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ABSTRACT: In this paper we present the derivation of two new forms of the Kalman filter equations; the first is for a 
pure lognormally distributed random variable, while the second set of Kalman filter equations will be for a combination of 
Gaussian and lognormally distributed random variables. We show that the appearance is similar to that of the Gaussian-
based equations, but that the analysis state is a multivariate median and not the mean. We also show results of the mixed 
distribution Kalman filter with the Lorenz 1963 model with lognormal errors for the background and observations of the 
z component, and compare them to analysis results from a traditional Gaussian-based extended Kalman filter and show 
that under certain circumstances the new approach produces more accurate results. 
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1. Introduction 

Over the last decade or so, there have been advances in the 
variational (VAR) forms of data assimilation to allow for 
non-Gaussian behavior of the errors; specifically, there has 
been much development that allows for lognormally distrib-
uted errors, as well as for Gaussian errors combined with 
lognormal errors such that these errors can be minimized 
simultaneously (Fletcher and Zupanski 2006a,b, 2007; Fletcher 
2010; Fletcher and Jones 2014). A full summary of the devel-
opment of the mixed Gaussian–lognormal variational systems 
from full field 3DVAR to incremental 4DVAR can be found 
in Fletcher (2017). 

The aforementioned theory has been applied in a micro-
wave retrieval system for temperature and mixing ratio from 
the AMSU-A brightness temperatures (Kliewer et al. 2016). 
There, three theories are compared: 1) the mixed distribution 
approach, which seeks the mode, or most likely state, of the 
analysis distribution, 2) a logarithmic transform applied to the 
mixing ratio, which seeks the median of the analysis distribu-
tion (Fletcher and Zupanski 2007), and 3) a Gaussian model 
for the errors of temperature and mixing ratio. It is shown 
that the mixed distribution approach performs better than the 
other two mentioned approaches in fitting to observations. 

Michael R. Goodliff’s current affiliation: Cooperative Institute 
for Research in the Environmental Studies, University of Colo-
rado Boulder and NOAA/Physical Sciences Laboratory, Boulder, 
Colorado. 

Anton J. Kliewer’s current affiliation: Cooperative Institute for 
Research in the Atmosphere, NOAA/OAR/ESRL/Global Sys-
tems Laboratory, Boulder, Colorado. 

Ting-Chi Wu’s current affiliation: Ministry of Science and Tech-
nology, Taiwan. 

Md. Jakir Hossen’s current affiliation: I.M. System’s Group, 
Inc., College Park, Maryland. 

Corresponding author: Steven J. Fletcher, steven.fletcher@ 
colostate.edu 

However, the ability to extend the lognormal theory to the 
Kalman filters, and hence to the ensemble-based data assimi-
lation systems, has not been forthcoming. The basis of the log-
normal variational work was provided in the seminal paper 
Cohn (1997), which contains the first appearance of a defini-
tion for a lognormally distributed observational error associ-
ated with a direct observation, which is in the form of a ratio, 
not a difference. This definition, together with a change of 
variables for the background state, allowed for a version of 
the Kalman equations that accounts for direct observations 
with lognormal errors. The reader is referred to Cohn (1997) 
for the full details of this derivation. The main difference be-
tween the work in Cohn (1997) and the work presented here 
is twofold: 1) we allow for nonlinear observation operators in 
the Kalman filter equations, and 2) we allow for a combina-
tion of Gaussian and lognormal distributed background and 
observational errors. 

