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A B S T R A C T   

Industrial robots have become more diverse and common for automating manufacturing processes, such as 
welding. Existing robotic control, however, is incapable of adaptively adjusting its operation in response to a 
dynamic welding environment, whereas a skilled human welder can. Sophisticated and adaptive robotic control 
relies on the effective and efficient processing of perception data, characterization and prediction of highly 
dynamic systems, and real-time adaptative robotic reactions. This research presents a preliminary study on 
developing appropriate Machine Learning (ML) techniques for real-time welding quality prediction and adaptive 
welding speed adjustment for GTAW welding at a constant current. In order to collect the data needed to train 
the hybrid ML models, two cameras are applied to monitor the welding process, with one camera (available in 
practical robotic welding) recording the top-side weld pool dynamics and a second camera (unavailable in 
practical robotic welding, but applicable for training purpose) recording the back-side bead formation. Given 
these two data sets, correlations can be discovered through a convolutional neural network (CNN) that is good at 
image characterization. With the CNN, top-side weld pool images can be analyzed to predict the back-side bead 
width during active welding control. Furthermore, the monitoring process has been applied to multiple exper
imental trials with varying speeds. This allowed the effect of welding speed on bead width to be modeled through 
a Multi-Layer Perceptron (MLP). Through the trained MLP, a computationally efficient gradient descent algo
rithm has been developed to adjust the travel speed accordingly to achieve an optimal bead width with full 
material penetration. Because of the nature of gradient descent, the robot would change faster when the quality 
is further away and then fine-tune the speed when it was close to the goal. Experimental studies have shown 
promising results on real-time bead width prediction and adaptive speed adjustment to realize ideal bead width.   

1. Introduction 

Welding represents one of the earliest manufacturing processes that 
embrace robotics. The long history is also paired with popularity, with 
almost half of all industrial robots deployed for welding [1]. Even with 
this majority, more welding robots are being demanded by manufac
turers with a predicted market increase of USD 4 billion in the next 5 
years [2]. This robotic welding trend is compounded by a predicted 
worker shortage of around 375 thousand welders within the same period 
[3], implying that autonomous welding solutions are needed to maintain 
and grow the production throughput. 

Today, robotics have been widely deployed in different welding 
applications. A majority of these robots are used for repetitive welding 
tasks that require basic welding skills on an open machine floor, but are 
beginning to be used for welding tasks that need to be performed in 

remote and confined areas that are dangerous for humans. In these ro
botic welding applications, skilled human welders are still needed for 
designing and planning the robotic welding paths and other process 
specifications, and robots then perform the actual welding operation 
along the designed paths with high precision. Basic robotic welding 
applications include plate and pipe welding [4]. This concept can be 
scaled up to include mobility to remote welding, such as welding on 
installed wind turbines. While it is difficult and dangerous for human 
welders to perform this large and aerial operation, a multiple degree-of- 
freedom welding robot can be mounted on a rotational track to achieve a 
full reach of the seam [5]. Similarly, autonomous welding in confined 
spaces, such as in the interior hull of large ships, typically involves 
highly specialized robots, such as robots mounted on a moveable rail 
system or walkable robots [6]. One challenge faced by both basic and 
specialized robotic welding is welding path planning. Optimal path 
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planning aims at maximizing welding quality and efficiency, while also 
complementing the mobility and control capability of robots. 

Many path planning techniques have been developed. In pipe 
welding, the trigonometric relationship was leveraged to maintain an 
appropriate welding angle during the joining operation [7]. In multi- 
pass welding, where welding parameters and paths associated with 
each pass need to be determined upon the last pass's quality, a formulaic 
relationship was established to calculate the welding speed needed to 
achieve the desired bead height [8]. Stochastic path planning algorithms 
based on graph theory were also studied for optimizing welding oper
ation times, especially in automotive chassis spot welding. Given the 
welding constraints (e.g., groove edges) obtained through computer 
vision-based edge detection systems [9], some swarm-based optimiza
tion algorithms, such as the ant colony algorithm [10] or beetle 
antennae search [11] that randomly search the optimum path con
necting two areas, can be applied to finding optimum welding paths. 
However, these algorithms mainly concern with welding paths and 
provide little guidance on welding speed, leading to inferior welding 
quality such as excessive or lack of penetration [12]. Also, many welding 
constraints are difficult to model or obtain because of the complicated 
nature of welding (e.g., overhangs caused by gravitational effects on the 
liquid weld pool), leading to inappropriate design of welding angles and 
paths [13]. Furthermore, the planning of welding path, speed, and 
angle, which happen before the real operation, cannot account for any 
process uncertainties that lead to deviation from desired quality. Hence, 
besides path planning, adaptive control is needed to adaptively adjust 
welding operations to ensure and maintain the desired quality. 

