L)

Check for
updates

Towards Automatic Troubleshooting for User-level Performance
Degradation in Cellular Services

Xiaofeng Shi*
xs374u@att.com
AT & T Labs — Research
Bedminster, NJ, USA

Chen Qian
cqianl2@ucsc.edu
University of California
Santa Cruz, CA, USA

ABSTRACT

Troubleshooting cellular service issues at the per-UE (User Equip-
ment) level is an essential task for cellular providers. However, di-
agnosing service issues at per-UE level is costly because it requires
advanced expertise and in-depth inspection of massive network log
data. This paper presents NeTExp, a generic and comprehensive
data-driven approach to automatically troubleshoot cellular service
issues reported by customers. NeTExp determines whether the root
cause of a user-reported service issue is from the network side
or the device side through deep neural networks, which extract
complex spatial-temporal feature profiles from massive network
log data. The system is trained and validated using an extensive
period of network and customer care data from a major cellular
service provider in United States. We also present a case study on an
external event that caused cellular service issues in 2020 to demon-
strate the effectiveness of NeTExp on detecting network issues and
identifying network-issue-related root causes at per-UE level.

CCS CONCEPTS

» Networks — Mobile networks; Network manageability.

KEYWORDS
Cellular Networks, Troubleshooting, Automation

ACM Reference Format:

Xiaofeng Shi, Matthew Osinski, Chen Qian, and Jia Wang. 2022. Towards
Automatic Troubleshooting for User-level Performance Degradation in
Cellular Services. In The 28th Annual International Conference on Mobile
Computing and Networking (ACM MobiCom °22), October 17-21, 2022, Sydney,
NSW, Australia. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3495243.3560535

“Xiaofeng Shi was a phd student at University of California Santa Cruz when
major part of this work was done. Chen Qian and Xiaofeng Shi were partially supported
by National Science Foundation Grants 1750704, 1932447, and 2114113.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACM MobiCom 22, October 17-21, 2022, Sydney, NSW, Australia

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9181-8/22/10...$15.00
https://doi.org/10.1145/3495243.3560535

716

Matthew Osinski
mosinski@gmail.com
AT & T Labs — Research
Bedminster, NJ, USA

Jia Wang
jlawang@att.com
AT & T Labs — Research
Bedminster, NJ, USA

1 INTRODUCTION

An essential task of cellular carriers is providing reliable and high-
performance cellular services for end-device users. In order to guar-
antee reliability and improve users’ experience, the carriers need
to resolve service outages or performance degradation issues expe-
rienced by customers. In practice, the issues could be attributed to
a variety of reasons, such as network outages/maintenance, device
provisioning errors, mobile phone hardware/software bugs, and
external events. Many automated functions have been deployed
in the current operating cellular networks to monitor the network
status and proactively detect the on-going or potential network
failures (such as outages or anomalies) [2, 11, 15]. Those systems
can effectively detect network issues that impact multiple users in
the affected area.

Despite the effectiveness of those proactive issue detection sys-
tem, not all service issues experienced by the individual customers
can be properly solved through the proactive systems. There could
still be issues that are user device-specific, such as the problems
from the specific user equipment, user device provisioning issues,
and there is always the possibility of a network impairment going
undetected but impacting the quality of the specific user’s experi-
ence. In addition, even if the network issue has been known by the
provider, the provider also needs to respond to customers about
those known issues and resolve their concerns. As a complemen-
tary method, upon experiencing those cellular service degradation
issues, one traditional way for customers to inquire about and re-
solve an issue is to actively contact the customer care services and
report the experienced issues. Then the service provider can re-
spond accordingly regarding known network issues, or reactively
investigate the root causes and help customers resolve the problems
as timely as they can.

The customer reported issues are typically resolved in two phases:
the customer interaction phase and the ticket resolution phase. The
customer interaction phase is a troubleshooting process where the
customer engages directly with a care agent and receives diagno-
sis and resolution immediately over phone calls or online chats.
However, not every customer-reported issue can be resolved in the
customer interaction phase. More complicated issues that cannot
be resolved during the customer interaction phase will then be sent
to tier-2 support teams (e.g., device team, network support team)
in the format of customer trouble tickets. In the ticket resolution

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3495243.3560535&domain=pdf&date_stamp=2022-10-14

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

phase, the ticket is routed to a tier-2 team based on the initial as-
sessment of the possible root causes of the issue. It is possible that
the initial assessment of the root cause of a ticket is not accurate,
and the ticket can be routed through multiple teams before it is
successfully resolved.

One key metric to measure the effectiveness of the customer
care service is the resolution time for customer-reported issues. To
reduce the resolution time, it is critical to (i) minimize the time
spent on inspecting the problem and identifying the root cause
during the live conversation between the customers and the agents,
(ii) minimize the number of customer tickets that need to be sent to
tier-2 support teams, and (iii) minimize the number of tier-2 teams
that a ticket is routed through before it is resolved. Therefore, an
automatic system that can timely and explicitly tell the root cause
(i.e., whether the problem is from the network or device side) of
the user-reported issue at the early stage of the troubleshooting
process can significantly help reduce the average end-to-end issue
resolution time cost. For example, if we can quickly determine that
a reported issue is related to a known root cause, then there is no
need to create a ticket for further investigation. If we can determine
a reported issue is not related to any known event and is likely to
be network related (instead of device related), then the ticket will
be routed directly to the network support team for resolution. It is
important to note that these decisions need to be made at per user
device level.

However, existing automatic cellular network troubleshooting
methods [4, 10-13, 22, 28, 31] cannot perfectly meet the above de-
mand, because they are designed to detect network failures only
in the cell-level scope. Namely, they mainly focus on detecting the
network problems that potentially cause the emergence of the ser-
vice issues in an area, rather than responding to every individual
customer’s inquiry in a reactive manner during a live care contact.
The key challenge for the latter cases is that the issues and the ex-
perience scenarios of every individual customer are highly diverse
due to a large number of personalized factors of the customers and
the areas. The convolution and correlation of these factors make
the problem even more complicated. To fill this gap, we propose
a generic and comprehensive data-driven troubleshooting system
called NeTExp (Network Troubleshooting Expert) for identify-
ing the root cause of user-reported issues in the online reactive
troubleshooting phase. NeTExp can automatically answer the key
question in the customer interaction phase: whether the root cause
of a service issue reported by the customer is a network problem. To
answer this question, NeTExp also needs to determine (1) whether
there are any network anomalies that impacted the user in the
corresponding serving cells, and (2) whether the user-side symp-
toms correlate with those network anomalies nearby. Designing
and implementing such an automatic system is challenging because
1) jointly modeling the cell-level events and user equipment (UE)
level events is difficult as it includes complex spatial and temporal
context among cells to cells and cells to UEs; 2) there is no suffi-
cient ground truth resolution data, which is expensive to obtain; 3)
the unique features of the cells and the individual customers fur-
ther complicate the problems. In this paper, we address the above
challenges by utilizing and customizing advanced machine learn-
ing methods that are capable of modeling the complex cell-to-cell
and cell-to-UE network state correlations. In addition, we apply

717

Xiaofeng Shi, Matthew Osinski, Chen Qian, and Jia Wang

Online Customer Interaction

Follow-up
contact
Device Issue Check 3
1 : d
Network Issue Check : EE
i : i
i

Solved

Account Health Check

Provisioning Status Check

Tier-2 Ticket Resolution

Device Support Team

. et <
vou“‘e“c“

Unsolved

4

Network Support Team

T
oupre T

Figure 1: A summary of the troubleshooting process.

the domain knowledge and experiences of running a nationwide
cellular network on engineering the features, training the models,
and validating the systems. Our contributions are summarized as
follows:

(1) We propose a generic framework for automatic service trou-
bleshooting in cellular networks that significantly improves the
network problem identification rate and reduces troubleshooting
costs.

(2) We make the first attempt to jointly model the complex cor-
relation of the network conditions among the neighboring cell sites
and their impacts on the UE of the areas using customized deep
learning tools.

(3) We evaluate the system using massive network log data and
care data from a large US cellular provider. We also apply the model
to study a historical network problem.

The rest of the paper is organized as follows. Section 2 presents
the statement of the problem. The system design is illustrated in
Section 3. Section 4 shows the evaluation results. A case study
is presented in Section 5. Practical concerns for the system are
discussed in Section 6. Section 7 provides the related works.

2 PROBLEM STATEMENT

2.1 Reactive cellular service issues
troubleshooting

Upon experiencing cellular service degradation, customers may con-
tact the customer care of the service provider to report and resolve
their issues. The reactive troubleshooting and resolution process
often consists of two phases: the customer interaction phase and the
ticket resolution phase. A summary of the whole process workflow
is illustrated in Fig. 1. During the customer interaction phase, the
customer actively speaks to an agent through care calls or online
chats. The agent will go through a sequence of designated steps
to troubleshoot the service issue while the customer is engaged
in the conversation. These troubleshooting steps involve checking
customer account status, verifying provisioning status, determin-
ing if the customer is impacted by any known events, examining
device configuration setting and performing other device-specific
diagnoses. While most service issues can be resolved in the cus-
tomer interaction phase, some service issues may need in-depth
investigation before a root cause can be identified. These remain-
ing services issues can be either network- or device-related. The
agents will create customer trouble tickets and dispatch them to the
Tier-2 support teams for offline inspection. During the customer
ticket resolution phase, the inspection often requires gathering and

Towards Automatic Troubleshooting for User-level Performance Degradation in Cellular Services

=477, <
X :Z:l:“e"ﬂwofk m — Core network
o EPC # issue
ervice
= B2

A‘ degradation
Internet

Internet

A Normal

(A) ARAN issue (B) A core network issue

Figure 2: Example scenarios of network issues.

analyzing measurement data over a time period at both the local
network level and individual mobile device level. Depending on the
complexity of the issues, the ticket resolution phase usually takes
hours to days.

