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ABSTRACT: In this paper we present the derivation of two new forms of the Kalman filter equations; the first is for a
pure lognormally distributed random variable, while the second set of Kalman filter equations will be for a combination of
Gaussian and lognormally distributed random variables. We show that the appearance is similar to that of the Gaussian-
based equations, but that the analysis state is a multivariate median and not the mean. We also show results of the mixed
distribution Kalman filter with the Lorenz 1963 model with lognormal errors for the background and observations of the
z component, and compare them to analysis results from a traditional Gaussian-based extended Kalman filter and show
that under certain circumstances the new approach produces more accurate results.
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1. Introduction

Over the last decade or so, there have been advances in the
variational (VAR) forms of data assimilation to allow for
non-Gaussian behavior of the errors; specifically, there has
been much development that allows for lognormally distrib-
uted errors, as well as for Gaussian errors combined with
lognormal errors such that these errors can be minimized
simultaneously (Fletcher and Zupanski 2006a,b, 2007; Fletcher
2010; Fletcher and Jones 2014). A full summary of the devel-
opment of the mixed Gaussian-lognormal variational systems
from full field 3DVAR to incremental 4DVAR can be found
in Fletcher (2017).

The aforementioned theory has been applied in a micro-
wave retrieval system for temperature and mixing ratio from
the AMSU-A brightness temperatures (Kliewer et al. 2016).
There, three theories are compared: 1) the mixed distribution
approach, which seeks the mode, or most likely state, of the
analysis distribution, 2) a logarithmic transform applied to the
mixing ratio, which seeks the median of the analysis distribu-
tion (Fletcher and Zupanski 2007), and 3) a Gaussian model
for the errors of temperature and mixing ratio. It is shown
that the mixed distribution approach performs better than the
other two mentioned approaches in fitting to observations.
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However, the ability to extend the lognormal theory to the
Kalman filters, and hence to the ensemble-based data assimi-
lation systems, has not been forthcoming. The basis of the log-
normal variational work was provided in the seminal paper
Cohn (1997), which contains the first appearance of a defini-
tion for a lognormally distributed observational error associ-
ated with a direct observation, which is in the form of a ratio,
not a difference. This definition, together with a change of
variables for the background state, allowed for a version of
the Kalman equations that accounts for direct observations
with lognormal errors. The reader is referred to Cohn (1997)
for the full details of this derivation. The main difference be-
tween the work in Cohn (1997) and the work presented here
is twofold: 1) we allow for nonlinear observation operators in
the Kalman filter equations, and 2) we allow for a combina-
tion of Gaussian and lognormal distributed background and
observational errors.

The equations for the Kalman filter (Kalman 1960; Kalman
and Bucy 1961) can be derived from either a control theory
approach or a least squares formulation (Fletcher 2017),
where the latter is referring to minimizing the trace of the
analysis error covariance matrix with respect to the Kalman
gain matrix. The Kalman filter is therefore seeking the mean
of the analysis distribution to minimize the errors. For a
Gaussian distribution, the mean, mode, and median are equiv-
alent. However, for skewed distributions it is not the case that
the three descriptive statistics are equal. For left skewed dis-
tributions, the mode is less than the median, which is less than
the mean, whereas for right skewed distributions the opposite
is true. In section 2, we show that if one tries to follow the ini-
tial steps of the least squares approach, it is impossible to de-
rive a lognormal-based Kalman filter because one cannot
separate out the analysis and forecast error covariance matri-
ces from the logarithmic operator in order to evolve them by
the linear model. Another stumbling point is that it is not pos-
sible to define a weighted sum of predicted states and new ob-
servations to determine an estimate of the state at the current
time and still be consistent with a lognormal estimate.
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We shall briefly summarize an alternative approach, which
is referred to as the lognormal Kalman filter (Kondrashov
et al. 2011), where a logarithmic transform is introduced to a
model variable, and the analytical differential equation is re-
derived for the new variables. This approach is utilizing the
property that the logarithm of a lognormally distributed ran-
dom variable is a Gaussian distributed random variable and
so the Kalman filter can be applied to the new variable. An in-
verse operation is utilized to obtain a value of the original
model variable. This approach would not be practical for a
numerical weather or ocean prediction model because it re-
quires re-derivation of the associated prognostic differential
equations for the state in the new variable.

Given these setbacks we recall that the Kalman filter is
equivalent to 3DVAR when the static background error co-
variance matrix is replaced with a flow dependent background
error covariance matrix, and examine a cost function-based
approach to obtain the lognormal analytical state in terms of
a lognormal-based Kalman gain matrix, and take the expecta-
tion of this state to obtain an expression that is similar to the
Gaussian-based analysis error covariance matrix. We say
“similar” in that the cost function will be defined to obtain the
median, or unbiased state, of the analysis distribution. We
should note here that the lognormal distribution is defined in
terms of the vector of means p and the covariance matrix 3
for Inx, not the vector of random variables x. We shall show
that the lognormal-based analysis error covariance matrix is
equivalent to the inverse Hessian matrix of the associated
cost function scaled by the inverse of the derivatives of Inx.
We shall also show that the estimate for the lognormal Kalman
gain matrix minimizes the trace of the lognormal analysis
covariance matrix.

The remainder of this paper is as follows. In section 3 we
shall present the derivations of the lognormal and the mixed
Gaussian—lognormal versions of the Kalman filter equations.
In section 4 we shall examine the performance of the mixed
Gaussian-lognormal Kalman filter equations against the Gaussian
extended Kalman filter with the Lorenz 1963 model (Lorenz
1963) for different observational error variances and for different
frequencies of observations. Also in this section we test the
robustness of the new scheme against the extended Kalman
filter over 5000 assimilation runs for the different observa-
tional error variance experiments and for 5000 perturbed true
and background states. It is assumed in these experiments that
the z component of the model is better modeled with a lognor-
mal distribution than a Gaussian. The paper is finished with
conclusions and ideas for future work.

2. Difficulties with lognormal-based Kalman filters

a. Statistical derivation of the forecast error
covariance matrix

As indicated in the introduction, a first approach to derive
a lognormal-based Kalman filter data assimilation system
would be to follow the statistical derivation that is summa-
rized in Fletcher (2017), but with the lognormal equivalent in
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parallel. The starting point is to define the Gaussian distrib-
uted analysis errors as

a a Xt’ (1)

where x, is the true state that is being sought, and x, is the
analysis state at the current time.