The equations for the Kalman filter (Kalman 1960; Kalman 
and Bucy 1961) can be derived from either a control theory 
approach or a least squares formulation (Fletcher 2017), 
where the latter is referring to minimizing the trace of the 
analysis error covariance matrix with respect to the Kalman 
gain matrix. The Kalman filter is therefore seeking the mean 
of the analysis distribution to minimize the errors. For a 
Gaussian distribution, the mean, mode, and median are equiv-
alent. However, for skewed distributions it is not the case that 
the three descriptive statistics are equal. For left skewed dis-
tributions, the mode is less than the median, which is less than 
the mean, whereas for right skewed distributions the opposite 
is true. In section 2, we show that if one tries to follow the ini-
tial steps of the least squares approach, it is impossible to de-
rive a lognormal-based Kalman filter because one cannot 
separate out the analysis and forecast error covariance matri-
ces from the logarithmic operator in order to evolve them by 
the linear model. Another stumbling point is that it is not pos-
sible to define a weighted sum of predicted states and new ob-
servations to determine an estimate of the state at the current 
time and still be consistent with a lognormal estimate. 
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We shall briefly summarize an alternative approach, which 
is referred to as the lognormal Kalman filter (Kondrashov 
et al. 2011), where a logarithmic transform is introduced to a 
model variable, and the analytical differential equation is re-
derived for the new variables. This approach is utilizing the 
property that the logarithm of a lognormally distributed ran-
dom variable is a Gaussian distributed random variable and 
so the Kalman filter can be applied to the new variable. An in-
verse operation is utilized to obtain a value of the original 
model variable. This approach would not be practical for a 
numerical weather or ocean prediction model because it re-
quires re-derivation of the associated prognostic differential 
equations for the state in the new variable. 

Given these setbacks we recall that the Kalman filter is 
equivalent to 3DVAR when the static background error co-
variance matrix is replaced with a flow dependent background 
error covariance matrix, and examine a cost function–based 
approach to obtain the lognormal analytical state in terms of 
a lognormal-based Kalman gain matrix, and take the expecta-
tion of this state to obtain an expression that is similar to the 
Gaussian-based analysis error covariance matrix. We say 
“similar” in that the cost function will be defined to obtain the 
median, or unbiased state, of the analysis distribution. We 
should note here that the lognormal distribution is defined in 
terms of the vector of means m and the covariance matrix S 
for ln x, not the vector of random variables x. We shall show 
that the lognormal-based analysis error covariance matrix is 
equivalent to the inverse Hessian matrix of the associated 
cost function scaled by the inverse of the derivatives of ln x. 
We shall also show that the estimate for the lognormal Kalman 
gain matrix minimizes the trace of the lognormal analysis 
covariance matrix. 

The remainder of this paper is as follows. In section 3 we 
shall present the derivations of the lognormal and the mixed 
Gaussian–lognormal versions of the Kalman filter equations. 
In section 4 we shall examine the performance of the mixed 
Gaussian–lognormal Kalman filter equations against the Gaussian 
extended Kalman filter with the Lorenz 1963 model (Lorenz 
1963) for different observational error variances and for different 
frequencies of observations. Also in this section we test the 
robustness of the new scheme against the extended Kalman 
filter over 5000 assimilation runs for the different observa-
tional error variance experiments and for 5000 perturbed true 
and background states. It is assumed in these experiments that 
the z component of the model is better modeled with a lognor-
mal distribution than a Gaussian. The paper is finished with 
conclusions and ideas for future work. 

2. Difficulties with lognormal-based Kalman filters 

a. Statistical derivation of the forecast error 
covariance matrix 

As indicated in the introduction, a first approach to derive 
a lognormal-based Kalman filter data assimilation system 
would be to follow the statistical derivation that is summa-
rized in Fletcher (2017), but with the lognormal equivalent in 

parallel. The starting point is to define the Gaussian distrib-
uted analysis errors as 

« ≡ x 2 x , (1) a a t

where xt is the true state that is being sought, and xa is the 
analysis state at the current time. 

Introducing the time component, along with the back-
n21 ground or forecast state xb 5 M , in  terms  of  the  n,n21xa 

numerical model M operating on the analysis state 
at the previous time step, yields the background/forecast er-
ror as 

n n21 n « b ≡ Mx 2 x (2) a t , 

where M ≡ M is a linear or linearized numerical model n,n21 
matrix that operates from time step tn21 to time step tn . 

Introducing the lognormal equivalent of (1) and (2), we  
have 

n n n « al ≡ x t , (3) al % x 

n n21 n « bl ≡ (Mx al ) % x (4) t , 

where % is the Hadamard division operator, which is a com-
ponentwise division operator. As we are assuming that the 
components of the analysis and true state are lognormally dis-
tributed, then we have the property that all of these entries 
are greater than zero. The subscript l above, and throughout, 
is referring to the components associated with the lognormal 
formulations. The reason that the analysis error in (3) is de-
fined as a ratio is as a result of the lognormal distribution 
being geometric, which implies that the ratio or product of 
two independent lognormal random variables is itself a log-
normal random variable. For the Gaussian distribution the 
equivalent property is that for two independent Gaussian ran-
dom variables, their difference or sum is also a Gaussian ran-
dom variable. 