2.2 Challenges in troubleshooting

While some troubleshooting tasks (e.g., checking account and pro-
visioning status) can be executed by software in an automated fash-
ion, troubleshooting network- or device-related issues are largely
manual due to the following challenges.

First, troubleshooting a service issue at per user equipment (UE)
level is inherently complex. There are a variety of causes of service
degradation, including different types of network issues and device
issues, many of which produce similar symptoms (such as Internet
connection failures, voice call drops, slow data rates, etc.). Therefore,
diagnosing based on the UE-side symptom itself is insufficient to
identify the root causes. It is particularly challenging to discover
the service issues caused by non-fatal or partial network-side or
device-side issues. Some of these service issues can be intermittent
or chronic. Therefore, precisely determining the root cause of each
service issue often requires applying advanced domain knowledge
in analyzing a massive volume of network data.

Second, it is not straightforward to discover some network prob-
lems on the cell level and estimate the scale of the impacted users
and areas. Fig. 2 illustrates two example network issue scenarios in
LTE networks. In Fig. 2 (A), the cell site C3 is experiencing service
degradation due to a radio access network (RAN) outage. Conse-
quently, a large portion of UEs that were originally served by C3
are handed over to its neighboring cell sites Co and Cy4, which also
causes congestion on Cy and Cy4 and impacts the experience of the
customers in those areas. In scenario (B), a network issue happens
in the core network. The problem may influence the service per-
formance in a wide area. The examples in Fig. 2 (B) show that the
impact of a network problem may not only influence the corre-
sponding cells but also propagate to further cells, which makes it
challenging to correlate user tickets with some known network
issues. In addition, since different network issues present diverse
anomaly and propagation patterns, it requires a decent understand-
ing of the event patterns and their correlation among the neigh-
boring cell sites to figure out the impact of a network problem
regarding the user-level quality of experience (QoE).

Third, only a small portion of customers report their service is-
sues. Most customers never contact care support upon experiencing
a service issue. Depending on the type and severity of service issues,
some customers wait for a period of time before they contact cus-
tomer care. The information provided by customers regarding their

718

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

Dataset Short Description

Care Contact Logs for the interaction phase. Include

Log the time, issue type, resolution, etc.
Trouble Tickets Handled by the Tl‘er-Z team. Include
the expert resolutions for hard cases.
Cell-level Real-time KPIs of the cell sites.
Network Log Collected at eNodeB or gNodeB.
UE-level ICellluilar sess1c;1]1) log for C;:ach‘UE. .
Network Log ncludes user ID, time, duration, the

accessed cell sites, and session status.

Table 1: Summary of datasets.

service issues can be ambiguous or inaccurate. Due to the high vari-
ance of users’ behaviors, many issues need extensive investigation
efforts.

2.3 Learning-based troubleshooting

In this paper, we design a learning-based troubleshooting tool that
aims at assisting customer care agents during the customer inter-
action stage. The major objective is recognizing whether the root
cause of the issue is from the network side. In addition, the system
can also help tier-2 support teams during the ticket resolution stage
to identify the possible cell site(s) that caused the service degrada-
tion experience on the user side. Thus, the system can significantly
reduce the manual investigation involved in the troubleshooting
process and hence reduce the overall resolution time.

Table 1 lists the data sources that are widely used or gener-
ated during the troubleshooting phases of the state-of-the-practice
framework described in section 2.1. The data mainly includes histor-
ical customer care contact log and ticket details, and cell/UE-level
network statuses such as cell site Key Performance Indicators (KPIs)
and user session states. The cell-level KPIs used in this paper include
the average number of Radio Resource Control (RRC) connections
(which reflects the temporary user population), and the average
utilization ratio of the Control Channel Elements (which reflects
the congestion status). We design the data-driven automatic trou-
bleshooting system by learning from the above data. In this work,
the datasets are obtained from a large cellular service provider in
the US. For privacy reasons, all datasets are anonymized to remove
any user identifying or personal information.

3 SYSTEM DESIGN

3.1 System overview

We design a learning-based troubleshooting framework NeTExp as
shown in Fig 3. NeTExp includes two major modules: (i) a proactive
cell-level network state prediction model and (ii) a reactive UE-level
troubleshooting inference model. The proactive cell site level model
predicts the likelihood of a cell site to have network issues that
impact customers in the covered cells. The UE-level model infers
whether a customer-reported service issue is network-related.
During the training phase, the cell-level prediction model is
trained using historical usages, user mobility, performance metrics
at the cell site level, and customer care contact and ticket data.
The UE-level inference model is trained using the output of the
cell-level prediction model, the historical UE level usages, user

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

Customer Care agent Network Support Team Device Support Team

Inference Phase

] <
= @ N
Model Insight ml UE Info 1 W T! Ticket

UE-level
Network Logs

Transfer &
-1 Network || Device
(| Issue Issue

Learning
UE-level Model

Likelihood of
network problems

b

Cell-level Model

Cell-level
Network Logs|

9

Historical

Weakly-supervised ~ Care Logs

Training

Supervised
Training

Training Phase I

Figure 3: Overview of NeTExp.

mobility, performance metrics, and the customer care contact and
ticket data. During the inference phase, the cell-level prediction
model proactively predicts the cell sites that are having customer-
impacting issues and quantifies the severity of the problem based
on the real-time usages and cell site level performance metrics data.
Upon receiving a customer contact reporting a service issue, the
UE level inference model will take the cell site level prediction
on current customer-impacting network issues in the related cells
and current UE level usage, mobility, performance metrics to infer
whether the customer reported service issues is caused by network-
related issues.

Different from prior works, the cell-level model fully considers
the interaction among neighboring cell sites, and the UE-level model
is the first reactive network issue diagnosis method that is based
on the perspectives from both the UE side and serving cell site side,
and how the two-side states match each other. This will not only
help customer care agents to create a trouble ticket and dispatch it
to the corresponding support team for resolution, but also provide
network support team enriched information to prioritize and focus
on the right cell site for investigation and resolution.

3.2 The cell-level model

3.2.1 Feature modeling. Learning the correlation and interaction
between the neighboring cell sites is important for cellular data
analysis [25, 26, 35, 39], which is also challenging as it depends on
many real-world factors, such as the local distribution of UEs and
cell sites, the mobility of the customers, geographic features, and
carrier types. To solve this challenge, we design a graph model to
represent the interaction between cell sites and propose using the
graph convolutional neural network (GCN) [8, 24, 33, 36] to jointly
learn the cell site node features and their correlation.

Specifically, the graph model is shown in Fig.4. In the graph
G, each node represents a cell site and each edge represents the
proximity (weight) between the two neighboring cell sites. The
proximity can be defined in multiple ways and is discussed later.
On each cell site vertex in the graph, the network condition is
represented with a time-series feature acquired by sliding a feature
extraction window through the streaming cell-level network log
data.

Assume the pair-wise proximity among the k cell sites can be
quantified by a 2-D adjacent matrix AK*¥ (where each entry ai,j
represents the proximity weight from node i to node j), let G =<
yhxmxw pkxk 5 represent the graph, where V is the k x m time-
series features of the k vertices (i.e., m feature channels for each
node, and each channel has time-window length w). Through a GCN

719

Xiaofeng Shi, Matthew Osinski, Chen Qian, and Jia Wang

layer, the feature on each cell site is recomputed by aggregating the
features of itself and the other cell sites in the graph. For example,
a typical GCN aggregation rule is defined as:

HD = (I, - D—%AD‘%)H(I)W(I)), (1)

where H®) is the node-wise feature input to the layer I (H) =),
W is a trainable weight matrix that decides how the adjacency
matrix AF*K participates in the aggregation of the features, o is a
non-linear activation function, Iy — D_%AD_% is the normalized
graph Laplacian, I is an identity matrix, D is the diagonal degree
matrix with D;; = Zj Ai,j-

In addition, the temporal feature (i.e., H O]) of the time-series
network log data for the cell sites can be encoded by the 1D-CNN
layers:

'Y = oy (h? o Wi, @)

where hy) is the time-series feature input of one cell site ¢ in the

graph (h§°) is the raw input feature), Wt(l) is the 1-D temporal CNN
kernel, o is the 1-D convolution operation, and oy is the activation
function. Through the two types of the convolution operations,
the model is cable of extracting features with complicated spatial-
temporal context. The detailed DNN architecture is explained in
section 3.2.3.