In adaptive process control, operations are real-time adaptively 
adjusted based on the in-situ sensing measurement to ensure the welding 
quality. For example, the welding current was adaptively adjusted to 
compensate tool degradation or material defects to ensure proper 
bonding spot welds through an entire operation cycle [14]. In this study, 
robotic tool performance degradation or unexpected variations in the 
workpiece led to changes in the resistance of the welding circuit, which 
was measured based on external measurements of current and voltage. 
This measured resistance was then compared to a baseline value of a 
previously performed spot weld of good quality. If a discrepancy existed, 
the current would steadily increase for higher resistances and reduce for 
lower ones until the baseline resistance had been achieved [14]. In 
another study of spot welding of high-strength steel, a fuzzy 
proportional-integral (PI) controller was developed to avoid shunting, 
an effect where the current travels around the desired spot weld as 
opposed to through it [15]. This was done by measuring the current, 
power, and voltage change to detect this flaw and would leverage a 
fuzzy PI controller to modify the welding power and current. In the field 
of laser welding, welding power was adaptively adjusted to enforce a 
precise cooling curve to achieve desired microhardness [16]. By 
comparing the measured temperature and the desired temperature at 
each time step, a heat diffusion formula that was experimentally ob
tained was used to determine the adjustment of the power. 

Emerging Machine Learning (ML) techniques have also been exten
sively investigated for adaptive robotic welding control. A back
propagation neural network-based control policy has been shown to be 
applicable for deep gap welds. The network correlated the information 
of geometries of pieces to be joined and the desired bead width to the 
optimal weld parameters of power, speed, and feed. These parameters 
were then adaptively changed in response to varying piece geometry 
through the network nonlinear mapping during welding operations 
[17]. A study on pipe welding investigated neuro-fuzzy networks in 
estimating the bead penetration based on the profile of the weld pool 
that was generated from laser sensing. Then a gradient-based control 
system established upon a linear model of weld pool penetration was 
utilized to adjust the speed and current to maintain constant penetration 
[18]. A reinforcement learning-based control algorithm was developed 
for laser welding, where radiation produced during the welding process 
was measured by electromagnetic sensors [19]. An encoder then 

compressed the data to reduce dimensionality and generate high-level 
features that would be critical for operation determination, followed 
by a convolutional neural network-based classifier to detect the quality 
of the weld following the determined operation. Based on the quality 
feedback, the controller would generate either a reward or demerit to 
update the encoder. While these ML-based control methods do improve 
the adaptability of a welding robot, these methods were primarily used 
to improve the quality and reliability of robotic welding operations 
already in effect. To approach the goal of achieving technically 
advanced welding operations only performable by humans, the welding 
robots should learn from human welders in terms of perception, pro
cessing, control, and action. 

The proposed adaptive controller takes a humanistic approach to the 
robotic welding process. Instead of using sensors that are only usable by 
machines, the decision process is based entirely on senses available to 
humans. Furthermore, the only parameters that humans can change 
while welding is their movements, as power and feeds are set before 
each task. While welding, an experienced welder would observe the 
formation of the molten weld pool and adjust their motions to achieve 
the desired weld. Accordingly, the proposed controller mimics the 
perception and decision-making process of a welder through a hybrid 
ML framework, granting the adaptability of humans with the reliability 
of robotics. In this framework, the robotic perception is enabled by a 
camera recording the top-side weld pool dynamics, and estimation of 
welding quality is enabled by a convolutional neural network (CNN) 
that correlates weld pool images to backside bead width (ground truth 
coming from a second camera recording the back-side bead formation, 
only available for training purpose). Subsequently, adaptive decision- 
making is realized through a Multi-Layer Perceptron (MLP) that corre
lates welding speeds to bead width, upon which a computationally 
efficient gradient descent algorithm is developed to adjust the travel 
speed accordingly to achieve an optimal bead width with full material 
penetration. The entire framework is computationally light, ensuring 
real-time adaptive control. 

The remaining of the paper is organized as follows: Section 2 in
troduces the theoretical development, including CNN for sensing im
aging processing and estimation of bead width, MLP for correlating 
welding speed and time to bead width, and the gradient descent-based 
speed adjustment. Section 3 covers the details of a preliminary experi
mental evaluation, including experimental setup, data acquisition, 
image pre-processing, configurations of CNN and MLP, simulation, 
experimental cases of adaptive speed adjustment to achieve desired 
bead width, results and discussions. Conclusions are drawn finally. 

