()]

Check for
Updates

LOIS: Low-cost Packet Header Protection for loT Devices

Minmei Wang Shougian Shi Xiaoxue Zhang
minmei.wang@uconn.edu sshi27@ucsc.edu xzhan330@ucsc.edu
University of Connecticut University of California, Santa Cruz University of California, Santa Cruz

USA USA USA

Song Han
songhan@uconn.edu
University of Connecticut
USA

ABSTRACT

The widely deployed IoT devices in various applications, such as
smart homes and smart factories, pose new privacy concerns. IoT
devices typically capture users’ activities or collect information
from their surroundings and then send the information to remote
cloud servers, exposing private information to passive adversaries
by looking at the packet headers. Thus, in an enhanced IoT security
protocol, protecting privacy also requires hiding packet headers
and other traffic metadata. This work presents the LOIS framework,
a packet-level packet header protector based on efficient one-time
keystreams. LOIS allows IoT devices to efficiently hide the IP and
port information in packet headers while allowing the cloud to
recover the original packet headers. Besides, LOIS can easily inte-
grate with existing IoT traffic padding algorithms to hide traffic
patterns. We implement LOIS on commodity servers running in
a public cloud. Our experimental results show that LOIS only in-
troduces moderate overhead. For example, results show that LOIS
only incurs about 250-365 ns end-to-end latency on average for
the upload traffic, which is 80%-90% less than that of IPsec.

ACM Reference Format:

Minmei Wang, Shougqian Shi, Xiaoxue Zhang, Song Han, and Chen Qian.
2023. LOIS: Low-cost Packet Header Protection for IoT Devices . In Interna-
tional Conference on Internet-of-Things Design and Implementation (IoTDI
'23), May 09-12, 2023, San Antonio, TX, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3576842.3582380

1 INTRODUCTION

The Internet-of-Things (IoT) market has dramatically expanded
over the recent years and various IoT devices have been deployed
in different scenarios, such as smart homes, smart factories, smart
cities, smart health, and smart transportation [18][10]. Most IoT
devices (such as smart sensors) communicate in a passive and on-
demand way: they transmit data to other devices or remote servers
as necessary with minimum user involvement. For example, many
IoT devices collect data from their surroundings or capture the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IoTDI °23, May 09-12, 2023, San Antonio, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0037-8/23/05...$15.00
https://doi.org/10.1145/3576842.3582380

354

Chen Qian

cqian12@ucsc.edu

University of California, Santa Cruz

USA

users’ activity information, then automatically transmit the data to
the remote cloud servers for data analysis services.

However, as most of the sensing data contain sensitive informa-
tion about the users, this cloud-based IoT service framework posts
severe privacy leakage concerns [31]. One primary privacy concern
is that some users’ activities and their surrounding environment
information are exposed to unknown parties, such as the passive
adversaries in the network path, even though the payload data
is encrypted with TLS/SSL. A successful attack can be as simple
as looking at the packet headers! Researchers have found that the
encrypted IoT traffic can still be used to infer the device identity or
the related user activities by analyzing the packet headers and traf-
fic patterns [25][9][19]. For example, when devices monitor users’
sleep, or when devices surreptitiously record users’ activity data
such as audio [2], they need to send the data packets to the specific
destination IP addresses (also called the service IPs) and ports of
the cloud servers with a specific pattern. Hence, by observing the
IP addresses, ports, time, and frequency of those encrypted data
packets, the passive adversaries can successfully obtain some sen-
sitive information of the users, such as the type and function of
IoT devices [22], the type of the activity, and the communication
pattern information [6, 9]. Therefore, to enhance the data security
of these IoT services, it is of significant importance to protect not
only the privacy of the service data but the headers of the packets
generated during the services.

In this work, we focus on an important yet challenging problem:
hiding sensitive packet header information in IoT traffic to protect
user privacy. The requirements to achieve this goal are summarized
as follows.

1) Oblivious service IPs. The destination IP of an IoT packet
needs to be oblivious to a passive adversary. The packet header
cannot reveal which application or service the packet is used for. In
particular, a cloud may host many IoT services, and each service is
usually assigned a dedicated IP address called the service IP [13, 16].
Hence the service IP should be hidden from the passive attackers
in the network path.

2) Hide device identity and activities. Adversaries cannot
link the identity of an IoT device to the packets its sent.

These requirements are challenging for two reasons. First, packet
header fields, such as IP addresses and port numbers, are used to

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

identify the packets by the upper layer applications and route traf-
fic to their destinations. Hiding this information without influenc-
ing its function is challenging. Second, IoT devices are resource-
constrained. Hence, to make it friendly for those devices, the pro-
tection method should incur light overhead.

An intuitive solution for protecting packet headers is to use vir-
tual private networks (VPNs), as suggested in a recent study [7].
A VPN tunnel can wrap all traffic through the tunnel by encrypt-
ing the packets, including their headers. However, using VPNs has
several limitations. 1) VPN performs encryption and decryption op-
erations on both packet headers and payloads, causing considerable
performance degradation, as shown in our evaluation in Sec. 7. In
fact, the majority of IoT packets are small packets [19], and the pay-
loads have already been encrypted by TLS/SSL [24, 31]. Hence the
overhead is not necessary. 2) VPN technology cannot protect the
device’s identity (IP address) when building a VPN tunnel between
the device and the remote server.

This work presents a system for Lightweight Oblivious IoT
Services called LOIS, which achieves the above requirements of
protecting packet headers and hence user privacy. The main idea is
built upon the fact that some major cloud providers, such as Ama-
zon and Google, host a large number of IoT applications — either
by themselves or their customers. Hence, each such cloud can offer
a unified IP for all the supported services, which can be the desti-
nation IP address for all the packets to the cloud. The unified IP to
server IP translation can be performed on the cloud load balancers,
which are currently doing virtual IP (VIP) to server IP translation
[21]. Then the sensitive fields in the packet header are encrypted
using stream cipher with a one-time keystream chosen from a list
of keystreams of the requested service, which can protect device
identities on the entire path to the server with much less overhead
compared to VPNs.

The proposed LOIS framework consists of the following main
modules: the keystream management module and the packet header
modification module. In addition, LOIS can effectively integrate
the stochastic traffic padding (STP) algorithm [7] in the traffic
analysis defense module to defend against traffic analysis attacks.
We implement LOIS using the Intel data plane development kit
(DPDK) on commodity servers and compare it to IPsec and the
pure forwarding method (Vanilla). We find that LOIS incurs a small
end-to-end overhead for the bidirectional traffic, around 250-365
ns on average for the upload traffic and around 164-250 ns for the
download traffic, which is 80%-90% less compared with IPsec. In
addition, in contrast to IPsec, LOIS can directly send the download
packets from the server to the device, which significantly saves the
network bandwidth for the load balancer.

The rest of this paper is organized as follows. We analyze charac-
teristics of IoT traffic in Section 2. Section 3 introduces models and
gives the problem specification. Section 4 introduces the overview
of LOIS. We illustrate the design of the keystream management
module in Section 5 and introduce the design of the packet header
modification module in Section 6. We show the evaluation results
in Section 7. We discuss some concerns related to the deployment
and the privacy of LOIS in Section 8. Finally, we summarize the
related work in Section 9 and conclude this work in Section 10.

355

Minmei Wang, Shougian Shi, Xiaoxue Zhang, Song Han, and Chen Qian

2 CHARACTERISTICS OF 10T TRAFFIC

In this section, we analyze some characteristics of IoT traffic. We
adopt a public-available IoT traffic data set [26], which contains the
network traffic of 28 unique IoT devices in a smart home represent-
ing six different categories: cameras, switches, triggers, hubs, air
quality sensors, electronics, and healthcare devices. We download
the 20 days of IoT traffic data for analysis.

We first find that it is very easy for a passive adversary to infer
which IoT application a packet is used for because the destination
IP and port of the packet headers are completely visible al-
though the payloads are encrypted by TLS/SSL. We then choose one
device from each category to study the distribution of the packet
sizes. Fig. 1 shows the statistics result. We can find that [oT devices
tend to exchange a small amount of data in each packet. Most of
the packet sizes are less than 250 bytes.

—Amazon Echo —Withings Baby Monitor
0.2r4 — -Withings Sleep Sensor — -Triby Speaker
0 2 Nest Smoke Alarm -+ Belkin Motion Sensor
0 500 1000 1500 500 1000 1500

X: Packet size (Bytes) X: Packet size (Bytes)

Figure 1: Distribution of IoT packet size

We further measure the average number of packets generated
or received by each device in one day. Fig. 2 shows the results of
twelve different IoT devices. We can find that the average number of
packets in one day varies significantly among various IoT devices.

