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Gravitational wave parameter inference pipelines operate on data containing unknown sources, and
run on distributed hardware with widely varying configurations and stochastic transient errors. For one
specific analysis pipeline (RIFT), we have developed a flexible tool (RUNMON-RIFT) to mitigate the most
common challenges introduced by uncertainties in source parameters and computational hardware. On

the one hand, RUNMON provides mechanisms to adjust pipeline-specific run settings, including prior
ranges, to ensure the analysis completes and encompasses the physical source parameters. On the
other, it provides tools for identifying and adjusting to the realities of hardware uncertainties. We
demonstrate both general features with controlled examples.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Since the first gravitational wave detection GW150914 (Abbott
et al., 2016a), the Advanced Laser Interferometer Gravitational
Wave Observatory (LIGO) (Aasi et al., 2015) and Virgo (Accadia
et al., 2012; Acernese et al., 2015) detectors have continued to
discover gravitational waves (GW) from coalescing binary black
holes (BBHs) and neutron stars (Abbott et al., 2019a, 2020b,
2021a,b, 2019b, 2020c,a; Abbott et al., 2021c). From the point
at which data is collected, many computational analyses are
required to render it into information of astrophysical interest,
including detector characterization (Davis et al.,, 2021), calibra-
tion and data cleaning (Sun et al.,, 2021; Acernese et al., 2021),
candidate identification (Usman et al., 2016; Cannon et al., 2021;
Adams et al.,, 2015), noise estimation (Littenberg and Cornish,
2015), and parameter estimation (Wysocki et al., 2019; Veitch
et al.,, 2015; Ashton et al.,, 2019). For the small number of ob-
servations reported through GWTC-3 (approximately 90 over 3
observing runs), these analyses could be monitored by individual
humans to identify and remedy any problems that can occur.
However, as detector sensitivity improves the number of obser-
vations and thus inferences increase (potentially hundreds in 04
alone (Abbott et al., 2016b)), saturating the ability of individual
humans to carefully curate each analysis individually, such that
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automation will be necessary to correct common problems in
future observing runs. This problem is especially acute for param-
eter inference, which this paper will focus on, though automation
schemes have also been implemented for other types of analysis,
see for example Brown et al. (2021), Vahi et al. (2019), Singer
et al. (2021) and Essick et al. (2020). The most salient comparison
to this software is Asimov (Williams et al., 2022), which has
been developed for LVK analyses using RIFT and other parameter
inference pipelines, and was used in GWTC-2.1 and GWTC-3 (Ab-
bott et al., 2021a,b). This software has features in common with
RUNMON-RIFT, most importantly monitoring software for project
level management and automatic resubmission. However, no-
table features of our work — most importantly railing-correction
and node exclusion - are not presently implemented in Asimov.

Parameter inference for gravitational waves is generally done
within the Bayesian analysis framework. For many possible con-
figurations of parameters which contribute to the gravitational
wave (see Section 2.1 for details) likelihood values are com-
puted - in this case using approximate models of waveform
behavior (Ossokine et al.,, 2020; Garcia-Quirés et al., 2020) -
and are combined algorithmically with prior expectations to gen-
erate posterior distributions which describe the probability of
various configurations. For this analysis to be robust, it gener-
ally requires at least ©(10°) likelihood evaluations, which may
be computationally expensive. Various methods exist to sample
these distributions efficiently, but all are of substantial complex-
ity, and are run primarily on supercomputing clusters. In turn,
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this complexity allows for many potential issues, both in the
settings of the algorithm and the operation of the software, which
may drastically reduce the pace of analysis.

In this paper, we discuss a newly developed Python package,
RUNMON-RIFT,! which seeks to address a number of such prob-
lems in inferences performed using RIFT (Lange et al., 2018), one
of the parameter estimation (PE) pipelines to interpret events in
GWTC-1 (Abbott et al,, 2019a), GWTC-2 (Abbott et al., 2020b),
GWTC-2.1 (Abbott et al., 2021a), and GWTC-3 (Abbott et al,,
2021b), as well as many individual events (Abbott et al., 2019b,
2020c,a; Abbott et al.,, 2021c). RUNMON-RIFT (and RIFT more
generally) is geared primarily towards use on the LIGO Data
Grid, a collection of independently operated computing clusters
running HTCondor (Thain et al., 2005; Fajardo et al., 2015; Bock-
elman et al,, 2020) with a common software environment and
identity access management system, though RUNMON-RIFT also
sees some use on the Open Science Grid (Pordes et al., 2007;
Sfiligoi et al., 2009) via the LDG interface to it.

