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Abstract—1In this paper, we consider the verification of
approximate infinite-step opacity for discrete-time control sys-
tems. Relying on finite abstraction techniques for solving this
problem requires discretization of the state and input sets,
which requires significant computational resources. Here, we
propose a discretization-free approach in which we formulate
opacity as a safety property over an appropriately constructed
augmented system, and seek to verify it by finding suitable
barrier certificates. Within our proposed scheme, lack of opacity
is also verified by posing it as a reachability property over
the augmented system. The main result of this paper offers
a discretization-free approach to verify (lack of) infinite-step
opacity in discrete-time control systems. We also discuss other
notions of opacity, and their relations to one another. We
particularly study the conditions under which verifying one
form of opacity for a system also implies other forms. Finally,
we illustrate our theoretical results on two numerical examples,
where we utilize sum-of-squares programming to search for
polynomial barrier certificates. In these examples, we verify
the infinite-step, and current-step opacity for a vehicle by
checking whether its position is concealed from possible outside
intruders.

I. INTRODUCTION

Many of the cyber-physical systems (CPS) are vulnerable
to attacks and information leaks, as they have been broadly
deployed and access to sensitive data. The presence of cyber
and physical components in such systems introduces a suit
of challenges in detecting security vulnerabilities. Opacity is
a security property which is concerned with the information-
flow of the system. In other words, opacity characterizes
the plausible deniability of a system’s secret in the presence
of an outside intruder. Depending on whether the system
secret is modeled as a set of states, or a set of behaviors,
opacity can be formulated as state-based, or language-based,
respectively. State-based opacity has different notions that are
expounded in [1]. Among these notions, initial-state opacity
prevents the intruder from realizing, at any step, whether the
system started from a secret state, and current-state opacity
prevents the intruder from knowing whether the current state
of the system is secret. However, this does not prevent the
intruder from realizing that the system was in a secret state
at a previous time step. This issue led to the introduction
of K-step opacity [2], [3]. The notion of K-step opacity
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requires that the intruder cannot discover the secret in the
last K consecutive steps. Two special cases for K = 0 and
K = oo are known as current-state opacity and infinite-step
opacity, respectively.

A growing body of work has considered opacity in differ-
ent systems. Although studying opacity for continuous-space
systems became the subject of many studies recently, the
majority of the existing works on opacity pertain to discrete
event systems (DESs), including those modeled by bounded
Petri nets [4], or finite state automata with discrete state sets
(31, [51, [6], [71, [8], [9], [10].

Properties such as safety and reachability have been lever-
aged recently in studying opacity. The approach presented in
[11] formulates the notion of opacity as an output reachabil-
ity property, and verifies it by approximating the reachable
states of the system. However, the proposed framework is
limited to discrete-time linear systems. Although the results
in [12] are limited to systems with finite state sets modeled
by partially-observable Markov decision processes, they also
study opacity by checking a safety property of the intruder’s
belief dynamics using barrier certificates. (Control) barrier
functions are a common approach to verify or enforce safety
and reachability properties. Results in [13] introduce notions
of barrier certificates as tools for safety verification of a
class of hybrid systems. They study safety and reachability
as a dual pair, by searching for such barrier certificates
using optimization techniques [14]. The results in [15] use
barrier certificate to verify approximate initial-state opacity
for discrete time control systems. Approximate opacity is
introduced in [16], which allows us to quantitatively eval-
uate the security level of control systems whose output
are physical signals. This definition accommodates for the
intruder’s measurement precision, defined as a parameter §.
In other words, any pair of observations whose distance is
less than ¢ are indistinguishable to the eyes of an intruder
with imperfect measurement precision. This concept is also
studied in the domain of continuous-space stochastic control
systems using opacity-preserving simulation functions and
their finite abstractions (finite Markov decision processes) in
[17].