Introducing the time component, along with the back-
ground or forecast state x, =M, _,x""!, in terms of the
numerical model M operating on the analysis state
at the previous time step, yields the background/forecast er-

ror as

g =Mx" 1 —x!, 2)
where M=M, , _, is a linear or linearized numerical model
matrix that operates from time step "~ to time step ¢".

Introducing the lognormal equivalent of (1) and (2), we
have

£y =Xy O X[, (3)
e =(Mxl ) @ X7, 4)

where © is the Hadamard division operator, which is a com-
ponentwise division operator. As we are assuming that the
components of the analysis and true state are lognormally dis-
tributed, then we have the property that all of these entries
are greater than zero. The subscript / above, and throughout,
is referring to the components associated with the lognormal
formulations. The reason that the analysis error in (3) is de-
fined as a ratio is as a result of the lognormal distribution
being geometric, which implies that the ratio or product of
two independent lognormal random variables is itself a log-
normal random variable. For the Gaussian distribution the
equivalent property is that for two independent Gaussian ran-
dom variables, their difference or sum is also a Gaussian ran-
dom variable.

Using the definition of the analysis state at time r = "' for
the Gaussian variable:

A ®)

the background errors can be written in terms of the previous
time’s true state and analysis error as

no_ n—1 n—-1 _ n
g, = Mxj™" + Mg) X 6)

This makes it possible to factorize the background error as
& = Me; ! + e, )

where

€, = fof1 - X7, 8)

is the model error.

To derive the analysis error covariance matrix in the log-
normal Kalman filter, it is desirable to factorize the lognormal
analysis error in a similar fashion as in (7). However, using
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the definition of the background error (4) together with the
analysis state at time r = 1"~ %

a =X ©)

X al

it is clear that this is not possible. Indeed, in this way one finds
Ingy, = lnM(x:‘_1 sfl’,_l) — Inx} # lnMx:‘_1 + lnMsZ,_1 — Inx},

(10)

where the inequality comes from the fact that the linear
model does not commute through the Hadamard product op-
erator, and as such the model cannot act on both factors sepa-
rately. Then also the logarithm cannot be expanded, making
sure the background error cannot be factorized as in (6). Note
that we consider the logarithm of the background error be-
cause the Kalman filter equations are defined through the ex-
pectations of the relevant Gaussian random variable, which
for the lognormal distribution is Inx, and not the lognormal
random variable x.

To factorize the time evolution of the lognormal analysis
error, another definition of the background error is necessary.
A possible workaround is to instead define the background
state at the next analysis time ¢ = " as the true state at that
analysis time multiplied by the evolution of the analysis error
from the previous analysis time x/ = x” Me""!. In this case,
one has to multiply by the lognormal model error to keep ev-
erything consistent. Then, the logarithm of the background
error can be written as

no_ n n—1 __ n _ n—1
Ingj; = Inx; + InMel; Inx} + Ing,, = InMg; " + Ing,,

(11)
where the lognormal model error g, is defined as
Ing?, = InMx"~! — Inx". (12)

This now implies that it is not possible to move the numerical
model out of the logarithm, which causes a problem as it is
not the evolution of the logarithm of the analysis errors that is
needed, but rather the logarithm of the evolution of the analy-
sis error.

For the Gaussian filter, the forecast error covariance matrix
can now be formed by multiplying (7) with its transpose and
then applying the statistical expectation operator E[-], which
yields

P} = E[&}(£})'] = E[((Mei ! + & )Ml + &),
= ME[e} (g} )" IM" + E[&]} ()",

=MP,'M" + @ (13)
where P”~! is the analysis error covariance matrix at time
t ="' and Q" is the model error covariance matrix at time
t = t", and it is assumed that the analysis error and the model
error are uncorrelated.

Applying the same approach to (11) yields lognormal fore-
cast and model error covariance matrices as
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P}, = E[(InMg " + Ing),)(InMe; " + Ine”)"],

= E[InMe” ' (InMe?~1)"] + E[Ing”, (Ine?,)"],

=P+ Q (14)
where it is assumed that the logarithm of the analysis and
model errors are uncorrelated. It is clear from (14) that the
definition for the forecast error covariance matrix does not
explicitly contain the numerical model acting on the analysis
error covariance matrix from the previous analysis time. It is,
however, implicit in the state x", as this is the result of evolv-
ing the true state and the analysis error from the previous
time step. It should be noted here that given that it is not pos-
sible to interchange the model and the logarithm, for the re-
mainder of the paper the new approach will be with the
nonlinear model as there is no advantage of using the linear
model to interchange operators. As future applications are
more likely to be nonlinear, we remove the errors that are in-
troduced through linearizations through this approach.

b. Kalman gain matrices

Another problem with trying to derive a lognormal version
of the Kalman filter arises in the analysis step; as shown in
Fletcher (2017), where if given a predicted state x?! that is
associated with observations up to time step ¢, and assuming
that an observation has been received at time ¢ = ¢**', then
an estimate of the state at r = ¢**!, given the observation at
time r = "' is required. In Kalman filter theory this step is
started by assuming that the estimate is a weighted sum of the
predicted state and the new observation, that is to say

n+l _ ygnt+ln+l n+l n+1
X, = Kb Xp + Kg y )

(15)
where y"*! is the observation at time ¢t = "*!. We should
note here that the observation could be either a direct or indi-
rect observation of the predicted state. However, for a lognor-
mal approach the equivalence of (15) would be in terms of a
weighted sum of the logarithm of the predicted state and the
observations such that

n+l _ n+1_n+1 n+1n+1
Inx),”" = InK};"'xp;; " + InKl,) " y"",

(16)

where the K matrices in (15) and (16) are referred to as gain
matrices. Thus it is not possible to manipulate the equations
to obtain the expressions for the gain matrices due to the log-
arithms being present and acting on the state, and it is not
possible to interchange the operators to overcome this prob-
lem. Thus this approach cannot continue through the steps of
the derivation of the Gaussian-based Kalman filter equations
to seek an equivalent lognormal version of the Kalman gain
matrix and filter equations.

c¢. Change of variable-based lognormal Kalman filter

As mentioned in the introduction, there is an alternative ap-
proach that has been proposed to obtain a form of a lognormal-
based Kalman filter in Kondrashov et al. (2011). This approach,
which recently has been used for a reanalysis of ring current
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phase space densities in Aseev and Shprits (2019), should more
accurately be referred to as the change of variable lognormal
Kalman filter. In Kondrashov et al. (2011) the authors state that
a striking feature of the radiation belts is that values of observed
electron fluxes, and modeled particle space density (PSD), vary
by several orders of magnitude. The corresponding error distri-
butions are therefore not Gaussian, while standard data as-
similation methods, such as the Kalman filter and its various
adaptations to large-dimensional and nonlinear problems, are
essentially based on least squares minimization of Gaussian
errors, which was shown in the last section. Thus it is not pos-
sible to change these approaches directly to ensure consis-
tency with a lognormal distribution.

