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ABSTRACT

Troubleshooting cellular service issues at the per-UE (User Equip-

ment) level is an essential task for cellular providers. However, di-

agnosing service issues at per-UE level is costly because it requires

advanced expertise and in-depth inspection of massive network log

data. This paper presents NeTExp, a generic and comprehensive

data-driven approach to automatically troubleshoot cellular service

issues reported by customers. NeTExp determines whether the root

cause of a user-reported service issue is from the network side

or the device side through deep neural networks, which extract

complex spatial-temporal feature profiles from massive network

log data. The system is trained and validated using an extensive

period of network and customer care data from a major cellular

service provider in United States. We also present a case study on an

external event that caused cellular service issues in 2020 to demon-

strate the effectiveness of NeTExp on detecting network issues and

identifying network-issue-related root causes at per-UE level.
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1 INTRODUCTION

An essential task of cellular carriers is providing reliable and high-

performance cellular services for end-device users. In order to guar-

antee reliability and improve users’ experience, the carriers need

to resolve service outages or performance degradation issues expe-

rienced by customers. In practice, the issues could be attributed to

a variety of reasons, such as network outages/maintenance, device

provisioning errors, mobile phone hardware/software bugs, and

external events. Many automated functions have been deployed

in the current operating cellular networks to monitor the network

status and proactively detect the on-going or potential network

failures (such as outages or anomalies) [2, 11, 15]. Those systems

can effectively detect network issues that impact multiple users in

the affected area.

Despite the effectiveness of those proactive issue detection sys-

tem, not all service issues experienced by the individual customers

can be properly solved through the proactive systems. There could

still be issues that are user device-specific, such as the problems

from the specific user equipment, user device provisioning issues,

and there is always the possibility of a network impairment going

undetected but impacting the quality of the specific user’s experi-

ence. In addition, even if the network issue has been known by the

provider, the provider also needs to respond to customers about

those known issues and resolve their concerns. As a complemen-

tary method, upon experiencing those cellular service degradation

issues, one traditional way for customers to inquire about and re-

solve an issue is to actively contact the customer care services and

report the experienced issues. Then the service provider can re-

spond accordingly regarding known network issues, or reactively

investigate the root causes and help customers resolve the problems

as timely as they can.

The customer reported issues are typically resolved in two phases:

the customer interaction phase and the ticket resolution phase. The

customer interaction phase is a troubleshooting process where the

customer engages directly with a care agent and receives diagno-

sis and resolution immediately over phone calls or online chats.

However, not every customer-reported issue can be resolved in the

customer interaction phase. More complicated issues that cannot

be resolved during the customer interaction phase will then be sent

to tier-2 support teams (e.g., device team, network support team)

in the format of customer trouble tickets. In the ticket resolution
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phase, the ticket is routed to a tier-2 team based on the initial as-

sessment of the possible root causes of the issue. It is possible that

the initial assessment of the root cause of a ticket is not accurate,

and the ticket can be routed through multiple teams before it is

successfully resolved.

One key metric to measure the effectiveness of the customer

care service is the resolution time for customer-reported issues. To

reduce the resolution time, it is critical to (i) minimize the time

spent on inspecting the problem and identifying the root cause

during the live conversation between the customers and the agents,

(ii) minimize the number of customer tickets that need to be sent to

tier-2 support teams, and (iii) minimize the number of tier-2 teams

that a ticket is routed through before it is resolved. Therefore, an

automatic system that can timely and explicitly tell the root cause

(i.e., whether the problem is from the network or device side) of

the user-reported issue at the early stage of the troubleshooting

process can significantly help reduce the average end-to-end issue

resolution time cost. For example, if we can quickly determine that

a reported issue is related to a known root cause, then there is no

need to create a ticket for further investigation. If we can determine

a reported issue is not related to any known event and is likely to

be network related (instead of device related), then the ticket will

be routed directly to the network support team for resolution. It is

important to note that these decisions need to be made at per user

device level.

However, existing automatic cellular network troubleshooting

methods [4, 10–13, 22, 28, 31] cannot perfectly meet the above de-

mand, because they are designed to detect network failures only

in the cell-level scope. Namely, they mainly focus on detecting the

network problems that potentially cause the emergence of the ser-

vice issues in an area, rather than responding to every individual

customer’s inquiry in a reactive manner during a live care contact.

The key challenge for the latter cases is that the issues and the ex-

perience scenarios of every individual customer are highly diverse

due to a large number of personalized factors of the customers and

the areas. The convolution and correlation of these factors make

the problem even more complicated. To fill this gap, we propose

a generic and comprehensive data-driven troubleshooting system

called NeTExp (Network Troubleshooting Expert) for identify-

ing the root cause of user-reported issues in the online reactive

troubleshooting phase. NeTExp can automatically answer the key

question in the customer interaction phase: whether the root cause

of a service issue reported by the customer is a network problem. To

answer this question, NeTExp also needs to determine (1) whether

there are any network anomalies that impacted the user in the

corresponding serving cells, and (2) whether the user-side symp-

toms correlate with those network anomalies nearby. Designing

and implementing such an automatic system is challenging because

1) jointly modeling the cell-level events and user equipment (UE)

level events is difficult as it includes complex spatial and temporal

context among cells to cells and cells to UEs; 2) there is no suffi-

cient ground truth resolution data, which is expensive to obtain; 3)

the unique features of the cells and the individual customers fur-

ther complicate the problems. In this paper, we address the above

challenges by utilizing and customizing advanced machine learn-

ing methods that are capable of modeling the complex cell-to-cell

and cell-to-UE network state correlations. In addition, we apply

Account Health Check

Provisioning Status Check

Online Customer Interaction
Solved

Unsolved

Network Support Team

Tier-2 Ticket Resolution

Network Issue Check

Device Issue Check

Challenging!

Device Support TeamFollow-up 
contact

Figure 1: A summary of the troubleshooting process.

the domain knowledge and experiences of running a nationwide

cellular network on engineering the features, training the models,

and validating the systems. Our contributions are summarized as

follows:

(1) We propose a generic framework for automatic service trou-

bleshooting in cellular networks that significantly improves the

network problem identification rate and reduces troubleshooting

costs.

(2) We make the first attempt to jointly model the complex cor-

relation of the network conditions among the neighboring cell sites

and their impacts on the UE of the areas using customized deep

learning tools.

(3) We evaluate the system using massive network log data and

care data from a large US cellular provider. We also apply the model

to study a historical network problem.

The rest of the paper is organized as follows. Section 2 presents

the statement of the problem. The system design is illustrated in

Section 3. Section 4 shows the evaluation results. A case study

is presented in Section 5. Practical concerns for the system are

discussed in Section 6. Section 7 provides the related works.

2 PROBLEM STATEMENT

2.1 Reactive cellular service issues
troubleshooting

Upon experiencing cellular service degradation, customersmay con-

tact the customer care of the service provider to report and resolve

their issues. The reactive troubleshooting and resolution process

often consists of two phases: the customer interaction phase and the

ticket resolution phase. A summary of the whole process workflow

is illustrated in Fig. 1. During the customer interaction phase, the

customer actively speaks to an agent through care calls or online

chats. The agent will go through a sequence of designated steps

to troubleshoot the service issue while the customer is engaged

in the conversation. These troubleshooting steps involve checking

customer account status, verifying provisioning status, determin-

ing if the customer is impacted by any known events, examining

device configuration setting and performing other device-specific

diagnoses. While most service issues can be resolved in the cus-

tomer interaction phase, some service issues may need in-depth

investigation before a root cause can be identified. These remain-

ing services issues can be either network- or device-related. The

agents will create customer trouble tickets and dispatch them to the

Tier-2 support teams for offline inspection. During the customer

ticket resolution phase, the inspection often requires gathering and
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Figure 2: Example scenarios of network issues.

analyzing measurement data over a time period at both the local

network level and individual mobile device level. Depending on the

complexity of the issues, the ticket resolution phase usually takes

hours to days.

