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The Dicke model can exhibit quantum phase transition between the normal and the superradiant phases when
the strength of the light-matter coupling exceeds the ultrastrong-coupling regime. However, it is challenging
to observe this phase transition in practical systems due to limited coupling strength or finite two-photon
A? terms. Here we show that by applying a periodic modulation to the frequency of the two-level systems
in a standard Dicke model in the strong-coupling regime, an anisotropic Dicke model with tunable rotating
and counter-rotating terms in the ultrastrong-coupling regime can be achieved. We calculate the ground state
and the excitation spectrum of this model in terms of the modulation parameters. Our result shows that
the superradiant phases can be observed in cavity- or circuit-quantum electrodynamics systems with strong

coupling.
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I. INTRODUCTION

The Dicke model [1] describes a cavity mode coupled to
multiple quantum two-level systems (or qubits) in cavity- or
circuit-quantum electrodynamics (QED) systems [2—7]. It has
been widely studied to exhibit the superradiant phase transi-
tion at a critical temperature or a critical light-matter coupling
strength [8—15], where the superradiant phase is characterized
by macroscopic excitations of the cavity and the qubits. At
zero temperature, a quantum phase transition (QPT) between
the normal and the superradiant phases can occur when the
coupling strength exceeds the ultrastrong-coupling regime.
Dynamical phase transition has been studied both theoreti-
cally and experimentally in dissipative Dicke models [16-22].
Recently, it was shown that the Dicke model can be simulated
with four-level atoms via cavity-assisted Raman transitions,
and nonequilibrium phase transition has been demonstrated
experimentally in this system [23,24].

Despite intensive efforts with both atomic systems and
solid-state devices, it is still challenging to observe the
ground-state superradiant phase transition in the Dicke model
due to limited coupling strength or the two-photon A? term
in some systems. For atomic systems in the ultrastrong-
coupling regime, the A terms resulted from second-order
effects of the light-matter interaction can prevent the occur-
rence of the superradiant phase transition [25,26]. Note that
the Dicke phase transition and the symmetry-breaking phases
can be demonstrated with motional degrees of freedom of
Bose-Einstein condensates coupled to a cavity mode [3,5].
In the superconducting circuit-QED systems, although the
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ultrastrong-coupling regime can now be reached [27-31], im-
perfection of the quantum circuits could affect the behavior
of this phase transition, as was studied in Ref. [32] using a
mean-field approach.

In this work, we present an approach that enables the
observation of the quantum superradiant phase transition in a
standard Dicke model in the strong-coupling regime with the
strength of the collective light-matter coupling much smaller
than qubit and cavity frequencies. In our approach, by apply-
ing a periodic modulation to the frequency of the qubits in
the standard Dicke model, a tunable anisotropic Dicke model
with ultrastrong rotating and counter-rotating couplings can
be generated. The qubit frequency modulation generates side-
bands in the energy spectrum of the qubits. By adjusting the
frequency and magnitude of the modulation in the anisotropic
Dicke model, it is possible to tune the ratio of coupling
strengths between the dominant rotating and counter-rotating
sidebands relative to the effective frequencies of the qubits
and the cavity over a broad range. Both the rotating and
the counter-rotating terms can reach the ultrastrong-coupling
regime. With the collective qubit-cavity couplings in the
strong-coupling regime compared to the original qubit and
cavity frequencies, the strength of the two-photon A% terms
is also much smaller than these frequencies. The A terms can
hence be safely neglected as they are far off resonance in our
scheme. This makes it possible to observe the superradiant
phase in the cavity-QED setup, which was considered impos-
sible in previous works [25,26]. We calculate the ground-state
phases and excitation spectra vs the modulation parameters.
Our result shows that ground state superradiant phases can be
observed in the cavity- or circuit-QED systems in the strong-
coupling regime. Given the tunability of the effective model
in this approach, it can be utilized to study phase transitions
in related models such as the Tavis-Cummings model [33] and
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the Lipkin-Meshkov-Glick model [34]. Our work can inspire
future studies on implementing quantum phase transitions in
engineered quantum systems.

II. MODEL

Consider a standard Dicke model, where a cavity mode
is coupled to N qubits with the frequency of the qubits pe-
riodically modulated. The total Hamiltonian has the form
H, = Hsp + Hj,> + Hy(t), which includes the Hamiltonian of
the standard Dicke model (7 = 1)