2. Methodology 

Adaptive robotic control in response to dynamic welding conditions 
relies on two elements: 1) real-time characterization of welding state 
through processing the sensing data; and 2) determination of adjustment 
of process parameters based on the difference between actual and ideal 
welding state. The latter can be further decomposed to 2.a) identifying 
the correlations between process parameters and welding state and 2.b) 
mapping the difference between actual and ideal welding state to the 
adjustment of process parameters. In the presented study where a 
topside camera is available to capture the weld pool dynamics, a hybrid 
machine learning framework is proposed to realize adaptive control in 
robotic welding: 1) Convolutional Neural Network (CNN) is proposed to 
correlate weld pool images to back-side bead width; 2) Multi-Layer 
Perceptron (MLP) is leveraged to discover the dependency of bead 
width on welding speed and welding time; and 3) A gradient descent 
algorithm is applied for real-time adjustment of welding speed to ach
ieve and maintain ideal bead width. 

2.1. CNN for prediction of bead width 

Attributed to the advancement in computing power, non-linear 
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activation, regularization, and many other optimization techniques, a 
stack of many layers in a network is allowed for modeling nonlinear and 
non-stationary systems without suffering severe gradient vanishing 
problems. Many deep neural networks have occurred in the past two 
decades, including deep belief networks [20], CNN [21], recurrent 
neural network [22], and CNN is the most popular one. CNN is devel
oped for image processing and pattern recognition, and hence suitable 
for categorical classification or regression sensing images [21]. In this 
study, front-side weld pool images are correlated to back-side bead 
width values through CNN, representing a regression problem. Since 
weld pool dynamics directly determine the welding penetration and 
thereafter the bead width, one-to-one mapping exists between weld pool 
images and bead width values, and CNN-based regression is hence 
suitable to establish the mapping. 

A typical CNN architecture includes three types of layers: convolu
tional layer, pooling layer, and fully connected layer, as illustrated in 
Fig. 1 (b). Among the layers, convolutional and pooling layers are used 
to extract spatial features (e.g., motif shape, relative locations between 
motifs) from the images, and the fully connected layers correlate the 
extracted features to the image categories to be classified into or the 
targets to be regressed into. While the fully connected layers are 
commonly seen in standard artificial neural networks, a convolutional 
layer convolves regional image pixels with a trainable kernel to extract 
features. In a two-dimensional case, the convolutional process with a n 
× n kernel can be described as: 

Yi,j =
∑n

k=1

∑n

l=1
Kk,l⋅Xi+k−1,j+l−1 (1)  

where Yi,j denotes the ith row and jth column of the obtained feature map, 
Kk,l is the kth row and lth column of the kernel, and Xi+k-1,j+l-1 denotes the 
(i + k-1)th row and (j + l-1)th column of the input image. Eq. (1) 
essentially represents the weighted sum of image pixels over a pre- 
determined reception field n × n. The kernel weights, after appro
priate training, could detect if local regions of input images contain a 
certain shape of interest. Multiple kernels can be applied in a convolu
tional layer for the detection of multiple spatial features of interest. 
Along with the network propagation, multiple convolutional layers can 
be stacked together for multi-level feature extraction, scaling from low- 
level features (e.g., curves, hedges) to high-level motifs (e.g., weld pool- 
related shapes). Towards the end of the network architecture, the 
extracted features are more abstract and related to the physical object. 

Pooling layers are usually attached to convolutional layers to reduce 
the feature map size and computational effort, by summarizing extrac
ted features in regions. Typically utilized pooling kernels include max(⦁) 
and average(⦁), which outputs the maximum pixel value or averaged 
pixel value over the reception field. Also, introducing pooling layers 
force the network to pay attention to relative (instead of absolute) lo
cations of motifs, allowing the network to be translation-invariant in 
feature extraction. Fully connected layers can then be applied to map 
extracted weld pool-related features to the bead width. 

The training of a CNN can be realized by many optimization algo
rithms, such as Stochastic Gradient Descent (SGD) and Adam [23], 
which are available in most DL toolboxes. For this regression problem, 
standard Mean Square Error (MSE) can be utilized as the network 
training loss function. 

2.2. MLP for correlating welding speed to bead width 

To determine how to adaptive adjust welding speed to minimize the 
difference between actual and ideal bead width, the correlation between 
welding speed and bead width needs to be identified first, so that the 
bead width differences can be reversely mapped through the correlation 
to deltas of welding speed. Throughout the welding process, the welding 
dynamics, such as thermal fusion and convection, would take some time 
to stabilize. Especially in the early stage of a welding process, welding 
time is an important factor that determines welding penetration and 
bead width. Hence, the dependence of bead width on both welding 
speed and time should be discovered, assuming other welding parame
ters (e.g., current, voltage) remain constant. The dependence is 
discovered through MLP in this study. 