2.2 Challenges in troubleshooting

While some troubleshooting tasks (e.g., checking account and pro-

visioning status) can be executed by software in an automated fash-

ion, troubleshooting network- or device-related issues are largely

manual due to the following challenges.

First, troubleshooting a service issue at per user equipment (UE)

level is inherently complex. There are a variety of causes of service

degradation, including different types of network issues and device

issues, many of which produce similar symptoms (such as Internet

connection failures, voice call drops, slow data rates, etc.). Therefore,

diagnosing based on the UE-side symptom itself is insufficient to

identify the root causes. It is particularly challenging to discover

the service issues caused by non-fatal or partial network-side or

device-side issues. Some of these service issues can be intermittent

or chronic. Therefore, precisely determining the root cause of each

service issue often requires applying advanced domain knowledge

in analyzing a massive volume of network data.

Second, it is not straightforward to discover some network prob-

lems on the cell level and estimate the scale of the impacted users

and areas. Fig. 2 illustrates two example network issue scenarios in

LTE networks. In Fig. 2 (A), the cell site 𝐶3 is experiencing service

degradation due to a radio access network (RAN) outage. Conse-

quently, a large portion of UEs that were originally served by 𝐶3

are handed over to its neighboring cell sites 𝐶2 and 𝐶4, which also

causes congestion on 𝐶2 and 𝐶4 and impacts the experience of the

customers in those areas. In scenario (B), a network issue happens

in the core network. The problem may influence the service per-

formance in a wide area. The examples in Fig. 2 (B) show that the

impact of a network problem may not only influence the corre-

sponding cells but also propagate to further cells, which makes it

challenging to correlate user tickets with some known network

issues. In addition, since different network issues present diverse

anomaly and propagation patterns, it requires a decent understand-

ing of the event patterns and their correlation among the neigh-

boring cell sites to figure out the impact of a network problem

regarding the user-level quality of experience (QoE).

Third, only a small portion of customers report their service is-

sues. Most customers never contact care support upon experiencing

a service issue. Depending on the type and severity of service issues,

some customers wait for a period of time before they contact cus-

tomer care. The information provided by customers regarding their

Dataset Short Description

Care Contact
Log

Logs for the interaction phase. Include

the time, issue type, resolution, etc.

Trouble Tickets
Handled by the Tier-2 team. Include

the expert resolutions for hard cases.

Cell-level
Network Log

Real-time KPIs of the cell sites.

Collected at eNodeB or gNodeB.

UE-level
Network Log

Cellular session log for each UE.

Includes user ID, time, duration, the

accessed cell sites, and session status.

Table 1: Summary of datasets.

service issues can be ambiguous or inaccurate. Due to the high vari-

ance of users’ behaviors, many issues need extensive investigation

efforts.

2.3 Learning-based troubleshooting

In this paper, we design a learning-based troubleshooting tool that

aims at assisting customer care agents during the customer inter-

action stage. The major objective is recognizing whether the root

cause of the issue is from the network side. In addition, the system

can also help tier-2 support teams during the ticket resolution stage

to identify the possible cell site(s) that caused the service degrada-

tion experience on the user side. Thus, the system can significantly

reduce the manual investigation involved in the troubleshooting

process and hence reduce the overall resolution time.

Table 1 lists the data sources that are widely used or gener-

ated during the troubleshooting phases of the state-of-the-practice

framework described in section 2.1. The data mainly includes histor-

ical customer care contact log and ticket details, and cell/UE-level

network statuses such as cell site Key Performance Indicators (KPIs)

and user session states. The cell-level KPIs used in this paper include

the average number of Radio Resource Control (RRC) connections

(which reflects the temporary user population), and the average

utilization ratio of the Control Channel Elements (which reflects

the congestion status). We design the data-driven automatic trou-

bleshooting system by learning from the above data. In this work,

the datasets are obtained from a large cellular service provider in

the US. For privacy reasons, all datasets are anonymized to remove

any user identifying or personal information.

3 SYSTEM DESIGN

3.1 System overview

We design a learning-based troubleshooting framework NeTExp as

shown in Fig 3. NeTExp includes two major modules: (i) a proactive

cell-level network state prediction model and (ii) a reactive UE-level

troubleshooting inference model. The proactive cell site level model

predicts the likelihood of a cell site to have network issues that

impact customers in the covered cells. The UE-level model infers

whether a customer-reported service issue is network-related.

During the training phase, the cell-level prediction model is

trained using historical usages, user mobility, performance metrics

at the cell site level, and customer care contact and ticket data.

The UE-level inference model is trained using the output of the

cell-level prediction model, the historical UE level usages, user
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Figure 3: Overview of NeTExp.

mobility, performance metrics, and the customer care contact and

ticket data. During the inference phase, the cell-level prediction

model proactively predicts the cell sites that are having customer-

impacting issues and quantifies the severity of the problem based

on the real-time usages and cell site level performance metrics data.

Upon receiving a customer contact reporting a service issue, the

UE level inference model will take the cell site level prediction

on current customer-impacting network issues in the related cells

and current UE level usage, mobility, performance metrics to infer

whether the customer reported service issues is caused by network-

related issues.

Different from prior works, the cell-level model fully considers

the interaction among neighboring cell sites, and the UE-level model

is the first reactive network issue diagnosis method that is based

on the perspectives from both the UE side and serving cell site side,

and how the two-side states match each other. This will not only

help customer care agents to create a trouble ticket and dispatch it

to the corresponding support team for resolution, but also provide

network support team enriched information to prioritize and focus

on the right cell site for investigation and resolution.

3.2 The cell-level model

3.2.1 Feature modeling. Learning the correlation and interaction

between the neighboring cell sites is important for cellular data

analysis [25, 26, 35, 39], which is also challenging as it depends on

many real-world factors, such as the local distribution of UEs and

cell sites, the mobility of the customers, geographic features, and

carrier types. To solve this challenge, we design a graph model to

represent the interaction between cell sites and propose using the

graph convolutional neural network (GCN) [8, 24, 33, 36] to jointly

learn the cell site node features and their correlation.

Specifically, the graph model is shown in Fig.4. In the graph

𝐺 , each node represents a cell site and each edge represents the

proximity (weight) between the two neighboring cell sites. The

proximity can be defined in multiple ways and is discussed later.

On each cell site vertex in the graph, the network condition is

represented with a time-series feature acquired by sliding a feature

extraction window through the streaming cell-level network log

data.