HSD = L()()Jz —+ (,()CaTa + g()Nfl/z(JJ,- + J—)(a + aT)a (1)

a two-photon A? term Hy> = g42(a + a’)? with amplitude g42,
and a periodic modulation of the qubit frequency Hy(t) =
&vcos(vt)J, with dimensionless driving magnitude £ and
modulation frequency v. Here J, = YN  0/2 and Ji =
Z?; af) are collective spin operators defined as the sum
of the Pauli operators az(fi of the qubits, wy is the energy
splitting of the qubits, a (a’) is the annihilation (creation)
operator and w. the frequency of the cavity mode, and go/~/N
is the coupling strength between an individual qubit and the
cavity mode. The collective spin operators obey the usual
angular momentum commutation relations [J,,Ji] = £J1
and [J4, J_] = 2J,, and have the angular momentum eigen-
states |j, m) with maximum eigenvalue j,x = N/2 and m €

The standard Dicke model can exhibit quantum phase
transition from a normal phase to a superradiant phase with
macroscopic cavity displacement and qubit excitations. This
phase transition occurs when the collective coupling strength
reaches the ultrastrong-coupling regime with go > \/wow,/2
[1,13]. The amplitude of the two-photon Hamiltonian H,> can
be written as g4 = x g% Jwo, with x being a dimensionless
coefficient. In cavity QED, governed by the Thomas-Reiche-
Kuhn sum rule, x > 1, which prevents the occurrence of the
superradiant phase transition [26]. Even though we can have
x < 1 in circuit QED, other factors such as the parameter
spread of the qubits in the ultrastrong-coupling regime could
prevent the observation of this phase transition.

Below we derive the effective Hamiltonian of the standard
Dicke model under periodic modulation using the approach in
Ref. [35]. Let H" = woJ, + w.a'a + Hu(t) with o = o, +
2g42, which includes the modulation of the qubit frequency.
In the rotating frame of Hé]), the effective Hamiltonian of

the modulated Dicke model is H\) =V, (t)(H, — H{")Vi(1)

with Vi(¢) = exp[—ifot Hél)(r)dt]. After omitting the con-
stant term in Hy2, we find that

8\ i i
Hr(olt) - ﬁ Z Jo(E)J 1 (ae™ +a'e™") + H.e]
+gp (026721‘(1)(’1 + a'vLZeZiw;t )’ (2)

where 8, = wy — w, +nv, A, =wy+ w,+nv, and J, is
the nth Bessel function of the first kind with integer
number n. Here we have used the Jacobi-Anger identity:
expli& sin(vt)] = Z;’li_w J.(§)exp(invt) for Bessel func-
tions. As shown in Eq. (2), the modulation of the qubit
frequency generates spectral sidebands in the rotating

(counter-rotating) terms with detuning §,, (A,) and coupling
amplitude (go/ V/N)J,(&). The sidebands are separated by the
modulation frequency v. The amplitudes of the sidebands can
be adjusted by varying the dimensionless modulation ampli-
tude &.

We introduce a second rotating frame defined by the
Hamiltonian Héz) = —&oJ, — @.a’a with the effective qubit
and cavity frequencies @y = (8, + Amy)/2 and &, = (A, —
8ny)/2, respectively. Here by choosing appropriate qubit fre-
quency and modulation frequency, we can select a rotating
sideband n( and a counter-rotating sideband my, where the
effective coupling A, = goJy, (§) [Aer = g0Jm, (§)] for the side-
band can reach the ultrastrong-coupling regime with respect
to its rotating frequency [§,,| (|A,,|). Meanwhile, under the
condition wy, w., v > g, all other sidebands are fast rotating,
ie.,

g0|Jn#nU(E)|a g()|-]m;ém0(€)| <L, |8n;én0|’ |Am;ém0|~ (3)

With gy < @, g42 < go and g4 K 2. The a® and a™ terms
with oscillating frequencies £2w/. from the two-photon A?
Hamiltonian are hence also fast rotating (see Appendix A).
In the rotating frame of Héz), the effective Hamiltonian

is HO = V; (t)(HY — Héz))Vz(t) with the unitary trans-
formation V,(t) = exp[—iH(gz) t]. Under the rotating-wave
approximation with all fast-rotating sidebands of n # ny and
m # myg and the two-photon A? terms neglected, the Hamilto-
nian becomes

H? =@y, + dca'a+ N2 (ha+ rea' )+ Hel.

rot

“4)

This Hamiltonian describes an anisotropic Dicke Hamiltonian
with tunable frequencies @y (v) and @.(v) that depend on the
modulation frequency v and with effective couplings X,(§)
and XA (§) for the rotating and the counter-rotating terms,
respectively, that depend on the dimensionless modulation
amplitude &.