4
x10
- ! | | | | | | o i
g 6l Motion
5 AmazonSgasor
Ech
o Withthings
0 Samsung Baby
Xat csman Mornitor]
5 Withthinge®
TPHink g
* UFT Goug onc?
5l Netatmo Smart o Seosor |
I weather Triby g, O
© Withings oo Speaker
o NEST station P
S Smoke Smart PIX-STAR
< arm scale Photo-fram

o

Figure 2: Average number of packets

Next, we use one-day traffic data to measure the average traffic
rate for different devices. The data were collected from 7:00 am. We
sum the traffic size in one second to calculate the average traffic rate
per second for each IoT device. Fig. 3 shows the results of Amazon
Echo and Belkin Motion Sensor. We can find that different devices
have different traffic patterns. For example, the average traffic rate is
around 6 kbps for Echo and 115 kbps for the Belkin motion sensor. In
addition, we find there are many clear pattern changes (such as the
temporal traffic peaks) that can tell some specific user activities for
both applications. Passive adversaries can utilize the traffic pattern
to infer device type and user behaviors. For example, an attacker
can use machine learning models to classify the traffic types and
detect or recognize the user’s activities from the encrypted IoT
packet trace data [20, 28].

LOIS: Low-cost Packet Header Protection for loT Devices

Traffic rate (kbps)
Traffic rate (kbps)

Time (s) x10*

(a) Amazon Echo (b) Belkin Motion Sensor

Figure 3: Average traffic rate

Take-aways. The headers of the IoT packets are completely not
protected, and they can reveal user privacy. The sizes of IoT packets
are small, mostly under 250 bytes. Traffic patterns of different IoT
devices reveal user privacy.

3 MODELS AND PROBLEM STATEMENT
3.1 Network model

We consider the scenarios where the IoT devices communicate
with the cloud servers for some service tasks such as sensor data
reporting and analysis. The IoT device either directly connects to
the Internet through an access point, or the IoT device is located in
a smart community that consists of different types of IoT devices
that are managed by a gateway. One common use case is a smart
home scenario with sleep monitors, security cameras, smart door
locks, etc. Another use case can be an industrial [oT network such as
healthcare industrial IoT [17], or an organization/building network
with various IoT devices. Fig. 4 shows the network model, which
consists of the following four main components.

1) IoT devices. An IoT device (or "device" in short) is an object
with sensors or actuators, which has constrained computing, mem-
ory, and power resources. The devices can sit in a smart community
and connect to the Internet through an access point. The devices
capture and collect data, then transmit the data to the cloud. The
devices may also request services from the cloud.

2) Access points. An access point is a network device that helps
IoT devices to connect to the Internet. The access point usually
connects to a router as a standalone device. In some network setups,
the access point is an integral component of the router.

3) Servers. The servers provide various services for IoT devices,
and are typically located in the cloud.

4) Load balancers. A load balancer, which is deployed in a cloud,
manages the traffic to the cloud. The load balancer should process
every packet to the cloud in both current practice and the LOIS
system. It is worth noting that packets sent from servers to devices
do not need to pass through the load balancer. Load balancers in
the cloud provide a unified cloud IP address called CIP to serve as
the destination IP address for all the traffic sent to the cloud. In
addition, load balancers use unique service IDs (SID) to distinguish
services for different traffic. Load balancer are also responsible
for translating the unified IP address and the service ID to the
destination server IP and the port number.

3.2 Threat model

We assume the traffic between IoT devices and remote cloud servers
is encrypted using the TLS/SSL protocol. Thus, the traffic packet

356

IATRI299 AMac A 19 3NN Cae Acbnmia TV
, USA
= P~
0 Service 3
) access
device point

2 e

\ / .i Service 2
Q Load Balancer
Service 1

oy & g
/ @ (((l))) r,?/“ l\ Servers

access |

point i

~Smart Community,r"' Cloud B

Cloud A

Figure 4: Network model
content is not accessible to the entities except for the sender and
the receiver. The servers and the load balancer in the cloud are
trusted.

We are concerned with the passive adversaries that can col-
lect network traffic and infer the user’s private information from
the traffic data. Although the passive adversaries cannot view the
packet payload of encrypted traffic, they can easily view the source
and destination IP addresses and the port numbers from the packet
headers, and infer the device identity and requested service infor-
mation. Furthermore, the passive adversaries can get traffic rates,
inter-packet intervals, and packet size information to infer more
sensitive information, such as the device type and users’ activities
that trigger the traffic. The passive adversaries can reside along the
path from the device to the access point, from the access point to
the cloud, or within the cloud. We divide the adversaries into two
different categories.

1) Local adversaries. Local adversaries are the passive adversaries
that are located on the path from the device to the access point. Or,
if the IoT device is deployed in a smart community, local adversaries
sit in the local area network (LAN). Local adversaries with access
to the Wi-Fi network can view all packet headers. Local adversaries
without access to the Wi-Fi network can only know the sending
time of the packet and view the link layer header , including MAC
address, sizes of Wi-Fi packets, while other information like TP
headers and transport layer headers are encrypted.

2) External adversaries. External adversaries can view the traffic
only after packets leave the access point. They are either located
along the path from the access point to the cloud (on-path ad-
versaries) or sit within the cloud (cloud adversaries). So external
adversaries can view all the IP header and transport layer header
information. But they cannot get the MAC address of the packets.
One representative external passive adversary is the Internet Ser-
vice Provider (ISP). We assume the cloud provider and the servers
are trusted, but there could be a passive adversary in the cloud
network, such as a compromised router. If the servers (the receiver)
are not trusted, all possible protections of packet headers will fail.

We assume adversaries do not have the power to act as global
passive adversaries that can observe both the traffic inside the
cloud and outside the cloud. They can only sit in one place of the
network path and view part of the traffic.

3.3 Problem specification

The detailed objectives of LOIS are: 1) Hidden service. If a passive
adversary is a local adversary or a on-path adversary, it cannot
know the services IPs and corresponding ports of the packet. 2)
Sender anonymity. Passive adversaries cannot discover the identity

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

of the IoT device (IP address) for the upload traffic sent from the de-
vice to the cloud. 3) Packet unlinkability. Passive adversaries cannot
determine whether the packets belong to the same connection by
directly viewing packet information. This property helps to defend
against traffic analysis attacks or user tracking based on packet
header information. We also consider the traffic statistic analysis
attack based on the traffic pattern information. We assume that
passive adversaries can gain prior knowledge about the characteris-
tics of IoT traffic. Thus, they can utilize this knowledge to identify
the device type and infer related user activities. We integrate the
existing stochastic traffic padding (STP) algorithm [7] to defend
this attack.

There are two main challenges to achieve the above objec-
tives. First, since we rely on keystreams to hide sensitive packet
header information, how to efficiently manage keystreams and
make keystreams correspond to provided services. Second, making
the packet’s sender get the keystream efficiently and transfer the
used keystream information to the receiver without exposing it to
the passive adversaries is challenging.

3.4 VPN is not an optimal approach for our
goals

In this section, we discuss the feasibility of utilizing the VPN tech-
nology to defend against passive adversaries. The load balancer
scales out services hosted in the cloud by mapping packets destined
to a provided service with a virtual IP address to a pool of servers
with multiple direct IP addresses [21]. We build two VPN tunnels:
Tunnel 1 wraps all traffic between the [oT device and the load bal-
ancer, and tunnel 2 wraps all traffic between the load balancer and a
server. For the upload traffic sent from the device to the server, the
requested service is hidden by tunnel 1, and the device identity and
service type are protected by tunnel 2. Since servers that provide
services dynamically change, the client cannot directly build a VPN
tunnel between the device and the target server. Therefore, the
download traffic also needs to pass through the load balancer and
be protected by tunnel 1 and tunnel 2.

However, there are limitations of utilizing VPN technology
to solve the problem. 1) VPN tunnel 1 cannot provide sender
anonymity, exposing the device’s IP address to passive adversaries.
On-path adversaries can simply collect traffic with the same IP
address to a cloud within a period, linking these packets to a con-
nection. Thus, VPN technology cannot achieve our objectives. 2)
For bidirectional traffic, the VPN technology poses two encryptions
and two decryptions on every packet, causing considerable com-
putational overhead. 3) The download traffic also needs to pass
through the load balancer, bringing extra computational overhead
and bandwidth consumption on the load balancer.