As mentioned in Kondrashov et al. (2011), a possible tech-
nique that is quite often used for dealing with lognormal ran-
dom variables is to use the property that the logarithm of a
lognormal random variable is a Gaussian random variable.
However, as shown in Fletcher and Zupanski (2007), when
transforming from lognormal random variables to Gaussian
random variables, minimizing the cost function in variational
data assimilation, or finding the covariance matrix and the
mean state with an ensemble Kalman filter system, then the de-
scriptive statistic that is found in lognormal space once the in-
verse transform is applied, is the median state. A problem with
this approach for the ensemble Kalman filter formulation is that
the model is in terms of the original lognormal variable and not
the transform logarithmic variable.

The motivation for considering a lognormal model for the
PSD is justified through the statements from Kondrashov et al.
(2011) that since this variable is always positive, and generally its
variations, as measured by the standard deviation, increase as its
mean value increases. However, Gaussian distributed variables
can be negative and have a standard deviation that does not
change as the mean changes. Lognormal errors arise when sour-
ces of variation accumulate multiplicatively, whereas Gaussian
errors arise when these sources are additive.

To overcome the problem just mentioned, the authors of
Kondrashov et al. (2011) propose rewriting the time evolution
parabolic partial differential equation:

of of _f

3
L =1>— LD, -
at aL oL 1°

(17)
where PSD is f = f(L, t;u, J) in the Van Allen radiation belts,
at fixed values of the adiabatic invariants u and J. The radial
variable L is the distance in the equatorial plane, measured in
Earth radii Rg, from the center of Earth to the magnetic field
line around which the electron moves at time ¢, Dy 1 is a radial
diffusion term, and 7; is the characteristic lifetime of the lin-
ear decay of J and p, through considering the problem for
log f.

Thus, Kondrashov et al. develop a lognormal-based dynam-
ical model for the change of variable S = logf through the
chain rule for partial derivatives in time and space, applied to
(17), which results in

2
S L0 ., aS 1 as
-2 - w37

- - = 1
at aL oL 1, (18)
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In Kondrashov et al. (2011) they show positive results from
this approach compared to using the standard Gaussian-based
Kalman filter equations. However, in numerical weather and
ocean prediction it is not realistic to change all of the positive
definite variables and then rederive the associated prognostic
differential equations. Also as work in Goodliff et al. (2020)
has shown, it is possible that the distribution of the positive
definite variables can change with the dynamics, and may not
always be lognormal. Therefore, also in numerical weather
and ocean prediction the underlying distribution used should
be able to change dynamically, which is unfeasible in a change
of variable approach.

In the next section we shall present an approach that
builds off of a cost function for a lognormal median of the
posterior distribution for the situation where both the back-
ground, and observational, errors are lognormally distrib-
uted. We shall also show that this approach ensures that the
derived covariances are consistent with a multivariate log-
normal distribution.

3. Lognormal and mixed Gaussian—-lognormal
Kalman filters

It appears from the attempted derivation in section 2 that it
is not possible to obtain a lognormal version of the Kalman
filter equations, that are based upon the first two moments of
the multivariate Gaussian distribution through following a
least squares approach, which would have involved showing
that the derived Kalman gain matrix minimized the trace
of the analysis error covariance matrix. However, what is
important to recall here is that for the Gaussian distribution
the three descriptive statistics are the same, that is to say the
mode, median, and the mean are equal. This is not true
for the lognormal distribution. It is shown in Fletcher and
Zupanski (2006a) that these three statistics are quite differ-
ent, and that they each have their own properties; the mode
is the maximum likelihood state, the median is the unbiased
state, and the mean is the minimum variance state in distri-
bution theory. To make this important distinction more
clear, we will review some of the characteristics of the log-
normal distribution, before deriving the lognormal Kalman
filter.

a. Properties of the lognormal distribution

It is quite often stated that an error is unbiased if its mean
is equal to zero. This is not true for many non-Gaussian dis-
tributed random variables. As just stated, the median is the
unbiased state, which implies that the cumulative density
function at the median is equal to 0.5. For example, to say
that a lognormal random variable, or error g, is unbiased if
E[e] = 0, is equivalent to saying that

2

exp u + % =0, (19)

where . = E[lng] and o2 is the variance of Ine and not &,
which cannot happen. It is not possible to have a zero mean
for a lognormal random variable. However, it is possible that
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FIGURE OF THE ASSOCIATED ERROR DISTRIBUTION
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FIG. 1. (left) Plots to illustrate the differences in the modes, medians, and means for two different lognormal distributions that are repre-
senting the true state’s distribution (solid curve) and the analysis state’s distribution (dashed curve). (right) The distribution for the associ-

ated analysis error g, = x,/x,.

E[ln¢] = 0, but applying this assumption to the background
error would imply that the distributions of the true state and
the background state are the same type and that they have
the same median, not the same mean, in lognormal space,
which is true in the Gaussian transformed space as well. This
is because of the definition of the distribution of the ratio
of two independent lognormal random variables, and its
associated mean: if x, ~ LN(, a?) and x, ~ LN(u, a3), then
g, = (x,/x) ~LN(n — p, a2 + 03) = LN(0,02 + a2).

To help illustrate this point, we have plotted two lognormal
distributions that are supposed to represent the probability
density functions (PDFs) of the true state (solid curve) and
the analysis state (dashed curve), where the two states have
the same Gaussian mean, w, = pu, = In 2, but with different
Gaussian variances, o; = 0.25% and a-ﬁ = 0.52, respectively, in
Fig. 1. We have also plotted lines for the mode, median, and
mean of the two distributions in this order in their respective
line styles.

It is clear from the left panel of Fig. 1 that the two distri-
butions have the same median, but that neither their modes
nor their means are equal. In the right panel of Fig. 1 we
have plotted the associated distribution for the equivalent
analysis error ¢, = x /x,. While the distribution has a median
at 1, the most likely state is to the left of this value, indicat-
ing that the state with the highest probability of occurring
for the analysis error is not equality, which implies a bias in
the analysis.

