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Industrial robots have become more diverse and common for automating manufacturing processes, such as
welding. Existing robotic control, however, is incapable of adaptively adjusting its operation in response to a
dynamic welding environment, whereas a skilled human welder can. Sophisticated and adaptive robotic control
relies on the effective and efficient processing of perception data, characterization and prediction of highly
dynamic systems, and real-time adaptative robotic reactions. This research presents a preliminary study on
developing appropriate Machine Learning (ML) techniques for real-time welding quality prediction and adaptive
welding speed adjustment for GTAW welding at a constant current. In order to collect the data needed to train
the hybrid ML models, two cameras are applied to monitor the welding process, with one camera (available in
practical robotic welding) recording the top-side weld pool dynamics and a second camera (unavailable in
practical robotic welding, but applicable for training purpose) recording the back-side bead formation. Given
these two data sets, correlations can be discovered through a convolutional neural network (CNN) that is good at
image characterization. With the CNN, top-side weld pool images can be analyzed to predict the back-side bead
width during active welding control. Furthermore, the monitoring process has been applied to multiple exper-
imental trials with varying speeds. This allowed the effect of welding speed on bead width to be modeled through
a Multi-Layer Perceptron (MLP). Through the trained MLP, a computationally efficient gradient descent algo-
rithm has been developed to adjust the travel speed accordingly to achieve an optimal bead width with full
material penetration. Because of the nature of gradient descent, the robot would change faster when the quality
is further away and then fine-tune the speed when it was close to the goal. Experimental studies have shown
promising results on real-time bead width prediction and adaptive speed adjustment to realize ideal bead width.

1. Introduction

Welding represents one of the earliest manufacturing processes that
embrace robotics. The long history is also paired with popularity, with
almost half of all industrial robots deployed for welding [1]. Even with
this majority, more welding robots are being demanded by manufac-
turers with a predicted market increase of USD 4 billion in the next 5
years [2]. This robotic welding trend is compounded by a predicted
worker shortage of around 375 thousand welders within the same period
[3], implying that autonomous welding solutions are needed to maintain
and grow the production throughput.

Today, robotics have been widely deployed in different welding
applications. A majority of these robots are used for repetitive welding
tasks that require basic welding skills on an open machine floor, but are
beginning to be used for welding tasks that need to be performed in

remote and confined areas that are dangerous for humans. In these ro-
botic welding applications, skilled human welders are still needed for
designing and planning the robotic welding paths and other process
specifications, and robots then perform the actual welding operation
along the designed paths with high precision. Basic robotic welding
applications include plate and pipe welding [4]. This concept can be
scaled up to include mobility to remote welding, such as welding on
installed wind turbines. While it is difficult and dangerous for human
welders to perform this large and aerial operation, a multiple degree-of-
freedom welding robot can be mounted on a rotational track to achieve a
full reach of the seam [5]. Similarly, autonomous welding in confined
spaces, such as in the interior hull of large ships, typically involves
highly specialized robots, such as robots mounted on a moveable rail
system or walkable robots [6]. One challenge faced by both basic and
specialized robotic welding is welding path planning. Optimal path
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planning aims at maximizing welding quality and efficiency, while also
complementing the mobility and control capability of robots.

Many path planning techniques have been developed. In pipe
welding, the trigonometric relationship was leveraged to maintain an
appropriate welding angle during the joining operation [7]. In multi-
pass welding, where welding parameters and paths associated with
each pass need to be determined upon the last pass's quality, a formulaic
relationship was established to calculate the welding speed needed to
achieve the desired bead height [8]. Stochastic path planning algorithms
based on graph theory were also studied for optimizing welding oper-
ation times, especially in automotive chassis spot welding. Given the
welding constraints (e.g., groove edges) obtained through computer
vision-based edge detection systems [9], some swarm-based optimiza-
tion algorithms, such as the ant colony algorithm [10] or beetle
antennae search [11] that randomly search the optimum path con-
necting two areas, can be applied to finding optimum welding paths.
However, these algorithms mainly concern with welding paths and
provide little guidance on welding speed, leading to inferior welding
quality such as excessive or lack of penetration [12]. Also, many welding
constraints are difficult to model or obtain because of the complicated
nature of welding (e.g., overhangs caused by gravitational effects on the
liquid weld pool), leading to inappropriate design of welding angles and
paths [13]. Furthermore, the planning of welding path, speed, and
angle, which happen before the real operation, cannot account for any
process uncertainties that lead to deviation from desired quality. Hence,
besides path planning, adaptive control is needed to adaptively adjust
welding operations to ensure and maintain the desired quality.