4 OVERVIEW OF THE LOIS FRAMEWORK

Fig. 5 shows the overview of the LOIS framework. LOIS is installed
as three types of interfaces: 1) the device interface called LOIS-DI; 2)
the interface on the cloud load balancer called LOIS-CI; and 3) the
server interface LOIS-SI. Each interface is responsible for certain
operations on packet headers.

Each LOIS-Cl is assigned an IP address (CIP) which is served as
the destination IP for all the services it manages. Simultaneously,

357

crM |
LOIS-DI e

Tunnel 1
=
? ®access

oint
TIoT device Internet

Lois-Ci LB

77 upload traffic | . Tunnel 3
H download traffic} 3 mn

L()]S-S]ﬁ

Service 1

Cloud A

Figure 5: Overview of the LOIS framework

LOIS-CI provides a service ID (SID) to distinguish every managed
service. CIP and SID are used to identify the requested service by
setting them to be the destination IP address and the destination
port number of a packet sent to the cloud. LOIS-CI is implemented
on the load balancer. LOIS-DI can be directly implemented on the
device, and the IP address of this device is called DIP. LOIS-SI is
implemented on each server that provides services. Each LOIS-SI is
assigned with an IP address called SIP to denote as the destination
IP address that provides services.

For the upload traffic which is sent from the device to the remote
cloud server, LOIS performs the following steps.

Step 1. LOIS-DI hides all the sensitive information in the packet
header. Adversaries can only view that the packet is sent to the
LOIS-CI with CIP.

Step 2. LOIS-CI only recovers the IP address and the port number
of the target server. Other fields are hidden to prevent passive cloud
adversaries from inferring sensitive information from the packets,
such as the source device and the flow-related information. Then,
the packet is sent to the target server with SIP. After the server
receives the packet, it will recover all the hidden fields.

For the download traffic, LOIS performs as follows.

Step 3. LOIS-SI directly hides all sensitive fields and sends it to
the destination device with DIP. Adversaries can only view that the
packet is sent to the DIP.

The main idea behind the LOIS framework to hide the packet
metadata is to use a one-time keystream to encrypt sensitive fields
in the packet header for each packet. There are three main modules
which are listed as follows.

(1) Keystream management module generates, stores, and
updates keystreams. Simultaneously, a LOIS handshaking process
is proposed for LOIS-DI and LOIS-CI to create the same keystream
table.

(2) Packet header modification module modifies the packet
header to protect the packet metadata information.

(3) Traffic analysis defense module hides the traffic pattern
and prevents passive adversaries from inferring sensitive informa-
tion according to the traffic pattern.

As the traffic pattern exposes times and user activities, the LOIS
framework integrates the existing traffic padding algorithms called
STP [7] in the traffic analysis defense module to hide it. The traffic
pattern is hidden for the traffic in tunnel 1, tunnel 2, and tunnel 3.

LOIS-DI can also be implemented on a local server or any pro-
grammable network middlebox, such as Wi-Fi access point or access
gateway router. Multiple devices can sit behind LOIS-DI, and LOIS-DI
protects those managed devices by preventing external adversaries

LOIS: Low-cost Packet Header Protection for loT Devices

from sensing sensitive information with less overhead compared to
the VPN method.

5 DESIGN OF THE KEYSTREAM
MANAGEMENT MODULE

Each packet requires one unique keystream to encrypt the sensitive
fields to hide them in packet headers, thus protecting user privacy.
Keystreams are pre-generated and stored on LOIS-DI, LOIS-CI, and
LOIS-SI instead of real-time generation due to security and effi-
ciency requirements. Becuase generated keystreams need another
process of deduplication to avoid key reuse attack, which costs
time. This section introduces the design and the management of
keystreams. For each packet, the receiver needs to know which
keystream is used without exposing the keystream itself. Hence we
use part of each keystream as an identifier. The identifier is sent in
plain text and used by the receiver to identify the keystream used
in the packet and recover the original packet header. Identifiers
are in plain text, but passive adversaries cannot infer the corre-
sponding keystream from an identifier without knowing detailed
identifier-to-keystream mappings, since identifiers and keystreams
are randomly generated and there is no relation between an iden-
tifier and a keystream. These mappings are shared secret by the
IoT devices, cloud load balancer, and servers. Besides knowing
the keystream for an identifier, its related service ID also needs
to be stored to obtain the service information from an identifier
efficiently. In LOIS, the identifier is the key k, and the keystream
is the value v for key-value lookups. The identifier is used for two
purposes: 1) to retrieve the keystream from the local mapping table
at the packet recovery side and decrypt the packet header; 2) to get
the service ID.

There are three requirements for the design of the keystream
management module, which are summarized as follows. 1) Each
communicating LOIS pair, which contains one LOIS-DI and one
LOIS-CI, owns the same list of keystreams for all the requested ser-
vices by the device. Also, LOIS-DI and LOIS-CI need to distinguish
keystreams for different services. 2) Keystreams cannot be used
twice to prevent adversaries from recovering encrypted fields by
the reused key attack. 3) Efficiently obtaining the keystream for
each packet is required.

5.1 Keystreams generation

Keystreams are generated using a pseudorandom number generator
by agreeing on a seed and a nonce. Then the long keystream is cut
into segments. We set 64 bits for identifiers, 128 bits for keystreams,
and 16 bits for service IDs in LOIS. Passive adversaries cannot in-
fer the corresponding keystream according to the identifier unless
they know identifiers-to-keystreams mappings. Since the traffic
are bidirectional and packets in the upload traffic and the down-
load traffic both need keystreams to protect packet metadata, each
keystream table contains keystreams for both request packets and
reply packets.

In this work, we propose a LOIS handshaking process to gen-
erate the same list of keystreams and their identifiers for a LOIS
pair. We assume LOIS-DI and LOIS-CI have already built a secure
channel based on the public key infrastructure (PKI). The LOIS
handshaking protocol is run on the built secure channel. The pur-
pose of the protocol is to agree on the seed, the nonce, requested

358

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

service information, and the number of keystreams for each ser-
vice through the secure channel. The LOIS handshaking process
is initialized by LOIS-DI when it tends to request services from a
cloud. LOIS-DI sends a hello message to LOIS-CI, which includes
a nonce number r; (64 bits), requested services information, the
number of keystreams k for each service. After LOIS-CI receives
the hello message, it also generates a nonce r. (64 bits) and sends it
to LOIS-DL The seed s is generated by a PRNG based on < ry, 7 >,
which is unique for different LOIS pairs. After the message has been
exchanged in the handshaking process, both LOIS-DI and LOIS-CI
generate keystreams using the same seed s.

5.2 Keystreams storage

The LOIS framework needs to use a key-value table to store
keystreams information with unique requirements: 1) It is well
known that using two identical keystreams is dangerous for a
stream cipher. Thus, each identifier in the table of a device should be
unique. 2) Each cloud serves many devices simultaneously. Hence
global duplication should be applied for these tables; 3) The table
should cost very small memory and support fast lookup and update
operations.

5.2.1 Core algorithms. To meet the requirements, our innova-
tion is to improve a recent tool called Vacuum filters [30], which is
an enhanced version of cuckoo filters [14] and achieve O(1) lookup
time and amortized O(1) insertion time for approximate member-
ship queries. We enhance the original Vacuum filter design for a
space-efficient and fast key-value store with deduplication across the
tables on different devices. Instead of storing the complete key, our
design stores the fingerprint of each key to save memory. Thus, we
call the designed key-value store as a partial key Vacuum table. We
adopt 16 bits fingerprints in the experiments. Fig. 6 shows the (2,4)-
partial key Vacuum table (hereinafter called the (2,4)-PK Vacuum
table). A (2,4)-PK Vacuum table consists of a number of buckets.
Each bucket has four slots. (2,4)-PK Vacuum table stores the [-bit
digest of k, which is represented as f, to save memory. Every (f,0)
pair is stored in one slot of the two candidate buckets By and B;
based on the hash values of the key k.