III. ULTRASTRONG COUPLING

The parameters in Eq. (4) can be adjusted to reach the
ultrastrong-coupling regime by varying the frequency v and
the amplitude £ of the periodic modulation. We define A¢ =
@, as the critical coupling, which is crucial for our discus-
sion of the superradiant phase transition and only depends on
the driving frequency v. In Fig. 1(a), we plot A /wy vs v/wy.
At wy = w, the index for the rotating sideband is ny =0
with 8,, = 0, whereas the index my for the counter-rotating
sideband varies with v/wy and reaches my = 0 when v >
2(wp + w..). It can be shown that A =0 at v = —2wy/my
or v = —2w,/my, for a given value of my. For wy = w,,
the curve of AC/wy is hence composed of V-shaped valleys
when v < 2(wp + /). Each valley shares the same value of
mg with the minima of the valleys being at v = —2wq/my,
respectively. Thus, the minima of the V-shaped valleys of
the critical coupling strength AC form an harmonic sequence
towards v = 0.

The effective coupling strengths depend on the driving am-
plitude £ in the form of the Bessel functions. In Figs. 1(b) and
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FIG. 1. (a) The ratio A€/w, between the critical coupling and
the qubit frequency vs the relative modulation frequency v/wy. (b
and c) The ratios A,/AC and A.,./AC vs the driving amplitude & for
go/wo = 0.06 at v/wy = 0.49 and 0.66, respectively. Here we choose
wo = . = 1 as the energy unit, and £ is the dimensionless driving
amplitude.

1(c), we plot A.(&)/AC and A..(€)/AC vs & at gg = 0.06wy,
wo = w, for two values of the driving frequency v. For
v/wo = 0.49, ny = 0 and my = —4. As £ increases, A, (£)/A¢
oscillates smoothly between 3 and —1.208 with reducing am-
plitude, and A..(£)/AC oscillates between 1.199 and —0.823.
Both couplings can be tuned to zero when the corresponding
Bessel function becomes zero. For v/wy = 0.66, np = 0 and
my = —3, and A,(£) and XA, (&) exhibit similar behavior. This
result shows that both A,.(¢) and A..(§) can be tuned in a
broad range and can enter the ultrastrong-coupling regime. In
particular, in the neighborhood of the valley dips in Fig. 1(a),
these couplings can exceed the magnitude of the critical cou-
pling A¢. Our system can hence demonstrate rich quantum
phenomena as discussed below.

IV. QUANTUM PHASE TRANSITION

In the Holstein-Primakoff representation, the collec-
tive angular momentum operators can be written as J; =
b'/N —b'b, J_ = /N —b'bb,and J, = b'b — N/2 [36] in
terms of a bosonic mode with annihilation (creation) operator
b (b") and [b, b'] = 1. The anisotropic Dicke model in (4)
then becomes

H'2 = ayb'b + d.a'a — Néy/2
+[b'1 —b'b/N(Ara+ Aga')+Hel.  (5)

The ground state of the anisotropic Dicke model can be either
in a normal phase with (a) = (b) =0 or in a superradiant
phase with finite (@) and (b), depending on the coupling
strengths A, and A... To derive the ground state, we use a
mean-field approach [8-10,13] and write the bosonic oper-
ators as a > c+« and b - d + B, where o = (a) (B =
(b)) is the semiclassical displacement of the cavity (collec-
tive qubit mode), and operator ¢ (d) represents the quantum

Ar/ A€

FIG. 2. The dimensionless displacements (a) «/ /N (or i / V/N)
and (b) B/+/N (or iB/~/N) vs the couplings A,/AC and A.,/A€. In
the SEMa and SEMb phases, we choose 6 = 0. Other parameters are
v/wy = 0.49, go/wy = 0.06, and wy = w, = 1.

fluctuation of the displaced cavity (qubit) mode with {(c) = 0
({(d) = 0). Denote s = (c,d, c", d")". In the thermodynamic
limit N — oo, using a Taylor expansion of the Hamiltonian

Hr(ozt) in terms of the fluctuation operators ¢ and d and keeping

to the second-order terms, we have Hr(ozt) =H; +H + Eg,
where H;; = D';Gﬁs with G being a 4 x 4 Hermitian matrix,
H, = QTﬁS with € being a 4 x 1 vector, and Eg is a con-
stant. Here the matrix G, vector Q, and Eg all depend on
the displacements « and B, details of which can be found in
Appendix B. When « and B correspond to the ground-state
displacements, the linear term disappears with H; = 0. Hence,
by solving the equation $2 = 0, we can find the solution to the
semiclassical displacements o and B and derive the ground-
state energy E¢ and the matrix G.