In adaptive process control, operations are real-time adaptively
adjusted based on the in-situ sensing measurement to ensure the welding
quality. For example, the welding current was adaptively adjusted to
compensate tool degradation or material defects to ensure proper
bonding spot welds through an entire operation cycle [14]. In this study,
robotic tool performance degradation or unexpected variations in the
workpiece led to changes in the resistance of the welding circuit, which
was measured based on external measurements of current and voltage.
This measured resistance was then compared to a baseline value of a
previously performed spot weld of good quality. If a discrepancy existed,
the current would steadily increase for higher resistances and reduce for
lower ones until the baseline resistance had been achieved [14]. In
another study of spot welding of high-strength steel, a fuzzy
proportional-integral (PI) controller was developed to avoid shunting,
an effect where the current travels around the desired spot weld as
opposed to through it [15]. This was done by measuring the current,
power, and voltage change to detect this flaw and would leverage a
fuzzy PI controller to modify the welding power and current. In the field
of laser welding, welding power was adaptively adjusted to enforce a
precise cooling curve to achieve desired microhardness [16]. By
comparing the measured temperature and the desired temperature at
each time step, a heat diffusion formula that was experimentally ob-
tained was used to determine the adjustment of the power.

Emerging Machine Learning (ML) techniques have also been exten-
sively investigated for adaptive robotic welding control. A back-
propagation neural network-based control policy has been shown to be
applicable for deep gap welds. The network correlated the information
of geometries of pieces to be joined and the desired bead width to the
optimal weld parameters of power, speed, and feed. These parameters
were then adaptively changed in response to varying piece geometry
through the network nonlinear mapping during welding operations
[17]. A study on pipe welding investigated neuro-fuzzy networks in
estimating the bead penetration based on the profile of the weld pool
that was generated from laser sensing. Then a gradient-based control
system established upon a linear model of weld pool penetration was
utilized to adjust the speed and current to maintain constant penetration
[18]. A reinforcement learning-based control algorithm was developed
for laser welding, where radiation produced during the welding process
was measured by electromagnetic sensors [19]. An encoder then
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compressed the data to reduce dimensionality and generate high-level
features that would be critical for operation determination, followed
by a convolutional neural network-based classifier to detect the quality
of the weld following the determined operation. Based on the quality
feedback, the controller would generate either a reward or demerit to
update the encoder. While these ML-based control methods do improve
the adaptability of a welding robot, these methods were primarily used
to improve the quality and reliability of robotic welding operations
already in effect. To approach the goal of achieving technically
advanced welding operations only performable by humans, the welding
robots should learn from human welders in terms of perception, pro-
cessing, control, and action.

The proposed adaptive controller takes a humanistic approach to the
robotic welding process. Instead of using sensors that are only usable by
machines, the decision process is based entirely on senses available to
humans. Furthermore, the only parameters that humans can change
while welding is their movements, as power and feeds are set before
each task. While welding, an experienced welder would observe the
formation of the molten weld pool and adjust their motions to achieve
the desired weld. Accordingly, the proposed controller mimics the
perception and decision-making process of a welder through a hybrid
ML framework, granting the adaptability of humans with the reliability
of robotics. In this framework, the robotic perception is enabled by a
camera recording the top-side weld pool dynamics, and estimation of
welding quality is enabled by a convolutional neural network (CNN)
that correlates weld pool images to backside bead width (ground truth
coming from a second camera recording the back-side bead formation,
only available for training purpose). Subsequently, adaptive decision-
making is realized through a Multi-Layer Perceptron (MLP) that corre-
lates welding speeds to bead width, upon which a computationally
efficient gradient descent algorithm is developed to adjust the travel
speed accordingly to achieve an optimal bead width with full material
penetration. The entire framework is computationally light, ensuring
real-time adaptive control.

The remaining of the paper is organized as follows: Section 2 in-
troduces the theoretical development, including CNN for sensing im-
aging processing and estimation of bead width, MLP for correlating
welding speed and time to bead width, and the gradient descent-based
speed adjustment. Section 3 covers the details of a preliminary experi-
mental evaluation, including experimental setup, data acquisition,
image pre-processing, configurations of CNN and MLP, simulation,
experimental cases of adaptive speed adjustment to achieve desired
bead width, results and discussions. Conclusions are drawn finally.