In Fletcher and Jones (2014) it is shown that when follow-
ing a modal approach for the incremental formulation of
mixed Gaussian-lognormal 4DVAR, the analysis error distri-
bution, or the posterior distribution as it is also referred to as,
had a mode at 1. This is therefore indicating that the most
likely answer from the data assimilation system was some-
thing close to the true state.
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b. Lognormal Kalman filter—Median-based approach

Given this brief explanation and illustrations of the descrip-
tive statistics of the lognormal distribution, it is clear that that
the way to derive an equivalent set of Kalman filter—type
equations for lognormally distributed errors, using the fore-
cast error covariance matrix evolution described earlier, is to
start with defining a cost function whose solution is the me-
dian of the analysis error distribution (Fletcher 2017), as this
is equivalent to In g,, and then find the associated covariance
matrix for In &,. In Fletcher (2017) it is shown that the median
analysis state for lognormally distributed background and
observation errors is the minimum of the following cost
function:

J(x) = %(lnx — Inx,)"P;,! (Inx — Inx,)
+

[Iny — Inh(x)]"R; '[Iny — Inh(x)], (20)

N =

where h(x) is the nonlinear observation operator that maps
the state to observation space, and Pf, now defined in terms
of the nonlinear numerical model, is given by

P;?l = [lnM(xz_1 82_1) - lnx:’][lnM(X;,’_l ez_l) - lnxf’]T
+Qj. (21)

Differentiating (20) with respect to x results in
Vv, J(x) = W, P, (Inx — Inx,) — H'W, "R, '[Iny — Inh(x)],
(22)

where H is the Jacobian of the observation operator, defined
by HL.J. = ahi(x)/ax/., and
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xt 0 0
0 xt 0
w,! = 0 ,
0 0 0 x!
[h,(x)]"" 0 0 0
0 h,x)]™" 0 0
w!= 0 . (23)
0 0 0 [hy x)]"

where n is the total number of state variables, and N, is the
total number of observed variables.

As it will be required later to finalize the derivation of the
lognormal Kalman filter, it can be shown that the Hessian ma-
trix of (20) is

ViJ(x) = W, TP,'W, ! + HTW, TR, "W, 'H. (24)
To compare later with the analysis covariance matrix, it is use-
ful to write down a scaled Hessian matrix as
W, ViI(x)W, = P;' + Wy H'W TR 'WTHW, . (25)
An important feature to notice about (25) is that the Hessian
matrix is positive definite because of the following short
proof. Let A be a positive definite matrix, defined by
xTAx >0, Vx # 0, and it is known that A~! is also positive
definite. Now let B = WTA™'W, and consider the scalar ex-
pression xTWTA™'Wx = (Wx)"TA™!(Wx) = 0. Because we
know that A™! is positive definite, then the only way this ex-
pression can be 0 is if Wx is equal to 0, but if we assume that
W has full column rank, then this implies that x = 0. This then
implies that B = WTA™'W must be positive definite.

Returning to (24) we have that the diagonal matrices multi-
plying P, ! are of full column rank, which from the proof
above, implies that the first term in (24) is positive definite.
Turning to the second term, we know that Wy has full column
rank as it is a diagonal matrix. With respect to H, we know
that there has to be a sensitivity to at least one state variable,
and that the same observation is not assimilated twice; therefore,
H must have full rank as well. Thus the second term in (24) is
also positive definite. Given that the sum of two positive definite
matrices is also a positive definite matrix, then the Hessian matrix
must be positive definite. By these same arguments, the scaled
Hessian matrix in (25) must also be positive definite.

As with the minimization of the Gaussian cost function in
3DVAR, setting the gradient of (20) equal to zero, and calling
the state that achieves this the analysis state, denoted by x,,, yields

v J(x,) = W, P, (Inx, — Inx,)

— H'W, 'R, ![Iny — Inh(x,)] = 0.  (26)
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The next step in deriving the lognormal version of the Kal-
man filter equations is to state that we wish to associate the
analysis state with the observations in terms of some form of
lognormal-based Kalman gain matrix K;. Thus, we require

Inx, — Inx, = K[Iny — Inh(x)]. (27)
The reason for the form in (27) is that applying a logarithm to
the lognormal random variables results in Gaussian random
variables, thus, one is free to consider a linear combination of
these new variables, similar to the original Gaussian ap-
proach. This form also enables us to form the analysis covari-
ance matrix that is consistent for a lognormal distribution.
Next we introduce the logarithmic geometric tangent linear
approximation (Fletcher and Jones 2014), which enables the
logarithm of the model fields to be operated on by the Jaco-
bian of the observation operator h(x). The starting point is to
consider the numerical geometric derivative of Inh;(x), for a
component x;, with a multiplicative increment Ax;, such that

lnh].(xl.Axl.) - lnh].(xl.) 1 dh].(xl.)
x,(Ax;, — 1) - h(x) dx,

AN i

(28)

Multiplying and dividing (28) by [In (x;Ax;) — Inx;] and inter-
changing the denominators on the left-hand side, yields
Inh;(x;Ax;) — Inh,(x,) In(x,Ax;) — Inx, _ 1 dh/.(xi). 29)
In(x;Ax;) — Inx; x,(Ax; — 1) h,(x,) dx

Taking the limit of the second factor on the left-hand side of (29)
with respect to Ax; — 1, and then multiplying by its inverse yields
lnh].(xl.Axl.) - lnh].(xl.) 1 dhj(xi)x
In(x;Ax;) — Inx, hj(xi) dx, '

Rearranging the expression above yields

1 dhy(x)
h(x) dx

AN i

lnhj(xiAxi) - lnhj(xi) ~ x,[In(x,Ax;) — Inx;], (30)

fori=1,2,...,Nandj= 1,2, ..., N,. Collecting all of the differ-
ent components for i and j results in the following general matrix-
vector geometric tangent linear approximation to h(x  Ax) as

Inh(x Ax) — Inh(x) ~ W, '"HW,[In(x Ax) — Inx]. (31)

Returning to the derivation of the lognormal Kalman gain
matrix, we substitute x, for x Ax and x,, for x, along with the
assumption that the analysis error, or Ax, is close to one,
which is consistent with the assumption made for the tangent
linear approximation used in incremental variational data as-
similation (Fletcher and Jones 2014; Fletcher 2017). Thus, we
have that

Inh(x,) ~ Inh(x,) + W, '"HW, (Inx, — Inx, ). (32)

Now substituting (32) into (26) results in
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W, TP/, (Inx, — Inx,) — H'W, "R, [Iny — Inh(x,)

— W, '"HW, (Inx, — Inx,)] = 0. (33)
Pre-multiplying (33) by W} and factorizing yields
(P;' + WH'W, TR "W, 'HW, )(Inx,, — Inx,)
= W,H'W, 'R, '[Iny — Inh(x,)]. (34)

