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Abstract—This paper is devoted to the detection of con-
tingencies in modern power systems. Because the systems we
consider are under the framework of cyber-physical systems,
it is necessary to take into consideration of the information
processing aspect and communication networks. A consequence
is that noise and random disturbances are unavoidable. The
detection problem then becomes one known as quickest detection.
In contrast to running the detection problem in a discrete-
time setting leading to a sequence of detection problems, this
work focuses on the problem in a continuous-time setup. We
treat stochastic differential equation models. One of the distinct
features is that the systems are hybrid involving both continuous
states and discrete events that coexist and interact. The discrete
event process is modeled by a continuous-time Markov chain
representing random environments that are not resented by a
continuous sample path. The quickest detection then can be
written as an optimal stopping problem. This paper is devoted to
finding numerical solutions to the underlying problem. We use a
Markov chain approximation method to construct the numerical
algorithms. Numerical examples are used to demonstrate the
performance.
Key words. power system, contingency, optimal stopping, Markov
chain approximation, numerical calculation.

I. INTRODUCTION

In the new era, information processing and communication
technology have had much impact on a wide variety of ap-
plications. The modern power systems are very different from
the traditional one. They are highly connected to the cyber-
physical systems. They include wired and wireless communi-
cations. In this paper, we investigate the problem for detecting
sudden changes of systems in modern power systems. Our
main work is to construct numerical solutions. The solution
techniques are based on Markov chain approximation methods
for treating optimal stochastic controls [17].

Timely detection of abrupt changes is vitally important
for numerous applications, for example, in fault detection,
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risk management, and management of modern power systems.
Early work on fault detection can be found in [3], [4], [6],
[30]. Many works mentioned above dealt with discrete-time
problem. The underlying problem was setup as a sequential
detection problem. Later, researchers started working on prob-
lems in a continuous-time setting. Nowadays, it has been well
recognized that estimation of jump time of cyber-physical
contingencies (CPC) is a quickest detection problem. The
work on quickest detection can be traced back to Liptser
and Shiryayev [19], continued by many researchers such as
Peskir and Shiryaev; see [34] for an extensive survey of the
period of fifty years up to 2010. Denote the jump time by
τ with the size of the change as the stopping region. A
classical approach for a discrete-time system (e.g., a sequence
of random variables) is the approach of sequential detection.
For MPS, locating the stopping time and stopping boundary
is substantially more difficult due to involvement of stochastic
hybrid systems. Detecting the time τ of the contingency can
be recast as an optimal stopping problem (see [29], [33] for
an earlier introduction). One uses an appropriate cost function
so that the problem is converted to choosing τ . Solving a
stochastic control problem typically requires deriving a partial
differential equation (PDE) and verifying the solution of PDE
is indeed the value function (the optimum). To solve this PDE,
one needs to identify the auxiliary conditions (boundary condi-
tions). Different from the usual stochastic control problem, the
optimal stopping problems have unknown “free boundaries”
that need to be identified. In addition, the stopping time itself
can be regarded as “control.”

Recently, Ernst and Mei [7] considered the optimal stopping
for a multidimensional linear switching diffusions given by

dY i(t) = (ai(α(t)) +
2∑
j=1

bij(α(t))Y j(t))dt

+σi(α(t))Y i(t)dW i(t), i = 1, 2,
(1)
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where α(·) is a continuous-time Markov chain with a finite
state space M, W i(·) are independent standard Brownian
motions. The coefficients ai(·), bij(·), σi(·) are appropriate
measurable function such that equation (2) has a unique
positive solution. In addition, the couple (Y (·), α(·)) is a
strong Markov process; see our work on switching diffusions
[40, Chapter 2] and our recent work on Kolmogorov systems
[22], [23]. In lieu of (2), we work with a more general
nonlinear system

dY (t) = F (Y (t), α(t))dt+G(Y (t), α(t))dW (t)
Y (0) = y, α(0) = i.