2. Methodology

Adaptive robotic control in response to dynamic welding conditions
relies on two elements: 1) real-time characterization of welding state
through processing the sensing data; and 2) determination of adjustment
of process parameters based on the difference between actual and ideal
welding state. The latter can be further decomposed to 2.a) identifying
the correlations between process parameters and welding state and 2.b)
mapping the difference between actual and ideal welding state to the
adjustment of process parameters. In the presented study where a
topside camera is available to capture the weld pool dynamics, a hybrid
machine learning framework is proposed to realize adaptive control in
robotic welding: 1) Convolutional Neural Network (CNN) is proposed to
correlate weld pool images to back-side bead width; 2) Multi-Layer
Perceptron (MLP) is leveraged to discover the dependency of bead
width on welding speed and welding time; and 3) A gradient descent
algorithm is applied for real-time adjustment of welding speed to ach-
ieve and maintain ideal bead width.

2.1. CNN for prediction of bead width

Attributed to the advancement in computing power, non-linear
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Fig. 1. Illustration of MLP and CNN architectures.

activation, regularization, and many other optimization techniques, a
stack of many layers in a network is allowed for modeling nonlinear and
non-stationary systems without suffering severe gradient vanishing
problems. Many deep neural networks have occurred in the past two
decades, including deep belief networks [20], CNN [21], recurrent
neural network [22], and CNN is the most popular one. CNN is devel-
oped for image processing and pattern recognition, and hence suitable
for categorical classification or regression sensing images [21]. In this
study, front-side weld pool images are correlated to back-side bead
width values through CNN, representing a regression problem. Since
weld pool dynamics directly determine the welding penetration and
thereafter the bead width, one-to-one mapping exists between weld pool
images and bead width values, and CNN-based regression is hence
suitable to establish the mapping.

A typical CNN architecture includes three types of layers: convolu-
tional layer, pooling layer, and fully connected layer, as illustrated in
Fig. 1 (b). Among the layers, convolutional and pooling layers are used
to extract spatial features (e.g., motif shape, relative locations between
motifs) from the images, and the fully connected layers correlate the
extracted features to the image categories to be classified into or the
targets to be regressed into. While the fully connected layers are
commonly seen in standard artificial neural networks, a convolutional
layer convolves regional image pixels with a trainable kernel to extract
features. In a two-dimensional case, the convolutional process with a n
x n kernel can be described as:

n n
Y, = E E Kir-Xik-1j11-1
=1 =

where Y;; denotes the iy, row and ji, column of the obtained feature map,
Ky is the kg, row and I, column of the kernel, and X; 7 j,1.; denotes the
(i + k-1), row and (j + [-1)g, column of the input image. Eq. (1)
essentially represents the weighted sum of image pixels over a pre-
determined reception field n x n. The kernel weights, after appro-
priate training, could detect if local regions of input images contain a
certain shape of interest. Multiple kernels can be applied in a convolu-
tional layer for the detection of multiple spatial features of interest.
Along with the network propagation, multiple convolutional layers can
be stacked together for multi-level feature extraction, scaling from low-
level features (e.g., curves, hedges) to high-level motifs (e.g., weld pool-
related shapes). Towards the end of the network architecture, the
extracted features are more abstract and related to the physical object.

Pooling layers are usually attached to convolutional layers to reduce
the feature map size and computational effort, by summarizing extrac-
ted features in regions. Typically utilized pooling kernels include max(e)
and average(e), which outputs the maximum pixel value or averaged
pixel value over the reception field. Also, introducing pooling layers
force the network to pay attention to relative (instead of absolute) lo-
cations of motifs, allowing the network to be translation-invariant in
feature extraction. Fully connected layers can then be applied to map
extracted weld pool-related features to the bead width.

(€Y
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The training of a CNN can be realized by many optimization algo-
rithms, such as Stochastic Gradient Descent (SGD) and Adam [23],
which are available in most DL toolboxes. For this regression problem,
standard Mean Square Error (MSE) can be utilized as the network
training loss function.

