamma
rays, since pair production will quickly lower σ such that the
electron power law only extends to about a GeV. After pair
production equilibrium is established, the synchrotron spectrum
from these pairs only extends up to about MeV energies, which
is a far cry from the observed pulsed gamma-ray component
extending from 100MeV to 1.5 TeV. If the current sheet
dissipates about 10% of the spin-down power, Lsd, between
RLC and 2RLC (Cerutti et al. 2020), then the expected gamma-
ray luminosity Lγ 0.1τ±Lsd. Further accounting for the
radiation spectrum and efficiency, this is close to the observed
gamma-ray efficiency of the Crab pulsar of Lγ/Lsd∼ 10−3

(Abdo et al. 2013). A more detailed study on the pulsar
gamma-ray spectrum, efficiency, and how it scales with the
model parameters is beyond the scope of this paper, and will be
deferred to a future work.

5. Comparison with Previous Work

Relatively few works have considered the effect of
synchrotron pair production in the process of magnetic
reconnection. Lyubarskii (1996) pointed out that the reconnect-
ing current sheet outside the light cylinder can potentially
power the high-energy emission from gamma-ray pulsars. He
also calculated the number density of the e± plasma that would
result from synchrotron pair production, and concluded that
pair production will lower the magnetization σ surrounding the
current sheet to the point where no gamma rays will be emitted.
However, the detailed reconnection-driven particle acceleration
mechanisms were not clearly understood at that time, and the
present paper takes advantage of the recent development of our
understanding of the magnetic reconnection process.

Hakobyan et al. (2019) performed PIC simulations with self-
consistent synchrotron cooling and photon–photon pair pro-
duction in the context of the Crab pulsar magnetosphere.
However, their simulations were of a very limited parameter
range and at low ℓB∼ 10−2. They derived a crude analytic
model to predict the final number of pairs produced from the
reconnecting current sheet, but did not consider the feedback of
pair loading on the particle acceleration process itself. For Crab
parameters, they found that the pair multiplicity η, defined as
the ratio between the final number density and the initial
upstream number density, can become as large as 105–106,
which is greater than the initial magnetization σ0 at the light
cylinder, indicating that the final σ will become less than unity
after pair production saturates. This implies that pair loading
should strongly affect the particle acceleration process and in
turn limit the final multiplicity. This is precisely the problem
that we address in the present paper.

Beloborodov (2017, 2021) considered magnetic reconnec-
tion in the strongly radiative regime, with synchrotron pair
production and IC emission in the context of the coronae of
X-ray binaries, magnetar bursts, and electromagnetic precur-
sors of binary neutron star mergers. His works focused more on
the high magnetic compactness regime ℓB? 1, which is
relevant for these astrophysical systems. Our present work
instead focuses on a different parameter regime of ℓB∼ 1 and
discusses the self-regulation of local magnetization through
synchrotron pair production; consequently, it applies to a
different set of astrophysical scenarios, as discussed in
Section 4.
Schoeffler et al. (2019), similar to Hakobyan et al. (2019),

used radiative QED-PIC simulations to study magnetic
reconnection in the presence of strong synchrotron cooling
and copious e± pair production in the context of pulsar and
magnetar magnetospheres. However, the pair-production
mechanism considered in their paper was photon interaction
with a very strong (approaching BQ) magnetic field, resulting in
QED one-photon pair creation, which has a completely
different pair-production cross section and rate. In that regime,
synchrotron emission also approaches the quantum limit where
òph∼ γmec

2, which alters the photon spectrum.
Mehlhaff et al. (2021) also studied radiative magnetic

reconnection self-regulated by pair production using analytic
methods, but their main interest was in e± pairs produced by IC
photons emitted by reconnection-accelerated electrons upscat-
tering an ambient photon field. They argued that, since the IC
radiation and the subsequent pair production are from the same
target mono-energetic photon field in the case under con-
sideration, the IC scattering needs to be in the Klein–Nishina
regime to be able to produce pairs, which affects the pair-
production efficiency in these systems. Our study is similar in
spirit but considers a different radiation mechanism, and thus
applies to a different set of astrophysical systems.
Very recently, Kimura et al. (2022) performed a calculation

of the synchrotron pair-production multiplicity during a
magnetic reconnection event, which is similar to our present
work, and applied it to low-luminosity active galactic nuclei
including M87 and Sgr A*. They found that, for M87’s
parameters, once synchrotron pair production kicks in, it
lowers the upstream magnetization to σ∼ 8.7× 104, similar to
our estimates. However, they called this the “low-energy
flaring state” and concluded that this state will not produce
MeV photons efficiently, and that σ will grow again once the
pairs are advected from the region. The reason for their
conclusion was that they assumed reconnection only accel-
erates particles up to γ∼ σ, which will not allow synchrotron
photons to pair-produce in this low-σ state. As we have shown
in the present paper, even an exponential cutoff above
g s~ 4max can allow the system to sustain a substantial level
of pair production in this low-energy flaring state, making it
difficult for the system to spontaneously go back to a state with
high magnetization.