The challenges faced by software in scientific computing are
highly context dependent, and parameter estimation software
is no exception. However, some issues are common in many
gravitational wave inference pipelines, and we shall focus on
discussing these, with solutions tailored to the specific circum-
stances of RIFT. Large-scale parameter inference is frequently
bedeviled by computing issues which are, as an individual matter,
relatively straightforward to address, but which are, taken to-
gether, very difficult to resolve systematically. Notable examples
of this behavior include misconfigured nodes (e.g. the node’s
hardware is incompatible with the system software distribu-
tions), transient issues (e.g. a node loses contact with the filesys-
tem for a period while a job is attempting to run), and system
wide configuration errors (e.g. expired authentication tokens, or
filesystem errors). We introduce tools for managing such issues,
both by immediately continuing the progress of a job, and by
providing infrastructure to proactively avoid them and provide
information about their origin to cluster administrators.

Another common issue with parameter inference is “railing”:
an artificially narrow prior range that constrains the extent of
the posterior distribution in a physical parameter, significantly
skewing the final result. For many practical reasons, PE inference
pipelines adopt narrow prior ranges based on expectations in-
formed both by experience and by any additional information,
such as the output of a detection pipeline which identified the
event originally. This is imperfect, however, especially when anal-
ysis is being done in bulk and available person hours to identify
optimal settings are limited. We implement a mechanism for
correcting this automatically; this algorithm works best with RIFT
for reasons which will be described in more detail in Section 2,
but could be broadly adapted for any PE software.

This paper is organized as follows. In Section 2 we review
the RIFT parameter inference engine. We begin with the core
functionalities of RUNMON-RIFT, including its logging and tools it
implements which dramatically decrease the amount of person-
hours required to ensure a workflow’s completion. This includes
a discussion of common error modes, and of a prototypical com-
puting issue which RUNMON-RIFT helped overcome. We then
describe how we identify potential ‘railing’ in our posterior dis-
tribution, associated with artificially narrow boundaries, and we
introduce an adaptive method to extend these parameter-space
boundaries. Finally, we discuss a toy model to demonstrate how
RUNMON-RIFT can go beyond reactive workflow management,
and proactively ensure that the computational pool used by a
workflow is less likely to contain transient computing issues.
Section 3 demonstrates the automated healing of these runs in
both a stereotypical case of railing and for our computing issues
toy model.

1 Available at https://pypi.org/project/runmonitor-RIFT/.
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2. Methods
2.1. RIFT review

A coalescing compact binary in a quasicircular orbit can be
completely characterized by its intrinsic and extrinsic parame-
ters. By intrinsic parameters we refer to the binary’s masses m,
spins, and any quantities characterizing matter in the system. For
simplicity and reduced computational overhead, in this work we
provide examples of parameter inference which assume all com-
pact object spins are aligned with the orbital angular momentum;
however, the techniques introduced in our study are not specific
to any specific set of parameters or dimension. By extrinsic pa-
rameters we refer to the seven numbers needed to characterize
its spacetime location and orientation. We will express masses
in solar mass units (Mg, ), and dimensionless nonprecessing spins
in terms of cartesian components aligned with the orbital angular
momentum S; ;. We will use A, @ to refer to intrinsic and extrinsic
parameters, respectively.

RIFT (Lange et al, 2018) consists of a two-stage iterative
process to interpret gravitational wave data d via comparison
to predicted gravitational wave signals h(X, 8). In the first stage,
denoted by ILE (Integrate Likelihood over Extrinsic parameters),
for each A, from some proposed “grid” « = 1,2,...,N of
candidate parameters, RIFT computes a marginal likelihood

L) = f Lan(h, 6)(0)d0 (1)

from the likelihood Lg(A, @) of the gravitational wave signal
in the multi-detector network, accounting for detector response,
and extrinsic parameters prior 7 (6); see the RIFT paper for a
more detailed specification. In the second stage, denoted by CIP
(Construct Intrinsic Posterior), RIFT performs two tasks. First, it
generates an approximation to £(A) based on its accumulated
archived knowledge of marginal likelihood evaluations (A, £g).
This approximation can be generated by Gaussian processes, ran-
dom forests, or other suitable approximation techniques. Sec-
ond, using this approximation, it generates the (detector-frame)
posterior distribution