2.2. MLP for correlating welding speed to bead width

To determine how to adaptive adjust welding speed to minimize the
difference between actual and ideal bead width, the correlation between
welding speed and bead width needs to be identified first, so that the
bead width differences can be reversely mapped through the correlation
to deltas of welding speed. Throughout the welding process, the welding
dynamics, such as thermal fusion and convection, would take some time
to stabilize. Especially in the early stage of a welding process, welding
time is an important factor that determines welding penetration and
bead width. Hence, the dependence of bead width on both welding
speed and time should be discovered, assuming other welding parame-
ters (e.g., current, voltage) remain constant. The dependence is
discovered through MLP in this study.

MLP provides an effective way to correlate input features to variables
of interest or classes of conditions, where the relationships are nonlinear
[24,25]. A typical 3-layer MLP configuration includes one input layer,
one or multiple hidden layers, and one output layer, as illustrated in
Fig. 1(a). Each layer contains one or more neurons; while the number of
input and output neurons are determined by the number of input fea-
tures and output variables, the number of hidden layers and hidden
neurons can be arbitrarily defined. Neurons among layers are connected
through weights. Along the network forward propagation, weighted
inputs are fed to the hidden neurons, where hidden features are gener-
ated after nonlinear activations (e.g., sigmoid and hyperbolic tangent)
and passed to subsequent hidden layers or the output layer. This is very
similar to the convolutional operation in Eq. (1), except for the weighted
sum is calculated in a 2 or higher-dimensional space in a CNN but 1-
dimensional space in an MLP. The mapping from inputs to predicted
output in a 3-layer perceptron can be expressed as:

BW,eq = o(o([V,T]*W, )*W> ) (@3]
where BW)yeq represents the predicted bead width, V and T denote the
welding speed and time, W; and W> are the weights connecting input
and hidden layers as well as hidden and output layers, * denotes the
matrix-based multiplication, and ¢ is the sigmoid function. The training
of an MLP can be realized through a standard gradient descent algo-
rithm. Given the network prediction loss in terms of the difference be-
tween actual and predicted output, the network weights can be
optimized through backpropagating the prediction loss and applying the
gradients of loss w.r.t. weights to old weight values. The forward
calculation and backward weight update can be iterated for multiple
iterations until the network performance stabilizes.
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2.3. Gradient descent for real-time welding speed adjustment

Given the predicted bead width from in-situ weld pool sensing and
welding speed-bead width correlation, welding speed can be adaptively
adjusted to realize the ideal bead width. Many optimization techniques
can be applied for adaptive process control, efficiency is prioritized over
other evaluation metrics for the selection of optimization techniques
considering the highly dynamic welding environment. Gradient Descent
(GD) [26] is selected because of its high computational efficiency and
performance stability, with an illustration of GD-based speed adjustment
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shown in Fig. 2.

The GD-based adaptive speed adjustment is different from GD-based
network parameter optimization. In the latter, the gradients of the
network loss function (represented by the MSE between actual and
predicted bead width) with respect to network parameters are calcu-
lated and applied to recursive update of parameters. In the former, the
gradient of optimization loss, represented by the MSE of predicted and
ideal bead width f =1(BWjreq — BWideal) 2, with respect to welding speed
at a certain welding time is calculated and applied to adjust the speed.
The gradient of f w.r.t. welding speed Vi can be calculated as:

3

= (BWprea — BWizea): [(BWprea- (1 = BWed) ) W3 |- [(a([V, T)*W; )-(1 — o([V, T]*W ) ) ) * W[ |
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It can be seen from Eq. (3) that following a chain rule, the gradient is
a product of three items, derivative of optimization loss w.r.t. predicted
bead width, derivative of predicted bead width w.r.t. hidden layer
output, and derivative of hidden layer output w.r.t. welding speed. Since
welding time is also a network input besides welding speed, the gradient
of current welding speed Vj should be evaluated upon the current
welding time Ti. With the gradient, the welding speed can then be
adjusted through:

Vit = Vie—n-AV @
where 7 is the rate of the speed adjustment. If the current speed is larger
than the optimum speed, a positive gradient will be obtained. A negative
speed will be obtained if the current speed is smaller than the optimum
speed. Eq. (4) ensures the speed adjustment converges at the optimal
speed corresponding to the ideal bead width.