The displacements of the cavity and qubit modes in the
anisotropic Dicke model are plotted in Figs. 2(a) and 2(b).
When |A. £ A <AS, @ =B =0, which corresponds to
the normal phase as labeled by N in Fig. 2. Outside the
normal phase, when A,A. > 0, the ground state is in the
superradiant electric (SE) phase with two sets of solutions
(o, B) = (g, Bo) and g, Bo being real numbers. When
Arder < 0, the ground state is in the superradiant magnetic
(SM) phase with two sets of imaginary number displacements
+(iog, ifo). Along the y axis when |A.,| > AC, the system is
in the superradiant electromagnetic a (SEMa) phase, where
the semiclassical displacements are (age™, Bpe'®) with an
arbitrary but opposite phase factor 6. Similarly, along the x
axis when |A,| > AC, the system is in the superradiant electro-
magnetic b (SEMb) phase with displacements (age”, Boe'®).
Details of these solutions can be found in Appendix B. The
solutions in the SE and SM phases break the Z, symmetry
of the model when A, A, # 0, whereas the solutions in the
SEMa and SEMb phases break the U(1) symmetry of the
model when A A, = 0. Note that for A, = A.,, the condition
for the normal phase becomes || < A /2, which agrees with
the result for a standard Dicke model [9]. The solid and the
dashed lines in Fig. 2 indicate the phase boundaries separating
these phases. Using the Hopfield-Bogoliubov transformation
on Hj; [37], the system Hamiltonian can be diagonalized
as H2) = 3", oy y? + EP. Here y/ (/") is the anni-
hilation (creation) operator of one of the quasiparticles in
the ground state phase p with frequency !, and E’, is the
ground-state energy in phase p. The operator y/ is a linear
combination of the operators c, ¢t d, dt for the superradiant
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FIG. 3. (a)—(c) The relative quasiparticle spectrum wy/wy Vs
the relative coupling A../AC at A,/A¢ =0.5,1.5,0, respectively.
(d) w+/wy vs the relative coupling A,/AC at A.,./AC = 0. Other pa-
rameters are the same as those in Fig. 2.

phases and a, a', b, b' for the normal phase, with the com-
mutation relation [y}, yjp =3 ;. Details of the quasiparticle
spectrum for different phases are given in Appendix C. In
Fig. 3, we plot the quasiparticle spectrum as functions of
the coupling A, or A,. The superscript “p” that refers to
the specific phase in the quasiparticle frequency is omitted.
For A,/A¢ = 0.5, the critical points occur at A../A¢ = £0.5
when w_ = 0, as shown in Fig. 3(a). The system experiences
a second-order phase transition from the normal phase at
|Aer/AC| < 0.5 to the SE or SM phase at [Aer/AE] > 0.5, as
shown in Fig. 2. For A,/AC = 1.5 presented in Fig. 3(b), a
single critical point occurs at A.,/AC = 0, which corresponds
to a Goldstone mode in the SEMb phase [10]. For A,/A¢ = 0
along the y axis, the critical points are at X, /AC = =1, cor-
responding to a phase transition between the normal phase
and the SEMa phase, as shown in Fig. 3(c). Similarly, for
Aer/AC = 0 along the x axis, the normal-SEMb phase tran-
sition occurs at A,/A¢ = %1, as shown in Fig. 3(d). In both
the SEMa and SEMD phases, w_ = 0, corresponding to Gold-
stone excitations resulted from the U(l) symmetry of the
model along the x and y axes.

V. MANIPULATION OF QUANTUM PHASES

By controlling the parameters of the qubit frequency mod-
ulation, the effective rotating and counter-rotating couplings
in the engineered anisotropic Dicke model can reach the
ultrastrong-coupling regime with superradiant ground states,
even if the physical coupling strength is only in the strong-
coupling regime. In particular, as shown in Fig. 1(a), the
critical coupling A¢ — 0 in the neighborhood of a V-shaped
minimum, which results in diminishing normal phase region.

In Figs. 4(al) and 4(b1), we plot the parametrized curves of
the effective couplings [A,(£)/AC, Ae-(€)/AC] vs the driving
amplitude & at v/wp = 0.49 and 0.66, respectively. It can
be seen that the parametrized curves evolve through several
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FIG. 4. (al, bl) The parametrized curves of the relative cou-
plings [A-(£)/AC, A.(&)/AC] when the dimensionless driving ampli-
tude £ increases from O to 4 as indicated by the arrows. (a2, b2)
The displacement «/+/N and (a3, b3) the displacement 8/+/N vs
the driving amplitude &. (al)—(a3) are for v/wy = 0.49 and my =
—4. (bl)—(b3) are for v/wy = 0.66 and my = —3. For SEMa and
SEMb phases, we set & = 0. Other parameters are the same as in
Figs. 1(b) and 1(c).