Assume the pair-wise proximity among the 𝑘 cell sites can be

quantified by a 2-D adjacent matrix 𝐴𝑘×𝑘 (where each entry 𝑎𝑖, 𝑗
represents the proximity weight from node 𝑖 to node 𝑗 ), let 𝐺 =<
𝑉𝑘×𝑚×𝑤 , 𝐴𝑘×𝑘 > represent the graph, where 𝑉 is the 𝑘 ×𝑚 time-

series features of the 𝑘 vertices (i.e.,𝑚 feature channels for each

node, and each channel has time-window length𝑤 ). Through aGCN

layer, the feature on each cell site is recomputed by aggregating the

features of itself and the other cell sites in the graph. For example,

a typical GCN aggregation rule is defined as:

𝐻 (𝑙+1) = 𝜎 ((𝐼𝑛 − 𝐷− 1
2𝐴𝐷− 1

2 )𝐻 (𝑙)𝑊 (𝑙) ), (1)

where 𝐻 (𝑙) is the node-wise feature input to the layer 𝑙 ( 𝐻 (0) = 𝑉 ),

𝑊 (𝑙) is a trainable weight matrix that decides how the adjacency

matrix 𝐴𝑘×𝑘 participates in the aggregation of the features, 𝜎 is a

non-linear activation function, 𝐼𝑘 − 𝐷− 1
2𝐴𝐷− 1

2 is the normalized

graph Laplacian, 𝐼𝑘 is an identity matrix, 𝐷 is the diagonal degree

matrix with 𝐷𝑖𝑖 =
∑

𝑗 𝐴𝑖, 𝑗 .

In addition, the temporal feature (i.e., 𝐻 (𝑙) ) of the time-series

network log data for the cell sites can be encoded by the 1D-CNN

layers:

ℎ
(𝑙+1)
𝑐 = 𝜎𝑡 (ℎ (𝑙)𝑐 ◦𝑊 (𝑙)

𝑡 ), (2)

where ℎ
(𝑙)
𝑐 is the time-series feature input of one cell site 𝑐 in the

graph (ℎ
(0)
𝑐 is the raw input feature),𝑊

(𝑙)
𝑡 is the 1-D temporal CNN

kernel, ◦ is the 1-D convolution operation, and 𝜎𝑡 is the activation
function. Through the two types of the convolution operations,

the model is cable of extracting features with complicated spatial-

temporal context. The detailed DNN architecture is explained in

section 3.2.3.

A natural way to quantify the proximity in the adjacent matrix

𝐴𝑘×𝑘 is using the distance among the cell sites [39]. However, we

find that distance is not representative enough since the base station

selection of mobile devices depends on not only distance but many

other factors, such as the geographic features, the density of the

cell sites, mobility, etc. Therefore, we propose a new measure for

adjacency matrix quantification: the average number of jointly

served UEs by the two cell sites in unit time. This metric is

mainly inspired by the key observation that abnormal state propa-

gation among the cell sites is mainly caused by the hand-offs when

a network problem happens to one cell site. Thus, this metric can

be a good estimation of how much traffic will be handed off to a

neighboring cell sites when network problems happen on one cell

site, and is a high-level product of all other unique physical factors

in the local area. More importantly, the metric values are easy to

obtain by grouping the historical UE-level network log data with

time intervals, (anonymous) user IDs, and cell site IDs.

3.2.2 The alternative learning target. NeTExp is required to identify

the root causes of the user-reported issues at the per-case level.

Therefore, it is ideal to use the manual resolution result of each

user’s case as the end-to-end learning target. However, it is too

costly to identify the whole population of the users impacted by

the network issues in practice (including the majority who do not

contact the care upon experiencing an issue). Manually selecting

and labeling additional cases from the vast user population is rather

expensive. Thus, we can only obtain a limited number of ground

truth troubleshooting results labeled and verified by expert human

agents. The lack of large-scale ground truth data makes it difficult

to train a DNN that learns from the high-dimensional data with

tremendous spatial and temporal context.

To solve this challenge, we adopt the ideas fromweakly-supervised

learning and transfer learning [21, 37, 40]. Specifically, NeTExp uses

an alternative learning target to pre-train the cell-level model (the
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heavy part of the overall NeTExp system): how likely the cell

is experiencing a UE-impacting network event at each times-

tamp 𝑡 . Although the model with the alternative target cannot

directly answer whether a reported issue is a network-side issue, it

is expected to provide the high-level representation of the network

performance status for the related cell sites, which is an essential

insight for case-specific troubleshooting according to experienced

troubleshooting operators.

We take the following steps to build the transferred learning tar-

get: for each customer, we retrieve the 7-day historical UE network

log records before the care contact time, and obtain a set of cell sites

that are frequently accessed by the users. Those cell sites are called

the “reference” cell sites for this UE. Then we aggregate the total

number of customer contacts within a unit time interval by each

reference cell site. The aggregation results provide an idea of how

many service issues are reported for each reference cell site in each

unit time interval. Thus, the intensive gathering of service issues

for a reference cell site usually implies network issues in the corre-

sponding cells. Similarly, we measure the aggregation numbers of

the service issues that are diagnosed as network issues through the

customer interaction phase and the ticket resolution phase using

the ground truth troubleshooting tickets of the two phases, which

provide extra dimensions about the scale of the influenced users in

the area. In this way, we associate the network status observations

with the number of tickets received by the customer care services.

Unlike existing works that detect network anomalies based on the

KPI values, this method is more focused on recognizing the events

that impact the QoE of the end-users.

The learning target uses three vectors for each cell site 𝑐 : 𝑁𝑐 (𝑡),
the number of total service issues over time; 𝑅𝑐 (𝑡), the number of

network issues identified during customer interaction; and 𝑆𝑐 (𝑡),
the number of network issues detected through ticket resolution.

If a network issue happened on a cell site (or on its neighbors), a

significant increase of 𝑁𝑐 , 𝑅𝑐 and 𝑆𝑐 can usually be observed shortly
after the issue occurrence time. An example of such case is shown

in the top chart of Fig. 5 (in day 2 and day 3 compared with day 1).

Based on this observation, the new learning target, i.e., the likeli-

hood of network issues for the cell site 𝑐 , can be quantified using

𝑁𝑐 , 𝑅𝑐 , and 𝑆𝑐 . Specifically, we use the 1-D Gaussian Probability

Density function 𝐺 (𝑡, 𝜎) = 1
𝜎
√
2𝜋

exp (− 𝑡2

2𝜎2 ) and compute the con-

volution of density kernel and the measurement vectors over the

time dimension:𝐺 (𝑡, 𝜎) ◦ 𝑁𝑐 (𝑡),𝐺 (𝑡, 𝜎) ◦ 𝑅𝑐 (𝑡) and𝐺 (𝑡, 𝜎) ◦ 𝑆𝑐 (𝑡).
Then the overall transferred learning target is defined as a weighted

sum of the three density vectors:

𝑌 (𝑡) = 𝛼𝐺 (𝑡, 𝜎) ◦ 𝑁𝑐 (𝑡) + 𝛽𝐺 (𝑡, 𝜎) ◦ 𝑅𝑐 (𝑡) + 𝛾𝐺 (𝑡, 𝜎) ◦ 𝑆𝑐 (𝑡) (3)

We normalize 𝑌 (𝑡) and let 𝑌 (𝑡) saturate at 1 to make the likeli-

hood values in the range [0, 1] and resolve the population-dependent
differences. An example of the normalized 𝑌 (𝑡) is shown in the bot-

tom chart of Fig. 5. 𝛼 , 𝛽 , and𝛾 are decided empirically and should be

adjusted based on the effectiveness of the practical troubleshooting

phases (𝑁𝑐 , 𝑅𝑐 , and 𝑆𝑐 ) in the wild. Specifically, we look into the

known network problems in the history and check the z-scores of

𝑁𝑐 , 𝑅𝑐 , and 𝑆𝑐 during the network issue periods. A larger z-score

indicates the corresponding measurement is more important. For

example, for our studied cellular provider, we use 𝛽 ≥ 𝛾 > 𝛼 , since
the network issue tickets (from both online and offline phases) are

more accurate network issue indicators than the total number of

care calls.