The selection of  is very critical in real-time process control. A larger
n would enable the speed quickly to approach the optimum speed, but
with larger overshoot and longer oscillation. A smaller # would enable
the speed gradually to approach the optimum speed, but with a longer
convergence time. Hence, an optimal 7 needs to be determined experi-
mentally with a minimum convergence time, which will be further
discussed in the experimental evaluation section. Another issue that
affects the real-time speed adjustment is the time duration between two
adjustments. The minimum time duration should cover the communi-
cation time for the sensing images being transmitted to the computer for
processing, as well as the decision time of the CNN and GD. The calcu-
lation of Eq. (3) is very efficient. For the CNN, once the network is
appropriately training, processing one image to bead width value is also
fast. But on the other hand, the bead width cannot be evaluated upon
just one weld pool image, which will not account for process and mea-
surement uncertainties. Instead, it should be evaluated upon a series of
acquired weld pool images, by averaging the bead width values pre-
dicted from individual images. Hence, an optimal speed adjustment
frequency should also be experimentally determined based on the
practical application scenario.

2.4. Integrated ML framework for adaptive welding speed adjustment

The integrated framework of hybrid ML for real-time, adaptive
welding speed adjustment to achieve ideal bead width is illustrated in
Fig. 3.

During the network training phase, both front-side weld pool images
and back-side bead formation images are collected from experimental
studies, where multiple welding speeds are tested. While the weld pool
images are directly fed as inputs to the CNN after straightforward pre-
processing (e.g., resizing and cropping), the bead formation images go
through a series of processing steps for calibration of the ground truths
of bead width (to be elaborated in next Section). The calibrated bead
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Table 1

Summary of welding parameters.
Parameter Value
Welding type GTAW
Welding current 150 A
Tungsten diameter 2.4 mm
Shielding gas Argon

Work piece material
Work piece dimensions
Testing speeds

Testing time

T304 Stainless Steel

300 x 30 x 2 mm

4.5 mm/s — 8.0 mm/s, each speed repeated for 4 trials
15 s per trial

width values are then utilized as the training outputs of both CNN and
MLP. It should be noted that the weld pool and bead width images need
to be synchronized first, which can be realized through the time
stamping of image acquisition. Once the CNN is appropriately trained, it
is supposed to be capable of accurately processing the weld pool images
and predicting the bead widths. MLP is also trained to discover the
dependence of bead width on welding speed and time.

In practical application, only the front-side camera and information
on welding speed and time (can be acquired from the robot motion
planning) are needed. Consecutive weld pool images obtained over a
certain period (e.g., 0.5 s) are fed to the trained CNN for the prediction of
bead widths. The averaged bead width (to account for process and
measurement uncertainty) is then compared to the ideal bead width,
leading to the optimization loss. Subsequently, the speed adjustment is
obtained by backpropagating the optimization loss to the current speed
in the MLP structure using the trained MLP parameters, using Eq. (3).
Finally, the speed adjustment is routed to the welding machine for
implementation per Eq. (4), for example at a frequency of every 1 s. The
entire framework enables compensating process randomness and
maintaining ideal welding quality. One major advantage of the frame-
work is its computational efficiency.

3. Experimental study

To experimentally evaluate the performance of the hybrid ML
framework on real-time estimation of bead width and adaptive adjust-
ment of welding speed to achieve and maintain the desired bead width, a
robotic Gas Tungsten Arc Welding (GTAW) process testbed was estab-
lished. First, welding experiments under different welding speeds were
conducted, while images were collected from two cameras with one
recording weld pool dynamics and the other recording bead formation.
The images were then processed used to train the CNN and MLP net-
works. With the trained networks, both simulations and experimental
tests were conducted to evaluate the effectiveness and efficiency of the
hybrid ML framework in adjusting the process from different initial
speeds to achieve the optimal bead width.



J. Kershaw et al.

Speed: 5.0 mm/s 6.5 mm/s 8.0 mny/s
Time: 10s 10's 10 s
Weld Pool
Image
Bead
Image

Fig. 5. Collected data samples under different welding speeds.

3.1. Experimental setup

In this setup, a GTAW torch was mounted on a moving stage to
simulate the robotic GTAW process. This stage consisted of a sealed
chamber with a plexiglass base and a gas intake that was mounted to a
computer-controlled screw servo. Back bead shielding gas was applied
to ensure the welding quality. Linear welds were made on T304 stainless
steel without filler metal under variable speeds using the machine. Two
cameras were statically mounted with one focused on the active weld
pool and the other on the forming back bead. This system is shown in
Fig. 4.