Pre-multiplying (34) by the inverse of the first matrix factor
results in a format as desired in (27), given by

(Inx, — Inx,) = (P;' + W;H'W, "R, 'W_'"HW,)""

X WyH'W, TR, '[Iny — Inh(x,)], (35)
and as such the lognormal Kalman gain matrix is of a similar
form to the Gaussian version, but now containing the deriva-
tives of the logarithms, given by

K =P, + WiH'W, "R, "W, "HW,)"'WiH'"W, "R,

=P, Wi H'W, T (W, '"HW,P, W/ H'WT + R)™".  (36)
To obtain the expression in (36) involves a double application
of the Sherman-Morrison—-Woodby formula. A proof for the
Gaussian equivalent from the Physical Space Assimilation
System (PSAS) can be found on page 755 in Fletcher (2017),
but to obtain the expression above involves scaling by W, and
W,!'. An important feature to note here is that it is required
that W, '"HW,P, W H'"W;" + R, is positive definite. From
the argument presented earlier we know that the observa-
tional Jacobian matrix multiplied by the W matrices is still of
full rank, and as such this implies that the expression above is
positive definite.

It is the latter expression of the lognormal Kalman gain matrix
K, that will be used in the next step, which is to derive the lognor-
mal equivalent of the analysis error covariance matrix. The start-
ing point here is to take the lognormal analysis error definition
from (3) and use (27) to substitute Inx,,. Thus, we have

Ing, = Inx, — Inx, + K [Iny — Inh(x,)]. 37)
To obtain a similar form to that derived for the Gaussian ap-
proach, Inh(x;) must be rewritten in terms of the true state and
the background error. This is achieved through using the geo-
metric tangent linear approximation (31) with x, =x, g,
which results in

Inh(x,) ~ Inh(x,) + ngHWblnsbl. (38)
Substituting (38) into (37) yields
Ine, = Ing,, + K [Iny — Inh(x,) — W, '"HW, In¢, ],
= (1 - KW, 'HW,)lng,, + K/Ine,,. (39)

To simplify the appearance of the derivation we now define
H =W, 'HW, . To form the lognormal analysis error covariance
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matrix, we have to take the expectation of Ing,(Ing,),
which is

P,= E[lnsa(lnsa)T],
= (I — KH)E[Ing, (Ine,)) 11 — KH)"
+ K[E[lnsol(lnegl)T]K,T,

=101 - KHP,(1 - KH)" + KRK]. (40)
Following the same expansion of the products in (40) as for
the Gaussian case, and noticing that the lognormal Kalman
gain equation can be written as

T T .
K = PﬂH [HPﬂH +R],
results in (40) becoming

P,=(0—-KHP, (41)
We now show that the analysis error covariance matrix is
equivalent to the inverse of the scaled Hessian matrix in (25).
The first step is to expand K, in (41) in terms of H, and using
the rule for the inverse of the product of two matrices,
yielding
To-1 To-1 -1

P,=P;,-P,HR [HPﬂH R +1] HP,,.

a

(42)

Next recalling the Sherman—-Morrison-Woodbury formula:
A+UuvhHl=Aa"T— AU+ VIATIUTIVIATY,

T _
where for (42) this implies that A = P;,], U=H R, and
V = H , the lognormal analysis error covariance matrix can
be rewritten as

P,=(P;' +H R'H)",
= (P! + WiH'W, TR 'W, 'HW,) ™!, (43)

where the expression inside the brackets on the right-hand
side of (43) is the same as that of the scaled Hessian matrix of
the cost function in (25).

The final part of this derivation is to show that the expres-
sion for the lognormal Kalman gain matrix minimizes the
trace of the analysis error covariance matrix. Thus differenti-
ating (40) with respect to K; and setting to zero yields

oP,,
oK

=20 - KHP H +2KR, =0,
!

T T
=PH =K(HPH +R),

T T
=K =PH HPH +R)™". (44)
It is clear that the expression for the lognormal-based Kalman
gain matrix in (36) is the same as that in (44), and thus the log-
normal Kalman gain matrix minimizes in a least squares sense
the analysis error covariances.
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Thus in summary the equations for the analysis step of the
lognormal Kalman filter are given by

P} = [InM(x""1 &' 1) — Inx"]

X [InM(x""1 &Y — Inx]" + Q) (45)

Inx) = Inx}; + Kj[lny — Inh(x )], (46)
Ki = PWIHTW, (W, 'HW, PAWIHTW, T + R, (47)
Pl = (I = KIW,THW, )P}, (48)
X = M(xI ). (49)

As shown with the development of the lognormal forms of
variational data assimilation, we do not live in an one type
of distribution only world, and as such the next step is to
combine the lognormal Kalman filter just derived with the
Gaussian Kalman filter to be able to use the mixed Gaussian—
lognormal distribution from Fletcher and Zupanski (2006b)
to form a second non-Gaussian-based Kalman filter system.

¢. Mixed Gaussian-lognormal Kalman filter

In this section we shall refer to the mixed Gaussian—-lognormal
Kalman filter as MXKF. The starting point for the deriva-
tion of the MXKEF is the definition of the associated back-
ground, observational, model, and analysis errors. As we
are assuming that the error that is to be minimized is from
a mixed distribution, it implies that there are a set of
Gaussian distributed errors and a set of lognormal distrib-
uted errors that need to be minimized simultaneously. This
then implies that the true state, background, and analysis
states are given by

XuG
Xal

x = N6 oy = X6y =
tmx — ? X ? amx
Xy Xpy ‘

; (50)
where G represents the Gaussian distributed random varia-
bles, and / represents the lognormally distributed random var-
iables, which implies that the associated mixed distributed
errors are given by

e = Xh6 ~ XiG e = Xu6 ~ XiG
brmx = Inx};, — Inxj; ’ amx Inx?, — Inx}; ’

£ _ yG - hG(x;lmx) _ [M(X?n:xl)]G - X;IG
7 Iy, — Inhy(xp,) In[M(x}, D], — Inx! .

(D

It should be noted here that the number of Gaussian observa-
tion errors will, in most circumstances, be less than the dimen-
sion of the Gaussian component of the true state. This is also
true for the lognormal distributed errors. Finally there may
not be an equal number of Gaussian and lognormal back-
ground, or observational, errors

The mixed distribution-based forecast error covariance ma-
trix can be shown to be
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where it can clearly be seen that there are covariances be-
tween the Gaussian and the lognormal forecast errors.