A natural way to quantify the proximity in the adjacent matrix
ARXK §g using the distance among the cell sites [39]. However, we
find that distance is not representative enough since the base station
selection of mobile devices depends on not only distance but many
other factors, such as the geographic features, the density of the
cell sites, mobility, etc. Therefore, we propose a new measure for
adjacency matrix quantification: the average number of jointly
served UEs by the two cell sites in unit time. This metric is
mainly inspired by the key observation that abnormal state propa-
gation among the cell sites is mainly caused by the hand-offs when
a network problem happens to one cell site. Thus, this metric can
be a good estimation of how much traffic will be handed off to a
neighboring cell sites when network problems happen on one cell
site, and is a high-level product of all other unique physical factors
in the local area. More importantly, the metric values are easy to
obtain by grouping the historical UE-level network log data with
time intervals, (anonymous) user IDs, and cell site IDs.

3.2.2 The alternative learning target. NeTExp is required to identify
the root causes of the user-reported issues at the per-case level.
Therefore, it is ideal to use the manual resolution result of each
user’s case as the end-to-end learning target. However, it is too
costly to identify the whole population of the users impacted by
the network issues in practice (including the majority who do not
contact the care upon experiencing an issue). Manually selecting
and labeling additional cases from the vast user population is rather
expensive. Thus, we can only obtain a limited number of ground
truth troubleshooting results labeled and verified by expert human
agents. The lack of large-scale ground truth data makes it difficult
to train a DNN that learns from the high-dimensional data with
tremendous spatial and temporal context.
To solve this challenge, we adopt the ideas from weakly-supervised

learning and transfer learning [21, 37, 40]. Specifically, NeTExp uses
an alternative learning target to pre-train the cell-level model (the

Towards Automatic Troubleshooting for User-level Performance Degradation in Cellular Services

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

Figure 5: Top: the distribution of the
reported service issues. Bottom: The
transferred learning target.

Figure 4: The graph modeling of the cell
sites.

heavy part of the overall NeTExp system): how likely the cell
is experiencing a UE-impacting network event at each times-
tamp t. Although the model with the alternative target cannot
directly answer whether a reported issue is a network-side issue, it
is expected to provide the high-level representation of the network
performance status for the related cell sites, which is an essential
insight for case-specific troubleshooting according to experienced
troubleshooting operators.

We take the following steps to build the transferred learning tar-
get: for each customer, we retrieve the 7-day historical UE network
log records before the care contact time, and obtain a set of cell sites
that are frequently accessed by the users. Those cell sites are called
the “reference” cell sites for this UE. Then we aggregate the total
number of customer contacts within a unit time interval by each
reference cell site. The aggregation results provide an idea of how
many service issues are reported for each reference cell site in each
unit time interval. Thus, the intensive gathering of service issues
for a reference cell site usually implies network issues in the corre-
sponding cells. Similarly, we measure the aggregation numbers of
the service issues that are diagnosed as network issues through the
customer interaction phase and the ticket resolution phase using
the ground truth troubleshooting tickets of the two phases, which
provide extra dimensions about the scale of the influenced users in
the area. In this way, we associate the network status observations
with the number of tickets received by the customer care services.
Unlike existing works that detect network anomalies based on the
KPI values, this method is more focused on recognizing the events
that impact the QoE of the end-users.

The learning target uses three vectors for each cell site ¢: N¢(t),
the number of total service issues over time; R.(t), the number of
network issues identified during customer interaction; and S(t),
the number of network issues detected through ticket resolution.
If a network issue happened on a cell site (or on its neighbors), a
significant increase of N¢, R. and S; can usually be observed shortly
after the issue occurrence time. An example of such case is shown
in the top chart of Fig. 5 (in day 2 and day 3 compared with day 1).
Based on this observation, the new learning target, i.e., the likeli-
hood of network issues for the cell site ¢, can be quantified using

Ne, Re, and Sc. Specifically, we use the 1-D Gaussian Probability
1

oV2mr

volution of density kernel and the measurement vectors over the
time dimension: G(t, o) o N.(t), G(t,0) o R¢(t) and G(t, o) o Sc(t).
Then the overall transferred learning target is defined as a weighted

Density function G(t, 0) =

2
exp (—2%) and compute the con-

720

»10 ¢ L T—— rawRRC == 5 (3 days)

Weighted edge 3 R N (1) w2 S.(t) € s ¢ y
s O] B R.(t) z == TN

Cell site # gl < ~

" N 1.0 ====== = O3

Time-series S Vv o

features £0.5 /\/ -)S/?tt)urated \, QEC i
(7] — o

sliding window for Z0.0 20

feature Day 1 Day 2 Day 3 Day 1 Day 2 Day 3

Figure 6: Top: The raw and the expected
RRC KPIs (scaled). Bottom: The normal-
ized RRC features.

sum of the three density vectors:
Y(t) = aG(t,0) o Ne(t) + fG(t,0) o Re(t) +yG(t, 0) 0 Se(t) (3)

We normalize Y (¢) and let Y(t) saturate at 1 to make the likeli-
hood values in the range [0, 1] and resolve the population-dependent
differences. An example of the normalized Y (¢) is shown in the bot-
tom chart of Fig. 5. &, f, and y are decided empirically and should be
adjusted based on the effectiveness of the practical troubleshooting
phases (Ng, R¢, and S.) in the wild. Specifically, we look into the
known network problems in the history and check the z-scores of
N¢, Re, and S, during the network issue periods. A larger z-score
indicates the corresponding measurement is more important. For
example, for our studied cellular provider, we use f > y > «, since
the network issue tickets (from both online and offline phases) are
more accurate network issue indicators than the total number of
care calls.

3.2.3 Model design and training. Fig.7 shows the overall design of
the cell-level model to encode the graph-based cell-level features.
The neural network is inspired from the STGCN[38] architecture.

The whole cell-level model is used as a feature extractor to learn
the cell-level features for each local area. A local area refers to the
cells covered by the k neighboring cell sites. In the input feature
matrix of height k, the first m X w feature slice refers to the features
of the cell site that directly carries the target UE, while the rest
k — 1 slices are the features of its nearest neighbors ordered by
the edge proximity. Once trained, the whole model parameters are
consistent for different areas in a large market.

In the input layer, m time-series network KPIs are used as the
input features. For the real-number KPI values, we first smooth the
data with moving average to denoise the data. Since the traffic loads
and capabilities of the cell sites are highly diverse, the KPI data
is normalized before being fed for learning. One evident feature
for the cell-level KPI data is that the pattern of the KPI time series
repeats every 24 hours because of the similar daily traffic patterns.
Therefore, we normalize the KPI data by: §; = 5“5#”, where
sy is the observed KPI at timestamp ¢ of the global clock, and §;
represents the expectation of the KPI of the ith timestamps of a day
based on the historical data, T is the number of total timestamps in
a day. Thus, the normalized KPI §; represents that at a particular
timestamp (¢ mod T) of the day, how the observed KPI compares
with the expectation of the KPI for the same time of the day. This
normalization method is effective for the KPIs that reflect or are
related to traffic loads. For example, Fig. 6, shows the raw and
normalized average Radio Resource Control (RRC) connections
for the same cell site in Fig. 5. The normalization method makes

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

Network KPI feature Training Transferred target
Temporal N. R. H.
m £ | sTC ST-C pt s
= ~Conv -Conv
l 5% "Block |2 Block > FC v+
‘ LI'__F o
™M
t—wtot
Adjacency Matrix|:*++->|_spatial Graph-Conv :
! v] UE-Level
Akxk i |Temporal Gated-Conv mp>: Model
F : 7
fsssssssssssssssssssEEEEEEnnnn 0]
ST-Conv Block Real target

Figure 7: Model design of the cell-Level model.

the abnormal network KPIs (in day 2) highly distinguishable. The
abnormal RRC KPI states in day 2 of Fig. 6 can well explain the
increase of issue reports in day 2 and day 3 of Fig. 5. Thus, this
normalization method is an effective outlier detection module to
highlight the abnormal KPI values for a given timestamp of the day.

Next to the input layer are the two ST-Conv blocks (as shown
in Fig.7) that can encode the spatial-temporal features. In each ST-
Conv block, the feature of each cell site is fed into a 1-D temporal
CNN layer (Eq.2) with the gated linear units (GLU)[3] as the ac-
tivation. Then the processed features of all cell sites in the local
graph are aggregated using a spatial GCN layer (Eq.1). The GCN
block is then followed by another temporal CNN layer for each
cell site of the graph to generate the feature representation of the
network conditions H kxg XW’, where g is the number of kernels in
the last 1-D CNN layer and wj is the resampled window size. After
the two ST-Conv blocks, the model flattens the feature matrix over
the time channel and use a fully connected (FC) layer with kernel
size h to compute the (k x h)-D feature representation H I}%h of the
network conditions on the k cell sites for the sampled timestamp.
Thus, ngéh can be used as the extracted feature for the network
conditions of the local area at a given time.

In the output layer, the model uses a regression loss function to
learn the target YK of the k cell sites in the local area. The mean-
square-error (MSE) loss is used for training:

LSO,V (4 10) = L Y B0 -y (4 1) + AL, (@

1

where H[’f (t) is the output of the model with the input time window
that ends at time ¢, Y (¢ + 1) is the transferred learning ground
truth of the sampled k cell sites at t + 1, hi (¢) and y'(t + 1) are the
ith entry of Hl]f (t) and Y* (¢ + 1), and ALy is the L2 regularization
term of the trainable parameters. The model is trained with Adam
optimizer [14].