Throughout the tests, the welding current was set as a constant 150
A. Argon gas was used for both the arc and back bead shielding. The back
bead shield was applied by clamping metal over the seams between the
stage and workpiece followed by saturating the chamber with a
continuous stream of argon gas. Speeds in the range of between 4.5 mm/
s and 8.0 mm/s (with a 0.5 mm/s interval), in total 8 different welding
speeds, were tested. To account for both process and measurement un-
certainty, each speed was repeated for 4 trials, and each trial lasted for
15 s. The experimental details are summarized in Table 1.

3.2. Data acquisition and processing

As mentioned above, two highspeed cameras were utilized to gather
images of the welding process. The cameras used were Point Grey FL3-
FW-03S1C-C highspeed cameras. Each camera had a resolution of 648 x
488 and maximum sampling rate of 120 frames per second. The expo-
sure times were set at 0.2 s for the top-side camera, and 0.3 s for back-
side camera. The gamma and sharpness of both cameras were set to 1.5
and 3000, respectively, to enable an ideal observation of the weld pool
and bead with clear boundary. Since they are not explicitly designed to
capture bright images, both had a filter made of a welding lens placed
behind the camera lens to prevent overexposure in the images. One
camera recorded the weld pool dynamics and the other was positioned
through the plexiglass base of the back shielding chamber onto the
location of the back bead formation. The collected images from two

1: Original Image  2: Cropped Image

LI
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cameras were used for training the CNN and MLP networks, but in
practical applications, only the weld pool camera is needed as the
trained CNN can estimate the bead width upon processing the weld pool
images. Both cameras were positioned on the tail-side bead and captured
640 x 480 gray-scale images at 60 frames per second. The cameras' iris
and strobe time were adjusted to avoid underexposure or overexposure
that would result in all black or all white images, respectively.

With a 60 frame rate, the following information was recorded every
0.017 s during operation: the image of the front weld pool, the image of
the back bead, the current time, and the welding speed. This collection
resulted in 28,700 sets of samples, approximately 3600 per speed test.
An illustration of collected samples under three different welding speeds
is shown in Fig. 5.

While the weld pool images can be directly fed into the CNN after
simple cropping and resizing, the bead image needs to be processed first
to obtain the ground truths of bead width values. Previous work [22] by
the authors introduced a method to convert bead images to bead width
values. In this method, a brightness threshold is first set to determine the
region of an image that is corresponding to the bead formation, and the
area of the determined region is then mapped to bead width through a
linear transformation that is obtained experimentally. However, the
study is based on spot welding that produces circular beads, while the
linear welding in this study produces oblong beads of inconsistent
length. To address this issue, an improved version of the method
introduced in [22] was developed. Fig. 6 shows a procedure of pro-
cessing and converting an original bead image to a bead width value.

First, a bead image was appropriately cropped to capture only the
bead formation-related region. The cropped image was then binarized
into black and white, with all pixels exceeding the brightness threshold
set to white. This step allows a clear boundary between bead formation
and non-bead areas. The white pixels in each row were then counted,
leading to the width of the bead at discrete lengths. In this study, the
ground truth of bead width calibrated from individual images was set as
the average of the top ten row widths, to account for uncertainties from
measurement and data processing. Finally, this width was multiplied by
a constant to convert from pixels to millimeters. The threshold was
chosen through an iterative, trial-and-error process. An arbitrary value

Table 2

Summary of CNN configuration.
Layer name Feature map size Kernel size Stride Padding
Input 128 x 128 x 1 - - -
Conv 1 128 x 128 x 32 5 1 2
MaxPool 64 x 64 x 32 2 2 -
Conv 2 32 x 32 x 64 3 2 1
MaxPool 16 x 16 x 64 2 - -
Conv 3 8 x 8 x 128 3 2 1
MaxPool 4 x4 x128 2 - -
Conv 4 2 x 2 x 100 3 2 1
MaxPool 1x1x100 2 - -
FC1 100 -
FC2 64 - - -
Output 1 - - -

3: Binarized Image 4: Top Widths

Fig. 6. Bead width calibration from original bead image, including image cropping, binarizing, counting and averaging top 10 widths.
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was applied to the algorithm and the resulting widths were plotted
against their distance. The trends in the graph were then compared to
the trends in the produced back bead. If the resulting graph showed
penetration where there was none, the threshold was lowered.
Conversely, if there was penetration not reflected in the graph, the
threshold was raised. The finally chosen threshold was 170 with a
conversion factor of 0.06. The conversion factor was determined by
manually measuring a stable bead width and dividing this measurement
by the corresponding pixel width.