The next step is to define the equivalent cost function from
the lognormal median approach to find the median of the
mixed distribution, which is given by

T
1 X6 ™ Xpe 1 X6 T %G
J (x)==
(%) 2 Inx, — Inx,, frnx Inx, — Inx,,
T
1 Yo ~hg(x) " ¥g —hgx)
_GGsz;GGr,(53)
2 Iny, — Inhy(x,) Iny, — Inh,(x,)
where the Jacobian of (53) can be shown to be
X, — X
v Ix)=W,TP;} ¢
‘ 77 Inx,;, — Inx,
Yo ~ hg(x)
L (54)
Iny, — Inh,(x,)

and the associated Hessian and scaled Hessian matrices are
given by

X

ViJ(x) =W, TP, W, + HTW TR (W, 'H,

= WV J(x)W, =P, + Wi H'W, TR (W, 'HW,,

fimx
(55)
where

1

W, = Xy, ! ,
Yy
[1
. 1
w,'= b, (x,)
h[N'7 (X[)

The next stage is to form the analysis errors in terms of the
background state combined with a weighting of the observa-
tions. Thus, for the mixed distribution approach this should
be of the following form:

X Yo — hg(x,)
=K, ¢ 9 (56)
Iny, — Inh,(x )

oG~ X6

Inx; — Inx,,

As with the lognormal derivation, we introduce the geometric
tangent linear approximations to the lognormal observation
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operators and the additive tangent linear model to the
Gaussian observation operators into the gradient of the
mixed distribution cost function and set to zero. This re-
sults in

0= WTP71 X6 T X6 _ HTW;[‘R_l Yo hG(Xb)
b fmx Inx, — Inx,, oo Iny, — Inh,(x,)
X — X
~Hw,'w, ¢ ¢ (57)
Inx,, — Inx,,
Factorizing (57) results in
X ~—X
[P, + WIHTW, TR, Iw, THwW, ] ¢ ¢
Inx,, — Inx,,
Yo ~ hg(x,)
= WIH'W,TR)L 79 TG (58)
Iny, — Inh,(x,)
Therefore, for the mixed distribution approach one finds
X — X
G Pyl + WIHTW, TR W, THW,
Inx , — Inx,, o ’
Yo ~ hg(x,)
X WIHTW TRL ©¢ 7000 (59)

" Iny, — Inh,(x,) ’

Thus, the Kalman gain matrix for the mixed Gaussian—lognormal
approach is

K P T WiH'W, TR W, 'HW, | 'W H'W, TR .

(60)

mx=[

Through applying the Sherman-Morrison-Woodbury for-
mula twice it is possible to write (60) in the more usable form,

K P

fmx

WIH'W, T[W 'HW, P

TTyw T -1
b fmwaH Wo +Rmx] >

(61)

mx —

where the proof of the expression above can be found
through using the derivation on page 755 from Fletcher
(2017), and the proof of positive definiteness follows from the
arguments from the lognormal Kalman filter analysis error
derivation.

As with the lognormal approach, we shall introduce some no-
tation to simplify the appearance of the derivation for the analy-
sis error covariance matrix. We shall denote H=W, 'HW,.
Using the definition of the analysis errors for the mixed distri-
bution from (51), the different forms of tangent linear approxi-
mations presented earlier, as well as the standard version from
the Gaussian formulation, results in the mixed distribution anal-
ysis errors of the following form:

€, LINe; €,
=N -K,H"] - ln" (62)

Ing Ing,,

ol

Thus, forming the product of the analysis error vector with its
transpose and taking the expectation results in
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R KT

mx” "mx- "mx’

Pamx = [I - KmxHT]P

T
ol — K, H]T +K (63)
where following the same arguments for the Gaussian and
lognormal cases results in the analysis error covariance matrix

of the following form:

P I-K, H'IP

fmx*

p—_— (64)
The final step is to confirm that the inverse of the analysis
error covariance matrix is equivalent to the scaled Hessian of
(53) in (55) which can easily be shown as the expression above
is the same in appearance as the standard Gaussian and the
lognormal version from the last section. Therefore, the analysis
error covariance matrix for the mixed distribution approach is
given by

= (P + Wi HTW, TR IWTHW, )~

mx

(65)

Pamx

Thus, in summary, the mixed Gaussian-lognormal-based Kalman
filter equations are given by

M(e""l M(e""l T
Phw= " “osa, (66)
InM(e”; InM(el!, ")
X" U ¥ — h.(x})
aG _ bG + K:,nv G G\"b i (67)
Inx’}; Inx}, " Iny, — Inh,(x})
K:;vc = P‘?meZHTW;T[WtjlHWbP]'”lme;)rHTW;T
-1
+ Rmx] 2 (68)
Pme = [I - Kfnxwzlewb]P;lmx’ (69)
XbG XiG'
n =M n-1 " (70)
Xp1 Xal

In this section it has been shown that it is possible to derive
a nonlinear version of the Kalman filter equations to be used
with lognormal random variables, as well as with a combination
of lognormal and Gaussian random variables. The appearance
of the set of equations are similar to the Gaussian form, but the
evolution of the analysis error covariance matrix is exact and
not through the application of the linearized model.

In the next section the mixed Gaussian—lognormal Kalman
filter equations will be tested against the original linearized
Gaussian Kalman filter equations, referred to as the extended
Kalman filter (EKF) with the Lorenz 1963 model. It has been
shown in the development and testing of the mixed Gaussian—
lognormal variational data assimilation systems that the z
component of this model is highly non-Gaussian, and as
such is a good test to assess the performance of these new
equations.

4. Experiments with the Lorenz 1963 model

As just mentioned, the Lorenz 1963 model has been used
extensively to test the development of the mixed Gaussian—
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lognormal-based variational data assimilation systems. An im-
portant feature of the Lorenz 1963 model is that there are re-
gions of the Lorenz attractor where the z component does not
follow a Gaussian distribution, as has been shown in Fletcher
(2010) and Goodliff et al. (2020). This component is always
positive, while the x and y components have positive and neg-
ative values. In Fletcher (2010) there are four climatologies of
the z component that are created from the Lorenz 1963 model
with the initial conditions that we shall define soon, where it
was clear that after 100000 time steps this component ap-
peared to have a global mode with a skewness to the left and
then a secondary mode with a smaller occurrence rate than
the global mode. When fitting a lognormal distribution to this
data the global mode is very well captured with a slight under-
estimation of the secondary mode. When a Gaussian distribu-
tion was fitted to this data, both modes were underestimated
and the Gaussian mode was in between the two modes and
was assigning higher probabilities to states that did not occur
that often. See Fig. 21.3 in Fletcher (2017) for this example.