3.2.3 Model design and training. Fig.7 shows the overall design of

the cell-level model to encode the graph-based cell-level features.

The neural network is inspired from the STGCN[38] architecture.

The whole cell-level model is used as a feature extractor to learn

the cell-level features for each local area. A local area refers to the

cells covered by the 𝑘 neighboring cell sites. In the input feature

matrix of height 𝑘 , the first𝑚×𝑤 feature slice refers to the features

of the cell site that directly carries the target UE, while the rest

𝑘 − 1 slices are the features of its nearest neighbors ordered by

the edge proximity. Once trained, the whole model parameters are

consistent for different areas in a large market.

In the input layer,𝑚 time-series network KPIs are used as the

input features. For the real-number KPI values, we first smooth the

data with moving average to denoise the data. Since the traffic loads

and capabilities of the cell sites are highly diverse, the KPI data

is normalized before being fed for learning. One evident feature

for the cell-level KPI data is that the pattern of the KPI time series

repeats every 24 hours because of the similar daily traffic patterns.

Therefore, we normalize the KPI data by: 𝑠𝑡 = 𝑠𝑡
𝑠 (𝑡 𝑚𝑜𝑑 𝑇 ) , where

𝑠𝑡 is the observed KPI at timestamp 𝑡 of the global clock, and 𝑠𝑖
represents the expectation of the KPI of the 𝑖th timestamps of a day

based on the historical data, 𝑇 is the number of total timestamps in

a day. Thus, the normalized KPI 𝑠𝑡 represents that at a particular
timestamp (𝑡 𝑚𝑜𝑑 𝑇 ) of the day, how the observed KPI compares

with the expectation of the KPI for the same time of the day. This

normalization method is effective for the KPIs that reflect or are

related to traffic loads. For example, Fig. 6, shows the raw and

normalized average Radio Resource Control (RRC) connections

for the same cell site in Fig. 5. The normalization method makes
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Figure 7: Model design of the cell-Level model.

the abnormal network KPIs (in day 2) highly distinguishable. The

abnormal RRC KPI states in day 2 of Fig. 6 can well explain the

increase of issue reports in day 2 and day 3 of Fig. 5. Thus, this

normalization method is an effective outlier detection module to

highlight the abnormal KPI values for a given timestamp of the day.

Next to the input layer are the two ST-Conv blocks (as shown

in Fig.7) that can encode the spatial-temporal features. In each ST-

Conv block, the feature of each cell site is fed into a 1-D temporal

CNN layer (Eq.2) with the gated linear units (GLU)[3] as the ac-

tivation. Then the processed features of all cell sites in the local

graph are aggregated using a spatial GCN layer (Eq.1). The GCN

block is then followed by another temporal CNN layer for each

cell site of the graph to generate the feature representation of the

network conditions 𝐻
𝑘×𝑔×𝑤𝑙

𝑙
, where 𝑔 is the number of kernels in

the last 1-D CNN layer and𝑤𝑙 is the resampled window size. After

the two ST-Conv blocks, the model flattens the feature matrix over

the time channel and use a fully connected (FC) layer with kernel

size ℎ to compute the (𝑘 ×ℎ)-D feature representation 𝐻𝑘×ℎ
𝐹𝐶 of the

network conditions on the 𝑘 cell sites for the sampled timestamp.

Thus, 𝐻𝑘×ℎ
𝐹𝐶 can be used as the extracted feature for the network

conditions of the local area at a given time.

In the output layer, the model uses a regression loss function to

learn the target 𝑌𝑘 of the 𝑘 cell sites in the local area. The mean-

square-error (MSE) loss is used for training:

𝐿(𝐻𝑘
𝑜 (𝑡), 𝑌𝑘 (𝑡 + 1)) = 1

𝑘

∑

𝑖

(ℎ𝑖𝑜 (𝑡) − 𝑦𝑖 (𝑡 + 1))2 + 𝜆𝐿2, (4)

where𝐻𝑘
𝑜 (𝑡) is the output of the model with the input time window

that ends at time 𝑡 , 𝑌𝑘 (𝑡 + 1) is the transferred learning ground

truth of the sampled 𝑘 cell sites at 𝑡 + 1, ℎ𝑖𝑜 (𝑡) and 𝑦𝑖 (𝑡 + 1) are the
𝑖th entry of 𝐻𝑘

𝑜 (𝑡) and 𝑌𝑘 (𝑡 + 1), and 𝜆𝐿2 is the L2 regularization
term of the trainable parameters. The model is trained with Adam

optimizer [14].

In our implementation, the four Temporal 1-D Gated-Conv layers

of the two ST-Conv Blocks have 32, 16, 8, 4 CNN kernels respectively.

The size of each kernel is 4, namely, the perceptive field length of

the first CNN layer is 20 minutes. The number of neurons ℎ in the

feature embedding layer is set as 8. Our validation results show that

larger model size provides limited accuracy improvement but more

memory cost and overhead. Since our model is executed on CPU

servers rather than GPU servers (due to data access restrictions),

and the model should learn the network states in real-time for tens

of thousands cell sites, we do not choose to use a larger model

configuration. The selection of the two key parameters of the input
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Figure 8: Design of the UE-Level model.

layer, i.e., 𝑘 and𝑤 , is discussed in Section 4.3. After training using

the transferred target, NeTExp freezes the parameters of the model.

Then it feeds the learned 𝐻𝑘×ℎ
𝐹𝐶 and 𝐻𝑘

𝑜 to the UE-level model as

the high-level feature representation of the cell site performance

status.

3.3 The UE-level model

The UE-level model is the direct interface for the care agents to

learn whether a reported problem is a network-side issue or a

device-side issue. Besides the patterns of the UE network logs[20],

another important feature is the temporal correlation of the UE-

level service errors and the cell-level anomaly states. Thus, we

design the UE-level model such that it learns from the features in

both aspects.

UE-level features. Based on the historical data session logs

for each individual UE, we can create the UE-level feature profiles

for learning. Specifically, for each customer who contacts the care,

we retrieve the data session logs (time/duration of the session, the

accessing cell sites, and the categorical session status) for the target

UEs. Then we can create a session usage pattern feature matrix

𝑈𝑛×𝑤′
𝑑

for each UE 𝑑 , where 𝑛 represents the 𝑛-dimension one-hot

encoding of the session status, and𝑤 ′ is the historical feature time

window size for UE-level trouble inspection. In addition, based on

the cell site that the data session is connected with, we use a detailed

break-down of session usage features 𝐵
(𝑘′×𝑛)×𝑤′
𝑑

for the top 𝑘
′
cell

sites that are most frequently accessed by each device 𝑑 . In our

implementation we use 𝑘
′
= 5 . According to our measurement

over a nationwide cellular network for several weeks, the top 5

cell sites contributed to 86% of the cellular sessions and 91% of the

usage time on average for each customer. Thus, if a user suffers

from a network problem, the cell sites that are responsible are most

likely among these top 5 cell sites.