superradiant phases and the normal phase. In Figs. 4(a2),
4(a3), 4(b2), and 4(b3), we plot the ground-state displace-
ments o and B vs & for the corresponding values of v/wy.
As labeled in the plots, the solid curves are for the real
parts and the dashed curves are for the imaginary parts
of o and B. We also indicate the corresponding ground-
state phases in the plots. At v/wg = 0.49 in Figs. 4(a2) and
4(a3), the ground state is in the SE phase when 0 < & <
1.856, where A(€)A,(€) > 0 and |A-(€) + Aq(€)] > AC. In
the region 2.880 < & < 4, the ground state is in the SM
phase with A,(§)A.(§) <0 and |1 (§) — Ao (§)] > A€. The
SEMD phase with A.,.(§) = 0 is located at £ = 0. The normal
phase appears when 1.856 < & < 2.880. Here the depen-
dence of A.(£€)/AC, A(£)/AC vs & can be seen in Fig. 1(b).
At v/wy = 0.66 with the increase of &, the ground state
is in the SEMb, SM, SEMa, and SE phases sequentially,
as shown in Figs. 4(b2) and 4(b3). The dependence of
2 (E)/XE, Aer(E)/AC vs & can be found in Fig. 1(c). With these
two values of v/wy, all normal and superradiant phases can be
experienced.

The above result shows that the ground state of the en-
gineered anisotropic Dicke model can be in a superradiant
phase when the collective qubit-cavity coupling is only in the
strong-coupling regime with, e.g., go/wo = 0.06. For super-
conducting qubits with wy/2m = 10 GHz, this corresponds
to go/2mw = 600 MHz with a single qubit-cavity coupling
of go/~/N. With only N = 4 qubits, the single qubit-cavity
coupling is 300 MHz, well within reach of current technology
[38,39]. In comparison, the ground state of the standard Dicke
model can be in the superradiant phase only when go/wo >
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0.5 in the ultrastrong-coupling regime. This requires a col-
lective coupling of go/2m =5 GHz. Even if the individual
qubit-cavity coupling can reach 1 GHz, it would require an
array of N = 25 qubits to achieve such collective coupling.
Qubit frequencies can be modulated with various approaches.
For superconducting qubits, frequency modulation can be
achieved with a tunable junction (or SQUID), where the ef-
fective Josephson energy (and hence qubit frequency) can be
tuned by applying oscillating magnetic field to the SQUID
loop. For atomic qubits formed by hyperfine states in atoms
or ions, qubit frequency can be modulated via Zeeman ef-
fect by applying oscillating magnetic field. For the parameter
v/wy = 0.49 (0.66) used in our work, the modulation fre-
quency v/2m = 4.9 (6.6) GHz, and the modulation amplitude
&v/2m is in the range of (0, 19.6) [(0, 26.4)] GHz with 0 <
& < 4. These modulation parameters are achievable in exper-
iments. Note that the phase transition studied in this work is
for the ground states in a rotating frame under the frequency
modulation. The normal and the superradiant phases can be
prepared using an adiabatic approach. Without the frequency
modulation, the superconducting qubit-cavity system can be
prepared to their ground state, which is in a normal phase with
no excitation, by cooling down the system under cryogenic
temperature (e.g., 20 mK in a dilution fridge). Then by slowly
turning on the modulation amplitude & to the desired value,
the system can reach the superradiant phase adiabatically
with high probability [5,40,41]. Our result hence shows that
the normal-superradiant phase transition can be implemented
with practical physical systems in the strong-coupling regime.
Meanwhile, various superradiant phases such as SE, SM,
SEMa, and SEMb phases can all be reached by varying the
modulation parameters. By manipulating these parameters,
one can demonstrate rich physics in different superradiant
phases, such as the Goldstone modes in the SEMa and SEMb
phases.

The phase transition studied above focuses on the regime
of negligible cavity dissipation with « /@y, k/w]. < 1074,
where « is the cavity dissipation rate. The parameter ranges
discussed above satisfy the requirement of negligible dis-
sipation. Meanwhile, when the cavity dissipation becomes
non-negligible, the effective anisotropic Dicke Hamiltonian
generated with our approach can also be used to study
steady-state phase transition. As shown in Refs. [2,11], the
critical coupling strength for the superradiant phase transi-
tion in the presence of a finite cavity dissipation becomes
AG, = $y/@o(kc? + @2)/@,. Consider a dissipation rate of
k = 0.02wp. At v/wy = 0.49 (0.66), k ~ &9, @., and Agis =
0.707A€ (1.1181°), which is comparable to A. The effective
coupling strengths in the engineered anisotropic Dicke model
can hence be stronger than 1§, under our parameters, and the
steady-state superradiant phase can be reached.