This model is also a good choice due to its simplicity for a
dynamical model that exhibits chaotic behavior. Another im-
portant property of this model is that it is very sensitive to the
initial conditions from which it starts, and as such can give
very different answers even by being out by a few decimal
places from the true state. For an example of this sensitivity
see Fletcher (2017). The continuous model equations are as
given by

dx

E = _O'(X - y)’ (71)
dy .

oy T (72)
dz _

E =Xy BZ, (73)

where x = x(t), y = y(¢), and z = z(f) are the state variables,
o =10, p = 28, and B = 8/3 are parameters.

The experiments will compare the analysis errors from the
EKF, which uses the linearized model, against those from the
MXKEF, that uses the full nonlinear model. The two filters will
be tested with different observational errors, where it is as-
sumed that x and y components have Gaussian errors and the
z component has lognormal errors. The observations are gen-
erated with different observational error variances, and with
different times between analysis updates to determine the ro-
bustness of the new approach.

In this section we shall look at the sensitivity of the EKF
and the MXKF to both observational error variance size, as
well as time between observations. The numerical scheme
that is used for the discretization of the nonlinear model is the
second-order explicit Runge—Kutta scheme. The MXKF uti-
lizes the nonlinear numerical model for all three components,
while the EKF utilizes a linearized version of the model,
which was calculated analytically and then discretized with
the same scheme as the nonlinear model. The adjoint model
was also calculated by hand. This is all coded in MATLAB.
See Fletcher (2017) for more details on this calculation.
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We shall consider four different configurations in this
section; 1) o, = 0.5, 50 time steps between observations,
2) o, = 2, 25 time steps between observations, 3) o, = 0.25,
200 time steps between observations, and 4) o, = 1, 100 time
steps between observations, where o, is the observational
error standard deviation.

The true solution is started from the initial conditions:
Xor = —5.4458, yo, = —5.4841, and z,, = 22.5606, while the
background solution starts from xo, = —5.9, yo, = —5.0, and
Zop = 24.0. These are the same set of initial conditions that
have been used with the mixed Gaussian—lognormal variational
data assimilation schemes. However, an extra feature that is used
in these experiments, and is the same for both the EKF and the
MXKEF is an approximation for the model error term. We use
the values that are suggested in Evensen and Fabio (1997):

0.1491 0.1505 0.0007

0.1505 0.9048 0.0014 |.
0.0007 0.0014 0.9180

Q= (74)

a. Experiment 1: oy = 0.5, 50 time steps between
observations

In Fig. 2 we have two sets of plots, the first is of the z and x
trajectories for the true states (red lines), the solution from
the MXKEF (blue lines), and the solution from the EKF (black
lines), along with the observations (green circles). The second
set of plots is of the z and x errors, where for the z component
we consider the ratio to define the error, while for the x com-
ponent the error is defined as the difference.

It is clear from the trajectory plots in Fig. 2 that the obser-
vations are not that accurate, but are frequent. Both solutions
appear drawn toward the observations in that the error in-
creases when the less accurate observations are assimilated
compared to the more accurate ones. However, when we con-
sider the error plots we can see that both approaches are im-
pacted by the less than perfect observations, but that the
MXKEF solution is able to be more consistent for both the x
and z components, as measured by the z error being close to
one, and close to zero for the x component, with the MXKF
scheme able to recover quicker.

b. Experiment 2: o, = 2, 25 time steps between
observations

In this section we consider the case where we have more
observations than in experiment one, but these observations
are less accurate. These results are presented in Fig. 3 in the
same configuration as in experiment one. We can see that
while there are some quite inaccurate observations, the solu-
tions from either approach are not able to go out of phase
from the true solution. Again it is clear that the MXKF ap-
proach is able to stay more consistent than the EKF solutions.

c. Experiment 3: a, = 0.25, with 200 time steps between
observations

In this experiment we are considering the case where we
have fewer observations, but they are quite accurate. These
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FIG. 2. (left) z and x true (red), mixed Gaussian—-lognormal Kalman filter (MXKF) (blue), and extended Kalman filter (EKF) (black),
observations (green circles). (right) z /z,, error and x, — x, error plots for the analysis from the MXKF (solid black) and the EKF (black

dashed) for o, = 0.5 with 50 time steps between observations.

results are presented in Fig. 4. As expected there is a decrease
in the accuracy of both approaches, but we also have that nei-
ther of the solutions go out of phase. We again see that the
MXKEF is able to produce a more consistent solution than the
EKEF for both the x and z components.

d. Experiment 4: o, = 1, 100 time steps between
observations

The results from this experiment are presented in Fig. 5
where we can see that we have the situation where the EKF
does go out of phase with the true solution, even going on to
the wrong attractor for a short while, before assimilating addi-
tional observations to bring it back toward the true solution.

However, for this configuration we see that the MXKF ap-
proach does not go out of phase in neither the z nor the x
component to the extreme that the EKF solution does and ap-
pears to be able to better assimilate the observations each
time.

e. Robustness testing 1: Observational error standard
deviations and observational frequency

In this subsection we present results from running experi-
ments 1 to 4 with 5000 different random draws from the ob-
servational error distribution to test the robustness of the
MXKEF. To determine the robustness we calculate the analysis
error as a lognormally distributed random variable, i.e., the
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FIG. 3. (left) z and x true (red), mixed Gaussian-lognormal Kalman filter (MXKF) (blue), and extended Kalman filter (EKF) (black),
observations (green circles). (right) z,/z, error and x, — x, error plots for the analysis from the MXKF (solid black) and the EKF (black

dashed) for o, = 2 with 25 time steps between observations.
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FIG. 4. (left) z and x true (red), mixed Gaussian—-lognormal Kalman filter (MXKF) (blue), and extended Kalman filter (EKF) (black),
observations (green circles). (right) z,/z, error and x, — x, error plots for the analysis from the MXKF (solid black) and the EKF (black

dashed) for o, = 0.25 with 200 time steps between observations.

ratio of the analysis to the true state for all 5000 solutions
from the MXKF and the EKF, and from these errors we cal-
culate the average minimum error and the average maximum
error for the MXKF and the EKF. These results are summa-
rized in Table 1 to highlight the spread from the average mini-
mum analysis error to the maximum analysis error for the
MXKEF and the EKF.

We note here that during the 5000 evaluations for using
experiment 3 and 4 configurations there was one instance
for each where the MXKF did not converge. This aside,
given that the analysis error is a ratio and if the scheme is
performing well then the analysis error should be approxi-
mately equal to 1 as seen in the results in Fletcher and Jones
(2014).