Cell-level features of the reference cell sites. For effective

troubleshooting, NeTExp correlates the UE-level profile features

with the network status of the top 𝑘
′
reference cell sites. To achieve

this goal, NeTExp creates a cell-level profile for the reference cell-

sites by using the learned features from the cell-level model, namely,

𝐻𝑘×ℎ
𝐹𝐶 and 𝐻𝑘

𝑜 . For each UE, NeTExp looks back a 1-week historical

time window and construct the corresponding feature profiles. The

extracted UE-level and cell-level features are concatenated over

the time dimension for temporal correlation learning. The feature

engineering method of the UE-level model is shown in Fig. 8. In the

left side of Fig. 8, NeTExp applies the pre-trained cell-level model

(Fig. 7) and uses a sliding window to extract the cell-level profile
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features over the one week history. The stride of the sliding window

is 1 hour.

Modeling and training. The final decision-making model is

a CNN classifier that contains several 1-D temporal CNN layers

(Eq.2), followed by two fully connected layers with a softmax layer

at the end. The learning target is whether the UE’s problem is

caused by a network-side issue or a device-side issue. Then the UE-

level model is trained as a binary classifier using the case-specific

manual resolution results from the troubleshooting log data. Since

the UE-level model has a much smaller parameter size and only

contains a few 1-D CNN layers, it is much easier to train than the

cell-level model. Thus, the model can be properly trained using the

limited ticket resolution data.

4 EVALUATION

4.1 Datasets

In our experiments, we use nationwide datasets collected from a

major US cellular service provider over an extensive period. Specifi-

cally, we use the care contact log data (logs for the customer interac-

tion phase) and the trouble ticket data (logs for the ticket resolution

phase) as the learning ground truth. In total the dataset includes

over 237,000 of care contact records and over 38,000 of customer

trouble tickets that reported service problems. All care data in-

stances are used for training via the weakly-supervised learning

method and evaluating the cell-level model (Section 4.3). Addition-

ally, we use around 19,000 customer care reports where the root

causes of the issues are verified to validate the effectiveness of the

end-to-end reactive UE-level troubleshooting (Section 4.4). More-

over, we use the average number of Radio Resource Control (RRC)

connections, and the average utilization ratio of the Control Chan-

nel Element (CCE) as the cell-level KPI features. The cell-level KPIs

are collected for the cell sites that can be associated with the UEs in

the customer care datasets. Specifically, for each UE, we first find

the top 𝑘
′
= 5 cell sites that have most frequently served the UE in

the past 7 days before the care call. Then for each serving cell site,

we also collect the historical KPI data for its top 𝑘 neighboring cell

sites to build the local cell site node graph. In addition, we extract

the UE-level features from the UE cellular session log data. Each log

record represents one cellular session, ending with a termination

code that indicates why the session is closed. There are 12 distinct

codes in our dataset, each of which can be used as a categorical

feature that describes the session status. Some example status code

include “Normal”, “RAT Change” (the radio access technology is

changed), “No up/down-link Data Used”, etc. In total, more than 325

million UE-level network log records are processed for engineering

the UE-level features.

4.2 An example illustration

In Figs. 9, 10, and 11, we use a real example to illustrate the behaviors

of NeTExp for handling a specific case. In this example, a customer

contacted the customer care and reported service performance

degradation. The root cause was not identified after a long period

interaction between the customer and the agent.

We then use NeTExp to analyze the root cause of this case. Fig. 9

and Fig. 10 illustrate the RRC KPI and CCE Utilization KPI time

series of the relevant cell sites for the past 7 days before the care

contact occured. The raw RRC data series are normalized to [0, 1]
using min-max normalization for visualization. The “D1” to “D7”

on the X axis represent the first to the seventh days of the historical

window used for issue inspection. In the top panels of Fig. 9 and

Fig. 10, “R1” and “R2” represent the top two cell sites that were

most frequently accessed by the user in the past week. From these

panels along, we could observe a noticeable increase of connected

users (the RRC KPI) and traffic load (the CCE KPI) on R1 during

day 6 and 7 compared with the earlier days. The changes are less

noticeable on R2. However, those abnormal patterns themselves

do not necessarily indicate anomalies on those cell sites, as similar

patterns could also be observed in other scenarios such as the

gathering of people (e.g., live concerts, sport matches) in the cells.

Next, the cell-level model also investigates the neighboring cell

sites of R1. Fig. 9 and Fig. 10 show the KPIs of the top 4 cell sites

in R1’s neighborhood, i.e., “1st NB” to “4th NB”, which are ranked

by the graph weights (proximity) to R1 (R2 is the “2nd NB”). The

figures show that “1st NB”, i.e., the closest cell site, had an outage

during day 6 and 7, while the other further neighbors looks normal.

Clearly the KPI patterns on R1 were affected by the outages in the

neighborhood, although no outage were identified on R1. By using

the graph-based model, the cell-level model correctly learns the

increasing network issue risk for R1, as shown in the top panel of

Fig. 11.

The bottom panel of Fig. 11 shows the session states of the past

7 days for the UE. The rectangles represent the intervals of the

cellular sessions of the UE that were carried by each of the two

major reference cell sites R1 and R2. Specifically, “Other / Idle”

means the device was carried by other cell sites or the device was

idle, “R1/R2 Normal” means the sessions with R1/R2 were closed

normally, “R1/R2 RAT” means the radio access technology (RAT)

was changed. The simultaneous session occupations with R1 and

R2 represent that the device was handed off from one to another

cell site. By correlating the top and bottom panels of Fig. 11, we

can infer that: (1) After the occurrence of the outages (day 6 and

7), the total session length with R2 was significantly reduced and

the device was mostly carried by R1. The changes might be due to

the network setting updates for resolving the nearby outages. (2)

R1 was significantly impacted by the outages in the neighborhood

according to the cell level model predictions. From the raw KPI

data, we can now infer many other devices nearby were also moved

to R1 from their original serving carriers. (3) Along with the carrier

changes, the RAT was degraded due to the congestion on R1. Thus,

the strong temporal correlation between the cell-level states and

UE-level states indicates the root cause of the reported issue was

indeed a network problem, which could also be learned by NeTExp

using the feature modeling methods in Section 3. In this example,

the root network failures were on the neighboring cell sites rather

than the major cell sites that served the user. However, as the impact

of outages propagated, the actual influenced population size was

larger than expected. In fact, the propagation of the network failure

impact is usually triggered by the fault tolerance mechanism in

current cellular networks. By handing over the customers from the

problematic cell site to its neighboring towers, it can dramatically

reduce the customer impact of eNodeB/gNodeB failures, although

it may cause some congestion on the neighboring cell sites.
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4.3 Evaluation for the cell-level model

For the cell-level model, we split the cell-level network log data

into two parts: we use 2/3 of data for training and 1/3 of data for

validation. The mean-absolute-error (MAE) and the model time

costs are used as the metrics. Then we analyze the model from both

the spatial and temporal dimensions as follows.

Analysis on the spatial dimension. In the spatial dimension,

we want to figure out howmany neighboring cell sites (𝑘−1) should
be considered when predicting the likelihood of network issues in

the cells centered by a target cell site. We fix the historical window

size 𝑤 of the KPI data as 12 hours. Then we train the cell-level

model with different graph sizes, ranging from 𝑘 = 1 to 𝑘 = 30,

where 𝑘 is the total number of cell sites considered for prediction in

the area. For comparison, each model is trained with 10,000 batches

and each batch contains 256 samples of the data window samples.