_ LA)m(A)
PN = ()

where prior 7()A) is the prior on intrinsic parameters like mass
and spin. The posterior is produced by performing a Monte Carlo
integral: the evaluation points and weights in that integral are
weighted posterior samples, which are fairly resampled to gener-
ate conventional independent, identically-distributed “posterior
samples.” For further details on RIFT’s technical underpinnings
and performance, see Lange et al. (2018), Wysocki et al. (2019)
and Lange (2020).

Parameter inference analyses generally require many con-
figuration details, notably including prior assumptions and the
amount of data to be analyzed. Most relevant to this work is
the fact that, for computational efficiency, the priors adopted
are generally targeted to cover a limited range of mass and
luminosity distance most likely to enclose the true source param-
eters, with initial ranges chosen motivated by search results. A
second critical setting is the starting frequency of the waveform’s
dominant quadrupole mode. For an inspiralling binary at early
times, this frequency is twice the orbital frequency. Because the
orbital frequency at the last stable orbit decreases with mass,
for binaries with a large detector-frame mass a conventional
starting frequency like f,u.r = 20 Hz is too high: the waveform
model does not permit it. Furthermore, generation of waveforms
with higher modes must start at a reduced frequency (fnin =
2fiower /Lmax), in order that no mode’s initial frequency is above

(2)
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Table 1
Examples of common errors.
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Error description Recognition method

Machine excludable? Fixed at origin?

CUDA compute incompatibility Custom error code Yes Yes for IGWN clusters
Interpreter runtime error Standard HTCondor error code No No
Interpreter not found error Standard HTCondor error code Yes Yes
XLAL file transient Output parsing No Yes

the fiducial starting frequency (i.e., no mode starts in band). A
third critical setting is the amount of data to analyze, or “segment
length”. As the relevant starting frequency or mass decreases, the
amount of data needed to be analyzed increases. Misidentification
of any of these settings can cause a cascade of changes. For
example, a mis-adapted mass prior might artificially exclude low
masses, requiring a re-evaluation of the relevant segment length.

2.2. RUNMON-RIFT introduction

RUNMON-RIFT is a Python package to monitor and manage
runs, including correcting common failure modes encountered. At
its core, RUNMON-RIFT consists of tools to assemble and manage
a lightweight run tracking log. In addition to monitoring the
queuing system (HTCondor) logs, RUNMON-RIFT includes generic
tools to parse, query, and even edit RIFT’s internal files. This
allows it to interpret log outputs for identification of patholog-
ical behaviors, and edit configuration files according to custom
algorithms. A daemon will periodically use these tools to update
status on each job under its purview, and, using the archived
run logs, the RUNMON-RIFT suite can quickly assemble reports
on run status, including measures of convergence. Moreover,
being aware of the workflow’s status and being able to edit the
workflow and even RIFT settings, RUNMON-RIFT can adapt to
issues arising with the host cluster, or individual machines upon
it,2 in a fashion that is minimally disruptive to ongoing analysis.
RUNMON-RIFT’s “healing” functions provide unique capability
to handle ubiquitous challenges arising in large-scale parameter
inference calculations. In this work, we will illustrate three such
operations. First, we will consider healing parameter “railing”, a
generic issue associated with user mis-specified priors. Second,
we will demonstrate how RUNMON-RIFT can respond to a tran-
sient cluster issue, here exemplified by problems with GPU use.
Finally, we will show how RUNMON-RIFT can efficiently block use
of undesired computing machines (e.g., identified by job failures
or even slow past performance).