3.3. CNN and MLP configuration and training

In most ML especially DL techniques, the network structure plays a
significant role in the network performance and reliability. Given a
cropped weld pool image with size 128 by 128, the final selected CNN
structure contains 4 convolutional (Conv) layers, 4 max-pooling layers,
and 2 fully connected layers (FC). Between each convolution layer and
max-pooling layer, batch normalization was performed followed by a
ReLU activation function. The features extracted from the last convo-
lution layer were directly flattened and fed to the first FC layer, without
batch normalization and dropout. ReLU activation function was also
performed between two FC layers. The second FC layer was directly
connected to the output layer without ReLU activation. The architecture
is detailed in Table 2.

The basic guideline on determining the CNN structure is to gradually
reduce the feature map size throughout the entire network. The first
convolution kernel was set to not cause a reduction, but each following
convolution and max-pooling kernel parameters were chosen to half the
feature maps of their inputs.

Among the collected 28,700 weld pool image-bead width pairs, 70%
(20,090) of the gathered data were for CNN training and the remainder
(8610) was used for network validation. The network was trained using
the Adam optimizer with a learning rate of 0.0001, Mean Square Error
(MSE) loss, and a batch size of 32 images. The choice of batch size was
chosen from the best performance between networks with batch sized of
16, 32, 64, and 100. Learning rate was similarly chosen from networks
with 0.01, 0.001, and 0.0001. The training curve, showing the training
and validation loss over 100 epochs, is shown in Fig. 7 (left). It is noted
that the CNN achieved the lowest validation loss at epoch 6 and then
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began to rise, while the training loss continued to decrease over the
entire training period. Adopting an early stopping strategy, the network
with the lowest validation loss was selected. The network was able to
strongly correlate the weld pool image with the back bead width,
leading to a coefficient of determination of 0.975, as indicated in Fig. 7
(right). It is also noted that the predictions are more variable at low
widths, probably caused by measurement uncertainty.

As explained in Section 2, the perceptron correlates the welding
speed and current welding time to bead width. A simple 3-layer per-
ceptron with a hidden layer of eight neurons and a sigmoid activation
function was applied. The hidden layer size was chosen by comparing
the performance of networks with hidden layer sizes ranging from three
to nine neurons. Training for this network was done with a standard
gradient descent algorithm over 75,000 epochs with a learning rate of
0.0005 and MSE loss function. Again, different learning rates were
examined between 0.001, 0.0005, and 0.0001. The training curve and
network performance are shown in Fig. 8.

The network training converged around epoch 20,000 after seem-
ingly converging until epoch 5000. The fully trained network was also
able to strongly correlate time and speed to back bead width, achieving a
coefficient of determination of 0.954. The predictions also have a larger
variation for small beads, and slightly underestimate larger beads.
Overall, both networks have good performance and should be adequate
for subsequent adaptable process control.

3.4. Adaptive speed adjustment results

The trained CNN and MLP can then be applied for real-time adaptive
welding speed adjustment. In practice, the weld pool images were
continuously sent from the camera to the trained CNN for estimation of
bead width. The processing of a single image by the trained CNN can be
realized in real-time. Then the estimated bead width was compared to
the ideal bead width for speed adjustment by calculating the speed
gradient through the trained MLP. One issue to be determined is the
speed adjustment frequency. An optimum frequency is a trade-off be-
tween real-time controllability and quality estimation accuracy. In this
study, the speed is adjusted every half second. This time interval was
partitioned with the first 0.4 s utilized by the CNN, called the perception
phase, and the final 0.1 s was saved for the MLP, called the action phase.
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Fig. 10. Simulation results of speed adjustments under two different starting speeds and three different rates of gradient speeds.

During the perception phase, a maximum of 24 images could be gath-
ered, leading to 24 bead width values. During the action phase, the
gathered widths were averaged (to account for process uncertainty), and
this value along with the current time and speed were input into the MLP
to determine the required speed change. Finally, the welding speed was
updated once the previous half-second interval ended.