In our implementation, the four Temporal 1-D Gated-Conv layers
of the two ST-Conv Blocks have 32, 16, 8, 4 CNN kernels respectively.
The size of each kernel is 4, namely, the perceptive field length of
the first CNN layer is 20 minutes. The number of neurons h in the
feature embedding layer is set as 8. Our validation results show that
larger model size provides limited accuracy improvement but more
memory cost and overhead. Since our model is executed on CPU
servers rather than GPU servers (due to data access restrictions),
and the model should learn the network states in real-time for tens
of thousands cell sites, we do not choose to use a larger model
configuration. The selection of the two key parameters of the input

721

Xiaofeng Shi, Matthew Osinski, Chen Qian, and Jia Wang

Sliding. ‘V.Vidows 7-day historical window

Top k' cell-level profiles | Hyc & H,

Cell-level 3
KPIs & Logs

UE-level feature profiles | Ua

Temporal
1D-CNN

Soft-max

Cell-level
Model

Cell-level
Features

B Network or Device issue?
Top k' cells

Figure 8: Design of the UE-Level model.

layer, i.e., k and w, is discussed in Section 4.3. After training using
the transferred target, NeTExp freezes the parameters of the model.
Then it feeds the learned H ’géh and Hf,‘ to the UE-level model as
the high-level feature representation of the cell site performance
status.

3.3 The UE-level model

The UE-level model is the direct interface for the care agents to
learn whether a reported problem is a network-side issue or a
device-side issue. Besides the patterns of the UE network logs[20],
another important feature is the temporal correlation of the UE-
level service errors and the cell-level anomaly states. Thus, we
design the UE-level model such that it learns from the features in
both aspects.

UE-level features. Based on the historical data session logs
for each individual UE, we can create the UE-level feature profiles
for learning. Specifically, for each customer who contacts the care,
we retrieve the data session logs (time/duration of the session, the
accessing cell sites, and the categorical session status) for the target
UEs. Then we can create a session usage pattern feature matrix
U;XW, for each UE d, where n represents the n-dimension one-hot
encoding of the session status, and w’ is the historical feature time
window size for UE-level trouble inspection. In addition, based on
the cell site that the data session is connected with, we use a detailed

fexXnXW gor the top k' cell
sites that are most frequently accessed by each device d. In our

break-down of session usage features B

implementation we use K =5. According to our measurement
over a nationwide cellular network for several weeks, the top 5
cell sites contributed to 86% of the cellular sessions and 91% of the
usage time on average for each customer. Thus, if a user suffers
from a network problem, the cell sites that are responsible are most
likely among these top 5 cell sites.

Cell-level features of the reference cell sites. For effective
troubleshooting, NeTExp correlates the UE-level profile features
with the network status of the top k" reference cell sites. To achieve
this goal, NeTExp creates a cell-level profile for the reference cell-
sites by using the learned features from the cell-level model, namely,
H ’;gh and HX. For each UE, NeTExp looks back a 1-week historical
time window and construct the corresponding feature profiles. The
extracted UE-level and cell-level features are concatenated over
the time dimension for temporal correlation learning. The feature
engineering method of the UE-level model is shown in Fig. 8. In the
left side of Fig. 8, NeTExp applies the pre-trained cell-level model
(Fig. 7) and uses a sliding window to extract the cell-level profile

Towards Automatic Troubleshooting for User-level Performance Degradation in Cellular Services

features over the one week history. The stride of the sliding window
is 1 hour.

Modeling and training. The final decision-making model is
a CNN classifier that contains several 1-D temporal CNN layers
(Eq.2), followed by two fully connected layers with a softmax layer
at the end. The learning target is whether the UE’s problem is
caused by a network-side issue or a device-side issue. Then the UE-
level model is trained as a binary classifier using the case-specific
manual resolution results from the troubleshooting log data. Since
the UE-level model has a much smaller parameter size and only
contains a few 1-D CNN layers, it is much easier to train than the
cell-level model. Thus, the model can be properly trained using the
limited ticket resolution data.

4 EVALUATION
4.1 Datasets

In our experiments, we use nationwide datasets collected from a
major US cellular service provider over an extensive period. Specifi-
cally, we use the care contact log data (logs for the customer interac-
tion phase) and the trouble ticket data (logs for the ticket resolution
phase) as the learning ground truth. In total the dataset includes
over 237,000 of care contact records and over 38,000 of customer
trouble tickets that reported service problems. All care data in-
stances are used for training via the weakly-supervised learning
method and evaluating the cell-level model (Section 4.3). Addition-
ally, we use around 19,000 customer care reports where the root
causes of the issues are verified to validate the effectiveness of the
end-to-end reactive UE-level troubleshooting (Section 4.4). More-
over, we use the average number of Radio Resource Control (RRC)
connections, and the average utilization ratio of the Control Chan-
nel Element (CCE) as the cell-level KPI features. The cell-level KPIs
are collected for the cell sites that can be associated with the UEs in
the customer care datasets. Specifically, for each UE, we first find
the top k' = 5 cell sites that have most frequently served the UE in
the past 7 days before the care call. Then for each serving cell site,
we also collect the historical KPI data for its top k neighboring cell
sites to build the local cell site node graph. In addition, we extract
the UE-level features from the UE cellular session log data. Each log
record represents one cellular session, ending with a termination
code that indicates why the session is closed. There are 12 distinct
codes in our dataset, each of which can be used as a categorical
feature that describes the session status. Some example status code
include “Normal”, “RAT Change” (the radio access technology is
changed), “No up/down-link Data Used”, etc. In total, more than 325
million UE-level network log records are processed for engineering
the UE-level features.

4.2 An example illustration

InFigs. 9, 10, and 11, we use a real example to illustrate the behaviors
of NeTExp for handling a specific case. In this example, a customer
contacted the customer care and reported service performance
degradation. The root cause was not identified after a long period
interaction between the customer and the agent.

We then use NeTExp to analyze the root cause of this case. Fig. 9
and Fig. 10 illustrate the RRC KPI and CCE Utilization KPI time
series of the relevant cell sites for the past 7 days before the care

722

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

contact occured. The raw RRC data series are normalized to [0, 1]
using min-max normalization for visualization. The “D1” to “D7”
on the X axis represent the first to the seventh days of the historical
window used for issue inspection. In the top panels of Fig. 9 and
Fig. 10, “R1” and “R2” represent the top two cell sites that were
most frequently accessed by the user in the past week. From these
panels along, we could observe a noticeable increase of connected
users (the RRC KPI) and traffic load (the CCE KPI) on R1 during
day 6 and 7 compared with the earlier days. The changes are less
noticeable on R2. However, those abnormal patterns themselves
do not necessarily indicate anomalies on those cell sites, as similar
patterns could also be observed in other scenarios such as the
gathering of people (e.g., live concerts, sport matches) in the cells.

Next, the cell-level model also investigates the neighboring cell
sites of R1. Fig. 9 and Fig. 10 show the KPIs of the top 4 cell sites
in R1’s neighborhood, i.e., “1st NB” to “4th NB”, which are ranked
by the graph weights (proximity) to R1 (R2 is the “2nd NB”). The
figures show that “1st NB”, i.e., the closest cell site, had an outage
during day 6 and 7, while the other further neighbors looks normal.
Clearly the KPI patterns on R1 were affected by the outages in the
neighborhood, although no outage were identified on R1. By using
the graph-based model, the cell-level model correctly learns the
increasing network issue risk for R1, as shown in the top panel of
Fig. 11.

The bottom panel of Fig. 11 shows the session states of the past
7 days for the UE. The rectangles represent the intervals of the
cellular sessions of the UE that were carried by each of the two
major reference cell sites R1 and R2. Specifically, “Other / Idle”
means the device was carried by other cell sites or the device was
idle, “R1/R2 Normal” means the sessions with R1/R2 were closed
normally, “R1/R2 RAT” means the radio access technology (RAT)
was changed. The simultaneous session occupations with R1 and
R2 represent that the device was handed off from one to another
cell site. By correlating the top and bottom panels of Fig. 11, we
can infer that: (1) After the occurrence of the outages (day 6 and
7), the total session length with R2 was significantly reduced and
the device was mostly carried by R1. The changes might be due to
the network setting updates for resolving the nearby outages. (2)
R1 was significantly impacted by the outages in the neighborhood
according to the cell level model predictions. From the raw KPI
data, we can now infer many other devices nearby were also moved
to R1 from their original serving carriers. (3) Along with the carrier
changes, the RAT was degraded due to the congestion on R1. Thus,
the strong temporal correlation between the cell-level states and
UE-level states indicates the root cause of the reported issue was
indeed a network problem, which could also be learned by NeTExp
using the feature modeling methods in Section 3. In this example,
the root network failures were on the neighboring cell sites rather
than the major cell sites that served the user. However, as the impact
of outages propagated, the actual influenced population size was
larger than expected. In fact, the propagation of the network failure
impact is usually triggered by the fault tolerance mechanism in
current cellular networks. By handing over the customers from the
problematic cell site to its neighboring towers, it can dramatically
reduce the customer impact of eNodeB/gNodeB failures, although
it may cause some congestion on the neighboring cell sites.