2.3. Managing jobs

In its simplest manifestation, RUNMON-RIFT implements a run
index with operational metadata. LDG clusters feature a web-
facing directory which may be accessed from a browser, and in
this directory a file structure is generated, in which the user’s run
are organized by what event they are running on. For each run,
there are a series of text files containing information about the
run such as the name, location, number of completed iterations,
and convergence details; RUNMON-RIFT includes a set of utilities
which allow the user to parse these conveniently. A daemon is
used to automatically analyze the workflows which are registered
to its database, and updates the aforementioned metadata ac-
cordingly. Thus, we have operational information on all ongoing

2 A given cluster may have many different machines, with varying behaviors
due to hardware architecture, utilization protocols, and the like. We adopt the
terminology “machine” to reflect HTCondor’s internal attribute designation, but
they may also be variously known as nodes or sites — machines on the primary
LDG cluster, for example, have the naming convention node###.cluster.ldas.cit.

runs, allowing us to quickly identify potential problems and char-
acterize overall progress, both critically important when working
with many often heterogeneous analyses simultaneously.

RUNMON-RIFT can provide fixes for some of the many other
issues which can prevent progress on a run. These issues can be
conveniently flagged by the code, by the use of specific return
values from the two key routines(ILE and CIP). Alternatively,
RUNMON-RIFT can parse the codes’ output and HTCondor logs,
to identify and characterize issues that can cause the run to
fail. Quite frequently, these issues are transient in the sense that
they are not caused by the structure of the analysis itself, but
rather by incompatibilities which occur only in certain parts of
a heterogeneous computing pool.

A prototypical example is GPU utilization: RIFT uses GPUs to
improve efficiency, but a given cluster may include many separate
machines, often varying dramatically in age. Updates in some
standard computing environments to the software library used by
RIFT (CUDA Cook, 2012, called via the Python library CUPY Okuta
et al,, 2017) rendered it incompatible with some machines on a
popular cluster, which in turn led to an extremely high failure
rate, forcing the user to resubmit repeatedly until a job would
be lucky enough to land on a compatible machine. This example
motivated the introduction of automated resubmission within
RUNMON-RIFT, so that up time for runs could be maintained
with minimal user intervention, and during times when users
would not be available. Furthermore, it inspired the machine
exclusion algorithm described in Section 2.5. Ultimately, the root
of the problem was identified after a number of months, and
usage of software libraries was altered to remove the issue at its
source for runs on shared IGWN filesystems, but the resubmission
mechanics remain necessary for the highly heterogeneous OSG
pool. Table 1 displays several additional errors which RUNMON
solves in an analogous manner. Many result from instabilities in
cluster filesystems which change frequently and are unavoidable
for the end user. When a transient is sufficiently common and
results in a consistent error message in the Python runtime, RIFT
is edited to provide standard error codes for these errors, such
that RUNMON-RIFT may more easily identify and cope with them.

2.4. Healing parameter railing

The priors (@), w(A) over extrinsic and intrinsic parameters
are usually proportional to some a priori separable function. In
each variable, the range and normalization of the prior is over
some finite range. Sometimes the boundaries are physical and
absolute, for example when integrating over phase or sky loca-
tion. However, for variables like luminosity distance or mass, the
user usually adopts upper and lower bounds for computational
convenience, to bound the overall time to solution, centered on a
weakly-informed guess. When performing large-scale inference,
these arbitrary bounds are not-infrequently mis-specified, and
the posterior is artificially constrained, “railing” against one or
more boundaries.

Railing can be identified by having significant posterior sup-
port immediately adjacent to one of the arbitrary prior bounds.
The blue curve in Fig. 1 shows an example of a railed posterior.
Quantitatively we identify it as follows. Suppose for parameter x
we have a sampled posterior p(x). We divide the prior range m(x)
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Fig. 1. Analysis for the GW190602_175927 (Abbott et al, 2021d), an event where standard parsing of internal low-latency estimates results in initially incorrect
boundaries in M.. Contours are shown for iterations which triggered RUNMON-RIFT’s railing test, as well as the final result, and vertical lines show the boundaries
at the iterations where railing was found. The final boundary occurs substantially to the right of the plot’s extent in M. Colored points are individual points on the

grid, with the heat map corresponding to likelihood.

into bins of equal width, with 20 bins as the default. We then
determine the density of the posterior in the first and last bin.
If this density exceeds some threshold - we use 0.03 by default
- in either bin, we evaluate this bin to be railed, and extend the
corresponding boundary accordingly. We emphasize this defini-
tion applies only to parameters with user-specified boundaries;
parameters which have absolute limits, like the mass ratio q =
m,/my, do not rail against those limits, as more extreme values
are unphysical.