The model is trained and executed on a 64-core CPU cluster. The

whole training process on the CPU server takes around 2-10 hours

for different 𝑘s. We randomly select 10,000 cell sites, and measure

the mean absolute error (MAE) and the average inference delay

(the inference cost for a single cell site at a single timestamp) of

the cell-level models. The comparison of different 𝑘s is shown in

Fig.12. The result shows that the model yields much higher training

errors when 𝑘 = 1, namely, it fails to learn the target well when

only the target cell site is considered. The results suggest that the

interaction of neighboring cell sites is an important feature when

analyzing network issues on the cell level. In addition, Fig.12 shows

that the model does not improve if more than 5 neighboring cell

sites are included in consideration, while the inference latency

grows linearly with 𝑘 . The observation suggests that the transition

of the abnormal states indeed exists but only among the nearest

neighboring cell sites. The fault tolerance mechanism of cellular

networks can dilute the impact of a single network fault on distant

cells.

Analysis on the temporal dimension. We next show how

the historical window size 𝑤 impacts the cell-level model. In our

evaluation, we set 𝑘 = 5 and change the window size𝑤 from 1 hour

to 96 hours. We use the similar training and evaluation strategy as

discussed above. The comparison result is shown in Fig. 13. The re-

sult illustrates that the model accuracy improves when longer time

windows are used. The training and validation errors significantly

reduce when𝑤 = 48 hours. As𝑤 grows larger than 48 hours, the

errors only reduce marginally. Hence, the historical data beyond 48

hours is less important for inferring current network issues. With

𝑤 = 48 and 𝑘 = 5, the model takes less than 3 ms for inferring the

network state of one cell site on the CPU server.

4.4 Evaluation of the UE-level model

We evaluate the root cause diagnosing performance of NeTExp

using the real historical care contact data introduced above. Specif-

ically, the system is evaluated by 5-fold cross validation and is

compared with 5 other baseline diagnosis models. The training of

NeTExp for each fold takes around 20 minutes to get converged. A

brief introduction of the baselines is as follows:

ICCA (auto) [20]: ICCA is a state-of-the-art cellular issue di-

agnosis system. It extracts the most discriminative UE-level event

sequential patterns based on information gains by creating a model-

based search tree [5] with PrefixSpan [9]. A Gradient Boosting

Decision Tree (GBDT) [6] model is then applied for classification.

In addition, ICCA [20] also uses manually annotated features which

are not available to us. For fair comparison, we only compare the

automatic feature extraction and learning modules of ICCA.

Fisher Score + KNN:We compute the fisher scores [7] of the

cell-level and UE-level features profiled by NeTExp with respect to

the root cause categories and select the top𝑛 discriminative features

for classification. We search the optimal 𝑛 in range [5, 1000] and
select 𝑛 = 150. Then a k-nearest neighbor (KNN) classifier is used

for classification.

SRC [32]: SRC (Sparse Representation-based Classification) cre-

ates a feature library with profiles of the training data. At inference

stage, the model reconstructs the input feature profile of the queried

instance through the sparse encoding of the feature library. Then

the decision is made by selecting the root cause category that mini-

mizes the reconstruction error with the optimal coefficients.

CNN with only Cell-level or UE-level features: We apply

the same CNN classification model introduced in Section 3.3 while

using the extracted features from only cell-level or UE-level ob-

servations, in order to illustrate the importance of the extracted

features from both sides for troubleshooting.
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Figure 15: Overall RoC curve.
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Figure 17: RoC - hard cases.

Learning time costs of the compared models.We used the

same CPU cluster to train the compared models. In the (offline)

training phase, the major time cost is the feature learning time.

Specifically, NeTExp (with 𝑘 = 5 and 𝑤 = 48) needs around 8

hours of training to get a converged cell-level model for network

condition feature learning. As a DNN model, NeTExp is expected

to be significantly faster for training on GPUs. ICCA (with a 3-hour

historical window and 10-layer model-based search trees) needs

around 3.5 hours to train the PrefixSpan search tree for feature

learning. The time cost for training a binary classifier using the

learned features is much smaller. Specifically, the UE-level CNN

model in NeTExp takes around 6 minutes, the GBDT model in

ICCA takes around 5 minutes, the “Fisher score + KNN” model

takes around 6 minutes for training. The inference time cost of all

above models is at milli-second level and thus is neglectable for the

application use case. The “SRC” model does not need to be trained,

while it takes around 0.7 seconds for encoding each instance at

inference.

The overall 5-fold validation results (Accuracy, F1-score, RoC-

AUC) are shown in Fig. 14. The result shows that NeTExp outper-

forms other baseline methods for different classification metrics. In

addition, as a much simpler and distance-based model, Fisher Score

+ KNN with the features learned by NeTExp also yields good classi-

fication results. This shows that the feature engineering methods in

NeTExp provide discriminative features for root cause classification.

Fig. 15 presents the ROC curves of the compared methods, where

the network-side issue is the “positive” class. The “cross” mark in

the figure represents the ratio of network problems that could be

manually identified during the online troubleshooting phase. Since

many non-outage network issues are difficult to be timely recog-

nized, the recall of the manual network issue identification is low

(less than 25%). For the rest 75% cases, the issues are eventually

resolved through offline inspection. The result clearly shows that

NeTExp significantly improves the recall of the network identi-

fication without introducing a large fraction of “false positives”.

Note that some “false positives” may not be real negatives (i.e.,

non-network-related issues). This is because that not all network

issue cases were successfully identified due to the limitations of the

traditional troubleshooting procedures being used in practice. In

Section 5, we will show a case study for this type of tickets.

Fig. 16 and 17 present the breakdowns of the performance for

different groups of troubleshooting samples. Specifically, we divide

the dataset into two subsets based on whether the ticket (if it is

network-related) was eventually resolved in the customer interac-

tion stage (the “easier” cases) or in the ticket resolution stage (the
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“harder” cases). The results show that the features learned from

the cell-level data can only work well for identifying the “easier”

network issue cases (e.g., a direct network outage), while they fail

to work well for the “harder” cases (e.g., indirect issues or chronic

issues). On the other hand, the UE-level features can well describe

the symptoms on individual user device regardless the types of

the network issues. But the symptom on UE-side itself is insuffi-

cient for locating the problem, as different problems may produce

similar symptoms. Therefore, NeTExp, which correlates both the

cell-level and UE-level observations, provides best network issue

detection performance. Fig. 18 and Fig. 19 present the accuracy

and the ROC-AUC scores of the models for different categories of

service problems. The results show that NeTExp outperforms the

baseline methods for all different issue categories.

4.5 System efficiency

To understand the feasibility of deploying NeTExp into the existing

online customer service framework, we evaluate the end-to-end

responding time cost of NeTExp for individual queries. We break-

down the end-to-end time cost of the NeTExp inference module

into four parts: (1) Log query delay: the cost to read the 7-day his-

torical UE-level logs from database on disk. (2) UE-feature delay:

The cost to parse the UE-level logs, extract the top 𝑘 relevant cell

site IDs, and create the UE-level feature profiles. (3) cell-feature

delay: The cost to obtain the cell-level model features for the cor-

responding cell sites and time windows. (4) ML-model delay: The

cost for the execution of the UE-level CNN model for inference.