Our contribution. We consider the problem of verifying
approximate infinite-step opacity for discrete-time control
systems. Unlike the methodologies proposed in [16], [17]
which are based on abstraction-based techniques, we pro-
pose a discretization-free approach for formal verification
of approximate infinite-step opacity based on a notion of
barrier certificates. We tackle the verification of opacity by
formulating it as a safety verification over an augmented
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system, and verify it by finding suitable barrier certificates.
Similar to the methodology presented in [15], [18], we define
an augmented system by taking the product of a system with
itself, and we find barrier certificates for this augmented
system. It is known that the existence of a barrier certificate
ensures that no trajectory originated from a predefined initial
region will reach the unsafe region. We show that, by
properly defining the initial and unsafe sets which capture the
initial, and secret states of the system, the existence of such
barrier certificates for the augmented system is sufficient
to ensure approximate infinite-step opacity of the original
system. However, failure in finding such barrier certificates
does not imply the lack of opacity. Due to the duality
between safety and reachability, we show the lack of opacity
for a system by defining a reachability-type property over
its augmented version. Finding a barrier certificate verifying
this reachability property for the augmented system will
show the lack of infinite-step opacity for the original system.
Compared with the results in [15], [18] which are focused on
initial-state opacity only, our results here propose for the first
time a verification procedure tailored to infinite-step opacity.
We further investigate relationships between different notions
of state-based opacity, i.e., initial-state, current-state, and K-
step opacity, and study conditions under which one property
may imply another one.

II. NOTATION AND PRELIMINARIES

Notation: We use R, R>(, and N to denote the set of real
numbers, non-negative real numbers, and natural numbers,
respectively. A closed interval from a to b, where a < b, in
R is represented as [a, b]. If a,b € N, this interval is denoted
by [a;b]. Given a vector x, we denote its Euclidean norm
by ||z||. For sets X and Y with X C Y, the complement of
X with respect to Y is defined as Y\ X = {z € Y|z ¢
X}. The Cartesian product of X and Y is defined by X x
Y = {(x,y)|x € X,y € Y}. For any set Z C R", 9Z and
Z, denote its boundary and topological closure, respectively.
The empty set is represented by ().

Let us first introduce the class of discrete-time control
systems studied in this paper.

Definition 1: (Control system) A discrete-time control
system S is defined as a tuple

S: (X’Xons,U,f,Yv,h),

where X, Xg C X, U, and Y are the sets of state, initial
state, input, and output, respectively. Set X, C X denotes
the set of secret states. The functions f : X x U — X
and h : X — Y are the state transition function and output
functions, respectively. A discrete-time control system S' is
described by the following difference equations:

g. I x(t+1) = fx(®),ut)),
y(t) = h(x(t)),

where x : N — X, y: N —- Y, and u: N — U denote
the the state, output, and input signals, respectively. We use
Xgou = {Zo,...,Tn} to denote a finite state run of S
starting from initial state o under input run u.
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In this paper, we mainly focus on a state-based opacity
property, called approximate infinite-step opacity, which is
originally proposed in [16] and recalled next.

Definition 2: (Approximate infinite-step opacity) Given
d € RT, a system S as in Definition 1 is said to be §-
approximate infinite-step opaque if for any zo € Xy, any
finite state run X, w = {®o,..., %}, and any k € {0,...n}
such that x;, € X, there exists &y € X, and a finite state
run Xz, 4 = {Zo,...,%n} such that £, € X \ X, and

max ||h(zi) — h(a)|] < 6.
1€[0,n

Intuitively, the definition of approximate infinite-step
opacity requires that an intruder with imperfect measurement
precision (captured by the parameter ) should never know
for sure that the system was at a secret state for any specific
instant. Note that throughout the paper, we assume without
loss of generality that for all zp € Xg, {z € Xp
[[h(z) — h(zo)|| < 0} € Xs; otherwise, infinite-step opacity
is trivially violated.

ITII. VERIFYING APPROXIMATE INFINITE-STEP OPACITY

In this section, we present a method to verify approximate
infinite-step opacity for discrete-time control systems S as
in Definition 1. Our approach is based on finding a barrier
certificate for the augmented system of .S as defined next.