(2)

where F : Rd ×M → Rd and G : Rd ×M → Rd×d are
appropriate nonlinear functions satisfying suitable conditions,
and W is a standard d-dimensional Brownian motions. To
simplify the discussion in what follows, we assume that the
Markov chain α(t) can be observed. The case of hidden
Markov chain α(t) can be handled by the methods proposed
in this paper together with the use of Wonham-type filters.
However, for simplicity, we will concentrate on the Markov
chain not being hidden in this work. To proceed, define a
stopping time of the system by τ and define a cost function

J(y, i, τ ) := Ey,i

∫ τ

0

exp
(
−
∫ t

0

λ(α(s))ds
)
H(Y (t), α(t))dt,

(3)
where Ey,i is the expectation with initial data (y, i), λ is
known as the discount rate, H is the running cost rate, and J
is the cost function. The value function is given by

V (y, i) = inf
τ
J(y, i, τ ), (4)

where the minimization is taken over Ty,α. The collection of
all possible stopping times of (X(·), α(·)) with respect to the
natural filtration {Ft : t > 0} is augmented with all P-null sets
(see [7] for formulation). The solution can be represented by
a system of Hamilton-Jacobi-Bellman (HJB) equations, and
the stopping boundary is a free boundary to be specified.
Because of α(t), we deal with a system of partial differential
equations rather than a single differential equation. In [7],
assuming M = {1, 2} and d = 2, the stopping time problem
together with stopping boundary was identified as the solution
of a system of integral equations. For a finite state space M
with more than two discrete states and d > 2, an analytic
solution is not available. Even in the case considered in [7],
the systems of integral equations cannot be solved in closed
form. Thus, numerical approximation becomes important or
virtually only possible way for solving the problem. One may
seek to approximate the integral equations to get the solution.
Unfortunately such an approach does not seem to be feasible
for many applications. Thus it is virtually important to find
feasible approximation methods.

Rather than solving integral equations, in this paper, we
develop an alternative approach. The main idea is the use
of Markov chain approximation techniques. Such a technique
was initiated by Kushner, continued by Kushner and Dupuis
[17], and further extended in our recent work for controlled
switching diffusions and games [36], [37].

The rest of this paper is organized as follows. The formu-
lation of the detection or the equivalent the solution of the
optimal stopping is given next. Then we briefly discuss the
Markov chain approximation techniques, but leave most of the
details in related references. In this paper, we will not carry
out the convergence analysis. Rather, our attention is devoted
to modeling, designing algorithms, as well as carrying out
numerical experiments. Section III is devoted to a couple of
examples. Finally, some remarks are made in Section IV.

II. FORMULATION

Our starting point is (3) subject to (2). Note that we
only need the uniqueness to be in the sense of unique in
distribution. The nonlinear functions F (·, ·) and G(·, ·) will
allow us to cover an even wide class of problems in modern
power systems. Sufficient conditions ensuring the existence of
solutions may be provided, but it is not the focus of this paper.
[For example, even pathwise uniqueness can be enforced by
posting a uniform Lipschitz condition on F and G w.r.t. x or
the solution can be obtained using a Girsanov transformation
from a base process satisfying the condition of uniqueness.]

We still use a cost function of the form (3) and with the
value function given by (4). In practice, the process will be
confined to some compact set O for numerical purpose. That
is, the process must stop by the time τ ′ = inf{t : Y (t) /∈ O}
if it has not stopped earlier. We wish to find the stopping
time τ ≤ τ ′ which minimize the cost (3). In other words,
we consider V (y, i) = infτ≤τ ′ J(y, i, τ ). We define L as an
operator for a twice continuously differentiable function ψ(·, i)
(differentiable w.r.t. y)

Lψ(y, i) = [∇ψ(y, i)]′F (y, i)

+
1

2
tr[∇2ψ(y, i)G(y, i)G′(y, i)] +Qψ(y, ·)(i), (5)

where Qψ(y, ·)(i) =
∑m
j=1 q

ijψ(y, j), and ∇ψ(y, i) and
∇2ψ(y, i) denote the gradient and Hessian of ψ(y, i), respec-
tively.