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

1 1 — R R2 (2nd NB,
- o
o) B SO
z0 go . e
2, E1[— IstnB
N w
go S OMMM_LN
5, 5\:——- ZEANB 3rd NB £1 5‘*\ ZEh NB 3rd NB_
= . e S W™ ok A
. VRV aY VeV avay ZOW ‘»wwﬁj’w" ALY,
D1 D2 D3 D4 D5 D6 D7 D1 D2 D3 D4 D5 D6 D7

The 7-day Interval Before The Care Call

Figure 9: Number of average RRC con-
nections (normalized) - data examples.

The 7-day Interval Before The Care Call

Figure 10: CCE Utilization Ratio (nor-
malized) - data examples.

Xiaofeng Shi, Matthew Osinski, Chen Qian, and Jia Wang

=

Net Prob

= R1 Normal
mmE R2 Normal

Emm RI1RAT
E== R2 RAT

[Other /Idle

D7 1
The 7-day Interval Before The Care Call

g i
D2 D3 D4 D5 D6

Figure 11: Cell-level outputs (top) and
UE-level features (bottom).

OE train MAE IR Infer latency
BN test MAE 4

D train MAE
BN test MAE

B3 Infer latency

[

o
Avg Latency (ms)

0 [

Avg Latency (ms)

=
o

o

Figure 12: The MAE and
cost with different ks.

4.3 Evaluation for the cell-level model

Figure 13: The MAE and
cost with different ws.

For the cell-level model, we split the cell-level network log data
into two parts: we use 2/3 of data for training and 1/3 of data for
validation. The mean-absolute-error (MAE) and the model time
costs are used as the metrics. Then we analyze the model from both
the spatial and temporal dimensions as follows.

Analysis on the spatial dimension. In the spatial dimension,
we want to figure out how many neighboring cell sites (k—1) should
be considered when predicting the likelihood of network issues in
the cells centered by a target cell site. We fix the historical window
size w of the KPI data as 12 hours. Then we train the cell-level
model with different graph sizes, ranging from k = 1 to k = 30,
where k is the total number of cell sites considered for prediction in
the area. For comparison, each model is trained with 10,000 batches
and each batch contains 256 samples of the data window samples.
The model is trained and executed on a 64-core CPU cluster. The
whole training process on the CPU server takes around 2-10 hours
for different ks. We randomly select 10,000 cell sites, and measure
the mean absolute error (MAE) and the average inference delay
(the inference cost for a single cell site at a single timestamp) of
the cell-level models. The comparison of different ks is shown in
Fig.12. The result shows that the model yields much higher training
errors when k = 1, namely, it fails to learn the target well when
only the target cell site is considered. The results suggest that the
interaction of neighboring cell sites is an important feature when
analyzing network issues on the cell level. In addition, Fig.12 shows
that the model does not improve if more than 5 neighboring cell
sites are included in consideration, while the inference latency
grows linearly with k. The observation suggests that the transition
of the abnormal states indeed exists but only among the nearest
neighboring cell sites. The fault tolerance mechanism of cellular
networks can dilute the impact of a single network fault on distant
cells.

Analysis on the temporal dimension. We next show how
the historical window size w impacts the cell-level model. In our

723

evaluation, we set k = 5 and change the window size w from 1 hour
to 96 hours. We use the similar training and evaluation strategy as
discussed above. The comparison result is shown in Fig. 13. The re-
sult illustrates that the model accuracy improves when longer time
windows are used. The training and validation errors significantly
reduce when w = 48 hours. As w grows larger than 48 hours, the
errors only reduce marginally. Hence, the historical data beyond 48
hours is less important for inferring current network issues. With
w = 48 and k = 5, the model takes less than 3 ms for inferring the
network state of one cell site on the CPU server.

4.4 Evaluation of the UE-level model

We evaluate the root cause diagnosing performance of NeTExp
using the real historical care contact data introduced above. Specif-
ically, the system is evaluated by 5-fold cross validation and is
compared with 5 other baseline diagnosis models. The training of
NeTExp for each fold takes around 20 minutes to get converged. A
brief introduction of the baselines is as follows:

ICCA (auto) [20]: ICCA is a state-of-the-art cellular issue di-
agnosis system. It extracts the most discriminative UE-level event
sequential patterns based on information gains by creating a model-
based search tree [5] with PrefixSpan [9]. A Gradient Boosting
Decision Tree (GBDT) [6] model is then applied for classification.
In addition, ICCA [20] also uses manually annotated features which
are not available to us. For fair comparison, we only compare the
automatic feature extraction and learning modules of ICCA.

Fisher Score + KNN: We compute the fisher scores [7] of the
cell-level and UE-level features profiled by NeTExp with respect to
the root cause categories and select the top n discriminative features
for classification. We search the optimal n in range [5, 1000] and
select n = 150. Then a k-nearest neighbor (KNN) classifier is used
for classification.

SRC [32]: SRC (Sparse Representation-based Classification) cre-
ates a feature library with profiles of the training data. At inference
stage, the model reconstructs the input feature profile of the queried
instance through the sparse encoding of the feature library. Then
the decision is made by selecting the root cause category that mini-
mizes the reconstruction error with the optimal coefficients.

CNN with only Cell-level or UE-level features: We apply
the same CNN classification model introduced in Section 3.3 while
using the extracted features from only cell-level or UE-level ob-
servations, in order to illustrate the importance of the extracted
features from both sides for troubleshooting.

Towards Automatic Troubleshooting for User-level Performance Degradation in Cellular Services

IEm NeTExp (CNN) B UE-Iv+CNN

10| mmm NeTExp (Fisher+KNN) B ICCA

B Cell-Iv+CNN == SRC
0.9
. .
0.8 J¢ / = NeTExp (CNN)
Fo.all5r 4 -+« NeTExp (Fisher+knN)
4 Cell-v+CNN
0.7 0.2 ."I/ === UE-IV+CNN
! —-= ICCA
0.6 0.0 ? $# Online Manual
0.0

0.2 0.4 0.6 0.8 1.0
FPR

0.5

Accuracy F1 Score ROC-AUC

Figure 14: Root cause classifi- Figure 15: Overall RoC curve.

cation.

Learning time costs of the compared models. We used the
same CPU cluster to train the compared models. In the (offline)
training phase, the major time cost is the feature learning time.
Specifically, NeTExp (with k = 5 and w = 48) needs around 8
hours of training to get a converged cell-level model for network
condition feature learning. As a DNN model, NeTExp is expected
to be significantly faster for training on GPUs. ICCA (with a 3-hour
historical window and 10-layer model-based search trees) needs
around 3.5 hours to train the PrefixSpan search tree for feature
learning. The time cost for training a binary classifier using the
learned features is much smaller. Specifically, the UE-level CNN
model in NeTExp takes around 6 minutes, the GBDT model in
ICCA takes around 5 minutes, the “Fisher score + KNN” model
takes around 6 minutes for training. The inference time cost of all
above models is at milli-second level and thus is neglectable for the
application use case. The “SRC” model does not need to be trained,
while it takes around 0.7 seconds for encoding each instance at
inference.

The overall 5-fold validation results (Accuracy, F1-score, RoC-
AUC) are shown in Fig. 14. The result shows that NeTExp outper-
forms other baseline methods for different classification metrics. In
addition, as a much simpler and distance-based model, Fisher Score
+ KNN with the features learned by NeTExp also yields good classi-
fication results. This shows that the feature engineering methods in
NeTExp provide discriminative features for root cause classification.
Fig. 15 presents the ROC curves of the compared methods, where
the network-side issue is the “positive” class. The “cross” mark in
the figure represents the ratio of network problems that could be
manually identified during the online troubleshooting phase. Since
many non-outage network issues are difficult to be timely recog-
nized, the recall of the manual network issue identification is low
(less than 25%). For the rest 75% cases, the issues are eventually
resolved through offline inspection. The result clearly shows that
NeTExp significantly improves the recall of the network identi-
fication without introducing a large fraction of “false positives”.
Note that some “false positives” may not be real negatives (i.e.,
non-network-related issues). This is because that not all network
issue cases were successfully identified due to the limitations of the
traditional troubleshooting procedures being used in practice. In
Section 5, we will show a case study for this type of tickets.

Fig. 16 and 17 present the breakdowns of the performance for
different groups of troubleshooting samples. Specifically, we divide
the dataset into two subsets based on whether the ticket (if it is
network-related) was eventually resolved in the customer interac-
tion stage (the “easier” cases) or in the ticket resolution stage (the

1.0 1.0
0.8 0.8
o 0.6 o 0.6
o 0
= 0.4 1 // —— NeTExp (CNN) = 0.4 _-,'// —— NeTExp (CNN)
brs = NeTExp (Fisher+KNN)| :,'/ = NeTExp (Fisher+KNN)|
0.2 174 Cell-Iv+CNN 0.21h Cell-lv+CNN
4 === UE-IV+CNN i === UE-IV+CNN
;’ —= ICCA —= ICCA

Figure 16: RoC - easy cases.

724

ACM MobiCom °22, October 17-21, 2022, Sydney, NSW, Australia

0.0
0.0 0.2 0.4 06 0.8 1.0

0.0
0.0 0.2 04 0.6 0.8 1.0
FPR FPR

Figure 17: RoC - hard cases.