VI. CONCLUSIONS

We studied a scheme that can generate an anisotropic
Dicke model with ultrastrong coupling via classical con-
trol of engineered quantum systems. By applying properly
designed qubit frequency modulation to a standard Dicke
model in the strong-coupling regime, the effective rotating and
counter-rotating couplings can be tuned in a broad range and

10°g /2w,

o (v
. 2 e

Fo.om

0.015

ool

002 004 006

Golwo

Golwp=0.02
Golwy=0.05

FIG. 5. (a) The ratio g42 /2w, vs the relative qubit-cavity cou-
pling go/wo and the dimensionless factor x. (b) 10°g,2 /2. vs go/wo
at selected values of x. (c) 10%g42/2e., vs x at selected values of
go/wo. Here wy = w,..

reach the ultrastrong-coupling regime. We show that various
superradiant phases and the normal phase can be achieved in
the ground state of this anisotropic Dicke model. Our result
demonstrates that superradiant phases can be implemented
in practical physical systems with a collective light-matter
coupling in the strong-coupling regime, and the normal-
superradiant phase transition can be observed. With our
parameters, the two-photon A% terms that could prevent the
implementation of the superradiant phases only have negligi-
ble effect on the engineered Hamiltonian.
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APPENDIX A: TWO-PHOTON A? TERM

The two-photon (A?) terms are given by the Hamiltonian
Hy> = gq2(a + a')? with amplitude g4 = Xg%)/a)o and yx be-
ing a dimensionless coefficient. In our discussion, the a‘aterm
in Hy> has been absorbed into the Hamiltonian of the standard
Dicke model by replacing the cavity frequency w, with the
modified frequency ) = w, + 2g4:. The remaining terms can
be written as g42(a® + a™?). Here we will show that in the
strong-coupling limit with gy < wo, ., these two terms can
be omitted. To justify the validity of this omission and esti-
mate the influence of the omitted terms, we consider the ratio
ga2/2w.. In Fig. 5(a), we plot the ratio g,2/2w/, vs the collec-
tive coupling strength gy and the dimensionless factor x. Our
result shows that g2 /2w/. increases quadratically with g, and
linearly with x, which is clearly demonstrated by Figs. 5(b)
and 5(c), respectively. However, to reach gs:/2w.. = 0.01,
we need to have (go/wo ~ 0.065, x ~5) or (go/wo ~ 0.1,
X ~ 2), as indicated by the dashed curve in Fig. 5(a). For the
parameters of interest in our discussions with go/wy ~ 0.06
and x < 0.1, this ratio is very small with g42/2w] < 0.001.
Hence, it is appropriate to omit these terms from the subse-
quent discussions.
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APPENDIX B: SEMICLASSICAL DISPLACEMENTS
a AND B

The Hamiltonian of the anisotropic Dicke model in the
Holstein-Primakoff representation is

rot

. . . b'h .
H? =aob'b + &ca’at+ {b’ 1— W(A,a + Aeal) + H.c.:|

N
— 5 % B1)
i.e., Eq. (5) in the main paper. To solve the ground-state
phases, we use a mean-field approach and write the bosonic
operators as
a—>c+a, b—d+p, (B2)
with semiclassical displacement « of the cavity mode and
semiclassical displacement B of the collective qubit mode.
Define the operator vector vs = (c, d, c’,dHT. In the ther-
modynamic limit N — oo, using a Taylor expansion of the
Hamiltonian A3 in terms of the fluctuation operators ¢ and
d and keeping to the second-order terms, the Hamiltonian
then becomes Hr((i) = Hj;; + Hy + Eg with Hy; = ﬁ;GT)S, H; =
QTﬁs, and constant Eg. The matrix G, vector 52, and Eg
all depend on the semiclassical displacements « and 8. The
constant Eg is the energy of the system at the displacements
o and B. By minimizing Eg, which is equivalent to letting
QT = 0 (i.e., H, = 0), we can find the solutions of o and B for
the ground state at given system parameters. Then using the
Hopfield-Bogoliubov transformation on Hj;, we can obtain
the quasiparticle modes for the corresponding ground state.
Below we give the solution to the semiclassical displacements
in the ground states of all possible phases.

1. Normal phase

In the normal phase, the semiclassical displacements are
o = f =0 without macroscopic excitations in the system.
Hence, the fluctuation operators ¢ = a and d = b. The second-
order Hamiltonian is simply

H2 = aob'b + d.a'a + [b' (Aa+ rea') +Hel — >,

(B3)

which includes second-order contributions in terms of the
operators a, a', b, b" and the constant term —N &y /2.

2. Superradiant phases

In the superradiant phases, the semiclassical displacements
are macroscopic with «,  ~ O(+~/N). The ground-state en-
ergy can be written as

k
Eg = ol B> + dclel* + ,/ﬁ[ﬂ*(xra + hera®) + Hel

N
_N. B4
5 @0 (B4)

The 4 x 4 matrix G is given by

[oR ,/%uj 0
k ~/ k 1 k
1]v U4 @y vV NUs Ty NUe

2 0 \/%u’; R \/§u4
Ve —the ke 4
where k = N — |B/?,

Uy = Aot + oo™, (B6a)