Under the conditions and notation above, the Hamilton-
Jacobi-Bellman equation satisfied by the value function is:

min{LV (y, i)− λ(i)V (y, i) +H(y, i),−V (y, i)} = 0, (6)

in [7], it was argued this equation for the switching system
(linear in the continuous state y) holds if the running cost
function H(y, i) satisfies the Lipschitz and linear growth
condition [20].

Given the absence of the linear growth condition, a trun-
cation method can be introduced to provide that the HJB
equation holds for the value function in [7]. For fixed but
otherwise arbitrary integer N , define

HN (y, i) = min(H(y, i), N). (7)

We can then obtain the truncated problem,

min{LV N (y, i)−λ(i)V N (y, i)+HN (y, i),−V N (y, i)} = 0.
(8)

When the value function of the truncated problem V N (y, i) is
finite ∀(y, i) ∈ Rd ×M and the associated optimal stopping
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time is finite almost surely, then it will converge to V (y, i) as
n → ∞; see [7, Proposition 3.1, Lemma 3.3]. Nevertheless,
we do not need such a truncation in the problem considered
in this paper because we will work with a compact region. In
fact, our point of start is: We assume that the optimal stopping
problem has a unique solution.

Note that in this paper, our main objective is to construct
efficient numerical schemes, so we will begin with assuming
that there is an optimal solution of the quickest detection
problem. To approximate the solution to (4), we assume
that the cost rate H(·, i) is confined in a compact region
y ∈ K0. Let h > 0 be a small discretization step size
and Sh =

{
y : y =

∑d
j=1 njejh, j = 1, . . . , d, nj =

0,±1,±2, . . .} ∩ K0, where ej is the standard unit vector
in the j-th coordinate direction. We construct a discrete-time
two-component Markov chain {(ξhk , αhk) : k < ∞} on the
discrete state space Sh ×M with ph((y, ι), (z, `)) being the
transition probabilities from a state (y, ι) ∈ Sh ×M to state
(z, `) ∈ Sh×M, which was originated for switching diffusions
in our work [36], [37]. The idea is: ξhk approximates Y and αhk
approximates α. We approximate the stopping time τ by using
a stopping time Nh and write the approximate cost function

Jh(y, i,Nh) := Ey,i

Nh−1∑
k=0

exp(−
k∑
j=0

λ(αhj ))H(ξhk , α
h
k)∆thk .

(9)
The corresponding value function of the approximating
Markov chain is

V h(y, i) = inf
Nh

Jh(y, i,Nh).

The associated dynamic programming equation becomes

V h(y, i)

= min
{
e−λ(i)∆th(y,i)

∑
(z,`)

ph((y, i), (z, `))V h(z, `)

+H(y, i)∆th(y, i)), 0
}
.

(10)
To establish the convergence, we use continuous-time in-
terpolations. Suppose that we have an interpolation interval
∆th(·, ·) > 0 on Sh ×M, and denote ∆thk = ∆th(ξhk , α

h
k).

Define the interpolated time thk =
∑k−1
j=0 ∆thj (ξhj , α

h
j ). To

ensure that the approximation is in line with (2), we need to
make sure that the construction is locally consistent. That is,
we construct the discrete-time Markov chain (ξhk , α

h
k) so that

the conditional mean and covariance “match” that of switching
diffusion (2) with an error tending to 0 as h → 0. We omit
the details but refer to our work [36, Definition 1]. We will
show that the constructed Markov chain leads to the correct
limit. Define the interpolated processes as

ξh(t) = ξhk , α
h(t) = αhk , z

h(t) = k for t ∈ [thk , t
h
k+1),

τh = thNh ,

Jh(y, i, τh) = Ey,i

∫ τh

0

exp
(
−
∫ t

0

λ(αh(s))ds
)

×H(ξh(t), αh(t))dt,

V h(y, i) = inf
τh
Jh(y, i, τh).