Definition 3: (Augmented system) Consider a control
system S as in Definition 1. The associated augmented
system for S is defined as the product of S with itself:

SxS=(XxX, X% Xg,Xs x Xs,U xU,
XY xY, hxh).
We use notation (z,Z) € X x X to denote a state in
S x S and (Xgyu,Xz,,a) to denote the state sequence of
S x S starting from (xg,Zo) under input sequence (u, ).

Additionally, we denote the augmented state set by X' =
X x X.

A. Verifying Approximate Infinite-Step Opacity

Our verification approach seeks to find a so-called barrier
certificate for the augmented system defined in Definition
3 to ensure approximate infinite-step opacity of the original
system. Such a barrier certificate is defined as the following.

Definition 4: (Barrier certificate for augmented system)
Consider an augmented system S x .S as in Definition 3, and
sets Xp, X, € X. A function B : X x X — R> is a barrier
certificate for S x S, if it satisfies the following conditions:

V(x,2) € Xy, B(x,z) <FE, ()
V(z, &) € Xy, B(x,T) >e, )
Y(z,2) € X,Yu e U,3u e U,

B(f(z,u), f(#,4)) — B(z,&) <0, 3)

where €, ¢ € R>p and € > €.

To verify infinite-step opacity of system S using the above-
defined barrier certificate, the sets of interest appeared in
Definition 4 need to be defined in a specific way to capture
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the initial and secret information of system S. In particular,
we define sets of initial states X; and unsafe states X, as:

Xo={(z,2) € Xo x Xo: 7 & X, ||h(z) — h(2)]| < I}U
{(z,2) € Xo x Xo: 2 € Xs,& & Xs,||h(z)—h(2)]| <},
Xy={(r,2) e X xX:zxe X, &ec XU
{(z,2) e X x X :x € X,2 ¢ X, ||h(x)—h(T)]| >}V
{(z,2) e X x X : 2 ¢ X,% € X,||h(x)—h( )||>6},(4)

where § € R denotes the measurement precision of the
outside intruder as introduced in Definition 2.

Remark 1: The intuitions of the above definition for sets
Xy and X, are explained as follows. The unsafe set A,
as in (4) is defined as the union of three sets, where each
set captures a certain scenario which violates approximate
infinite-step opacity. The first case happens when both z and
Z belong to the set X. When the system’s state = belongs
to the secret set, opacity requires that 2 is not in this set,
so that the desired alternative trajectory exists. Second case
happens if = belongs to X, and & belongs to X \ X§, but
they are not § close. This makes the two system’s trajectories
distinguishable from the intruder point of view. Third case
happens if = belongs to X \ X, and Z belongs to X, and
they are not d-close. In this case, since = does not belong to
the secret set, we do not require & to belong to a certain
subset of X. However, if the distance between the two
trajectories exceeds ¢, they would be distinguished by the
intruder. Similarly, to define the initial set, we also consider
possible initial conditions which the system can start from.
First case is when z( belongs to X, \ X, o belongs to
Xy, and they are ¢ close. This conveys if the system’s initial
condition is not secret, all we need for ensuring opacity of
the system is to keep the trajectories d-close. However, if the
initial condition is secret, we require the alternative trajectory
Z to remain d-close. This means x belongs to X, & belongs
to Xo \ X, and they are d-close. Finally, we note that the
sets defined to form X, and X,, do not intersect.

Now, we are ready to introduce the next theorem, which
states the usefulness of the above-defined barrier certificate
for verifying approximate infinite-step opacity of system S.

Theorem 1: Consider a control system S as in Definition
1 and its associated augmented system .S x S as in Definition
3. Suppose that there exists a function B : X x X — Ry
satisfying conditions (1)-(3) in Definition 4 with sets AXj
and X, defined as in (4). Then, system S is J-approximate
infinite-step opaque.