MLP provides an effective way to correlate input features to variables 
of interest or classes of conditions, where the relationships are nonlinear 
[24,25]. A typical 3-layer MLP configuration includes one input layer, 
one or multiple hidden layers, and one output layer, as illustrated in 
Fig. 1(a). Each layer contains one or more neurons; while the number of 
input and output neurons are determined by the number of input fea
tures and output variables, the number of hidden layers and hidden 
neurons can be arbitrarily defined. Neurons among layers are connected 
through weights. Along the network forward propagation, weighted 
inputs are fed to the hidden neurons, where hidden features are gener
ated after nonlinear activations (e.g., sigmoid and hyperbolic tangent) 
and passed to subsequent hidden layers or the output layer. This is very 
similar to the convolutional operation in Eq. (1), except for the weighted 
sum is calculated in a 2 or higher-dimensional space in a CNN but 1- 
dimensional space in an MLP. The mapping from inputs to predicted 
output in a 3-layer perceptron can be expressed as: 

BWpred = σ(σ([V, T]*W1 )*W2 ) (2)  

where BWpred represents the predicted bead width, V and T denote the 
welding speed and time, W1 and W2 are the weights connecting input 
and hidden layers as well as hidden and output layers, * denotes the 
matrix-based multiplication, and σ is the sigmoid function. The training 
of an MLP can be realized through a standard gradient descent algo
rithm. Given the network prediction loss in terms of the difference be
tween actual and predicted output, the network weights can be 
optimized through backpropagating the prediction loss and applying the 
gradients of loss w.r.t. weights to old weight values. The forward 
calculation and backward weight update can be iterated for multiple 
iterations until the network performance stabilizes. 

Fig. 1. Illustration of MLP and CNN architectures.  
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2.3. Gradient descent for real-time welding speed adjustment 

Given the predicted bead width from in-situ weld pool sensing and 
welding speed-bead width correlation, welding speed can be adaptively 
adjusted to realize the ideal bead width. Many optimization techniques 
can be applied for adaptive process control, efficiency is prioritized over 
other evaluation metrics for the selection of optimization techniques 
considering the highly dynamic welding environment. Gradient Descent 
(GD) [26] is selected because of its high computational efficiency and 
performance stability, with an illustration of GD-based speed adjustment 

shown in Fig. 2. 
The GD-based adaptive speed adjustment is different from GD-based 

network parameter optimization. In the latter, the gradients of the 
network loss function (represented by the MSE between actual and 
predicted bead width) with respect to network parameters are calcu
lated and applied to recursive update of parameters. In the former, the 
gradient of optimization loss, represented by the MSE of predicted and 
ideal bead width f = 1

2
(
BWpred − BWideal

)2, with respect to welding speed 
at a certain welding time is calculated and applied to adjust the speed. 
The gradient of f w.r.t. welding speed Vk can be calculated as: 

Fig. 2. Illustration of GD-based speed adjustment. (left) The dependency of bead width on welding speed: the slower speed, the wider bead width would be obtained; 
(right) calculated gradients of speeds: if current speed is larger than the optimum speed, a positive gradient is obtained; if current speed is smaller than the optimum 
speed, a negative gradient is obtained. 

Fig. 3. Illustration of hybrid ML for Adaptive Welding Speed Adjustment, including training of hybrid CNN and MLP network as well as real-time calculation of 
speed adjustment. 

ΔV =
∂f

∂Vk
=

∂f
∂BWpred

∂BWpred

∂Vk

=
(
BWpred − BWideal

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
related to output layer

⋅
[(

BWpred⋅
(
1 − BWpred

) )
*WT

2

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
related to hidden layer

⋅
[
(σ([V, T]*W1 )⋅(1 − σ([V, T]*W1 ) ) )*WT

1

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
related to input layer

⃒
⃒
⃒
⃒
⃒
⃒
⃒

V=Vk ,T=Tk

(3)   
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It can be seen from Eq. (3) that following a chain rule, the gradient is 
a product of three items, derivative of optimization loss w.r.t. predicted 
bead width, derivative of predicted bead width w.r.t. hidden layer 
output, and derivative of hidden layer output w.r.t. welding speed. Since 
welding time is also a network input besides welding speed, the gradient 
of current welding speed Vk should be evaluated upon the current 
welding time Tk. With the gradient, the welding speed can then be 
adjusted through: 

Vk+1 = Vk − η⋅ΔV (4)  

where η is the rate of the speed adjustment. If the current speed is larger 
than the optimum speed, a positive gradient will be obtained. A negative 
speed will be obtained if the current speed is smaller than the optimum 
speed. Eq. (4) ensures the speed adjustment converges at the optimal 
speed corresponding to the ideal bead width. 