Denote by Fht the σ-algebra generated by
{ξh(s), αh(s), zh(s) : s ≤ t}. Then τh is an Fht stopping
time. With proper definition of transition probabilities, it is
expected that as h→ 0,
(a) the constructed approximating Markov chain is locally

consistent;
(b) the sequence (ξh(·), αh(·), τh) converges weakly to

(X(·), α(·), τ);
(c) Jh(y, i, τh)→ J(y, i, τ ) and V h(y, i)→ V (y, i);
(d) using techniques similar to our work [28], we can proceed

to find the continuation region and stopping region.
We show that the limit of (ξh(·), αh(·)) is a solution of
the martingale problem with operator L, which allows us to
conclude that (ξh(·), αh(·)) converges weakly to (Y (·), α(·)).

To carry out the analysis in the aforementioned steps, there
is a crucial point that needs to be addressed. In [17, pp. 278-
279], it is recognized that in approximating the stopping times
of a diffusion system, a “tangency” problem may arise. The
problem can be described as the interpolated processes of
the trajectories that will approximate the diffusion. Although
τh converges, the limit is not the true τ . In a nutshell, the
problem is concerned with continuity of value functions, which
was considered by many researchers, for example, [1], [2],
[5], [8]. The tangency problem can also occur for switching
diffusions. In [35], we identified certain conditions under
which there will be no tangency taking place for the Markov
chain approximation with a stopping time.

III. NUMERICAL EXAMPLES

In power system analysis, we encounter nonlinear state
space models [15], [27] for micrigrids (MG). To demonstrate
briefly how a nonlinear system is derived, we concentrate on
real power management in frequency regulation problems. Let
the voltage of the ith bus be denoted by the phasor ~Vi = Vi∠δi.
For a given transmission line (a link) (i, j) ∈ E between two
buses (see Fig. 1), suppose that the transmission line between
Bus i and Bus j has impedance Xij∠θij . Then the transmitted
real power at Bus i is

Pij =
V 2
i

Xij
cos(θij)−

ViVj
Xij

cos(θij + δij). (11)

Bus i Bus j

Piin

PiL

Pjin

PjL

Xij

IijVi i Vj j

Fig. 1. A link in microgrids

To derive state space models for MG dynamics, it is
important to distinguish dynamic and non-dynamic buses. If
the ith bus is dynamic, then it entails a local state space model

żi = f(zi, z
−
i , vi, ei)
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where zi is the local state, z−i is the neighboring states of
Bus i, vi is the local control input, ei is the local load viewed
as a disturbance. The collection of the state variables of the
dynamic buses is denoted by zd. On the other hand, if the
ith bus is non-dynamic, then it entails an implicit algebraic
relationship between their variables znd and zd, expressed as
a nonlinear function znd = Γ(zd, v, e). After combining these
two types of bus models and eliminate znd, we can arrive at the
nonlinear state space model żd = F 0(zd,Γ(zd, v, e), v, e) =
F (zd, v, e). In power system control problems, it is common to
linearize the nonlinear dynamics above near nominal operating
points [9], [14]. Given the steady-state loads e and steady-state
input real powers v, we can compute the steady-state zd (the
equilibrium point). Then, by defining the perturbation variables
from their nominal values as x = zd − zd as state, u = v − v
as control, and d = e − e as noise, the linearized system is
ẋ = Ax + B1u + B2d. Finally, after we apply a common
power system feedback controller, such as droop control plus
secondary frequency regulator, expressed as u = −Kx, we
reach the closed-loop system ẋ = Ax − B1Kx + B2d =
Acx + B2d, where Ac = A − B1K is stable. If the noise is
modeled as a Brownian motion, this model can be expressed
in the form of a stochastic differential equation (SDE)

dx(t) = Acx(t)dt+ ΣdW, (12)

where W is the standard Brownian motion. Consider a two-
bus system shown in Fig. 1 with i = 1 and j = 2. Bus 1 is
a generator bus and Bus 2 is a load bus with load P 2