(2,4)-PK Vacuum table insertion. For any (k, v) pair, (2,4)-PK
Vacuum table stores its fingerprint and value (f,v) in an empty
slot in bucket Bj (k) or Bz (k). If neither B;(k) nor Bz(k) has an
empty slot, the PK Vacuum table will perform the eviction pro-
cess. It chooses a non-empty slot in bucket B (B is B; (k) or By (k)).
The (f”,v’) stored in the slot ((fi,v;) in Fig. 6) will be removed
and replaced by (f,v). Then (f”,0") will be placed to a slot of its
alternate bucket. If the alternate bucket is also full, the PK Vacuum
table recursively evicts an existing stored pair (f”/,v”") to place
(k’,0”), and looks for an empty slot for (f’/,v””). When the number
of recursion process exceeds a predefined threshold, this insertion
is failed and a reconstruction of the whole table is required. The
detailed algorithm is shown in Algorithm 1. Here H, H’, and H"” are
uniform hash functions. Function Alt is the multi-range alternate
function. Each item individually chooses an alternate range from
the four alternate ranges (ARs) to calculate the index of the alter-
nate bucket. Ly is the chosen alternate range (AR) for item x . The
four ARs are denoted as Ly, L1, L2, L3 (Lo > L1 > Ly > L3), which

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

Lookup (kq, v;) with fingerprint f
By B,

Insert (k,v)

6b_LlC£ClS i ~x ’/‘~V
(f,v1) (fs,vs) ()| (f5,v5))
4 slots (f2,v2) (ferve) (f2,v2) (fe v6),
(f3,v3) (f3,v3)
(a,va) (fa,va)
0 1 2 3 4 5 0 1 2 3 4 5

(a) Lookup (ky,v;) with fingerprint £, (b) Insert (k, v) with fingerprint f

Figure 6: Partial key vacuum table

are automatically calculated by the algoritm reported in Vacuum
filter [30].

Algorithm 1: PK Vacuum table insertion: Insert(k,v)
f=H"(k)
Bi(k) =H(k) mod m;
By (k) = ALt(B1(k), f));
Alt(B1(k), f)) = Bi(k) & (H'(f) mod Ly);
if Bi (k) or Ba(k) has an empty slot then
put (f,v) in an empty slot ;

return Success;

Randomly select a bucket B from Bj (k) and By (k) ;
for i = 0;i < MaxEvictions; i++ do
foreach fingerprint f’ in B do
if Bucket ALt(B, f’) has an empty slot then
put (f,v) to the original slot of f” ;
put (f’,0’) to the empty slot ;
return Success ;
Randomly select a slot from bucket B ;
Swap f and the fingerprint f” in the chosen slot;
B=Alt(B,f);

return Fail;

(2,4)-PK Vacuum table lookup. The lookup of value for a key
k is to fetch the two candidate buckets and match the fingerprint f
of the key in all eight slots until a fingerprint matches f. Then, the
corresponding value of the key k is obtained. Otherwise, the item
is not stored in the table.

In this work, we utilize the (2,4)-PK Vacuum table to achieve
high memory utilization and fast lookup throughput. One particular
requirement is that no duplicate identifiers and no keystreams exist
in the table. The PK Vacuum table can detect the duplication of
identifiers by first querying the table with the identifier. If the result
is negative, the identifier is unique. To detect the duplication of
keystreams, we store fingerprints of the existing keystreams in a
Vacuum filter. Therefore, to successfully insert a key-value item
(k,v), the first step is to query the Vacuum table with the identifier k
and query the filter with the keystream. If both results are negative,
this key-value item can be inserted into the PK Vacuum table.

Update of keystreams table. Keystreams are dynamic in the
LOIS framework with new keystreams that are continuously in-
serted. A single PK Vacuum table and the corresponding Vacuum
filter are not sufficient because the table’s size may not be big
enough to store all the key-value items with continuous insertions
after the table is created. In this work, we design a dynamic partial
key Vacuum table (DVT), which is inspired by dynamic cuckoo

359

Minmei Wang, Shougian Shi, Xiaoxue Zhang, Song Han, and Chen Qian

filter [11]. The DVT leverages the PK Vacuum table as the building
block and consists of a number of s linked homogeneous PK Vac-
uum tables. Initially, a DVT consists of only one PK vacuum table.
The DVT will extend its capacity by linking a new PK Vacuum table.
Each PK Vacuum table in the DVT has the same number of buckets.
We also adopt a dynamic Vacuum filter (DVF), which consists of
several linked Vacuum filters, to store fingerprints of keystreams
in the dynamic environment with an expansion set of keystreams.
We maintain consistency between the DVT and DVF, in which
the fingerprints of keystreams that are stored in the i-th linked PK
Vacuum table are stored in the i-th linked Vacuum filter. To insert
a keystream, its identifier and the keystream will first need to be
queried in the DVT and the DVF, respectively, to check duplication.
If both results are negative, this key-value item can be inserted into
the DVT, and the keystream is inserted into the DVF. The insertion
algorithm of the DVT and DVF is similar to that in the dynamic
cuckoo filter.

Lookup of keystreams. The lookup of a keystream by its iden-
tifier from the DVT requires to probe every PK Vacuum table in
the DVT. If a matched fingerprint of the identifier is found, the
corresponding keystream is returned. Since keystreams are con-
sumed, and each keystream is only used once, we also maintain a
consumption rate for each PK vacuum table in the DVT. Once a
keystream is used by querying it with the identifier, the PK Vacuum
table’s consumption rate that stores this key-value pair is updated.
If the consumption rate of one PK Vacuum table reaches 100%, this
PK Vacuum table is deleted from the DVT. Simultaneously, the
corresponding Vacuum filter storing fingerprints of keystreams is
deleted from the DVF.

5.2.2 Storage. Since LOIS-CI serves many LOIS-DIs simultane-
ously, LOIS-CI maintains much more keystreams than each LOIS-DI.
After agreeing on the same seed and the nonce between a LOIS
pair to generate a number of keystreams for both request pack-
ets and reply packets, LOIS-CI may detect that some keystreams
cannot be used due to duplication. Thus LOIS-CI will send dupli-
cate keystreams to LOIS-DI to notify LOIS-DI not to choose these
keystreams, making consistency of keystreams without duplication
on LOIS-DI and LOIS-CL Fig. 7 shows the storage of keystreams
for LOIS. LOIS-CI stores mappings from identifiers to <keystream,
SID> pairs for the upload traffic. LOIS-DI stores unused <identifier,
keystream> pairs of each service for the upload traffic. Besides,
LOIS-DI stores mappings from identifiers to <keystream, SID>
pairs in a DVT for the download traffic of all required services.
Each LOIS-SI builds a smaller dynamic PK Vacuum table that
only contains mappings from identifiers to <keystream, SID> pairs
of its provided services for the upload traffic for all ongoing served
LOIS-DIs. To construct the smaller DVT for LOIS-SI, LOIS-CI sends
metadata including seed, the identity of each LOIS-DI called DIP,
number of keystreams, and duplicated keystreams to LOIS-SI. Then,
LOIS-SI generates the same list of keystreams as LOIS-CI and locally
updates the DVT. Additionally, LOIS-SI keeps unused <identifier,
keystream> pairs for the download traffic of different LOIS-DIs.

5.3 Obtaining the keystream for each packet
LOIS-DI needs to hide packet headers for the upload traffic, and
LOIS-SI needs to hide those of the download traffic. Since LOIS-DI

LOIS: Low-cost | USA
— /-\a
7N LOIS-DI LOIS-SI [DVT for upload traffic
VT for download traffic @
1111 Deviee I\ ro1s-ct g L[]
. ; PN < i i >
<SID, identifier, keystream> DIP, identifier, keystream
for download traffic
for upload traffic
LOIS-DI
LOIS-SI ™~y 7y
N TN DVT for upload traffic @
D:J:D @ Device d @ D:[D
Service n
SN anal nndata
Figure 7: LOL
and LOIS-SI store unused <identifier, keystream> pairs of reque DPort | Service ID | SN | ACK | Flags | Option
services for the upload traffic and the download traffic, respecti DIP | cIP
they directly extract an unused pair for an incoming packet. [Looks random | Unified Port | All Looks random [Identifier

LOIS-CI and LOIS-SI need to recover hidden fields for the up
traffic in packet headers. They query their DVT to get the keystr
using the extracted identifier from the packet header, which
be illustrated in Section 6. LOIS-DI performs the same way for
download traffic. Querying a DVT using the identifier does not
information because attackers cannot infer the keystream from
identifier.

6 DESIGN OF THE PACKET HEADER
MODIFICATION AND THE TRAFFIC
ANALYSIS DEFENSE MODULE

This section introduces the detailed design of LOIS to hide packet
headers and the traffic pattern information.

To hide sensitive information in the packet header, LOIS first
classifies the header’s fields into four groups.

(1) Endpoint-related fields contains the source address, the
destination address, source port, and destination port fields. Des-
tination address and destination port number expose the service
type requested by IoT devices. Importantly, passive adversaries can
group traffic for different endpoints according to endpoint-related
fields. Thus, these fields need to be hidden.