The selection of η is very critical in real-time process control. A larger 
η would enable the speed quickly to approach the optimum speed, but 
with larger overshoot and longer oscillation. A smaller η would enable 
the speed gradually to approach the optimum speed, but with a longer 
convergence time. Hence, an optimal η needs to be determined experi
mentally with a minimum convergence time, which will be further 
discussed in the experimental evaluation section. Another issue that 
affects the real-time speed adjustment is the time duration between two 
adjustments. The minimum time duration should cover the communi
cation time for the sensing images being transmitted to the computer for 
processing, as well as the decision time of the CNN and GD. The calcu
lation of Eq. (3) is very efficient. For the CNN, once the network is 
appropriately training, processing one image to bead width value is also 
fast. But on the other hand, the bead width cannot be evaluated upon 
just one weld pool image, which will not account for process and mea
surement uncertainties. Instead, it should be evaluated upon a series of 
acquired weld pool images, by averaging the bead width values pre
dicted from individual images. Hence, an optimal speed adjustment 
frequency should also be experimentally determined based on the 
practical application scenario. 

2.4. Integrated ML framework for adaptive welding speed adjustment 

The integrated framework of hybrid ML for real-time, adaptive 
welding speed adjustment to achieve ideal bead width is illustrated in 
Fig. 3. 

During the network training phase, both front-side weld pool images 
and back-side bead formation images are collected from experimental 
studies, where multiple welding speeds are tested. While the weld pool 
images are directly fed as inputs to the CNN after straightforward pre
processing (e.g., resizing and cropping), the bead formation images go 
through a series of processing steps for calibration of the ground truths 
of bead width (to be elaborated in next Section). The calibrated bead 

width values are then utilized as the training outputs of both CNN and 
MLP. It should be noted that the weld pool and bead width images need 
to be synchronized first, which can be realized through the time 
stamping of image acquisition. Once the CNN is appropriately trained, it 
is supposed to be capable of accurately processing the weld pool images 
and predicting the bead widths. MLP is also trained to discover the 
dependence of bead width on welding speed and time. 

In practical application, only the front-side camera and information 
on welding speed and time (can be acquired from the robot motion 
planning) are needed. Consecutive weld pool images obtained over a 
certain period (e.g., 0.5 s) are fed to the trained CNN for the prediction of 
bead widths. The averaged bead width (to account for process and 
measurement uncertainty) is then compared to the ideal bead width, 
leading to the optimization loss. Subsequently, the speed adjustment is 
obtained by backpropagating the optimization loss to the current speed 
in the MLP structure using the trained MLP parameters, using Eq. (3). 
Finally, the speed adjustment is routed to the welding machine for 
implementation per Eq. (4), for example at a frequency of every 1 s. The 
entire framework enables compensating process randomness and 
maintaining ideal welding quality. One major advantage of the frame
work is its computational efficiency. 

3. Experimental study 

To experimentally evaluate the performance of the hybrid ML 
framework on real-time estimation of bead width and adaptive adjust
ment of welding speed to achieve and maintain the desired bead width, a 
robotic Gas Tungsten Arc Welding (GTAW) process testbed was estab
lished. First, welding experiments under different welding speeds were 
conducted, while images were collected from two cameras with one 
recording weld pool dynamics and the other recording bead formation. 
The images were then processed used to train the CNN and MLP net
works. With the trained networks, both simulations and experimental 
tests were conducted to evaluate the effectiveness and efficiency of the 
hybrid ML framework in adjusting the process from different initial 
speeds to achieve the optimal bead width. 

Fig. 4. Picture of system configuration (left) along with a labeled diagram(right).  

Table 1 
Summary of welding parameters.  

Parameter Value 

Welding type GTAW 
Welding current 150 A 
Tungsten diameter 2.4 mm 
Shielding gas Argon 
Work piece material T304 Stainless Steel 
Work piece dimensions 300 × 30 × 2 mm 
Testing speeds 4.5 mm/s – 8.0 mm/s, each speed repeated for 4 trials 
Testing time 15 s per trial  
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3.1. Experimental setup 

In this setup, a GTAW torch was mounted on a moving stage to 
simulate the robotic GTAW process. This stage consisted of a sealed 
chamber with a plexiglass base and a gas intake that was mounted to a 
computer-controlled screw servo. Back bead shielding gas was applied 
to ensure the welding quality. Linear welds were made on T304 stainless 
steel without filler metal under variable speeds using the machine. Two 
cameras were statically mounted with one focused on the active weld 
pool and the other on the forming back bead. This system is shown in 
Fig. 4. 