L and
no input power P 2

in = 0. Denote θ = θ12, X = X12, β1 =
V 2
1

X cos(θ), β2 =
V 2
2

X cos(θ), β = V1V2/X , and δ = δ1 − δ2.
ω1 = δ̇1 is the frequency on Bus 1. Define the state variable

zd =

[
δ1
ω1

]
, and assume that g1(ω1) = b1ω1, b1 > 0. Then,

f1(zd, δ2) =

[
ω1

− b1ω1

M1
− 1

M1
(β1 − β cos(θ + δ1 − δ2))

]
.

From the equation on Bus 2, P 2
L = −β2 +β cos(θ− δ). We

solve for δ = θ − arccos((β2 + P 2
L)/β). It follows that

f̃1(zd) =[
ω1

− b1ω1

M1
− 1

M1

[
β1 − β cos(2θ − arccos(β2 + P 2

L)/β))
]] .

The nonlinear state equation for this grid is

żd = f̃1(zd) +

[
0

1/M1

]
v1 +

[
0

−1/M1

]
e1

= f̃1(zd) +B1v1 +B2e1.

For numerical values, assume M1 = 1, b1 = 0.2,
β = 200, we can derive the linearized system with A =[

0 1
−197.7372 −0.2

]
, B1 =

[
0
1

]
, B2 =

[
0
−1

]
. When a

contingency occurs at an unknown time ts, it could be modeled
as the SDE obtaining an known extra drift term µ after the
system parameters Ac. If the randomness of the environment
disturbance also includes the switching of µ. This can be

represented by a continuous Markov chain α(t) ∈ {1, . . . ,m}.
After adding sensor noises and the contingency we have

dzd = (Azd +B1v1 +B2e1 + I(t ≥ ts)µ(α(t)))dt+ ΣdW.
(13)

For simplicity, we denote z̃d(t) = zd(t)−
∫ t

0
(Azd(s)+B1v1 +

B2e1)ds. Then the contingency can be regarded as the drift
term of the processes z̃d(t) changes from zero to a non-zero
drift term.

Due to extremely stringent requirements on power system
quality management, it is critically important to detect ts
accurately and quickly so that the correcting actions can be im-
plemented. Thus the problem is to find a stopping time τ with
respect to the natural filtration F z̃d,αt = σ{z̃d(s), α(s), α(0) =
α; 0 ≤ s ≤ t} that is “as close as possible” to the unknown
contingency time ts. Introducing the following cost functional

J̃(ϕ, α, τ ) = Pϕ,α(τ < ts) + cEϕ,α
[
F (τ − θ)I(τ > ts)

]
where ϕ = z̃d(0), F (x) := eγt − 1 for a given γ > 0.
Now the quickest detection problem is to find the solution
of the minimization problem Ṽ (ϕ, α) = infτ J̃(ϕ, α, τ ). A
suitable measure change recast the process in (13) or (12)
to another process governed by switching diffusion on a new
probability space. The corresponding minimization problem
can be reformulated as the optimal stopping problem with cost
functional defined in (3). The state of the new process could be
recorded by the observation of zd. Moreover, given the value
function and the stopping region of the measure transformed
problem, the optimal detection policy of (13) can be obtained;
see [7]. For numerical demonstration and simplicity, we start
with measure transformed switching diffusions and focus on
the optimal stopping problems.