We simulate the online query process using 1000 random historical

care contacts from a market with more than 2 million users and

measure the delay of each components for this market. The average,

90𝑡ℎ and 95𝑡ℎ percentiles of the time costs of different components

are presented in Table 2. The results show that the longest delay is

the UE-level network log query delay. The reason is that the UE-

level network log data for a million-scale user population market
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Log query UE-feature Cell-feature ML-model

Avg. 11.45 0.073 0.061 0.058

90𝑡ℎ 15.29 0.13 0.080 0.063

95𝑡ℎ 17.46 0.15 0.086 0.066

Table 2: The average, 90𝑡ℎ and 95𝑡ℎ percentiles of the time

costs (in seconds) of NeTExp components.

is rather massive and cannot by loaded entirely to memory. Thus,

the record searching and disk I/O cost for reading the log data of a

particular user dominates the end-to-end online process. This part

of cost can be further optimized by using faster storage, customized

database systems, or a memory cache that prefetches the profiles

of the users who are likely to contact the care by forecasting [28].

In addition to the data I/O cost, the feature engineering and model

execution costs are neglectable for a live phone call conversation.

Taking account of the large I/O cost, the average end-to-end delay

is still less than 20 seconds, while a customer care contact usually

takes a few minutes or longer. Thus, the inference results generated

by NeTExp can well assist the care agent at early stages of the care

calls.

5 CASE STUDY

Weperform a case study to show howNeTExp can help troubleshoot

service degradation issues in practice for a cellular provider. Specif-

ically, we apply our system to analyze an external incident that

caused network issues in the U.S. in 2020. During the event period,

some areas that were directly affected by the incident experienced

network outages, while other areas were indirectly affected due to

network changes and maintenance work after the incident.

Fig. 20 shows the distribution of the network-related care con-

tacts in a heatmap and the distribution of the cell sites that are

considered to experience network problems (the small blue dots) on

Google Map. Specifically, the intensity of the heatmap reflects the

aggregated number of care contacts that are thought to be network-

related in unit area based on the ground truth troubleshooting

log data of those few days. Fig. 21 shows the same measures based

on the results of NeTExp. In Fig. 21, a cell site 𝑐 is considered to

have a network issue during the outage if max𝑡 𝐻
𝑐
𝑜 (𝑡) > ℎ̂. The

parameter ℎ̂ is determined by the analysis of the detection recall, as

shown in Fig. 22. Specifically, in Fig. 22, by tuning ℎ̂, we show the

recall of the cell-level issue detection as a function of the percent-

age of the detected cell sites over the whole market (i.e., |𝐶𝑑 |/|𝐶 |,
where |𝐶𝑑 | is the number of the cell sites that are considered to

have network problems, and |𝐶 | is the number of all cell sites). The

optimal curve is the green dotted line, which corresponds to the

“perfect” detection result based on the ground truth positions la-

beled in Fig. 20. We select the ℎ̂ at the “Threshold” point in Fig. 22,

which gives around 75% recall with near to 0 false positive rate.

The comparison between Fig.20 and Fig.21 demonstrates that the

model accurately learns the impacted locations and how the impact

propagated crossing multiple states.

In addition, from Fig.20 and Fig.21, we find that the model-based

method tends to recognize more tickets as network-issue related

(the positive class). The extra positive instances that are recognized

as network problems become the “false positives” using the manual

results as the “ground truth” data. However, we find that some “false

positives” (FP) are not truly false but due to incomplete/incorrect

ground truth data. To better understand the decisions of NeTExp,

we show three representative examples from different categories

(true positive (TP), FP, and false negative (FN)). In the top charts

of Figs. 23, 24, and 25, we visualize a selected representative UE-

level feature for the three cases, as well as the 7-day time-series of

the learned cell-level model feature 𝐻𝑐
𝑜 (𝑡) of their top-1 reference

cell site. The bottom charts show the number of care contacts

(aggregated for every 3 hours) for the top-5 reference cell sites in

the area. The “Outage ts” and the “CC ts” represent the time when

the external incident occurred and the time when the customer

contacted care.

For customer A, the model infers a network issue, which is a TP

case according to the ground truth. The UE-level KPI shows that the

device was in abnormal states (the device cannot maintain a stable

session) for a period before the care contact time. The temporal

consistency of the cell-level and UE-level features demonstrates

how the model makes the correct decision. However, the detailed

troubleshooting log shows that the customer’s issue was not im-

mediately resolved during the customer interaction phase and was

eventually resolved by the ticket resolution phase with a longer

delay. Thus, NeTExp can help to significantly reduce the delay of a

correct response.

Customer B’s case shows a “false positive” example. From the

trends of the cell-level model predictions and the growth of the

care contacts in the local cells, and their close correlation with

the UE-level “Credit Drop” failure patterns, we infer that the root

cause is indeed a network problem. However, according to the

detailed log data, the customer’s problem was not resolved during

the customer interaction phase, neither was there a troubleshooting

ticket generated. Thus, this case study shows a mislabeling case

in the ground truth data. In fact, we find this type of case is not

unique in our dataset, as the raw care contact log data could be

incomplete and noisy due to the difficulty to verify the correctness

of the resolutions. Still, NeTExp learns to make correct decisions

despite the noise in the training/validation data.

Customer C’s case shows a “false negative” decision. The model

fails to detect a network issue, although we can manually observe

a subtle growing trend of the learned cell-level feature and the

number of daily care contacts. We infer the model fail to make a

correct prediction because of the inconsistency between the UE-

level features and the cell-level features. Specifically, the UEwas not

able to build data sessions for many days until the past hour before

the customer contacted care, which does not match the expected

timeline of the outage impact. After inspecting the detailed care

contact log, we learn that the customer just activated a new device,

which explains why the UE-level network log shows no data session

in the earlier days until the hour before the care contact. However,

NeTExp does not capture this context from the data, and thus makes

an incorrect decision.

Summary of the results. The evaluation results show that NeT-

Exp can more accurately identify the root causes of the individual

tickets for different types of network issues and UE-side symp-

toms. The short end-to-end troubleshooting latency of NeTExp

enables early detection of root causes during the customer inter-

action phases. However, due to the shortages of ground truth and
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Figure 20: Manual: heat map and issue

positions.

Figure 21: NeTExp: heat map and issue

positions.
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Figure 22: Recall of cell-level

issue detection v.s. |𝐶𝑑 |/|𝐶 |.

0

1

CS
 P

re
d Hc

o(t)
UE KPI

Outage ts
CC ts

No Sess

Normal

Day 7 Day 5 Day 3 Day 10

5

#
 o

f C
CL

s

Outage ts
CC ts

# of CCs

Figure 23: Example case A.
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Figure 24: Example case B.
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Figure 25: Example case C.

presence of odd corner cases, NeTExp is not a system that can

fully replace the manual troubleshooting framework introduced in

Section 2.1. Instead, NeTExp should be used as a complementary

block in the existing framework to provide reasonable directions

and data-driven insights to support the manual troubleshooting

process, and thus to help to improve the troubleshooting efficiency

and reduce the manual efforts needed to get every customer’s query

properly addressed.

6 DISCUSSION

6.1 Model updating for unseen scenarios

NeTExp needs to be updated as cellular network configurations and

application scenarios change. We summarize the possible network

changes and discuss how NeTExp should be updated or retrained.

Traffic pattern changes. The traffic pattern observed in a local

cell changes along with the network changes or user behavior

changes (e.g., the changes due to the COVID-19 pandemic [34]).

Thus, it is necessary to keep monitoring the recent local network

KPI patterns and updating the rolling average of the KPIs at each

timestamp of the day for effective data normalization. In addition,

the model can be periodically fine-tuned using the recent data.