Using the definition of the analysis state at time t 5 tn21 for 
the Gaussian variable: 

n21 n21 n21 x 5 x 1 « , (5) a t a 

the background errors can be written in terms of the previous 
time’s true state and analysis error as 

n n21 n21 n « b 5 Mx 1 M« 2 x t : (6) t a 

This makes it possible to factorize the background error as 

n n21 n « b 5 M« 1 « , (7) a m

where 
n n21 n « ≡ Mx 2 x t , (8) m t 

is the model error. 
To derive the analysis error covariance matrix in the log-

normal Kalman filter, it is desirable to factorize the lognormal 
analysis error in a similar fashion as in (7). However, using 
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the definition of the background error (4) together with the 
analysis state at time t 5 tn21: 

n21 n21 n21 x 5 x « , (9) al t al 

it is clear that this is not possible. Indeed, in this way one finds 

n n21 n21 n n21 n21 n ln« bl 5 lnM(x « ) 2 lnx Þ lnMx 1 lnM« 2 lnx t , t al t t al 

(10) 

where the inequality comes from the fact that the linear 
model does not commute through the Hadamard product op-
erator, and as such the model cannot act on both factors sepa-
rately. Then also the logarithm cannot be expanded, making 
sure the background error cannot be factorized as in (6). Note 
that we consider the logarithm of the background error be-
cause the Kalman filter equations are defined through the ex-
pectations of the relevant Gaussian random variable, which 
for the lognormal distribution is ln x, and not the lognormal 
random variable x. 

To factorize the time evolution of the lognormal analysis 
error, another definition of the background error is necessary. 
A possible workaround is to instead define the background 
state at the next analysis time t 5 tn as the true state at that 
analysis time multiplied by the evolution of the analysis error 

n n n21 from the previous analysis time xb 5 x Me . In this case, t a 
one has to multiply by the lognormal model error to keep ev-
erything consistent. Then, the logarithm of the background 
error can be written as 

n n n21 n n21 ln« bl 5 lnx 1 lnM« 2 lnx 1 ln«ml 5 lnM« t al t al 1 ln«ml, 
(11) 

where the lognormal model error «ml is defined as 

n n21 n ln«ml ≡ lnMx 2 lnx t : (12) t 

This now implies that it is not possible to move the numerical 
model out of the logarithm, which causes a problem as it is 
not the evolution of the logarithm of the analysis errors that is 
needed, but rather the logarithm of the evolution of the analy-
sis error. 

For the Gaussian filter, the forecast error covariance matrix 
can now be formed by multiplying (7) with its transpose and 
then applying the statistical expectation operator E[?], which 
yields 

n n n21 n n21 n Pn ≡ E[«b(«b)T] 5 E[(M« 1 « )(M« 1 « )T], f a m a m

n21 n21 n n 5 ME[« (« )T]MT 1 E[« (« )T], a a m m

5 MPn21 MT 1 Qn (13) a 

where Pn21 is the analysis error covariance matrix at time a 
t 5 tn21, and Qn is the model error covariance matrix at time 
t 5 tn, and it is assumed that the analysis error and the model 
error are uncorrelated. 