(2) Flow-related fields contains the sequence number, the ac-
knowledgment number, URG, ACK, PSH, RST, SYN, and FIN fields.
Sequence numbers are related in each flow, leaking flow infor-
mation. SYN and FIN fields indicate the start and end of a TCP
flow, respectively. After adversaries identify the flow by combining
endpoint-related fields and flow-related fields, they can get flow
volume, flow duration, and pattern information further to infer
devices’ identity and the requested service. Thus, LOIS needs to
hide these flow-related fields to avoid leaking flow information.

(3) Affected fields contain total length, header checksum, data
offset, checksum, and TCP options fields. Although these fields
reveal no sensitive information, they need to be changed due to the
modification of other fields.

(4) Unchanged fields contains all the remaining fields. They do
not need to be modified in the LOIS framework.

360

Random IP CIP

Figure 8: Packet header modification for the upload traffic

Unlike the VPN technique that encrypts all the fields in packet
headers, LOIS carefully hides sensitive fields by applying two differ-
ent schemes: replacement and XOR encryption. The replacement
scheme is to replace the field with a unified one that cannot be
distinguished. The XOR encryption scheme uses the XOR operator
to encrypt the plaintext P by a keystream Q to get ciphertext C,
which means that C = P @ Q, where P and Q have the same length.
Specifically, P can be easily recovered by C @ Q. The keystream is
generated and managed by the keystream management module. In
this section, we assume that the keystream and its identifier are
successfully generated for each packet.

Packet header modification for the upload traffic. We now
describe the details of step 1 and step 2 presented in Section 4 and
Fig. 5. Step 1. Fig. 8 shows the comparison of the main fields in the
packet header before and after modification. In our design, the desti-
nation IP address and the destination port number of the packet are
the unified cloud IP (CIP) and the service ID, respectively. However,
the destination port number will expose the service information.
Thus, it is then replaced by a unified port number to hide the service
information. Therefore, adversaries cannot get the target service
information by only directly viewing packet headers. There are two
cases when dealing with source addresses and port numbers. 1) The
device is located in a smart community and sits behind NAT. In this
situation, LOIS-DI also integrates the NAT function by building
a NAT translation table. LOIS-DI will negotiate with the gateway
router to assign a unique port for this device. Therefore, LOIS-DI
will first rewrite the source IP address of all the traffic from the
device to a public IP of the smart community and use the assigned
port number to the flow. The rewritten IP address and the port
number are DIP and DPort in Figure 8. Then, these two fields will
be encrypted by the keystream. 2) The device is assigned a pub-
lic IP to connect to the Internet directly. Then, LOIS-DI encrypts
the source IP and source port number of the upload traffic to hide

Service ID DPort SN | ACK | Flags | Option

CIP | DIP

[Unified Port Identifier |

Random IP DIP

Looks random | All Looks raindom

Figure 9: Packet header modification for download traffic

these sensitive fields. LOIS-DI also encrypts flow-related fields and
modifies affected fields by the keystream. Here, LOIS-DI assigns an
unused keystream for the requested service as the target keystream.
To notify LOIS-CI of the keystream without exposing it, we insert
the keystream’s identifier in the TCP option field. Finally, the total
length field and the data offset field are adjusted due to the option
field’s insertion. Due to the modification of packet headers, LOIS-DI
recomputes IP header checksum and checksum in the TCP header
and then sends the packet to the cloud. Step 2. LOIS-CI only needs
to set the IP address and the port number of the service server.
After LOIS-CI receives the packet, it extracts the identifier and gets
the keystream and the service ID by querying the DVT. The LOIS
framework should also be compatible with the function of the load
balancer. We assume the load balancer uses 5-tuple to select the SIP,
which is a typical design for the load balancer [21]. Thus, LOIS-CI
needs to decrypt the source IP and the source port number using
the keystream, while these two fields remain hidden in the packet.
LOIS-CI utilizes 5-tuple and the service ID information to translate
CIP and the service ID to the target server IP address and the port
number, then LOIS-CI modifies the destination IP address and the
port number of the packet and sends the packet to its target server.
After the server receives the packet, it queries local DVT to get the
keystream after extracting the identifier and recovers all the hidden
fields of the packet.

Packet header modification for the download traffic. We
now describe the details of step 3. As we have introduced, the traffic
between IoT devices and remote servers typically contains a request
packet and a reply packet. Besides, remote servers may proactively
communicate with IoT devices, such as sending the command. Thus,
packet headers for both bidirectional traffic need to be hidden. Oth-
erwise, passive adversaries can infer sensitive information if we
only hide packets in one direction. Step 3. LOIS-SI gets an unused
identifier and the corresponding keystream by looking at the list
that stores unused <identifier, keystream> pairs of the target ser-
vice for DIP. Figure 9 shows how to hide endpoint-related fields
and flow-related fields. DIP, which serves as the destination IP ad-
dress, remains unchanged. Other fields, including source IP address,
destination port number, and the flow-related fields, are encrypted
by the keystream. A unified port replaces service ID to hide the
service information. Then the identifier of the keystream is inserted
in the TCP option field. Similar to step 1, other affected fields will
be adjusted. Packets with modified packet headers will be directly
sent to the LOIS-DI, not passing through the load balancer. Pas-
sive adversaries only view that packets are sent to the device with
DIP. When LOIS-DI receives the packet, it extracts the identifier
and queries the local DVT to get the keystream and the service ID.
Then, LOIS-DI uses the keystream to recover all encrypted fields.
The service ID then replaces the unified port number. If LOIS-DI
integrates the NAT function, LOIS-DI also rewrites the DIP and
DPort to the private IP address and the port number.

361

nei Wang, Shougian Shi, Xiaoxue Zhang, Song Han, and Chen Qjian

In the practical deployment, each IoT device may connect to
several clouds to request services. To support multi-cloud scenarios,
each client independently maintains keystreams for different clouds,
which are generated by different seeds using the LOIS handshaking
protocol. More connected clouds consume more memory on LOIS-
DI to store keystreams.

Traffic analysis defense module. The main idea is to use the
link padding method to shape upload and download traffic to hide
the traffic pattern. We adopt existing link padding methods in this
work. The simplest way is constant rate padding, which pads the
traffic to fixed-size packets with constant interpacket intervals. This
padding method brings huge overhead data, as reported in [7]. In
this work, we utilize the stochastic traffic padding (STP) algorithm
[7]. One metric called adversary confidence is introduced in this
paper to measure the expected ratio of correct activity inferences
to total attempted activity inferences by passive adversaries when
traffic rate metadata is protected by some techniques. STP imposes
no additional network latency and can achieve low adversary con-
fidence for relatively little bandwidth overhead.

The main idea of the STP algorithm is that the upload and down-
load traffic during the time interval that devices communicate with
remote servers is shaped equivalently. So passive adversaries can-
not infer the type of user activities. Additional periods of equivalent
shaping are injected randomly for bidirectional traffic. In particular,
STP divides time into discrete periods of length T. STP performs a
random draw from a fixed Bernoulli distribution with probability ¢
to decide whether to shape traffic during that period in the begin-
ning. If STP decides to pad the traffic, it first randomly draws an
offset time from [0, T] and starts padding the traffic after the offset
time. The total padding time is T, and STP will pad the traffic to a
predetermined rate R.

To defend against local passive adversaries, the STP algorithm
is run on each device to pad the upload traffic. Thus, adversaries
cannot infer sensitive information from the traffic pattern. For
the download traffic, the STP algorithm is run on LOIS-SI. The
predetermined traffic rate R is set to be the same for the devices
in one smart community, making adversaries unable to infer the
device type from the traffic rate. T is set to be long enough to
cover complete bidirectional communications (request packets and
reply packets) in one TCP connection. Similarly, T is the same
for one smart community if the device locates in a community.
It’s suggested to set T to be the longest flow duration for all the
devices in the smart community. LOIS randomizes sensitive fields
in the packet header, making it harder to link packets to the same
connection. We will utilize this property to design a more efficient
padding algorithm to hide traffic patterns in future work.