Proof: Let us first mention that, by applying the result
from [15, Proposition 1], the existence of a barrier certificate
B as in Definition 4 ensures a safety property for the
augmented system S x S. That is, for any initial condition
(z0,Z0) € Xp, and any input run u, there exists an input run
@ such that (Xg u, Xzg,a) N Xy = 0.

Now, let the set of initial conditions AXjy and unsafe states
X, be as defined in (4). Consider an arbitrary initial state
o, an input sequence u and the corresponding state run
Xgou = {%0,-..,Tn} in S such that z;, € X, for some
k €{0,...,n}. We consider the following two cases:

(
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If £ =0, then we have xy € X;. By the assumption that
{z € Xo : |h(z) — h(zo)|| < 6} £ X, for any z¢ € Xo,
we know that there exists &g € X \ X such that ||h(zg) —
h(Zo)|| < d. Consider the augmented initial state (xo, &), it
can be readily verified that (z¢,Zo) € Xy, where set A} is as
defined in (4). Then, as a consequence of the safety property
of S xS (which is guaranteed from the existence of a barrier
certificate B), we get that there exists an input run G such that
the state run (X, u,Xz,,a) Of the augmented system S x S
never reaches the unsafe set X, i.e., (Xgou, Xsg,a) N Xy =
(). By the structure of X, this implies the satisfaction of
(1A (Xze,u(t)) — h(Xzy,a(t))]] <6, for all t € N (cf. Remark
1 for more intuitions on the structure of set X,).

If £ > 1, then we have 2y € X \ X;. Again, we get
by assumption that there exists &3 € X \ X, such that
[[h(xo) — h(Z0)|| < J. One can verify that the augmented
initial state (x,Zo) also belongs to the set X as defined in
(4). Again, by utilizing the safety property of S x .S, there
exists an input run @ such that the state run (Xz, u,Xz,.a)
of the augmented system S x S never reaches the unsafe
set X,,. Given that z; € X and by further leveraging the
structure of X, it follows that x;, a(k) € X \ X, and
1A (Xz.u(t)) — h(xzy.a(t))] < 0, for all £ € N (cf. Remark
1 for more intuitions on the structure of set X7,).

Since the state run X, 4w = {0, ..., %, } in S and index k
are arbitrary, we can conclude that system S is J-approximate
infinite-step opaque. [ ]

B. Verifying Lack of Approximate Infinite-Step Opacity

In the last subsection, we developed a sufficient condition
for verifying approximate infinite-step opacity based on a
notion of barrier certificates. In particular, if one can find a
barrier certificate satisfying conditions (1)-(4), which ensures
a safety property for the augmented system S x .S, then sys-
tem .S is shown to be approximate infinite-step opaque. Note
that failure in finding such a barrier certificate does not imply
the lack of opacity. Inspired by the duality between safety
and reachability, we introduce by the following proposition a
sufficient condition for the the lack of approximate infinite-
step opacity of S by searching for a barrier certificate which
ensures a reachability property for the augmented system
S xS.

Proposition 1: Consider a control system S as in Defi-
nition 1 and its associated augmented system S X S as in
Definition 3. Suppose the state set X of S is bounded, and
there exists a continuous function V : X x X — R which
satisfies

V(x, &) € Xy, V(x, i) <0, )

V(x, &) € 0X \ 0X,, V(x,%) >0, (6)

V(z,2) € X\ Xy, JucU, st VaeU,
V(f(z,u), f(&,4) = V(z,2) <0, 7

where sets Xy, X, C X are defined as in (4). Then, system
S is not d-approximate infinite-step opacity.