The developed controller was first tested in a simulated welding
environment. In this simulation, given a starting speed and welding
time, sample weld pool images and corresponding bead width values
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(after CNN processing) would be selected from the experimental data-
base and fed into the MLP for determining the speed adjustment. Once
the speed was updated, the same procedures were performed for another
round of speed adjustment. Since only 8 distinct speeds were tested in
the experiment when the welding speed was adjusted to a value that is
not covered in the 8 speeds, images were sampled from the nearest
measured speeds, and a weighted bead width was generated, which is
illustrated in Fig. 9.

The simulation tested 2 starting welding speeds, with a goal of 4.5
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mm bead width. Also, three different rates of gradient speeds (i.e., 7 in
Eq. (4)), 0.1, 0.25, and 0.5 were tested. The results of the trials are
shown in Fig. 10. The discussions (in Section 2) on the effects of learning
rate are demonstrated in the results. With the lowest rate, the speed
adjustment took the longest time to reach and converge to the desired
width. The highest rate would lead to severe oscillation, and no
convergence within the time allowed. The middle rate was the best in
terms of quick convergence and having no obvious overshoot.

Another observation of note is that the controller achieved similar
performance and produced similar trends in the bead width regardless of
the starting speed. On the other hand, it is surprising to see the estimated
bead width had a large variation after 3 s when the bead width was
expected to be stabilized. This is a result of the fact that the simulation
used data that was generated from experimental trials, and the trials of
the stabilized speed (approximately 6.0 mm/s) produced different beads

Starting Speed = 5 mm/s

’a ~_~
E =]
E g
=1 2
2 2
& =
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leading to the simulation's width variation, as shown in Fig. 11.

The controller was then applied to real welding tests. Different pol-
icies on the gradient descent rate were tried and compared, including
constant rate, time-varying rate with an initial value and constant decay,
as well as time-varying dampening rate. A constant gradient rate ach-
ieved the worst process control performance, including long conver-
gence time and/or unstable control process. As for the time-varying rate,
different initial values (ranging from 0.1 to 0.5) and decay rates (ranging
from 0.01 to 0.005 per second) had been tried and achieved satisfactory
performance for most experimental trials. But in some trials an over-
correction would occur, especially when the network predicted a large
bead width. This resulted in the addition of a dampening value for high
predicted widths, to avoid overcorrection. The finally employed
gradient descent rate begins with an n of 0.25 and reduces 0.01 every
second. If the predicted width is above the resulting change is halved to
prevent an overshoot. The results are shown in Fig. 12.

The controller was tried with a slow starting speed, 5 mm/s and a
high starting speed, 7 mm/s. Even though the controlled bead widths
had larger variation in the real experiments than in the simulation, the
controller still performed admirably and was able to generate relatively
stabilized beads within two to four seconds. Visual inspection of the
back bead width shows that both speeds produced desired linear weld,
but were more stable and accurate with slower starting speeds. This is
likely due to the nature of higher speed welding trials were less
consistent than slower starting speeds. A notable result did occur por-
trayed in the bottom right. There was an early unexpected spike in the
weld accompanied by unusual audible and visual signs during the pro-
cess. The controller was still able to adjust for this variation and
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Fig. 12. Results of experimental control tests under two starting speeds: v = 5 mm/s (left) and v = 7 mm/s (right), as well as photographs of completed

welds (bottom).
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accomplish the goal width.
4. Conclusions

This research presents a hybrid ML framework for real-time bead
width prediction and adaptive welding speed adjustment to achieve
desired bead width in the robotic GTAW welding process. The ML
framework contains a CNN for real-time processing of weld pool images
and estimation of bead width, an MLP for correlating welding speed and
time to bead width, and an MLP-based gradience descent controller to
adaptively adjust speed towards desired bead width. Experimental re-
sults confirm the strong agreement between actual bead width values
and those predicted by the CNN and MLP. Simulation and experimental
studies also demonstrated the effectiveness of the gradient descent
controller in adjusting speeds. Different rates of speed adjustment were
evaluated and discussed. Future studies will expand the experimental
evaluation of the controller by trying different starting speeds and a
longer welding time. This configuration on welding speed adjustment
will also be extended to the current, path, and orientation changes that
are more organic, in order to apply adaptive robotic control solutions to
the most difficult welding scenarios.
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