7 IMPLEMENTATION AND EVALUATION

We implement the LOIS framework using Intel Data Plane Develop-
ment Kit (DPDK) [3] in a public cloud experimental environment,
CloudLab [1]. DPDK bypasses the complex network stack in the
Linux kernel and processes packets in the userspace. CloudLab is a
testbed for researchers running experiments with cloud architec-
tures [1]. We use ¢220g2 nodes in the Wisconsin cluster to evaluate
the performance of the LOIS framework. Each node is equipped
with one Dual-port Intel x520 10Gbps NIC, with 8 lanes of PCle

LOIS: Low-cost Packet Header Protection for loT Devices

5 2
14 32 bits| S —+Sequential (32 bits)
Sa -o-64 bits| S 30 -o-Random (32 bits)
= o Sequential (64 bits),
o3 £, _=-Random (64 bits)
£ Q RN
= E] / Q‘\
o 2 o " .
N 210 3
s 3
H 3
=0 So

10t 10° 10° 107 10° 10t 10° 10° 107 10®

of keystreams # of keystreams

(a) Initialization throughput varies (b) Lookup throughput varies with
with num. of keystreams num. of keystreams

Figure 10: Performance of Keystream Benchmark

1000

N

m -8-1Psec —

£ goo[e-LOISDI 210

> Vanilla o)

[9) (O]

$ 600 =

k<t 3 6

o 400 =

=3 24

o o —=-|Psec
4 200 oo o—o—o—o—o—4 .5 2 -o-LOIS-DI
< 0 0 Vanilla

64 256 512 768 1024 64 256 512 768 1024

Packet size (B) Packet size (B)

(a) Latency (b) Throughput

Figure 11: Performance of DI varying with packet size

V3.0 connections between the CPU and the NIC. And each node
has two Intel E5-2660 v3 10-core CPUs at 2.60 GHz. The Ethernet
connection between every two nodes is 2x10 Gbps. Logically, node
1 uses the DPDK official packet generator Pktgen-DPDK [5] to
generate packets or get packets from a real IoT traffic dataset. Node
2 and node 3 work as the LOIS-DI and the LOIS-CI, respectively.
Node 4 works as the LOIS-SI. In addition, we implement LOIS-DI on
a Raspberry Pi 3 with one single 1.4 GHz processor and 1 GB RAM,
which works as an example of a wide spectrum of devices that can
use LOIS. LOIS can be easily implemented on less powerful IoT
devices if they have available memory to store keystreams and the
corresponding DVT, as shown in Fig. 19(a) (E.g., the device requires
about 0.15 MB for 10* keystreams).

We compare our proposed LOIS with IPsec [4] — a protocol
used in most VPNs — implemented using DPDK, and pure forward-
ing algorithm (hereinafter called Vanilla). We choose AES-CBC-
128/SHA1-HMAC for the IPsec algorithm. Two metrics are used to
evaluate performance. (1) Average latency measures the average
time caused by operations of LOIS-DI, LOIS-CI, and LOIS-SI. (2)
Throughput measures the number of processed bits per second.
Unless otherwise mentioned, we conduct five production runs, LOIS
handles more than one million packets on each run.

7.1 Keystream benchmark

This section evaluates the efficiency of the keystream generation
and lookups in the LOIS framework. The initialization process
generates keystreams for request packets and reply packets, and
creates required data structures. We measure the throughput in
millions of operations per second (MOPS). In the initialization
experiments, each operation is to generate a keystream and insert it

362

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

2000 1000
& ~e-|Psec @ -&-|Psec
< -e-LOIS-CI < -e-LOIS-SI
£ = 800
> 1500 Vanilla > Vanilla
2 2
8 8 600
S 1000 =
[© 400
g g
= 500 =
o o 200
<< o—0——0—0—0—0—4 << co—o—o—o0—6—0—6—¢

¢ 2 - - 1 ol
64 256 512 768 1024 64 256 512 768 1024
Packet size (B) Packet size (B)
(a) LOIS-CI (b) LOIS-SI

Figure 12: Performance of LOIS-CI/SI varying with packet
size

to the table. In the lookup experiments, each operation is a lookup
of the keystream based on the identifier.

We evaluate the initialization performance and positive lookup
performance, as shown in Figure 10. 32 bits identifiers and 64 bits
identifiers are generated. Figure 10(a) shows the initialization per-
formance. We can find that the initialization throughput decreases
with more number of keystreams. The total initialization through-
put is about 1-3 MOPS. Figure 10(b) shows the positive lookup
performance varies with the number of keystreams in one PK Vac-
uum table. We evaluate the performance of sequential access and
random access. Results show that the PK Vacuum table has good pos-
itive lookup throughput — a positive lookup means the keystream
does exist in the table. Different access pattern of identifiers on one
Vacuum table has little influence on the result.

7.2 Evaluation of LOIS

Performance of DI for the upload traffic. We evaluate the perfor-
mance varying with the packet size of LOIS-DI for the upload traffic.
Smaller packet size means more packets generated per second un-
der 10 Gbps bandwidth. For the upload traffic, the node running
LOIS and IPsec hides sensitive information on packet headers. Fig-
ure 11 shows the results. In this experiment, the number of total
requested services by LOIS-DI is 50. The service for each packet is
uniformly chosen from 50 services. We can find that LOIS brings
small overhead compared to the pure forwarding algorithm, which
shows the efficiency of LOIS. LOIS only accesses packet headers and
modifies headers either by replacement or XOR encryption; both
operations are efficient. IPsec encrypts original packets, causing
larger latency with larger packets. The result shows that LOIS-DI
outperforms IPsec, only causing 0.14x-0.25x latency compared to
IPsec. Furthermore, latency for LOIS-DI with different packet sizes
is relatively stable, while packets with larger sizes require larger
processing time for IPsec. Figure 11(b) shows that LOIS-DI achieves
1.0x-2.5x throughput compared to IPsec.

Performance of CI for the upload traffic. We evaluate the
performance varying with the packet size on the load balancer for
the upload traffic, which is shown in Figure 12(a). LOIS-CI extracts
the identifier and queries the keystream from the DVT, but LOIS-CI
only needs to recover the service ID and then set the destination IP
address and the port number according to the service ID. For IPsec,
it needs to first decrypt the packets, set the destination IP address
and the port number, and then encrypt the whole packet, causing

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

—
[6)]

—LOIS-DI (64B)
-6-LOIS-DI (128B)

LOIS-DI (256B)
\+LOIS-DI (1024B)

0

o

o

2

2

10

2 4 —“—|Psec (64B) [
2

g5

Q

S

* + +

z o0

a0 200 400 600

of services

Figure 13: Performance varying with # of services

D5

a +—L0IS (64B) " e—IPsec (64B)

S | <LOIS (128B) +—IPsec (128B)
o) L IPsec (256B)
B 10

(@]

£ ;
[}

& 5

[$]

S o

Q

2 !
3

o

10" 102 10 10*
of clouds

Figure 14: Performance varying with # of clouds

higher overhead. Results show that LOIS-CI only incurs about 0.1x
overhead compared to IPsec.

Performance of SI for the upload traffic. We evaluate the
performance varying with the packet size on the server for the
upload traffic. Figure 12(b) shows the average latency. We can find
that LOIS-SI brings low overhead on the server, while IPsec incurs
higher overhead because the server needs to decrypt the whole
received packet. The result shows that LOIS-SI only takes 0.12x-
0.22x of IPsec’s time for the operation on the server. Combining the
total latency on LOIS-DI, LOIS-CI, and LOIS-CI, LOIS only needs
0.10x-0.20x of IPsec’s time for the upload traffic.

Number of services. We evaluate the performance of LOIS-DI
for the upload traffic varying with the different number of services.
We generate packets with target services using a uniform distri-
bution. The packet size is set to be 64 bytes, 128 bytes, 256 bytes,
and 1024 bytes. Figure 13 shows the results. We can find that the
packets processing rate is stable for packets with 128 bytes, 256
bytes, and 1024 bytes, showing that LOIS scales well with the num-
ber of services for larger packets. For small packets with 64 bytes,
the performance slightly decreases with more services. Because
more packets need to be processed per second on LOIS-DI, access-
ing identifiers and keystreams with more services increases the
processing time. LOIS-DI still outperforms IPsec on small packets
with 64 bytes.

Number of clouds. This part evaluates the performance for
the upload traffic varies with the number of clouds. For LOIS, the
client requests a total eight services from each cloud. Each service is
assigned 1024 periodically updated keystreams. For IPsec, the client
creates sessions with every cloud. Figure 14 shows the performance
for packets with 64 bytes, 128 bytes, and 256 bytes. Results show
that LOIS outperforms IPsec, because IPsec needs to encrypt packet
headers and payload, bringing considerable computation overhead.