Throughout the tests, the welding current was set as a constant 150 
A. Argon gas was used for both the arc and back bead shielding. The back 
bead shield was applied by clamping metal over the seams between the 
stage and workpiece followed by saturating the chamber with a 
continuous stream of argon gas. Speeds in the range of between 4.5 mm/ 
s and 8.0 mm/s (with a 0.5 mm/s interval), in total 8 different welding 
speeds, were tested. To account for both process and measurement un
certainty, each speed was repeated for 4 trials, and each trial lasted for 
15 s. The experimental details are summarized in Table 1. 

3.2. Data acquisition and processing 

As mentioned above, two highspeed cameras were utilized to gather 
images of the welding process. The cameras used were Point Grey FL3- 
FW-03S1C-C highspeed cameras. Each camera had a resolution of 648 ×
488 and maximum sampling rate of 120 frames per second. The expo
sure times were set at 0.2 s for the top-side camera, and 0.3 s for back- 
side camera. The gamma and sharpness of both cameras were set to 1.5 
and 3000, respectively, to enable an ideal observation of the weld pool 
and bead with clear boundary. Since they are not explicitly designed to 
capture bright images, both had a filter made of a welding lens placed 
behind the camera lens to prevent overexposure in the images. One 
camera recorded the weld pool dynamics and the other was positioned 
through the plexiglass base of the back shielding chamber onto the 
location of the back bead formation. The collected images from two 

cameras were used for training the CNN and MLP networks, but in 
practical applications, only the weld pool camera is needed as the 
trained CNN can estimate the bead width upon processing the weld pool 
images. Both cameras were positioned on the tail-side bead and captured 
640 × 480 gray-scale images at 60 frames per second. The cameras' iris 
and strobe time were adjusted to avoid underexposure or overexposure 
that would result in all black or all white images, respectively. 

With a 60 frame rate, the following information was recorded every 
0.017 s during operation: the image of the front weld pool, the image of 
the back bead, the current time, and the welding speed. This collection 
resulted in 28,700 sets of samples, approximately 3600 per speed test. 
An illustration of collected samples under three different welding speeds 
is shown in Fig. 5. 

While the weld pool images can be directly fed into the CNN after 
simple cropping and resizing, the bead image needs to be processed first 
to obtain the ground truths of bead width values. Previous work [22] by 
the authors introduced a method to convert bead images to bead width 
values. In this method, a brightness threshold is first set to determine the 
region of an image that is corresponding to the bead formation, and the 
area of the determined region is then mapped to bead width through a 
linear transformation that is obtained experimentally. However, the 
study is based on spot welding that produces circular beads, while the 
linear welding in this study produces oblong beads of inconsistent 
length. To address this issue, an improved version of the method 
introduced in [22] was developed. Fig. 6 shows a procedure of pro
cessing and converting an original bead image to a bead width value. 

First, a bead image was appropriately cropped to capture only the 
bead formation-related region. The cropped image was then binarized 
into black and white, with all pixels exceeding the brightness threshold 
set to white. This step allows a clear boundary between bead formation 
and non-bead areas. The white pixels in each row were then counted, 
leading to the width of the bead at discrete lengths. In this study, the 
ground truth of bead width calibrated from individual images was set as 
the average of the top ten row widths, to account for uncertainties from 
measurement and data processing. Finally, this width was multiplied by 
a constant to convert from pixels to millimeters. The threshold was 
chosen through an iterative, trial-and-error process. An arbitrary value 

Fig. 5. Collected data samples under different welding speeds.  

Fig. 6. Bead width calibration from original bead image, including image cropping, binarizing, counting and averaging top 10 widths.  

Table 2 
Summary of CNN configuration.  

Layer name Feature map size Kernel size Stride Padding 

Input 128 × 128 × 1 – – – 
Conv 1 128 × 128 × 32 5 1 2 
MaxPool 64 × 64 × 32 2 2 – 
Conv 2 32 × 32 × 64 3 2 1 
MaxPool 16 × 16 × 64 2 – – 
Conv 3 8 × 8 × 128 3 2 1 
MaxPool 4 × 4 × 128 2 – – 
Conv 4 2 × 2 × 100 3 2 1 
MaxPool 1 × 1 × 100 2 – – 
FC1 100 – – – 
FC2 64 – – – 
Output 1 – – –  
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was applied to the algorithm and the resulting widths were plotted 
against their distance. The trends in the graph were then compared to 
the trends in the produced back bead. If the resulting graph showed 
penetration where there was none, the threshold was lowered. 
Conversely, if there was penetration not reflected in the graph, the 
threshold was raised. The finally chosen threshold was 170 with a 
conversion factor of 0.06. The conversion factor was determined by 
manually measuring a stable bead width and dividing this measurement 
by the corresponding pixel width. 