Z from EKF and MXKF

From the values in Table 1 it is clear that the MXKF on av-
erage for the situations considered here has a smaller spread
between the average maximum and average minimum analy-
sis error for all four experiments, bearing in mind the caveat
above. It appears that the scheme performs best on average
for the situation where there are inaccurate observations but
more of them (experiment 2). The largest spread for the
MXKEF appears to be for experiment 3, accurate observations
but less frequent.

f- Robustness testing 2: Perturbing the true and
background states’ initial conditions

In the results present here experiment 1 was used for the
observational error standard deviation and frequency but the
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F1G. 5. (left) z and x true (red), mixed Gaussian—lognormal Kalman filter (MXKF) (blue), and extended Kalman filter (EKF) (black),
observations (green circles). (right) z /z, error and x, — x, error plots for the analysis from the MXKF (solid black) and the EKF (black

dashed) for o, = 0.5 with 50 time steps between observations.
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TABLE 1. Summary of the average minimum and maximum
analysis errors for experiments 1-4 over 5000 assimilation runs.

FLETCHER ET AL.

MXKF EKF
Expt Avg min Avg max Avg min Avg max
1 0.836 1.25 0.723 1.432
2 0.904 1112 0.786 1.268
3 0.662 1.403 0.527 1.556
4 0.766 1.278 0.605 1.505

initial conditions for the true state and the background state
were randomly perturbed using the MATLAB function
NORMRND with mean zero and three different standard de-
viations, g, = 0.1, 0.5, 1. Different perturbations were applied
to the true initial conditions and the background initial condi-
tions from those presented at the beginning of this section but
were drawn from the same distribution. The performance
metrics as for robustness testing 1 were applied here and are
summarized in Table 2.

From Table 2 it is clear that there is a sensitivity in the
MXKEF to the initial conditions for the true and background
state. It should be noted that the MXKF had an approximate
1% failure rate for all three configurations, while the EKF did
not. As with robustness testing 1, the MXKF has a smaller
spread between its average maximum and minimum analysis
error compared to the EKF when it converged.

5. Conclusions and further work

In this paper we have been able to show that it is not possi-
ble to follow the linear least squares approach that is used to
derive the Kalman filter, and the extended Kalman filter
(EKF) equations, to derive a similar expression for lognor-
mally distributed errors. However, we have been able to show
that if we keep the nonlinear model and follow a cost function—
based approach associated with the median from Fletcher
(2010), then it is possible to derive a set of nonlinear equations
for the update of the median of the lognormal analysis state
together with its uncertainty. We were able to extend this to
the mixed Gaussian-lognormal probability density function,
where the associated Kalman filter equations are referred to
as the MXKF.

We coded the new MXKF, along with the EKF, for the
Lorenz 1963 model in MATLAB, and showed that for differ-
ent configurations of observational error variances and time
steps between observations, where the observational errors
for the x and y components were Gaussian distributed, while
for the z component these were lognormally distributed, the
MXKEF appeared to be more consistent with the true solutions
for longer periods than the EKF. We should note that the EKF
was using the linearized numerical model, while the MXKF was
using the nonlinear numerical model. It appears that this has an
effect on the performance of the EKF compared to the MXKF
in that it appears to fit more to the observations, while the
MXKEF does not always pull straight to the observations.

To evaluate the general performance of the MXKF against
the EKF a set of 5000 assimilation experiments was run for
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TABLE 2. Summary of the average minimum and maximum
analysis errors for perturbing the true and background initial
condition over 5000 assimilation runs using experiment 1’s
observational configuration.

MXKF EKF
Expt Avg min Avg max Avg min Avg max
g, =01 0.820 1.408 0.680 1.710
g, = 0.5 0.804 1.521 0.679 1.806
o, =1 0.788 1.631 0.668 1.791

each of the four experimental configurations from section 4. It
was shown that the MXKF had a smaller spread between the
average minimum and average maximum analysis error for all
four experimental configurations, but we note that there was
one realization for both experiment 3 and 4 where the MXKF
did not converge. This robustness test was followed up with a
sensitivity study of the MXKF and the EKF to perturbed true
state and background state initial conditions.

It has been shown in Fletcher and Jones (2014) that lognormal-
based data assimilation systems can be quite sensitive to the ac-
curacy of the observations of the different components of the
Lorenz 1963 model near the transition zones between the two
attractors, and it is possible that the lognormal Kalman filter
could also be suffering from this here, and is left for further
work to determine if this is the case.

The next step in this work is to build the theory for an
ensemble-based approach to the MXKF equations and rigor-
ously test them with different toy problems. Given the nonlin-
ear nature of the equations, and the dependence on the
equations being derived from a cost function, the most likely
candidate would be the maximum likelihood ensemble filter
(MLEF) from Zupanski (2005). The MLEF is comprised of
two steps: the forecast step uses the standard definition of the
update for the forecast error covariance matrix from the
Kalman filter but uses the nonlinear model to evolve this ma-
trix between analysis times, instead of a linear model, through
an ensemble where each ensemble member’s perturbation is
a column from the analysis error covariance matrix from that
assimilation cycle. The analysis step is to solve a flow depen-
dent 3D VAR cost function projected into ensemble space
through a Hessian preconditioner. The square root analysis
error covariance is updated through the inversion of the Hes-
sian preconditioner. The steps here are easily adaptable to the
new MXKF equations for the updates of the analysis and
forecast error covariance matrices.

The reason behind the non-Gaussian work over the last
15 years has been to develop more consistent data assimila-
tion systems for positive definite variables. In the atmosphere
it is well know that relative humidity is positive definite, that
is to say it is always larger than zero, and as such we do not
wish for a data assimilation system to produce an answer that
is negative or equal to zero for this field. It has been shown in
Kliewer et al. (2016) that through using a mixed Gaussian—
lognormal 1DV AR for a temperature-mixing ratio it is possible
to obtain better fits to both the temperature and the moisture
channels through the covariances between the Gaussian and
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lognormal random variables. A full description of the links be-
tween the two distributions can be found in Fletcher (2017).

As most of the operational numerical weather prediction
centers use a form of hybrid ensemble/variational data assimila-
tion algorithm, it became important for the mixed Gaussian—
lognormal theory to move toward that approach. However, the
major stumbling block has been the Kalman filter component
to create the ensemble covariance. The work in this paper is the
first step toward a Gaussian-lognormal hybrid 4DVAR.
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