RIFT’s intrinsic boundaries only impact the second (CIP) phase
[Eq. (2)] of the cycle, not the phase in which the likelihood values
are computed [Eq. (1)]. RUNMON-RIFT’s daemon reads the output
of each CIP phase (these take the form of sampled posteriors over

the intrinsic parameters p(1)), and applies our algorithm to iden-
tify railing if appropriate. If it is detected, the job is removed from
the cluster, and RUNMON-RIFT changes the boundaries which are
found to be railing. If lower bound railing is detected, Rjpyer is
mapped to (1 — m)Rpuer and if upper bound railing is detected
Rupper 1s mapped to (1 4 m)Rypper, Where m is 0.5 by default. The
same job may then be resumed, without having to create a new
workflow.> At least 2 iterations are required before the extended
range can be fully explored, but since railing is normally identi-
fied early in the analysis, the job almost always has the ability
to explore the extended range. In cases where a job does fail to

3 In the language of HTCondor, we resubmit the dag.
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explore this range, methods exist for creating new jobs which
effectively continue the runs, though this does require manual in-
tervention. Other parameter estimation methods - notably MCMC
and nested sampling methods - require more complex methods
of intervention and continuation to achieve similar results, such
as the initialization of helper analyses, though it is also potentially
feasible to automate these.

2.5. Problematic machine exclusion

Computing clusters frequently suffer from transient errors,
usually triggered by some change in the computing environ-
ment, which take the form of everything from failed software
dependencies to difficulties with file transfers. Since the specific
conditions required to trigger these transients may only occur for
certain computational tasks, on certain machines, or with specific
settings, they may be difficult to track and address. Also prob-
lematic is the phenomena of “black hole” machines: a colloquial
term referring to when a machine will accept a job, but that job
will quickly fail due to something inherent to the machine (such
as the aforementioned GPU incompatibility). Specifically, if large
numbers of jobs are submitted in parallel (as is the case for high-
throughput computing tasks, such as the ILE stage of RIFT), the
scheduler will attempt to assign them in bulk. If the available
computational resources are limited, then some fraction will be
assigned and the rest will occupy the next spots in the queue.
Accordingly, a single machine experiencing some transient error
may fail immediately, then accept another job from this queue. In
sufficiently low resource situations, this may result in the entire
parallel content of a high-throughput computing job failing on a
single machine.

To mitigate the impact of problematic machines, RUNMON-
RIFT allows for tracking machines associated with known tran-
sient errors, and provides a tool for instructing the relevant
HTCondor jobs to exclude these machines from matchmaking
consideration. The information about which machines should be
excluded is shared across all jobs managed by a given daemon,
and thus is propagated quickly for all of a user’s active jobs.
Logging of these machines and their associated failure modes
also offers a collated set of data to provide system administrators
when troubleshooting issues, such that the root problem may be
identified and addressed, at which point it is straightforward to
remove the restrictions the daemon imposed upon the pool.

3. Results
3.1. Healing

Fig. 1 depicts a prototypical example of railing, along with the
correction produced by RUNMON-RIFT. The pipeline constructor
for the event in question, GW190602 (Abbott et al., 2021d),
produced a railed prior boundary in chirp mass M. when taking
the metadata of the event’s initial detection as input. Accordingly,
it required careful and tedious human intervention, lest any run
be completely ruined. The use of RUNMON-RIFT may be seen to
alleviate this in the progression of the results seen in Fig. 1. The
plot in question is an example of a corner plot — displaying both
one dimensional histograms of individual parameters, as well as
their two dimensional joint parameters, so that correlation may
be understood and diagnosed. RIFT corner plots also include col-
ored points to show the likelihood values of the underlying grid,
with the yellow spectrum colors corresponding to the highest
likelihood points, and the purple spectrum colors corresponding
to the lowest likelihood points. Here the posterior after the first
iteration of the workflow (the blue curve) may be seen to rail
at the upper boundary in M. which was set by the pipeline
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constructor (the dotted black line). Notably, this distribution also
has an erroneous posterior distribution in mass ratio g, due to
the correlation of this parameter with the erroneous chirp mass.
RUNMON-RIFT then automatically increased the upper boundary
to the value seen in the dashed black line, and continued the
sampling process. After a number of iterations, the posterior had
shifted to the orange curve, which may be seen to also rail
(though to a lesser degree) against the modified upper bound,
and so RUNMON-RIFT modified the upper bound once more, well
past limits of the corner plot (M. &~ 135Mg). Final sampling
then brought the posterior to an unrailed distribution (the green
curve), which agrees with the results presented for this event
in Abbott et al. (2021a).