EEE NeTExp (CNN) BN UE-lv + CNN
[NeTExp (Fisher+KNN)@z® ICCA
BN Cell-lv + CN|

1.0 I NeTExp (CNN) BN UE-lv + CNN
EEm NeTExp (Fisher+KNN)@® ICCA
BN Cell-lv + CNN

4
o

Accuracy
o
®
AUC-Score

I
S

Other Voice Call Other

Voice Call Cellular Data

Cellular Data

Figure 19: AUC for different
issue types.

Figure 18: Accuracy for dif-
ferent issue types.

“harder” cases). The results show that the features learned from
the cell-level data can only work well for identifying the “easier”
network issue cases (e.g., a direct network outage), while they fail
to work well for the “harder” cases (e.g., indirect issues or chronic
issues). On the other hand, the UE-level features can well describe
the symptoms on individual user device regardless the types of
the network issues. But the symptom on UE-side itself is insuffi-
cient for locating the problem, as different problems may produce
similar symptoms. Therefore, NeTExp, which correlates both the
cell-level and UE-level observations, provides best network issue
detection performance. Fig. 18 and Fig. 19 present the accuracy
and the ROC-AUC scores of the models for different categories of
service problems. The results show that NeTExp outperforms the
baseline methods for all different issue categories.

4.5 System efficiency

To understand the feasibility of deploying NeTExp into the existing
online customer service framework, we evaluate the end-to-end
responding time cost of NeTExp for individual queries. We break-
down the end-to-end time cost of the NeTExp inference module
into four parts: (1) Log query delay: the cost to read the 7-day his-
torical UE-level logs from database on disk. (2) UE-feature delay:
The cost to parse the UE-level logs, extract the top k relevant cell
site IDs, and create the UE-level feature profiles. (3) cell-feature
delay: The cost to obtain the cell-level model features for the cor-
responding cell sites and time windows. (4) ML-model delay: The
cost for the execution of the UE-level CNN model for inference.
We simulate the online query process using 1000 random historical
care contacts from a market with more than 2 million users and
measure the delay of each components for this market. The average,
90" and 95" percentiles of the time costs of different components
are presented in Table 2. The results show that the longest delay is
the UE-level network log query delay. The reason is that the UE-
level network log data for a million-scale user population market

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

Log query UE-feature Cell-feature ML-model
Avg. 11.45 0.073 0.061 0.058
90th 15.29 0.13 0.080 0.063
95th 17.46 0.15 0.086 0.066

Table 2: The average, 90‘" and 95! percentiles of the time
costs (in seconds) of NeTExp components.

is rather massive and cannot by loaded entirely to memory. Thus,
the record searching and disk I/O cost for reading the log data of a
particular user dominates the end-to-end online process. This part
of cost can be further optimized by using faster storage, customized
database systems, or a memory cache that prefetches the profiles
of the users who are likely to contact the care by forecasting [28].
In addition to the data I/O cost, the feature engineering and model
execution costs are neglectable for a live phone call conversation.
Taking account of the large I/O cost, the average end-to-end delay
is still less than 20 seconds, while a customer care contact usually
takes a few minutes or longer. Thus, the inference results generated
by NeTExp can well assist the care agent at early stages of the care
calls.

5 CASE STUDY

We perform a case study to show how NeTExp can help troubleshoot
service degradation issues in practice for a cellular provider. Specif-
ically, we apply our system to analyze an external incident that
caused network issues in the U.S. in 2020. During the event period,
some areas that were directly affected by the incident experienced
network outages, while other areas were indirectly affected due to
network changes and maintenance work after the incident.

Fig. 20 shows the distribution of the network-related care con-
tacts in a heatmap and the distribution of the cell sites that are
considered to experience network problems (the small blue dots) on
Google Map. Specifically, the intensity of the heatmap reflects the
aggregated number of care contacts that are thought to be network-
related in unit area based on the ground truth troubleshooting
log data of those few days. Fig. 21 shows the same measures based
on the results of NeTExp. In Fig. 21, a cell site ¢ is considered to
have a network issue during the outage if max; HS(t) > h. The
parameter h is determined by the analysis of the detection recall, as
shown in Fig. 22. Specifically, in Fig. 22, by tuning fl we show the
recall of the cell-level issue detection as a function of the percent-
age of the detected cell sites over the whole market (i.e., |Cy4|/|C],
where |Cy| is the number of the cell sites that are considered to
have network problems, and |C| is the number of all cell sites). The
optimal curve is the green dotted line, which corresponds to the
“perfect” detection result based on the ground truth positions la-
beled in Fig. 20. We select the h at the “Threshold” point in Fig. 22,
which gives around 75% recall with near to 0 false positive rate.
The comparison between Fig.20 and Fig.21 demonstrates that the
model accurately learns the impacted locations and how the impact
propagated crossing multiple states.

In addition, from Fig.20 and Fig.21, we find that the model-based
method tends to recognize more tickets as network-issue related
(the positive class). The extra positive instances that are recognized
as network problems become the “false positives” using the manual
results as the “ground truth” data. However, we find that some “false

725

Xiaofeng Shi, Matthew Osinski, Chen Qian, and Jia Wang

positives” (FP) are not truly false but due to incomplete/incorrect
ground truth data. To better understand the decisions of NeTExp,
we show three representative examples from different categories
(true positive (TP), FP, and false negative (FN)). In the top charts
of Figs. 23, 24, and 25, we visualize a selected representative UE-
level feature for the three cases, as well as the 7-day time-series of
the learned cell-level model feature HS (t) of their top-1 reference
cell site. The bottom charts show the number of care contacts
(aggregated for every 3 hours) for the top-5 reference cell sites in
the area. The “Outage ts” and the “CC ts” represent the time when
the external incident occurred and the time when the customer
contacted care.

For customer A, the model infers a network issue, which is a TP
case according to the ground truth. The UE-level KPI shows that the
device was in abnormal states (the device cannot maintain a stable
session) for a period before the care contact time. The temporal
consistency of the cell-level and UE-level features demonstrates
how the model makes the correct decision. However, the detailed
troubleshooting log shows that the customer’s issue was not im-
mediately resolved during the customer interaction phase and was
eventually resolved by the ticket resolution phase with a longer
delay. Thus, NeTExp can help to significantly reduce the delay of a
correct response.

Customer B’s case shows a “false positive” example. From the
trends of the cell-level model predictions and the growth of the
care contacts in the local cells, and their close correlation with
the UE-level “Credit Drop” failure patterns, we infer that the root
cause is indeed a network problem. However, according to the
detailed log data, the customer’s problem was not resolved during
the customer interaction phase, neither was there a troubleshooting
ticket generated. Thus, this case study shows a mislabeling case
in the ground truth data. In fact, we find this type of case is not
unique in our dataset, as the raw care contact log data could be
incomplete and noisy due to the difficulty to verify the correctness
of the resolutions. Still, NeTExp learns to make correct decisions
despite the noise in the training/validation data.

Customer C’s case shows a “false negative” decision. The model
fails to detect a network issue, although we can manually observe
a subtle growing trend of the learned cell-level feature and the
number of daily care contacts. We infer the model fail to make a
correct prediction because of the inconsistency between the UE-
level features and the cell-level features. Specifically, the UE was not
able to build data sessions for many days until the past hour before
the customer contacted care, which does not match the expected
timeline of the outage impact. After inspecting the detailed care
contact log, we learn that the customer just activated a new device,
which explains why the UE-level network log shows no data session
in the earlier days until the hour before the care contact. However,
NeTExp does not capture this context from the data, and thus makes
an incorrect decision.

Summary of the results. The evaluation results show that NeT-
Exp can more accurately identify the root causes of the individual
tickets for different types of network issues and UE-side symp-
toms. The short end-to-end troubleshooting latency of NeTExp
enables early detection of root causes during the customer inter-
action phases. However, due to the shortages of ground truth and

Towards Automatic Troubleshooting for User-level Performance Degradation in Cellular Services

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

© g B) b 1.00
; K 0.75
E 0.50 '
"J .
o8 s = ,#“— Rule-based
. h . 0.25 ’,/ --- baseline
B /" . ¥ B () on Yy o) PO optimal
5 2 . . g . & .,
RGN & . <y e . N RS 0.00 % Threshold
He B e e 8 00 05 10
]
Low density High density Low density High density Percentage

Figure 20: Manual: heat map and issue

Figure 21: NeTExp: heat map and issue

Figure 22: Recall of cell-level

positions. positions. issue detection v.s. |Cy4|/|C|.
- it
o {==Thn -+ Outage ts Normal < =" han - Outage ts C[')'fg") H S E—_—T) ~ Outage ts Connect
s UEKPI === CCts 1 [WM S S @ . £ |— uEKkPl === CCts :
x : I"'-/\I N g |7 UEKRL mme CCES S A A N
[N] s \ 8 A NP, SN
NS 0 / \ —————\ NS
Oy - ———Y No Sess Opl ===/ </ VYN e e Normal © 2 = No Sess
ds -+ Outagets == # of CCs i %16 - Outage ts == #ofcCs 3 - Outagets @ # of CCs !
o o CCts : o --- CCts O,l == ccts H
k3 H “ 8 - !
' o o H
o ! # Ba el n # H
Day 7 Day 5 Day 3 Day 1 Day 7 Day 5 Day 3 Day 7 Day 5 Day 3 Day 1

Figure 23: Example case A.

presence of odd corner cases, NeTExp is not a system that can
fully replace the manual troubleshooting framework introduced in
Section 2.1. Instead, NeTExp should be used as a complementary
block in the existing framework to provide reasonable directions
and data-driven insights to support the manual troubleshooting
process, and thus to help to improve the troubleshooting efficiency
and reduce the manual efforts needed to get every customer’s query
properly addressed.