Graph changes.As a generic model that can fit for different sub-

graphs, NeTExp retraining is not necessary forminor graph changes

(e.g., adding/removing cell sites, or updating the proximity weights),

whereas the input graph matrix should be updated accordingly.

However, if the graph updating is market-wise and dramatic, for

example, the cellular provide decides to shut down all 3G services

and activate more 5G towers in batch, both the cell-level and UE-

level models should be retrained using the new graphs and network

measurement data.

New KPI counters. Our current model is trained using the KPI

counters available to us, while new other counters or performance

metrics might be available in the future. Those new measurements

can be easily added as the additional input channels for automatic

feature learning using the DNN models, whereas the DNNs need

to be retrained.

Model overfitting.We used datasets collected on nationwide to

train and evaluate the system in order to mitigate model overfitting.

Still, we acknowledge that the model trained using the data from

one particular cellular provider may not necessarily work well

for another provider given different network scales and use-case

scenarios. Thus, the model should be retrained for the change of

scenarios.

6.2 Dataset grainularity

The cell-level KPIs used in NeTExp are aggregated and computed

in every 5 minutes. Although finer KPI granularity is preferred

for fine-grained and accurate network anomaly detection as the

data can provide detailed information about jitters, it also requires

significantly higher cost to collect, manage, and retrieve the data,

and engineer the temporal features with the ML models, especially

for a nationwide scale network. Since most users are not sensitive to

temporary short network jitters (unless the issue is highly repeated,

which can be easily captured) and customers usually do not contact

customer care immediately after experiencing a minor issue (for

example, a stall in video streaming), it is not necessary to use very

fine-grained data.

6.3 Corner cases and model fairness

Corner cases. Unlike manual troubleshooting, the automatic sys-

tem cannot fully capture the comprehensive real-world context

of some complicated corner cases. Besides the corner case exam-

ple illustrated in the case study (Customer C, i.e., a newly acti-

vated device), some other corner case factors could be: unregis-

trated/mismatched IMEIs (UE IDs), unsupported device models,

coverage issues in indoor areas, cloud server issues / congestions

on the Internet, intentional interference by nearby attackers, etc.

Therefore, if the automatic system fail to make a reasonable diag-

nosis, the system should roll back to corresponding specialists for

manual troubleshooting.

ML fairness. Machine learning based troubleshooting systems

may display fairness issue for minor groups or individuals because

the model is trained to minimize the loss for the distribtuion of
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the entire training dataset rather than individual instances [19].

Despite the fairness issues, the model that yields good accuracy at

distribution level can still significantly benefit the customer care

workflow by automatically handling most cases and reducing the

average end-to-end time/manual effort cost for resolving problems.

However, some odd cases still need to be rolled back to or cross-

validated by manual troubleshooting. We will further study the

fairness problem of ML-based cellular network troubleshooting

systems in our future work.

6.4 Fine-grained root cause identification

In this work, the root cause classification is at a coarse level (i.e.,

whether is issue is from network side or device side). This binary

classification result can easily fit into the state-of-the-practice trou-

bleshooting workflow (as illustrated in section 2.1) and currently

is a fundamental need by many cellular providers. On the other

hand, as a highly representative DNN model, NeTExp learns the

high level feature mapping from the raw network observations and

generates insightful feature profiles, which provides the potential

for fine-grained root cause identification. Unfortunately, due to the

shortage of fine-grained troubleshooting ground truth data, it is

rather challenging to train and validate the ML model. A possible

category of solution is to apply unsupervised or weakly-supervised

learning methods integrated with domain knowledge and manual

rules. We will continue to explore this problem in our future study.

7 RELATEDWORKS

7.1 Data-driven network troubleshooting
methods

Along with the tremendous growth of the market for heterogeneous

access networks and end devices in the recent decade, manual trou-

bleshooting strategies have become less scalable to the growing de-

vice population. Thus, automatic device and network troubleshoot-

ing methods that are based on the massive network operation log

data or customer care log data have attracted more attention by the

service providers and network research community. For example,

some data-driven methods use network log and/or trouble ticket

data to detect the network anomalies [2, 4, 10–13, 15, 16, 23, 28].

IBM research [4] proposes using a random forest model to predict

whether a user will contact the care. CableMon [10] is another

learning-based system that can proactively detect network faults in

the cable broadband network. Iyer, et al. [11] design a system that

is specialized on detecting the RAN issues in the cellular network.

All the above existing works target on training a proactive model

that can forecast the trend of the emerging network problems or

detect anomalies on the network level. However, they cannot di-

rectly resolve the user-specific issues in the customer interaction

phase. ICCA[20] is the closest work to NeTExp. However, it only

uses the UE-level network logs, while the correlation of cell-to-cell

and cell-to-UE network states is ignored.

PACE [28] is another automatic cellular service troubleshooting

system that focuses on the events of user device level. It solves a

binary classification problem: it proactively predicts which users are

impacted by a service problem and are likely to contact the customer

care as a result of such issues. The focus of this system is prioritizing

repair actions for users that are likely to call care. Therefore, this

model is trained using data from users whose issues can be resolved

using the automated actions that the PACE framework can invoke.

On the other hand, our work is primarily used to identify the root

cause for users whose issues are non-trivial and therefore need

manual debugging. Therefore, the feature engineering and learning

methods used by PACE are not ideal for identifying root causes of

specific service problems. First, PACE only uses user-level events

to describe the symptoms of the service while ignoring service

anomalies in the network level which may reflect the root cause.

However, different root causes may result in similar symptoms

from users’ perspective. In addition, the XGBoost model [1] used

in PACE is trained based on the ground truth data labeled by the

fact whether a user contacted the customer care and triggered a

predefined action, which is easy to obtain. Nevertheless, similar

model trainingmethod can hardly be used for root cause recognition

because the ground truth labels are much more expensive to obtain.

Another type of approach focuses on understanding customers’

feedback or free-text ticket logs using NLP models [22, 30, 31],

and diagnosis based on the described symptoms of devices. For

example, NetSieve [22] is proposed to diagnose the problem by

understanding the network trouble tickets. LOTUS [31] is a system

for identifying which customers are impacted by a local network

issue based on the care contact log texts. However, these methods

are mainly log-based instead of chatting-based, namely, the problem

could only be resolved after a ticket log is generated, rather than

during the conversation of the care contacts. This type of methods

is orthogonal and complementary to our proposed method.

7.2 ML-based cellular network data analysis

The state of the practice cellular network is getting ever larger

and more complex. As a result, there is an increasing demand for

automation in cellular network system designs [17, 18, 27, 29, 39].

In recent years, DNNs have become popular for learning cellu-

lar network data because of their high capacity of representing

spatial-temporal features [27, 29, 39]. For example, DMM [27] uses

a recurrent neural network (RNN) model to learn the traveling trace

of the UEs based on their cellular data logs. Microscope [39] adopts

a 3D Deformable Convolutional Neural Network for mobile service

traffic decomposition and network slicing.

8 CONCLUSION

We present NeTExp for automatic and reactive service issue trou-

bleshooting in cellular networks. NeTExp is a generic and com-

prehensive data-driven approach that considers both the cell site

network conditions and UE network logs, as well as their corre-

lations for troubleshooting. The system can be easily extended to

incorporate different network KPI data depending on the accessible

supporting cellular infrastructures, software, and databases. Our

evaluation with an extensive period of real-world data from a major

US cellular provider and a real-world case study demonstrates the

effectiveness of the system.
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