Example 1: Consider a 1-dimensional detection of contin-
gency in a modern power system. It is recast as minimizing

0 2 4 6 8 10

ϕ

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

V
a

lu
e

fu
n

ct
io

n
V

Fig. 2. Value function of Example 1

J(ϕ, τ) = Eϕ
∫ τ

0

e−λt(Y (t)− λ

c
)dt subject to

dY (t) = λ(1 + Y (t))dt+ µY (t)dW, Y (0) = ϕ. (14)

Denote the value function by V (ϕ) = infτ J(ϕ, τ). For
the assumption of the detection problem before measure
transformation see [32]. In our numerical experiment, use
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parameters λ = 3.0, µ = 0.1, c = 0.5. In addition, we set
the boundaries O to be [0, 10] for numerical purpose and
take the step size h = 0.001. Fig. 2 displays the value vs.
ϕ. It demonstrated that the stopping region is S̃ = {ϕ :
V (ϕ) = 0} = {ϕ : ϕ ≥ 6.034} and the continuation region
C̃ = {ϕ : V (ϕ) < 0} = {ϕ : ϕ < 6.034}. To get the stopping
region of z̃d, we use the transformation from z̃d to Y (t),

Y (t) = λeλ−
1
2µ

2t+µz̃d(t)

∫ t

0

e−(λ− 1
2µ

2)s−µz̃d(s)ds. (15)

The optimal stopping time is the first entrance time to S̃ of
Y (t).

Example 2: Similar to [7], detecting contingency in a mod-
ern power 2-dimensional system can be solved by minimizing

J(ϕ, `, τ ) = Eϕ,`
∫ τ

0

e−λt
(
p1Y

1(t) + p2Y
2(t)− λ

cγ

)
dt

subject to a system of stochastic differential equations with
Markov switching

dY i(t) = [λ+(λ+γ)Y i(t)]dt+µ(α(t))Y i(t)dW i(t), i = 1, 2
(16)

where the initial data are Y (0) = (ϕ1, ϕ2), α(0) = ` and
W i(t) are independent Brownian motions. Take λ = 0.6, γ =
0.5, p1 = 0.3, p2 = 0.7, µ(1) = 10, µ(2) = 1 and c = 1 for
numerical experiment. Furthermore, we set the boundaries to
beO = [0, 5]×[0, 5] and the step size h = 0.0125. The Markov
chain has two statesM = {1, 2} with generator given by Q =[
−1 1
2 −2

]
. Denote V (ϕ, `) = infτ J(ϕ, `, τ ). The negative

of the value function is presented in Fig. 3. The continuation
region (blue) and the stopping region (red) are plotted in Fig. 4.
The black lines in Fig. 4 is the optimal stopping boundaries.
Using z̃d, the processes Y i(t) for i = 1, 2 are given by

Li(t) = exp{
∫ t

0

µ(α(s))dz̃id −
1

2

∫ t

0

µ2(α(s))ds},

Y i(t) = λe(λ+γ)tLi(t)

∫ t

0

1

e(λ+γ)sLi(s)
ds.

Starting from initial data (ϕ, `), we stop the process when it
hits the boundaries yielding the optimality.

IV. CONCLUSION

In this paper, under the consideration of information pro-
cessing and communication networks, numerical solutions for
detecting sudden changes for a modern power systems are
developed for switching diffusion processes. Different from
the discrete-time setup [3], [6], we used stochastic differential
equations. The switching process is used to model the ran-
dom environmental changes that are not representable using
a diffusion process alone. We adopted the Markov chain
approximation methods initiated by Kushner and developed
further by Kushner and colleagues, and presented the problem
formulation, the numerical methods, and numerical computa-
tional results. In this paper, the random switching process is
assumed to be available. Switching diffusions in which the
switching process is a hidden Markov switching process can
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1.00

Value Function: Switching State 2

0.0

0.1

0.2

0.3

Fig. 3. Negative of value function for Example 2

be treated. In such a case, necessarily we need to add another
component, namely, Wonham filtering. We refer an interested
reader to our work [39]. This is the first effort in treating
detection of contingency for power systems as a quickest
detection problem. Only simple examples are considered, but
more complex systems can be treated.

Although power systems are usually large and complex,
using time-scale separation and singular perturbation, we can
normally reduce a large-scale and complex system to a much
simplified, smaller in dimension, and reduced order system.
Thus in what follows, we will demonstrate numerics for the
quickest detection using relatively simplified models.
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