Applying the same approach to (11) yields lognormal fore-
cast and model error covariance matrices as 

Pn n21 n n21 n )T], f l  ≡ E[(lnM« 1 ln« )(lnM« 1 ln«a m a m

n21 n21 n n 5 E[lnM« (lnM« )T] 1 E[ln« (ln« )T], a a m m

5 Pn (14) al 1 Qn
l 

where it is assumed that the logarithm of the analysis and 
model errors are uncorrelated. It is clear from (14) that the 
definition for the forecast error covariance matrix does not 
explicitly contain the numerical model acting on the analysis 
error covariance matrix from the previous analysis time. It is, 
however, implicit in the state xn, as this is the result of evolv-
ing the true state and the analysis error from the previous 
time step. It should be noted here that given that it is not pos-
sible to interchange the model and the logarithm, for the re-
mainder of the paper the new approach will be with the 
nonlinear model as there is no advantage of using the linear 
model to interchange operators. As future applications are 
more likely to be nonlinear, we remove the errors that are in-
troduced through linearizations through this approach. 

b. Kalman gain matrices 

Another problem with trying to derive a lognormal version 
of the Kalman filter arises in the analysis step; as shown in 
Fletcher (2017), where if given a predicted state xn11 that is b 
associated with observations up to time step tn, and assuming 
that an observation has been received at time t 5 tn11, then 
an estimate of the state at t 5 tn11, given the observation at 
time t 5 tn11 is required. In Kalman filter theory this step is 
started by assuming that the estimate is a weighted sum of the 
predicted state and the new observation, that is to say 

n11 5 Kn11 n11 1 Kn11 n11 x x y , (15) a b b o 

where yn11 is the observation at time t 5 tn11. We should 
note here that the observation could be either a direct or indi-
rect observation of the predicted state. However, for a lognor-
mal approach the equivalence of (15) would be in terms of a 
weighted sum of the logarithm of the predicted state and the 
observations such that 

n11 n11 n11 lnx 5 lnKn11 x 1 lnKn11 y , (16) al bl bl ol 

where the K matrices in (15) and (16) are referred to as gain 
matrices. Thus it is not possible to manipulate the equations 
to obtain the expressions for the gain matrices due to the log-
arithms being present and acting on the state, and it is not 
possible to interchange the operators to overcome this prob-
lem. Thus this approach cannot continue through the steps of 
the derivation of the Gaussian-based Kalman filter equations 
to seek an equivalent lognormal version of the Kalman gain 
matrix and filter equations. 

c. Change of variable-based lognormal Kalman filter 

As mentioned in the introduction, there is an alternative ap-
proach that has been proposed to obtain a form of a lognormal-
based Kalman filter in Kondrashov et al. (2011). This approach, 
which recently has been used for a reanalysis of ring current 
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phase space densities in Aseev and Shprits (2019), should more 
accurately be referred to as the change of variable lognormal 
Kalman filter. In Kondrashov et al. (2011) the authors state that 
a striking feature of the radiation belts is that values of observed 
electron fluxes, and modeled particle space density (PSD), vary 
by several orders of magnitude. The corresponding error distri-
butions are therefore not Gaussian, while standard data as-
similation methods, such as the Kalman filter and its various 
adaptations to large-dimensional and nonlinear problems, are 
essentially based on least squares minimization of Gaussian 
errors, which was shown in the last section. Thus it is not pos-
sible to change these approaches directly to ensure consis-
tency with a lognormal distribution. 

As mentioned in Kondrashov et al. (2011), a possible tech-
nique that is quite often used for dealing with lognormal ran-
dom variables is to use the property that the logarithm of a 
lognormal random variable is a Gaussian random variable. 
However, as shown in Fletcher and Zupanski (2007), when 
transforming from lognormal random variables to Gaussian 
random variables, minimizing the cost function in variational 
data assimilation, or finding the covariance matrix and the 
mean state with an ensemble Kalman filter system, then the de-
scriptive statistic that is found in lognormal space once the in-
verse transform is applied, is the median state. A problem with 
this approach for the ensemble Kalman filter formulation is that 
the model is in terms of the original lognormal variable and not 
the transform logarithmic variable. 

The motivation for considering a lognormal model for the 
PSD is justified through the statements from Kondrashov et al. 
(2011) that since this variable is always positive, and generally its 
variations, as measured by the standard deviation, increase as its 
mean value increases. However, Gaussian distributed variables 
can be negative and have a standard deviation that does not 
change as the mean changes. Lognormal errors arise when sour-
ces of variation accumulate multiplicatively, whereas Gaussian 
errors arise when these sources are additive. 