3.3. CNN and MLP configuration and training 

In most ML especially DL techniques, the network structure plays a 
significant role in the network performance and reliability. Given a 
cropped weld pool image with size 128 by 128, the final selected CNN 
structure contains 4 convolutional (Conv) layers, 4 max-pooling layers, 
and 2 fully connected layers (FC). Between each convolution layer and 
max-pooling layer, batch normalization was performed followed by a 
ReLU activation function. The features extracted from the last convo
lution layer were directly flattened and fed to the first FC layer, without 
batch normalization and dropout. ReLU activation function was also 
performed between two FC layers. The second FC layer was directly 
connected to the output layer without ReLU activation. The architecture 
is detailed in Table 2. 

The basic guideline on determining the CNN structure is to gradually 
reduce the feature map size throughout the entire network. The first 
convolution kernel was set to not cause a reduction, but each following 
convolution and max-pooling kernel parameters were chosen to half the 
feature maps of their inputs. 

Among the collected 28,700 weld pool image-bead width pairs, 70% 
(20,090) of the gathered data were for CNN training and the remainder 
(8610) was used for network validation. The network was trained using 
the Adam optimizer with a learning rate of 0.0001, Mean Square Error 
(MSE) loss, and a batch size of 32 images. The choice of batch size was 
chosen from the best performance between networks with batch sized of 
16, 32, 64, and 100. Learning rate was similarly chosen from networks 
with 0.01, 0.001, and 0.0001. The training curve, showing the training 
and validation loss over 100 epochs, is shown in Fig. 7 (left). It is noted 
that the CNN achieved the lowest validation loss at epoch 6 and then 

began to rise, while the training loss continued to decrease over the 
entire training period. Adopting an early stopping strategy, the network 
with the lowest validation loss was selected. The network was able to 
strongly correlate the weld pool image with the back bead width, 
leading to a coefficient of determination of 0.975, as indicated in Fig. 7 
(right). It is also noted that the predictions are more variable at low 
widths, probably caused by measurement uncertainty. 

As explained in Section 2, the perceptron correlates the welding 
speed and current welding time to bead width. A simple 3-layer per
ceptron with a hidden layer of eight neurons and a sigmoid activation 
function was applied. The hidden layer size was chosen by comparing 
the performance of networks with hidden layer sizes ranging from three 
to nine neurons. Training for this network was done with a standard 
gradient descent algorithm over 75,000 epochs with a learning rate of 
0.0005 and MSE loss function. Again, different learning rates were 
examined between 0.001, 0.0005, and 0.0001. The training curve and 
network performance are shown in Fig. 8. 

The network training converged around epoch 20,000 after seem
ingly converging until epoch 5000. The fully trained network was also 
able to strongly correlate time and speed to back bead width, achieving a 
coefficient of determination of 0.954. The predictions also have a larger 
variation for small beads, and slightly underestimate larger beads. 
Overall, both networks have good performance and should be adequate 
for subsequent adaptable process control. 

3.4. Adaptive speed adjustment results 

The trained CNN and MLP can then be applied for real-time adaptive 
welding speed adjustment. In practice, the weld pool images were 
continuously sent from the camera to the trained CNN for estimation of 
bead width. The processing of a single image by the trained CNN can be 
realized in real-time. Then the estimated bead width was compared to 
the ideal bead width for speed adjustment by calculating the speed 
gradient through the trained MLP. One issue to be determined is the 
speed adjustment frequency. An optimum frequency is a trade-off be
tween real-time controllability and quality estimation accuracy. In this 
study, the speed is adjusted every half second. This time interval was 
partitioned with the first 0.4 s utilized by the CNN, called the perception 
phase, and the final 0.1 s was saved for the MLP, called the action phase. 

Fig. 7. CNN training curve (left) and performance on validation data (right).  

Fig. 8. MLP Training (left) and Performance (right).  
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During the perception phase, a maximum of 24 images could be gath
ered, leading to 24 bead width values. During the action phase, the 
gathered widths were averaged (to account for process uncertainty), and 
this value along with the current time and speed were input into the MLP 
to determine the required speed change. Finally, the welding speed was 
updated once the previous half-second interval ended. 

The developed controller was first tested in a simulated welding 
environment. In this simulation, given a starting speed and welding 
time, sample weld pool images and corresponding bead width values 

(after CNN processing) would be selected from the experimental data
base and fed into the MLP for determining the speed adjustment. Once 
the speed was updated, the same procedures were performed for another 
round of speed adjustment. Since only 8 distinct speeds were tested in 
the experiment when the welding speed was adjusted to a value that is 
not covered in the 8 speeds, images were sampled from the nearest 
measured speeds, and a weighted bead width was generated, which is 
illustrated in Fig. 9. 