Proof: The proof of this proposition follows by com-
bining the result of Proposition 2 and Theorem 2 in [15].
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However, we should note that the definitions of the sets A}
and X, are different in order to capture different notions of
opacity. [ |

IV. VERIFYING OTHER NOTIONS OF APPROXIMATE
OPACITY

In the previous section, we presented a methodology to
verify approximate infinite-step opacity by searching for a
certain type of barrier certificates. There are other notions of
state-based opacity, including initial-state opacity, current-
state opacity, and K-step opacity, which can be used to
capture different types of privacy requirements in real-world
applications [2]. In the sequel, we make some remarks
regarding relationships between these notions of state-based
opacity in the context of verification. Specifically, we first
show approximate infinite-step opacity implies approximate
initial-state, current-state, and K-step opacity. We should
note that similar results does not hold for the lack of opacity.
Then, we further show that for a class of so-called invertible
systems, the problem of verifying current-state opacity can
be solved by the verification of initial-state opacity of its
time-reversed system.

Let us first recall from [16] the formal definitions of
approximate initial-state, current-state and K -step opacity.

Definition 5: (Approximate initial-state, current-state
and K-step opacity) Given § € RT, a system S as in
Definition 1 is said to be

« J-approximate initial-state opaque if for any x¢ € XoN
X, and any finite state run x,, = {xo, ...,z }, there
exists o € Xo \ X and a finite state run xz, 4 =
{Zo, ..., &} such that max;e(o.n) || (z:) —h(E;)|| < 6.
d-approximate current-state opaque if for any zo € X
and any finite state run x,, w = {Zo, ..., %y} such that
T, € X, there exists g € Xy and a finite state run
Xgo.a = 1%L0,...,%n} such that &, € X \ X, and
max;e[o;n] ||h(x1) - h(£1)|| <.
d-approximate K -step opaque for a given positive in-
teger K if for any zyp € Xy and any finite state run
Xgou={%0,--.,%n} such that x; € X,, 7 € {n—K,n},
there exists £9 € X and a finite state run xz, 3 such
that #; € X \ X, and max;e[o.,) ||h (i) —h(Z;)]| < 9.

Intuitively speaking, if a system is approximate initial-state
opaque (resp. current-state opaque or K -step opaque), then
an intruder with imperfect measurement precision cannot
make sure whether the initial state (resp. the current state
or any state within K steps prior to the current state) is
secret or not.

Lemma 1: If a control system S as in Definition 1 is J-
approximate infinite-step opaque, it is also d-approximate
initial-state opaque (resp. current-state opaque and K-step
opaque).

Proof: Let us note that the other notions of approximate
opacity as in Definition 5 can be regarded as special cases
of approximate infinite-step opacity. Specifically, as can be
seen from Definition 2, §-approximate infinite-step opacity
requires that the intruder should never know for sure that
the system is/was at a secret state for any specific time

178

instant k& € {0,...n}. When k = 0, the notion of approxi-
mate infinite-step opacity reduces to approximate initial-state
opacity; when k = n, infinite-step boils down to current-state
opacity. Moreover, note that the notion of K-step opacity
requires that the secret should not be revealed within K
steps prior to the current instant, while infinite-step opacity
captures the entire observation trajectory from initial point
up to the current time, which is again stronger then K-step
opacity. Therefore, if one can verify that a system S is J-
approximate infinite-step opaque, it suffices to claim that S
is also d-approximate initial-state opaque (resp. current-state
opaque and K-step opaque). [ ]

Based on the relationships between different notions of
opacity as in Lemma 1, one can solve the verification prob-
lem for other notions of approximate opacity by searching
for a barrier certificate as in Definition 4.

Next, we further show that if the dynamics of system S are
invertible [19], the verification of current-state opacity can
be formulated as an initial-state opacity verification problem
for the system that starts at the current state, and evolves
backwards in time. Let us recall the definition of invertible
systems from [19].

Definition 6: (Invertible system) Consider a discrete-
time control system S (X, X0, Xs,U, f,Y,h) as in
Definition 1, and let Yu € U, f, = f(,u) : X — X.
System S is said to be invertible if for each u in an open
neighborhood of U the map f, is a global diffeomorphism
of X.