6 DISCUSSION
6.1 Model updating for unseen scenarios

NeTExp needs to be updated as cellular network configurations and
application scenarios change. We summarize the possible network
changes and discuss how NeTExp should be updated or retrained.

Traffic pattern changes. The traffic pattern observed in a local
cell changes along with the network changes or user behavior
changes (e.g., the changes due to the COVID-19 pandemic [34]).
Thus, it is necessary to keep monitoring the recent local network
KPI patterns and updating the rolling average of the KPIs at each
timestamp of the day for effective data normalization. In addition,
the model can be periodically fine-tuned using the recent data.

Graph changes. As a generic model that can fit for different sub-
graphs, NeTExp retraining is not necessary for minor graph changes
(e.g., adding/removing cell sites, or updating the proximity weights),
whereas the input graph matrix should be updated accordingly.
However, if the graph updating is market-wise and dramatic, for
example, the cellular provide decides to shut down all 3G services
and activate more 5G towers in batch, both the cell-level and UE-
level models should be retrained using the new graphs and network
measurement data.

New KPI counters. Our current model is trained using the KPI
counters available to us, while new other counters or performance
metrics might be available in the future. Those new measurements
can be easily added as the additional input channels for automatic
feature learning using the DNN models, whereas the DNNs need
to be retrained.

Figure 24: Example case B.

726

Figure 25: Example case C.

Model overfitting. We used datasets collected on nationwide to
train and evaluate the system in order to mitigate model overfitting.
Still, we acknowledge that the model trained using the data from
one particular cellular provider may not necessarily work well
for another provider given different network scales and use-case
scenarios. Thus, the model should be retrained for the change of
scenarios.

6.2 Dataset grainularity

The cell-level KPIs used in NeTExp are aggregated and computed
in every 5 minutes. Although finer KPI granularity is preferred
for fine-grained and accurate network anomaly detection as the
data can provide detailed information about jitters, it also requires
significantly higher cost to collect, manage, and retrieve the data,
and engineer the temporal features with the ML models, especially
for a nationwide scale network. Since most users are not sensitive to
temporary short network jitters (unless the issue is highly repeated,
which can be easily captured) and customers usually do not contact
customer care immediately after experiencing a minor issue (for
example, a stall in video streaming), it is not necessary to use very
fine-grained data.

6.3 Corner cases and model fairness

Corner cases. Unlike manual troubleshooting, the automatic sys-
tem cannot fully capture the comprehensive real-world context
of some complicated corner cases. Besides the corner case exam-
ple illustrated in the case study (Customer C, i.e., a newly acti-
vated device), some other corner case factors could be: unregis-
trated/mismatched IMEIs (UE IDs), unsupported device models,
coverage issues in indoor areas, cloud server issues / congestions
on the Internet, intentional interference by nearby attackers, etc.
Therefore, if the automatic system fail to make a reasonable diag-
nosis, the system should roll back to corresponding specialists for
manual troubleshooting.

ML fairness. Machine learning based troubleshooting systems
may display fairness issue for minor groups or individuals because
the model is trained to minimize the loss for the distribtuion of

ACM MobiCom ’22, October 17-21, 2022, Sydney, NSW, Australia

the entire training dataset rather than individual instances [19].
Despite the fairness issues, the model that yields good accuracy at
distribution level can still significantly benefit the customer care
workflow by automatically handling most cases and reducing the
average end-to-end time/manual effort cost for resolving problems.
However, some odd cases still need to be rolled back to or cross-
validated by manual troubleshooting. We will further study the
fairness problem of ML-based cellular network troubleshooting
systems in our future work.

6.4 Fine-grained root cause identification

In this work, the root cause classification is at a coarse level (i.e.,
whether is issue is from network side or device side). This binary
classification result can easily fit into the state-of-the-practice trou-
bleshooting workflow (as illustrated in section 2.1) and currently
is a fundamental need by many cellular providers. On the other
hand, as a highly representative DNN model, NeTExp learns the
high level feature mapping from the raw network observations and
generates insightful feature profiles, which provides the potential
for fine-grained root cause identification. Unfortunately, due to the
shortage of fine-grained troubleshooting ground truth data, it is
rather challenging to train and validate the ML model. A possible
category of solution is to apply unsupervised or weakly-supervised
learning methods integrated with domain knowledge and manual
rules. We will continue to explore this problem in our future study.

7 RELATED WORKS

7.1 Data-driven network troubleshooting
methods

Along with the tremendous growth of the market for heterogeneous
access networks and end devices in the recent decade, manual trou-
bleshooting strategies have become less scalable to the growing de-
vice population. Thus, automatic device and network troubleshoot-
ing methods that are based on the massive network operation log
data or customer care log data have attracted more attention by the
service providers and network research community. For example,
some data-driven methods use network log and/or trouble ticket
data to detect the network anomalies [2, 4, 10-13, 15, 16, 23, 28].
IBM research [4] proposes using a random forest model to predict
whether a user will contact the care. CableMon [10] is another
learning-based system that can proactively detect network faults in
the cable broadband network. Iyer, et al. [11] design a system that
is specialized on detecting the RAN issues in the cellular network.
All the above existing works target on training a proactive model
that can forecast the trend of the emerging network problems or
detect anomalies on the network level. However, they cannot di-
rectly resolve the user-specific issues in the customer interaction
phase. ICCA[20] is the closest work to NeTExp. However, it only
uses the UE-level network logs, while the correlation of cell-to-cell
and cell-to-UE network states is ignored.

PACE [28] is another automatic cellular service troubleshooting
system that focuses on the events of user device level. It solves a
binary classification problem: it proactively predicts which users are
impacted by a service problem and are likely to contact the customer
care as a result of such issues. The focus of this system is prioritizing
repair actions for users that are likely to call care. Therefore, this

727

Xiaofeng Shi, Matthew Osinski, Chen Qian, and Jia Wang

model is trained using data from users whose issues can be resolved
using the automated actions that the PACE framework can invoke.
On the other hand, our work is primarily used to identify the root
cause for users whose issues are non-trivial and therefore need
manual debugging. Therefore, the feature engineering and learning
methods used by PACE are not ideal for identifying root causes of
specific service problems. First, PACE only uses user-level events
to describe the symptoms of the service while ignoring service
anomalies in the network level which may reflect the root cause.
However, different root causes may result in similar symptoms
from users’ perspective. In addition, the XGBoost model [1] used
in PACE is trained based on the ground truth data labeled by the
fact whether a user contacted the customer care and triggered a
predefined action, which is easy to obtain. Nevertheless, similar
model training method can hardly be used for root cause recognition
because the ground truth labels are much more expensive to obtain.

Another type of approach focuses on understanding customers’
feedback or free-text ticket logs using NLP models [22, 30, 31],
and diagnosis based on the described symptoms of devices. For
example, NetSieve [22] is proposed to diagnose the problem by
understanding the network trouble tickets. LOTUS [31] is a system
for identifying which customers are impacted by a local network
issue based on the care contact log texts. However, these methods
are mainly log-based instead of chatting-based, namely, the problem
could only be resolved after a ticket log is generated, rather than
during the conversation of the care contacts. This type of methods
is orthogonal and complementary to our proposed method.

7.2 ML-based cellular network data analysis

The state of the practice cellular network is getting ever larger
and more complex. As a result, there is an increasing demand for
automation in cellular network system designs [17, 18, 27, 29, 39].
In recent years, DNNs have become popular for learning cellu-
lar network data because of their high capacity of representing
spatial-temporal features [27, 29, 39]. For example, DMM [27] uses
arecurrent neural network (RNN) model to learn the traveling trace
of the UEs based on their cellular data logs. Microscope [39] adopts
a 3D Deformable Convolutional Neural Network for mobile service
traffic decomposition and network slicing.

8 CONCLUSION

We present NeTExp for automatic and reactive service issue trou-
bleshooting in cellular networks. NeTExp is a generic and com-
prehensive data-driven approach that considers both the cell site
network conditions and UE network logs, as well as their corre-
lations for troubleshooting. The system can be easily extended to
incorporate different network KPI data depending on the accessible
supporting cellular infrastructures, software, and databases. Our
evaluation with an extensive period of real-world data from a major
US cellular provider and a real-world case study demonstrates the
effectiveness of the system.

Towards Automatic Troubleshooting for User-level Performance Degradation in Cellular Services ACM MobiCom °22, October 17-21, 2022, Sydney, NSW, Australia

REFERENCES [26] M Zubair Shafiq, Lusheng Ji, Alex X Liu, and Jia Wang. 2011. Characterizing
and Modeling Internet Traffic Dynamics of Cellular Devices. ACM SIGMETRICS

[1] Tiangi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu : .
Performance Evaluation Review 39, 1 (2011), 265-276.