Uy = ﬂ)‘-r + :3*)‘177 (B6b)

uy = PP '4kﬂ L (B6c)
1

Uy = Ay — ﬂﬁuﬁ, (Béd)
1

Us = Aep — ﬂﬁuz, (B6e)

ug = Bur +uzp), (B61)

and @), = @y — %,/%u3(4k + |B81?). Here, to write H;; in ma-

trix form, the constant term —(&o + @c)/2 + 2uz/k/N is
neglected from Hj;. The components of the vector €2 are

Qe = wo* + \/g(ﬁ*)», + Bher), (B7a)

[ k
Qy = 5)0,3* + N()Lra* + Aerat)

1 |k

2kV N [|,3|2()\,ot* + Aert) + ,3*2()‘#1 + )\'Cra*)]'

(B7b)

a. SE phase

The ground state of the anisotropic Dicke model is the SE
phase when |A, + A | > A€ and A, A, > 0. The SE phase has
two sets of real-number solutions (¢, ) = F(ap, Bo) With

= —(hr + Ao N(1 = i3) 200, (BSa)
Bo = VNI = up)/2. (BSb)

where ug = [AY (A, + A)]%. The corresponding second-
order Hamiltonian can be obtained as

1
H? — a0 Edtd 4 acte
2pE

1
+y %[aﬂarc +herch) + dOvc’ + Aeo)]

(= )+ )
2V20 + i)

4y ) Gt )
(I+pe)  Sue

which will be used to derive the quasiparticle modes in Ap-
pendix C.

d +d)c+chH

d"+d)? + Eg, (B9)
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b. SM phase

The ground state is the SM phase when |A, — A.| > A€
and XA, < 0. The SM phase has two sets of imaginary-
number displacements («, ) = £(ictg, iBp) with

ag = —(hy — ke )yN(L — u3,) /2.,  (Bl0a)
Bo = /NI — um)/2, (B10b)

where iy = [AC/(A, — Ae)]>. The corresponding second-
order Hamiltonian can be obtained as

& 1+

HY = [0 Er— dd—i—a)ccc

12974
e+ Acr
2
wpr Ay — )»cr)
V20T )
_ G4 )1 — par)
- 8uunm (1 + pear)

1+MM

(c+cHd™ +d)
(c—cHd' —d)

(d" —d)* +Eg.

(B11)

¢. SEMa phase

For A, = 0 (i.e., only with nonzero counter-rotating terms)
and when || > A, the system is in the SEMa phase with the
semiclassical displacements (¢, 8) = (ape™ ™, Boe™), where

dery/ N(1 — pu2) /20, and By = /NI — pg)/2. In
these solutions, the displacements of the operators a and b
carry an opposite phase factor 76, which can be an arbitrary
angle. The corresponding second-order Hamiltonian can be
obtained as

o) = —

1+
Hr(ozt) 2—“de +d@.clc
i

(Ar + A )(1 +31)
220 F )
_ ()‘r + )\Lr)(l B ,lL)
2V2(1+ )
. A=) G+pwp)
Dy———
8 (14 p)

(c’d" + cd)

(eziOCdT + e—2iecfd)

@°d" + e d) + Eg.

(B12)

Note that in this case uy = g = @o@c/A2, = 1.

d. SEMb phase

For A, =0 (i.e., only with nonzero rotating terms) and
when |A,| > AC, the system is in the superradiant electromag-
netic b (SEMb) phase with the semiclassical displacements

(a, B) = (ape”, Boe™), where ag = —4,\/N(1 — u2)/20.

and B is the same as defined above in the SEMa phase. In
these solutions, the displacements of the operators a and b
carry an arbitrary but equal phase factor 8. The corresponding
second-order Hamiltonian can be obtained as

1+/L
2

H® —

(A + Aer)(1 430"

LTI
N ET) (cd" +c'd)

vt Ae)d =)
221+ 1)

+ (1 —uH3+u)
8w/ (1 + ')

(e % ed + *ctd

%d" + e d) + Eg.
(B13)

Here py = g = o /A2 = '

e. Symmetry

The SE and SM phases have two sets of solutions
(£a, ). In the SE and SM regions of the phase diagram
with A,A. # 0, the Hamiltonian has Z, symmetry. The so-
lutions are Z, symmetry-breaking states of the Hamiltonian.
Meanwhile, in the SEMa and SEMb regions with A, A, =
0, the Hamiltonian has U(1) symmetry. The solutions are
U(1) symmetry-breaking states with an arbitrary phase 6. The
U(1l) symmetry of the Hamiltonian results in a Goldstone
quasiparticle mode with zero frequency, as will be shown in
Appendix C.