For an invertible system S as in Definition 6, let us define
a discrete-time control system S~ = (X, X, X, U, f~,Y, h)
as the time-reversed system of S, where f~ denotes the
inverse map of f. We also denote by Xz,a = {ZTo,...,Tn}
a finite state run of the time-reversed system S~. The
following lemma will be used later in the main result of
this section.

Lemma 2: Consider an invertible system S and its associ-
ated time-reversed system S~. Let x5, u = {0, ...,%n} be
a finite state run of .S, then, there exists an input sequence @
in S~ such that X, g = {®n,..., 2o} is a state run of the
time-reversed system S, and vice versa.

The next proposition shows that the current-state opacity
of an invertible system can be verified by showing initial-
state opacity of its time-reversed system.

Proposition 2: Consider an invertible system .S as in Def-
inition 6. If the time-reversed system S~ is J-approximate
initial-state opaque, then the original system S is J-
approximate current-state opaque.

Proof: Consider an arbitrary finite state run
{zg,...,x,} of system S, where z, € X,. Note that
from Lemma 2, there exists an input sequence U in S~
such that X, g = {zn,..., %0} is a state run of the time-
reversed system S”. Since ST is J-approximate initial-
state opaque, we have from Definition 5 that for the state
run Xy, 5 = {%n,..., 2o} which starts from secret initial
state x, € X, there exists another state run {Z,,...,Zo}
starting from a nonsecret initial state Z,, € X \ X, such that
max;e[o;n] ‘|h(fz) - h(:@)“ <.
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Again by leveraging Lemma 2, for the state run
{Zn,...,To} in S™, there exists an input run u in S such
that xz, w = {Zo, ..., Ty} is a state run in S. Note that since
T, € X\ Xs, and max;e(o.) [|(Z;) — h(z;)]| < J holds,
we can conclude that the original system is d-approximate
current-state opaque. ]

Based on the results provided in Proposition 2, the prob-
lem of verifying current-state opacity for an invertible system
can be solved by the verification of initial-state opacity for
its time-reversed system. In this context, one can readily
resort to the results developed in [15] to search for a barrier
certificate tailored to approximate initial-state opacity for the
time-reversed system, and then carry back the result to show
approximate current-state opacity of the original system.

Remark 2: Note that for a discrete-time control system as
in Definition 1 to be invertible, the Inverse Function Theorem
[20] asks function f : X x U — X to be continuously
differentiable, and the Jacobian determinant to be nonzero
at every point (x,u) in its domain. This can be a strong
assumption for a system. However, global invertibility of f
might be granted under some circumstances. If a discrete-
time system is obtained by sampling continuous-time solu-
tions of a set of finite-dimensional differential equations over
a time interval with control input u, the discrete-time system
is invertible [19]. Assume we have an Ordinary Differential
Equation (ODE) in the form

i = g(z(t),t,u(t)),
z(0) = xo.

Consider the state of the above ODE at an arbitrary time
T. Since t is always increasing, we define y(t) = (T — t)
to represent the state sequence of this system backwards in
time. The evolution of y is described by

y=—-a(T—t)=—g(x(T —1),T — t,u(T —t))
= 7g<y(t), T—t, U(T - t))a
y(0) = 2(T).

Therefore, such systems are always invertible, and the
inverse is achieved by switching the sign of g.

V. CASE STUDY

A. SOS Programming

For systems with polynomial transition functions f and
semi-algebraic sets Xy, X, and X, we can use sum-of-
squares (SOS) programming to search for polynomial barrier
certificates. We showed previously in [15] that each of the
sets as in (4) is a semi-algebraic set which can be defined
using polynomial inequalities. Since basic semi-algebraic
sets are closed under finite union and intersection [21], sets
X, and A&} are also semi-algebraic.

We follow the same strategy as in [15, Sec. IV], and use
SOSTOOLS [22] together with a semidefinite programming
solver SeDuMi [23] to compute barrier certificates in the
following case study.
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4.5

3‘5 4‘0 4‘5 50

Fig. 1: State run x,,, of an infinite-step opaque system
along with an alternative trajectory Xz, ¢ which does not
enter the secret set. The shaded area in grey ds is within
0 = 1 distance from the actual trajectory of the system, and

the red region specifies the unsafe set.