Cho, Kailong Chen, et al. 2015. Xgboost: Extreme Gradient Boosting. R package

version 0.4-2 1, 4 (2015), 1-4. [27] Zhihao Shen, Wan Du, Xi Zhao, and Jianhua Zou. 2020. DMM: Fast Map Matching
[2] Yi-Chao Chen, Gene Moo Lee, Nick Duffield, Lili Qiu, and Jia Wang. 2013. Event For ACellular Data. I}l Proceedings ofACMAMol?iCum. 1T14‘ o

Detection Using Customer Care Calls. In Proceedings of [EEE INFOCOM. IEEE, [28] Amit Sheoran, Sonia Fahmy, Matthew Osinski, Chunyi Peng, Bruno Ribeiro, and

1690-1698. Jia Wang. 2020. Experience: Towards Automated Customer Issue Resolution in

[3] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. 2017. Language Cellular Networks. In P roceedzrlgs of ACM MobiCom. 1-13.)
Modeling with Gated Convolutional Networks. In Proceedings of ICML. PMLR, (29] Ahmed Shokry, Marwan Torki, and Moustafa Youssef. 2018. DeepLoc: A Ubig-
033-941. uitous Accurate and Low-overhead Outdoor Cellular Localization System. In

[4] Ernesto Diaz-Aviles, Fabio Pinelli, Karol Lynch, Zubair Nabi, Yiannis Gkoufas, Eric Pr UCQEdf"gS of ACM SIGSPATIAL. 339-348.

Bouillet, Francesco Calabrese, Eoin Coughlan, Peter Holland, and Jason Salzwedel. (30] Pang—N%n'g Tan, Hanr'lah Blau, Steve Harp, and Robert G(?ldman. 2000. Textual
2015. Towards Real-time Customer Experience Prediction for Telecommunication Data Mining of Service Center Call Records. In Proceedings of ACM SIGKDD.
Operators. In Proceedings of IEEE BigData. 1063-1072. 417-423. . o

[5] Wei Fan, Kun Zhang, Hong Cheng, Jing Gao, Xifeng Yan, Jiawei Han, Philip Yu, _Shobha Venkata_raman and Jia Wang. 2019. Towards Identifying Impacted Users
and Olivier Verscheure. 2008. Direct Mining of Discriminative and Essential n Cellulgr Services. In Pr aceedm'gs of ACM SIGKDD. 3029-3039.)

Frequent Patterns via Model-based Search Tree. In Proceedings of ACM SIGKDD. (32] John Wright, Allen Y Yang, Arvind Ganesh, S Shankar Sastry, an.d Yi Ma. 2008.
230-238. Robust Face Recognition via Sparse Representation. IEEE transactions on pattern

[6] Jerome H Friedman. 2001. Greedy Function Approximation: A Gradient Boosting analysis and machine intelligence 31, 2 (2008), 210-227.)

Machine. Annals of statistics (2001), 1189-1232. [33] Zonghar_l _Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A Comprehensive Survey on Graph Neural Networks. IEEE

transactions on neural networks and learning systems (2020).

[31

[7] Quanquan Gu, Zhenhui Li, and Jiawei Han. 2011. Generalized Fisher Score for
Feature Selection. In Proceedings of Uncertainty in Artificial Intelligence. “ oS @ 4 ¢ . N
[8] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learning Yiting Xia, Ying Zhang, Zhizhen Zhong, Guanging Yan, Chiun Lin Lim, Satya-

on Graphs: Methods and Applications. IEEE Data Engineering Bulletin 40, 3 (2017), jeet Singh Ahuja, Soshant Bali, Alexander Nﬂfolai@is, Kimia Ghiobadi,Aand Manya
52-74. Ghobadi. 2021. A Social Network Under Social Distancing: {Risk-Driven } Back-

bone Management During {COVID-19} and Beyond. In Proceedings of USENIX
NSDI. 217-231.

[34

[9] JiaweiHan, Jian Pei, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar
Dayal, and Meichun Hsu. 2001. Prefixspan: Mining Sequential Patterns Efficiently

by Prefix-projected Pattern Growth. In Proceedings of ICDE. IEEE, 215-224. [35] Fengli Xu, Yong Li, Huandong Wang, Pengyu Zhang, and Depeng Jin. 2016.

[10] Jiyao Hu, Zhenyu Zhou, Xiaowei Yang, Jacob Malone, and Jonathan W Williams. Undgrstandmg Mobile Traffic Pat’Ferns of Large SFale Cellular Towers in Urban
2020. CableMon: Improving the Reliability of Cable Broadband Networks via Environment. IEEE/ACM transactions on network.mg 25, 2 (2016), 1147-1161.
Proactive Network Maintenance. In Proceedings of USENIX NSDI. 619-632. [36] Keyulu Xu, Weihua Hu, Jure Leskovec, .and Stefanie Jegelka. 2019. How Powerful

[11] Anand Padmanabha Iyer, Li Erran Li, and Ion Stoica. 2017. Automating Diagnosis Are Grap}? Ngural Networks? P roceedlrfgs of ICLR.)
of Cellular Radio Access Network Problems. In Proceedings of ACM MobiCom. [37] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How Transfer-
79-87. able Are Features in Deep Neural Networks? Proceedings of NIPS (2014).

[12] Yu Jin, Nick Duffield, Alexandre Gerber, Patrick Haffner, Wen-Ling Hsu, Guy Ja- (38] Bing Yu, Haoteng Yin, and Zhaflxing Zhu. 2018. Spatio-Temporal Qraph Conv_olu-
cobson, Subhabrata Sen, Shobha Venkataraman, and Zhi-Li Zhang. 2011. Making tional Networks: A Deep Learning Framework for Traffic Forecasting. Proceedings
Sense of Customer Tickets in Cellular Networks. In Proceedings of IEEE INFOCOM. of IJCAI (2018), 3634_3640" o .
101-105. [39] Chaoyun Zhang, Marco Fiore, Cezary Ziemlicki, and Paul Patras. 2020. Micro-

[13] Yu Jin, Nick Duffield, Alexandre Gerber, Patrick Haffner, Subhabrata Sen, and scope: Mobile Service Traffic Decomposition for Network Slicing as A Service.

Zhi-Li Zhang. 2010. Nevermind, The Problem Is Already Fixed: Proactively In f‘raceedmgs of ACM Mablem. 1-14. X X .
Detecting and Troubleshooting Customer DSL Problems. In Proceedings of ACM Zh‘fHua Zhou. 20148' A Brief Introduction to Weakly Supervised Learning.
CoNEXT. 1-12. National science review 5, 1 (2018), 44-53.

[14] Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. Proceedings of ICLR (2015).

Anukool Lakhina, Mark Crovella, and Christophe Diot. 2004. Diagnosing

Network-Wide Traffic Anomalies. Proceedings of ACM SIGCOMM (2004), 219—

230.

[16] Xin Li, Fang Bian, Mark Crovella, Christophe Diot, Ramesh Govindan, Gianluca
Jannaccone, and Anukool Lakhina. 2006. Detection and Identification of Network
Anomalies Using Sketch Subspaces. In Proceedings of ACM IMC. 147-152.

[17] Ajay Mahimkar, Carlos Eduardo de Andrade, Rakesh Sinha, and Giritharan Rana.
2021. A Composition Framework for Change Management. In Proceedings of
ACM SIGCOMM. 788-806.

[18] Ajay Mahimkar, Ashiwan Sivakumar, Zihui Ge, Shomik Pathak, and Karunasish
Biswas. 2021. Auric: Using Data-driven Recommendation to Automatically
Generate Cellular Configuration. In Proceedings of ACM SIGCOMM. 807-820.

[19] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram
Galstyan. 2021. A Survey on Bias and Fairness in Machine Learning. ACM
Computing Surveys (CSUR) 54, 6 (2021), 1-35.

[20] Lujia Pan, Jianfeng Zhang, Patrick PC Lee, Hong Cheng, Cheng He, Caifeng He,
and Keli Zhang. 2017. An Intelligent Customer Care Assistant System for Large-
Scale Cellular Network Diagnosis. In Proceedings of ACM SIGKDD. 1951-1959.

[21] Sinno Jialin Pan and Qiang Yang. 2009. A Survey on Transfer Learning. I[EEE
Transactions on knowledge and data engineering 22, 10 (2009), 1345-1359.

[22] Rahul Potharaju, Navendu Jain, and Cristina Nita-Rotaru. 2013. Juggling the
JigSaw: Towards Automated Problem Inference from Network Trouble Tickets.
In Proceedings of USENIX NSDI. 127-141.

[23] Haakon Ringberg, Augustin Soule, Jennifer Rexford, and Christophe Diot. 2007.
Sensitivity of PCA for Traffic Anomaly Detection. In Proceedings of ACM SIG-
METRICS. 109-120.

[24] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. 2008. The Graph Neural Network Model. IEEE transactions on neural
networks 20, 1 (2008), 61-80.

[25] M Zubair Shafiq, Lusheng Ji, Alex X Liu, Jeffrey Pang, and Jia Wang. 2012. Char-
acterizing Geospatial Dynamics of Application Usage in A 3G Cellular Data
Network. In Proceedings of IEEE INFOCOM. IEEE, 1341-1349.

=
2

puy
&

728