6. Discussion

We have considered synchrotron pair production in highly
relativistic magnetic reconnection, and studied how the e± pairs
feed back on the reconnection process itself, altering the
magnetization close to the current sheet and ultimately reaching
a self-regulated stable equilibrium σ±. We found that this
equilibrium is typically close to the threshold Lorentz factor for
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synchrotron pair production, 4σ±∼ γc (Equation (7)). In other
words, the equilibrium magnetization is almost entirely
determined by the local magnetic field strength. This process
provides an estimate for the magnetization in finite-ℓB
astrophysical systems where this quantity is poorly constrained,
and we provided two examples of such systems: M87 and the
Crab pulsar. In both cases, synchrotron pair production can
reduce the initially very high magnetization to a much lower
level, significantly constraining the power that can go into VHE
gamma-ray emission.

Our model has adopted the assumption that relativistic
magnetic reconnection impulsively accelerates particles to a
hard power-law spectrum with index p∼ 1 and an exponential
high-energy cutoff near g s~ 4max . This coefficient of 4 was
originally reported by Werner et al. (2016) and remains
uncertain up to a factor of a few. The numerical value of this
coefficient, however, turns out to be not too important in our
model, since pair production tends to push gmax close to γc.
Changing the numerical coefficient to, for example,
g s~ 10max only reduces the predicted final
magnetization σ±, but does not change the maximum extent
of the particle/radiation power law. The results in Section 4 are
mostly independent of the exact energy of the exponential
cutoff.

Zhang et al. (2021) recently demonstrated that in 3D
reconnection with moderate magnetization σ= 10, a secondary
power law of p∼ 1.5 formed by free particles not captured by
plasmoids can extend beyond g s~ 4max , up to a cutoff energy
that scales linearly with system size. When radiative cooling is
significant, the secondary power law may extend up to around
γrad instead. Approximately ∼20% of the dissipated magnetic
energy goes into this secondary power law. This effect may
potentially change the conclusions of our model. Qualitatively,
it will allow more pair-production activity at low σ, effectively
pushing the equilibrium magnetization even lower. The
secondary particle acceleration may also introduce a break in
the radiation power law, which is not seen in the gamma-ray
spectrum of M87. The quantitative effect of this secondary
power law, especially at very high magnetization σ0? 10, will
be studied in a future work.

In our model, we have neglected the change of the particle
distribution, and hence of the synchrotron spectrum, caused by
copious pair production. In particular, we have neglected the
photons emitted by the secondary pairs. These photons in
general will have lower energies, and may serve as target
photons for the much higher-energy synchrotron photons close
to the cutoff. However, near the final equilibrium σ± the
power-law cutoff energy of synchrotron photons is already
close to the pair-production threshold. Further increase of low-
energy photon density will only enable photons in the
exponential tail to create pairs, which will not meaningfully
change the equilibrium magnetization. We have also neglected
SSC photons that may pair-produce. However, since all
synchrotron photons ultimately come from the dissipation of
upstream magnetic energy, Uph βrecUB, one expects the SSC
radiation energy density to be subdominant compared to the
synchrotron energy density by a factor of βrec. Furthermore,
SSC photons typically will have much higher energies than the
synchrotron photons. Therefore, the density of their scatter
targets should in general be lower in a hard power-law photon
distribution with α< 1. As a result, we expect SSC photons to
play a subdominant role in regulating the pair-production

equilibrium in a reconnection event. Recent work by Hakobyan
et al. (2023) also finds that SSC radiation power is significantly
lower than the synchrotron power, limiting their contribution to
the e± pair density.
PIC simulations that incorporate photon–photon pair pro-

duction, similar to what was done by Hakobyan et al. (2019)
but in the regime of ℓB∼ 1, will help verify the validity of the
analytic model presented in the present work. Such time-
dependent simulations will also capture the whole process of
photon emission and pair production, and will be able to
measure how the upstream magnetization responds to it. The
results may place a more quantitative bound on the gamma-ray
luminosity from the relativistic reconnecting current sheet
before it is overwhelmed by e± pairs, therefore providing more
detailed estimates of the HE to VHE gamma-ray luminosity
and spectra from these systems.
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