3.2. Runcrasher

To demonstrate the principle of machine exclusion, we con-
struct an artificial scenario with known parameters and behavior
which mimics the transient errors known to occur on computa-
tional clusters. In particular, we insert a step into the standard
ILE portion of the workflow which tests the machine upon which
the job lands, and produces a failure if that machine’s name
satisfies certain constraints (e.g. if the last digit is 5). RUNMON-
RIFT included this failure code as one of the known transient
values, and the exclusion system was triggered accordingly. We
conducted tests under various constraints, reflecting the varying
incidence rate of transients. This construct also naturally results
in the aforementioned “black hole” machines when submission
incidentally occurs at a time of high resource usage.

The results of this artificial scenario and corresponding inter-
vention are shown in Fig. 2. The bar charts indicate the behavior
of individual machines under high and low transient incidence
rates respectively. Transients are separated into two types: those
which are caused by the runcrasher, which behave in a pre-
dictable manner and are subject to machine exclusion, and those
which are caused by miscellaneous other transients, which are
not well characterized and not subject to machine exclusion (for
the runs in question these transients primarily involve accessing
certain public files). The scatter plots show how many machines
are actively excluded for each of these corresponding submission
batches.

A number of features may be noted in these plots. Firstly, the
submission events for which the total number of jobs increase
are those submissions which occur at the beginning of a new
iteration. The total duration of iterations for which the same
numbers of jobs are submitted decrease correspondingly in the
high-incidence case (the number of jobs submitted per iteration
varies over the duration of the underlying workflow to improve
its efficiency). Similarly, the relative proportion of errors which
are due to the unmodeled transients increases. The low incidence
case shows somewhat similar behavior, though it is also more
strongly subject to low number statistics, as it is relatively rare
to hit a failure machine in the first place.

When including analysis of the number of machines submit-
ted, one may also see the expected trend: initial jobs result in
substantially more blocked machines, while later jobs run in a
cleaner pool, and thus are less likely to simultaneously interact
with many error-triggering machines. One may also note that
there are submission events (submission event 20, for example)
for which most jobs fail but very few machines are blocked —
this is an example of the aforementioned black-hole machine
phenomenon. These unfortunately take longer to root out, since
it gets progressively harder to filter through the pool when it
is already mostly successful, but integration of these error lists
across multiple runs mean that in a high usage context (if one
has 10 runs simultaneously, for example) it is very feasible to fully
eliminate problematic machines.
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Fig. 2. The behavior of ILE jobs and number of machines blocked as a function of the associated ILE submission batch, for high and low error rate scenarios. Left panels:
Histogram of the number of failed jobs versus submission attempt. Jobs labeled Succeeded complete normally; jobs noted as RunCrashed have intentionally failed,
due to landing on a set of pre-selected target hosts; and jobs labeled Crashed fail for other reasons, not infrequently associated with problematic or misconfigured
host machines. Right panel: Cumulative number of blocked as a function of rescue attempt.

4. Conclusion

We have presented our Runmonitor for RIFT (RUNMON-RIFT),
a utility which greatly aids in the operation of this inference
pipeline. Gravitational wave science is in an exciting time, with
a rapid pace of discovery and exponentially increasing data to
analyze. In this context, it is critical that the time required to
complete a parameter estimation task, and the time the user
spends actively monitoring and intervening in that task, be mini-
mized. By introducing centralized diagnostic tools, RUNMON-RIFT
makes it much easier for a user to check the status of their active
jobs. Automated resubmission for known transient issues greatly
decreases the amount of time a user spends actively engaging
with the workflow (in particularly hostile computing environ-
ments this decrease may be up to an order of magnitude), and
machine exclusion allows one to tailor the pool utilized towards
the machines which will actually work consistently, decreasing
restarts and improving efficiency for all cluster users. Monitoring
of railing allows for aggressive (and hence efficient) initial set-
tings, while also reducing the need for producing new workflows
during exploratory phases of analysis.
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