B. Infinite-step opacity

Consider an autonomous vehicle moving on a single lane
road, whose state variable is defined as = = [z1; 23], with
x1 being its absolute position (in the road frame) and zo
being its absolute velocity. The discrete-time dynamics of

the vehicle is modeled as:
) =l V6]
xl(t)] ’

xo(t+ 1) 0 1
y(t)=[1 0] L“z(t)

where u is the control input, and A7 is the sampling time.
The system output is the position of the vehicle on the road.
Assume there is an intruder with § measurement precision
trying to gain information on the position of the vehicle. We
first want to answer whether the system is able to conceal its
position in every time step. Applying our theoretical results,
we formulate this problem as a d-approximate infinite-step
opacity verification problem. Let X Xo = [0,10],
Xs = [5.5,6], U = [-0.05,0.05], 6 = 1, and AT = 1s.
By considering the augmented system and constructing the
regions of interest as in (4), we found a barrier certificate by
solving SOS programming with the help of SOSTOOLS. By
Theorem 1, we conclude that the system is 1l-approximate
infinite-step opaque. Figure 1 presents the simulation results
of this scenario. As we observe from this figure, for every
time step which the location of the vehicle belongs to the
secret set, the alternative trajectory passes through a position
that does not belong to the secret set, and is within ¢ distance
from it.

AT?/2
AT

] " ®)

C. Current-state opacity

In the last subsection, we showed that the system in (8)
is 1-approximate infinite-step opaque. Note that by the rela-
tionships between different notions of approxiamte opacity
as in Lemma 1, we can readily conclude that the system is
also 1-approximate current-state opaque. In this subsection,
we aim to verify the current-state opacity for the vehicle
model by following the strategy discussed in Proposition
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6.5

551

4‘0 4‘5 50
Fig. 2: State run x,,, of an infinite-step opaque system
along with an alternative trajectory Xz, s which does not
enter the secret set. The shaded area in grey ds is within
6 = 1 distance from the actual trajectory of the system, and

the red region specifies the unsafe set.

2. In particular, we show the current-state opacity of the
original vehicle model by verifying initial-state opacity of its
associated reverse dynamic model, which can be described
—AT
()

| el
|

z1(t)
1 0] Lﬁz( 0

Using the same strategy as in [15], we aim to verify
initial-state opacity for the system as in (9). A barrier
certificate is found for the associated augmented system of
the reverse model by solving an SOS programming problem
with the help of SOSTOOLS. Note that by [15, Theorem
1], we can conclude that the reverse system in (9) is 1-
approximate initial-state opaque. By further leveraging the
results in Proposition 2, this implies 1-approximate current-
state opacity for the original system in (8). Figure 2 presents
the results of our simulation, which illustrates 1-approximate
initial-state opacity for the system in (9).

AT?/2
—AT

(El(t)

] u(t), o

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We studied the problem of verifying approximate infinite-
step opacity for discrete-time control systems. We posed
opacity as a safety property over an augmented system, and
aimed to verify it by finding a barrier certificate. Failure to
find such barrier certificate does not imply lack of opacity of
the system. To ensure the lack of opacity, we formulated a
reachability verification problem on the augmented system,
where finding a barrier certificate guarantees the lack of
opacity of the system. We made brief remarks on the
connection between different notions of approximate opacity,
and study the conditions under which one form of opacity
implies another. Finally, we demonstrated the effectiveness
of our approach through two numerical examples. The first
example presents the verification of approximate infinite-
step opacity for a vehicle. In the second example, we
present an example of an invertible system, where verifying
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current-state opacity can be posed as an initial-state opacity
verification problem. Our plan for future research directions
is to synthesize controllers to enforce opacity in systems that
do not originally satisfy the requirements for opacity.
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