363

Minmei Wang, Shougian Shi, Xiaoxue Zhang, Song Han, and Chen Qian

£15 15

& —=-LOIS (64B) " [[=Lois (e4B)

= ~<-LOIS (1288) 2 |l<-Lois (128B)

° LOIS (2568) & ||-+-Lolis (2568)

510 o IPsec (64B) O 1091e-IPsec (64B) [¢

D s & o[> IPsec(128B) 5 ||-IPsec (128B)

g 2

2 \ =)

2

g 5 s 3 5“
g E b >,]
o E e e e o4
2

20 0

x

' 102 10 10* ' 102 10 10*

of clients # of clients

(a) Packets processing rate (b) Throughput

Figure 15: Performance of LOIS-CI varying with # of clients

I

—=|Psec
-©-LOIS
Vanilla

w

Average Latency (us)
n

64 256 512 768 1024
Packet size (B)

Figure 16: Average latency for the download traffic

400

EEm Upload EEE Download

ns)

(
~ w
o 1<}
S3 S}

=
o
o

Average latency

o

Sleep sensor Mixed traffic

Figure 17: Average latency on Raspberry Pi 3

LOIS with 64 bytes has a performance degradation when the number
of clouds is larger than 100, because obtaining keystreams with
more clouds will influence the performance when the number of
packets to be processed is large.

Number of clients. Since each cloud serves many clients con-
currently, this part evaluates the performance varying with the
different number of clients. For LOIS, each client requests a total of
eight services. Each service is assigned 1024 periodically updated
keystreams. As the packet size for IoT traffic is small, we show pack-
ets’ performance with 64 bytes, 128 bytes, and 256 bytes. Figure 15
shows the result. We can find that LOIS outperforms IPsec, achiev-
ing >2x packets processing rate and throughput. More clients in-
fluence the table size in LOIS-CI. The lookup throughput decreases
with more keystreams in the table, as shown in Figure 10(b). There-
fore, for small packets (64 bytes and 128 bytes), the performance
will decrease with more clients (>100). Because querying the table
to get the corresponding keystreams to recover packets will domi-
nate the performance when the number of packets that need to be
processed per second is large with smaller packet sizes. Although
the performance of LOIS on 64-byte packets and 128-byte packets
has an oblivious decrease with a larger table, it still outperforms
IPsec by a big margin.

LOIS: Low-cost Packet Header Protection for loT Devices

Average latency for the download traffic. This part evaluates
the total latency caused by LOIS and IPsec for the download traffic.
For LOIS, the packet is sent from the server and then directly sent
to the target device. LOIS-SI hides sensitive fields, and LOIS-DI
recovers the packet. The packet needs to pass through the load
balancer to get protection from VPN tunnel 1 and VPN tunnel 2,
incurring larger overhead for IPsec. Results are shown in Figure 16.
We can find that LOIS requires 0.10x-0.20x time compared to IPsec,
showing the efficiency of LOIS. And the download traffic of LOIS
does not pass through the load balancer, saving network bandwidth
on the load balancer.

7.3 Performance on IoT traffic

This section evaluates the performance on the real IoT traffic, of
which the packet size is small. Figure 18(a) shows the result on the
traffic of Withings sleep sensor. Its distribution of packet size is
shown in Figure 1. Besides, we adopt one-day IoT traffic data from
[26], which contains network traffic of 28 unique IoT devices. Then
we utilize the packet size information from this mixed traffic to
evaluate the performance, as shown in Figure 18(b). We evaluate
the average latency for these two datasets on LOIS-DI, LOIS-CI,
and LOIS-SI respectively. Both results show that LOIS bring small
computational overhead and outperforms IPsec on real IoT traffic.
In addition, we test the average latency of LOIS-DI for the upload
traffic and the download traffic using the real IoT traffic dataset
on the Raspberry Pi 3 testbed and present the result in Figure 17.
Result show that LOIS incurs about 300 ns—365 ns average latency
on the device for one packet.

7.4 Memory cost

This part evaluates the memory cost for LOIS, as shown in Figure 19.
We consider keystreams for the bidirectional traffic. LOIS-DI stores
unused identifiers and keystreams of its requested services for the
upload traffic. Besides, LOIS-DI stores identifier-to-keystream map-
pings for the download traffic because it needs to recover hidden
fields for the download traffic. Since LOIS-DI only needs to store a
small number of keystreams, LOIS introduces a low memory over-
head on LOIS-DI, requiring about 0.15MB for 10* keystreams, as
shown in Figure 19(a). In LOIS, CI stores mappings from identifiers
to keystreams and services in the DVT, its memory cost is shown
in Figure 19(b). Since each keystream is only used once, one so-
lution to further reduce the memory cost on CI is to generate a
small number of keystreams for each client and periodically update
keystreams. Here, we do not count the memory cost on LOIS-CI
for data structures used for keystream deduplication because these
data structures are only used in the keystream generation stage,
which can be stored in the slow memory. SI stores identifier-to-
keystream mappings for the upload traffic and unused <identifier,
keystream> pairs for the download traffic. However, SI only stores a
small number of keystreams for its provided service, decreasing the
memory cost in practice. Besides, memory is not a limited resource
on servers.

8 DISCUSSION

Security analysis. Since passive adversaries try to infer sensitive
information from the traffic, the first step is to separate the traffic

364

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

sec EEE LOIS EEE Vanilla sec EEE LOIS B Vanilla

Average latency (ns)
Average latency (ns)

DI Cl Sl DI Cl Sl

(a) Withthings sleep sensor (b) Mixed IoT traffic

Figure 18: Performance on IoT traffic

7§ 150

—=-SI
~e-Cl
ﬂ]
100
5
1!(JJ Sk Tiok 00k 1M 1om
0 aKeK 9K10l

eystreams # of keystreams

(a) Memory cost on LOIS-DI

o

Memory (MB)
3

Memory (M

0.

=}

(b) Memory cost on CI and SI

Figure 19: Memory cost

for different IoT devices. In the LOIS framework, we hide the source
IP and the packet header’s target service information, preventing
on-path adversaries from separating the traffic directly from packet
headers. Simultaneously, flow information is hidden. Thus, on-path
adversaries cannot map packets into different flows according to
packet headers. For the local adversaries, packets are contained in
an inner layer of an encrypted 802.11 frame. They can group the
traffic for devices but cannot view more detailed information, such
as the service type of the traffic. For cloud adversaries, LOIS can be
adopted to prevent cloud adversaries from separating packets. LOIS
hides sensitive fields by keystreams, making it harder to separate
packets for different devices and different flows. VPN technology
exposes more information because it cannot protect the sender’s IP
address.

Deployment of LOIS. LOIS deploys the device interface LOIS-
DI directly on an IoT device, requiring modifications of end devices
and increasing the deployment difficulty for the real applications.
We first argue that the deployment of LOIS is not complex since we
only need a module to generate and manage keystreams and a mod-
ule to access and modify packet header information. Furthermore,
suppose we do not have access to modify end devices. In that case,
LOIS-DI can be deployed on a local server or any programmable
network middlebox, such as a Wi-Fi access point or gateway router.
In this setting, LOIS-DI will manage multiple IoT devices. LOIS-DI
performs the same steps as that is deployed on the device. But LOIS
does not prevent attacks against local adversaries that sit on the
path from the device to the network device that deploys LOIS-DI. At
the same time, if we want to adopt the VPN technology, we will also
deploy the client side on a local server or a middlebox. Compared
to the VPN-based method, LOIS brings a small overhead and thus
achieves a better throughput, as discussed in the evaluation part.

10TDI *23, May 09-12, 2023, San Antonio, TX, USA

Information leakage from keystreams. Keystreams are gen-
erated by pseudorandom number generators, not leaking sensitive
information to passive adversaries.

9 RELATED WORK

As IoT devices typically collect sensitive data and communicate
with their service providers, user privacy attracts a lot of attention.
Ren et al. [24] perform a multidimensional analysis of information
exposure from 81 devices in labs environment. Mazhar et al. [19]
present a measurement study of smart home IoT devices in the
wild by collecting real-world network traffic from more than 200
devices, showing that smart home IoT devices are susceptible to
user behavior tracking.

IoT device classification and identification. Researchers
classify and identify IoT devices by analyzing the IoT traffic
[20, 22, 23, 25-27]. Paper [26] develops a multi-stage machine learn-
ing based classification algorithm to identify specific IoT devices
based on the IoT traffic from a smart environment containing 28 dif-
ferent IoT devices. Paper [23] introduces a probabilistic framework
for device identification. PINGPONG [27] automatically extracts
packet-level signatures for device events from IoT traffic to detect
the device or specify corresponding events.