APPENDIX C: QUASIPARTICLE MODES

In this section, we diagonalize the Hamiltonian HE Ot using
the Hopfield-Bogoliubov transformation [37] and derive the
quasiparticle modes in the normal and superradiant phases,
respectively. The Hamiltonian Hrot can be diagonalized as

HY = Zw" Pyl + ED, (C1)

where p =N, SE, SM, SEMa, and SEMb refers to the phase
of the ground state, y” (3 ") is the annihilation (creation)
operator of the quasiparticle mode with frequency !, and
[yip Y jp T] = §; ;. There are two quasiparticle modes =+ in each
phase. The operators of the quasiparticle modes can be ex-
pressed as

y! = hi,Ds, (C2)

where Us = (a, b, a’, b")T for the normal phase witha = 8 =
0 and ¥s = (¢, d, c', d")T for the superradiant phase, and 7z,~p
is a 4 x 1 vector that gives the coefficient for the operator
component of the corresponding mode.

The coefficient vectors /i, = (A}, hf,, h!y, h?,)T for the
quasiparticle mode y/ in phase p can be solved from the
eigenvectors of the Bogoliubov matrix

~

@ Qr 0 Q2

MT = ‘ N DN ) (C3)
r 0 Q
-Qy -D* - -,

Here the superscript “T” in the expression MpT denotes
the transpose operation on the matrix M,,. The matrix M, is
obtained by deriving the Heisenber equatlons for the opera-
tors in s using the Hamiltonian Hrot In Table I, we give the
expressions for 256, Q., 24, and D in the matrix M; for all

phases p.
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TABLE I. The parameters @, EZC, ﬁd, and D for all phases.

TABLE II. The parameters (v, x, ¢) for all phases.

N SE SM SEMa SEMb
@y @ wol;—fi-i‘wzwolz—uﬂ —UszW +SO(M)w0 2t so(u')
Qe A wy vy s1(w) —SZ(M )
Qq —Aer w v2 s2(u) —si(n)
D 0 —ws —v3 —so(p)e™ 0 —so(u)e

The expressions of w;, v;, s; (j =1,2,3) in Table I are

given by
1+ 2
Qur/ “E + Qppp ., (C4a)
+ HE
1 2
Qi +“E Qe . (C4b)
+ UE
. (I —=pg) G+ ug)
ws = , (C4c)
: 0(1 + ME) 4pg
1+
0= Qutny [+ 2 a s
1
vy = Qi —ap [ (cs)
1+ puy
3 1 -
vy = —6)0( + e )( //LM)’ (C50)
4pp (1 4 )
and
s (1 — ) B+ pw
C6a
Solk) = 4 (T+p)’ (C6a)
=)
s1(1) = —Qp —— 27200 (C6b)
! NI
(1+3uw)
Y (/,L) = — y——— (C6C)
? F20+ 0
where
)"r )\cr
Qp = J; , (CTa)
)"r - )\cr
=" (CTb)

The Bogoliubov matrix M; has four eigenvalues:
+of, +w”, among which o, ” > 0 are the two quasipar-
ticle frequencies. We derive that

, VY VX

wy = A (C8)

where
Y =¢* 4 8ux + @7, (C9)
— 16(Cx + v@)(Cv + xo) + (£ —a2)’,  (C10)

and the expressions of v, yx, and ¢ for all phases are given in
Table II.

N SE SM SEMa SEMb
v Qp UESE Qp u2g W
X Quy Qy M 2um —Q Qp
¢ @y 2 s & 2
HE M n w

With the above result, the quasiparticle frequencies in the
normal phase can be derived as

V2

1
wi:—{—2x§,+2xf+a)g+@§

172

+ \/ [402 4+ (@0 — @c)*](@0 + @c)* — 402, (@0 — @ )?
(C11)

Within the parameter region of the normal phase as labeled
in Fig. 2 of the main paper, both w, and w_ are real numbers,
which is consistent with our discussion of the phase diagram.
For the SEMa and SEMb phases, we find that

WSEMa — ( SEMb _ (g

(C12)

which describes a Goldstone mode due to the U(1) symmetry
of the Hamiltonian when either A, or A, equals to zero. We
also find that in the SEMa phase,

)»4
P = \/ =7 + @200 + o), (C13)
c
and in the SEMbD phase,
)\4
WSPMP = =5 + @20 + &), (C14)
c

We plot the excitation spectrum w4 for all parameter re-
gions in Fig. 6 vs the effective couplings Arand Ay atv/wy =
0.49 for go/wo = 0.06 and wy = w,.. The superscript “p” that
refers to the specific phase in the qua51partlcle frequency is
omitted. The phase boundaries are indicated by the white
lines.

0.20 3 1 I 125
1.00

= 5
3 @) 0.10

0.75
0.50

0.25

AdA° AdA°

FIG. 6. The relative quasiparticle spectrum (a) 10w_/wy and
(b) w; /wy given by Eq. (C8) vs A, /A€ and A, /A€ for v/wy = 0.49.
The superscript “p” for a specific phase in the quasiparticle frequency
is omitted. Other parameters are go/wo = 0.06, and we choose wy =
w, = 1 as the energy unit.
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