The simulation tested 2 starting welding speeds, with a goal of 4.5 

Fig. 9. Visualization of data creation for non-measured speeds: A) the simulated current welding time and speed; B) Two nearby speeds around the current welding 
speed determined: C) one image sampled from each speed given the current welding time; D) both images evaluated by the CNN to estimate the back bead width; E) 
final width determined through weighted averaging of two estimated bead width values. 

Fig. 10. Simulation results of speed adjustments under two different starting speeds and three different rates of gradient speeds.  
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mm bead width. Also, three different rates of gradient speeds (i.e., η in 
Eq. (4)), 0.1, 0.25, and 0.5 were tested. The results of the trials are 
shown in Fig. 10. The discussions (in Section 2) on the effects of learning 
rate are demonstrated in the results. With the lowest rate, the speed 
adjustment took the longest time to reach and converge to the desired 
width. The highest rate would lead to severe oscillation, and no 
convergence within the time allowed. The middle rate was the best in 
terms of quick convergence and having no obvious overshoot. 

Another observation of note is that the controller achieved similar 
performance and produced similar trends in the bead width regardless of 
the starting speed. On the other hand, it is surprising to see the estimated 
bead width had a large variation after 3 s when the bead width was 
expected to be stabilized. This is a result of the fact that the simulation 
used data that was generated from experimental trials, and the trials of 
the stabilized speed (approximately 6.0 mm/s) produced different beads 

leading to the simulation's width variation, as shown in Fig. 11. 
The controller was then applied to real welding tests. Different pol

icies on the gradient descent rate were tried and compared, including 
constant rate, time-varying rate with an initial value and constant decay, 
as well as time-varying dampening rate. A constant gradient rate ach
ieved the worst process control performance, including long conver
gence time and/or unstable control process. As for the time-varying rate, 
different initial values (ranging from 0.1 to 0.5) and decay rates (ranging 
from 0.01 to 0.005 per second) had been tried and achieved satisfactory 
performance for most experimental trials. But in some trials an over
correction would occur, especially when the network predicted a large 
bead width. This resulted in the addition of a dampening value for high 
predicted widths, to avoid overcorrection. The finally employed 
gradient descent rate begins with an η of 0.25 and reduces 0.01 every 
second. If the predicted width is above the resulting change is halved to 
prevent an overshoot. The results are shown in Fig. 12. 

The controller was tried with a slow starting speed, 5 mm/s and a 
high starting speed, 7 mm/s. Even though the controlled bead widths 
had larger variation in the real experiments than in the simulation, the 
controller still performed admirably and was able to generate relatively 
stabilized beads within two to four seconds. Visual inspection of the 
back bead width shows that both speeds produced desired linear weld, 
but were more stable and accurate with slower starting speeds. This is 
likely due to the nature of higher speed welding trials were less 
consistent than slower starting speeds. A notable result did occur por
trayed in the bottom right. There was an early unexpected spike in the 
weld accompanied by unusual audible and visual signs during the pro
cess. The controller was still able to adjust for this variation and 

Fig. 11. Experimental data collected with welding speed 6.5 mm/s.  

Predicted Width Measured Width Goal Width Speed 

Starting Speed = 5 mm/s Starting Speed = 7 mm/s 

Fig. 12. Results of experimental control tests under two starting speeds: v = 5 mm/s (left) and v = 7 mm/s (right), as well as photographs of completed 
welds (bottom). 
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accomplish the goal width. 

4. Conclusions 

This research presents a hybrid ML framework for real-time bead 
width prediction and adaptive welding speed adjustment to achieve 
desired bead width in the robotic GTAW welding process. The ML 
framework contains a CNN for real-time processing of weld pool images 
and estimation of bead width, an MLP for correlating welding speed and 
time to bead width, and an MLP-based gradience descent controller to 
adaptively adjust speed towards desired bead width. Experimental re
sults confirm the strong agreement between actual bead width values 
and those predicted by the CNN and MLP. Simulation and experimental 
studies also demonstrated the effectiveness of the gradient descent 
controller in adjusting speeds. Different rates of speed adjustment were 
evaluated and discussed. Future studies will expand the experimental 
evaluation of the controller by trying different starting speeds and a 
longer welding time. This configuration on welding speed adjustment 
will also be extended to the current, path, and orientation changes that 
are more organic, in order to apply adaptive robotic control solutions to 
the most difficult welding scenarios. 
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