Traffic analysis attack. The analysis of IoT traffic brings the
possibility of attacks to IoT devices [7, 9, 12]. Paper [9] finds that
IoT traffic rates can reveal potentially sensitive user interactions
even when the traffic is encrypted, leading attackers to detect user
behaviors. Paper [7] presents a user activity inference attack by
which a passive adversary can infer user behaviors from analyzing
traffic metadata. To defend against traffic analysis attack, paper [8]
proposes four strategies to protect smart home privacy from passive
adversaries. One strategy is to tunnel all smart home traffic through
a virtual private network (VPN) to prevent device identification
and user behavior inference attack. One of the limitations of a
VPN-based strategy is that it cannot protect user privacy against
passive adversaries after VPN endpoints. And the VPN technology
decreases the packet processing rate. Another strategy is to apply
traffic shaping to hide the traffic pattern. The independent link
padding algorithm (ILP) [15, 29] can shape bidirectional traffic rates
to a predetermined rate or schedule. Padding traffic to form fixed-
size packets with constant packet intervals is the simplest form of
ILP. A recent work [7] proposes a stochastic traffic padding (STP)
algorithm to hide traffic pattern.

10 CONCLUSION

We present a keystream-based LOIS framework to protect user pri-
vacy by hiding IoT packet headers. LOIS includes the keystream
management module, the packet header modification module, and
the traffic analysis defense module. We implement the LOIS frame-
work on commodity servers running in a public cloud. Results show
that LOIS achieves a better throughput compared with IPsec, and
brings small overhead for every packet. In addition, we implement
LOIS-DI on a Raspberry Pi 3 to evaluate the computation over-
head on LOIS-DI for bidirectional traffic. Results show that LOIS-DI
incurs about 300 ns—-365 ns latency on the device for one packet.

365

Minmei Wang, Shougian Shi, Xiaoxue Zhang, Song Han, and Chen Qian

11 ACKNOWLEDGEMENT

M. Wang is supported by University of Connecticut startup funding.
M. Wang, X. Zhang, S. Shi, and C. Qian were partially supported by
National Science Foundation Grants 1750704, 1932447, and 2114113.
And C. Qian was partially supported by the Army Research Of-
fice and was accomplished under Grant Number W911NF-20-1-
0253. The views and conclusions contained in this document are
those of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the Army
Research Office or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein. S. Han
was partially supported by National Science Foundation Grant CNS-
1932480.

REFERENCES

[1] [n.d.]. CloudLab. https://www.cloudlab.us/.

[2] [n.d]. Google admits its new smart speaker was eavesdropping on
users. https://money.cnn.com/2017/10/11/technology/google-home-mini-
security-flaw/index. html.

[n.d.]. Intel DPDK: Data Plane Development Kit. https://www.dpdk.org.

] [n.d.]. IPsec. https://doc.dpdk.org/guides-16.04/sample_app_ug/ipsec_secgw.
html.

[n.d.]. Pktgen-DPDK. https://github.com/Pktgen/Pktgen-DPDK/.

Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus Miet-
tinen, Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi, and Selcuk Uluagac.
2020. Peek-a-Boo: I see your smart home activities, even encrypted!. In Proc. of
ACM WiSec. 207-218.

Noah Apthorpe, Danny Yuxing Huang, Dillon Reisman, Arvind Narayanan, and
Nick Feamster. 2019. Keeping the smart home private with smart (er) iot traffic
shaping. Proc. of PoPETs 2019, 3 (2019), 128-148.

Noah Apthorpe, Dillon Reisman, and Nick Feamster. 2017. Closing the blinds:
Four strategies for protecting smart home privacy from network observers. arXiv
preprint arXiv:1705.06809 (2017).

Noah Apthorpe, Dillon Reisman, and Nick Feamster. 2017. A smart home is no cas-
tle: Privacy vulnerabilities of encrypted iot traffic. arXiv preprint arXiv:1705.06805
(2017).

Hamidreza Arasteh, Vahid Hosseinnezhad, Vincenzo Loia, Aurelio Tommasetti,
Orlando Troisi, Miadreza Shafie-khah, and Pierluigi Siano. 2016. Iot-based smart
cities: a survey. In Proc. of IEEE EEEIC. 1-6.

Hanhua Chen, Liangyi Liao, Hai Jin, and Jie Wu. 2017. The dynamic cuckoo filter.
In Proc. of IEEE ICNP. 1-10.

Bogdan Copos, Karl Levitt, Matt Bishop, and Jeff Rowe. 2016. Is anybody home?
Inferring activity from smart home network traffic. In Proc. of IEEE SPW. IEEE,
245-251.

Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. 2016. Maglev: A Fast and Reliable Software Network Load
Balancer. In Proc. of USENIX NSDIL

Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.
2014. Cuckoo filter: Practically better than bloom. In Proc. of ACM CoNEXT.
75-88.

Xinwen Fu, Bryan Graham, Riccardo Bettati, Wei Zhao, and Dong Xuan. 2003.
Analytical and empirical analysis of countermeasures to traffic analysis attacks.
In Proc. of IEEE ICPP. 483-492.

Rohan Gandhi, Hongqiang Harry Liu, Y. Charlie Hu, Guohan Lu, Jitendra Padhye,
Lihua Yuan, and Ming Zhang. 2014. Duet: Cloud scale load balancing with
hardware and software. Proc. of ACM SIGCOMM.

M Shamim Hossain and Ghulam Muhammad. 2016. Cloud-assisted industrial
internet of things (iiot)-enabled framework for health monitoring. Computer
Networks 101 (2016), 192-202.

Minhaj Ahmad Khan and Khaled Salah. 2018. IoT security: Review, blockchain
solutions, and open challenges. Future Generation Computer Systems 82 (2018),
395-411.

M Hammad Mazhar and Zubair Shafiq. 2020. Characterizing Smart Home IoT
Traffic in the Wild. arXiv preprint arXiv:2001.08288 (2020).

Yair Meidan, Michael Bohadana, Asaf Shabtai, Juan David Guarnizo, Martin
Ochoa, Nils Ole Tippenhauer, and Yuval Elovici. 2017. ProfilloT: a machine
learning approach for IoT device identification based on network traffic analysis.
In Proc. of ACM SAC. 506-509.

—_
_

=
N

=
&

(14]

[15

=
&

(17]

[18

[19]

[20

LOIS: Low-cost Packet Header Protection for loT Devices

[21] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
Silkroad: Making stateful layer-4 load balancing fast and cheap using switching
asics. In Proc. of ACM SIGCOMM. 15-28.

[22] Markus Miettinen, Samuel Marchal, Ibbad Hafeez, N Asokan, Ahmad-Reza
Sadeghi, and Sasu Tarkoma. 2017. Iot sentinel: Automated device-type iden-
tification for security enforcement in iot. In Proc. of IEEE ICDCS. 2177-2184.

[23] Jorge Ortiz, Catherine Crawford, and Franck Le. 2019. DeviceMien: network de-
vice behavior modeling for identifying unknown IoT devices. In Proc. of ACM/IEEE
IoTDI. 106-117.

[24] Jingjing Ren, Daniel] Dubois, David Choffnes, Anna Maria Mandalari, Roman
Kolcun, and Hamed Haddadi. 2019. Information exposure from consumer iot
devices: A multidimensional, network-informed measurement approach. In Proc.
of ACM IMC. 267-279.

[25] Mustafizur R Shahid, Gregory Blanc, Zonghua Zhang, and Hervé Debar. 2018.
Tot devices recognition through network traffic analysis. In Proc. of IEEE BigData.
IEEE, 5187-5192.

[26] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi, Adam Radford,
Chamith Wijenayake, Arun Vishwanath, and Vijay Sivaraman. 2018. Classifying

366

[27

[28

[29

[30

[31

]

]

]

1oTDI °23, May 09-12, 2023, San Antonio, TX, USA

IoT devices in smart environments using network traffic characteristics. Proc. of
IEEE TMC 18, 8 (2018), 1745-1759.

Rahmadi Trimananda, Janus Varmarken, Athina Markopoulou, and Brian Demsky.
[n. d.]. Packet-Level Signatures for Smart Home Devices. Signature 10, 13 ([n.d.]),
54.

Rahmadi Trimananda, Janus Varmarken, Athina Markopoulou, and Brian Demsky.
2019. PingPong: Packet-Level Signatures for Smart Home Device Events. arXiv
preprint arXiv:1907.11797 (2019).

Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. 2015.
Vuvuzela: Scalable private messaging resistant to traffic analysis. In Proc. of ACM
SOSP. 137-152.

Minmei Wang, Mingxun Zhou, Shougian Shi, and Chen Qian. 2019. Vacuum
filters: more space-efficient and faster replacement for bloom and cuckoo filters.
Proc. of the VLDB Endowment 13, 2 (2019), 197-210.

Serena Zheng, Noah Apthorpe, Marshini Chetty, and Nick Feamster. 2018. User
perceptions of smart home IoT privacy. Proc. of ACM HCI 2, CSCW (2018), 1-20.