To overcome the problem just mentioned, the authors of 
Kondrashov et al. (2011) propose rewriting the time evolution 
parabolic partial differential equation: 

­f ­ ­f f 
5 L2 2 , (17) L22DLL ­t ­L ­L tL 

where PSD is f 5 f(L, t;m, J) in the Van Allen radiation belts, 
at fixed values of the adiabatic invariants m and J. The radial 
variable L is the distance in the equatorial plane, measured in 
Earth radii RE, from the center of Earth to the magnetic field 
line around which the electron moves at time t, DLL is a radial 
diffusion term, and tL is the characteristic lifetime of the lin-
ear decay of J and m, through considering the problem for 
log f. 

Thus, Kondrashov et al. develop a lognormal-based dynam-
ical model for the change of variable S 5 log f through the 
chain rule for partial derivatives in time and space, applied to 
(17), which results in 

In Kondrashov et al. (2011) they show positive results from 
this approach compared to using the standard Gaussian-based 
Kalman filter equations. However, in numerical weather and 
ocean prediction it is not realistic to change all of the positive 
definite variables and then rederive the associated prognostic 
differential equations. Also as work in Goodliff et al. (2020) 
has shown, it is possible that the distribution of the positive 
definite variables can change with the dynamics, and may not 
always be lognormal. Therefore, also in numerical weather 
and ocean prediction the underlying distribution used should 
be able to change dynamically, which is unfeasible in a change 
of variable approach. 

In the next section we shall present an approach that 
builds off of a cost function for a lognormal median of the 
posterior distribution for the situation where both the back-
ground, and observational, errors are lognormally distrib-
uted. We shall also show that this approach ensures that the 
derived covariances are consistent with a multivariate log-
normal distribution. 

3. Lognormal and mixed Gaussian–lognormal 
Kalman filters 

It appears from the attempted derivation in section 2 that it 
is not possible to obtain a lognormal version of the Kalman 
filter equations, that are based upon the first two moments of 
the multivariate Gaussian distribution through following a 
least squares approach, which would have involved showing 
that the derived Kalman gain matrix minimized the trace 
of the analysis error covariance matrix. However, what is 
important to recall here is that for the Gaussian distribution 
the three descriptive statistics are the same, that is to say the 
mode, median, and the mean are equal. This is not true 
for the lognormal distribution. It is shown in Fletcher and 
Zupanski (2006a) that these three statistics are quite differ-
ent, and that they each have their own properties; the mode 
is the maximum likelihood state, the median is the unbiased 
state, and the mean is the minimum variance state in distri-
bution theory. To make this important distinction more 
clear, we will review some of the characteristics of the log-
normal distribution, before deriving the lognormal Kalman 
filter. 

a. Properties of the lognormal distribution 

It is quite often stated that an error is unbiased if its mean 
is equal to zero. This is not true for many non-Gaussian dis-
tributed random variables. As just stated, the median is the 
unbiased state, which implies that the cumulative density 
function at the median is equal to 0.5. For example, to say 
that a lognormal random variable, or error «, is unbiased if 
E[«] 5 0, is equivalent to saying that 

2 s
exp m 1 5 0, (19) 

2 

where m 5 E[ln «] and s 2 is the variance of ln « and not «, 2 
­S ­ ­S 1 ­S which cannot happen. It is not possible to have a zero mean 5 L2 2 : (18) L22DLL 1 DLL ­t ­L ­L ­L tL for a lognormal random variable. However, it is possible that 
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FIG. 1. (left) Plots to illustrate the differences in the modes, medians, and means for two different lognormal distributions that are repre-
senting the true state’s distribution (solid curve) and the analysis state’s distribution (dashed curve). (right) The distribution for the associ-
ated analysis error « 5 x /xa a t . 

E[ln «] 5 0, but applying this assumption to the background 
error would imply that the distributions of the true state and 
the background state are the same type and that they have 
the same median, not the same mean, in lognormal space, 
which is true in the Gaussian transformed space as well. This 
is because of the definition of the distribution of the ratio 
of two independent lognormal random variables, and its 

2 2 associated mean: if xb ; LN(m, s1) and x ; LN(m, s2), then  t 
2 2 2 2 «b 5 (xb/x ) ; LN(m2 m, s1 1 s 2) 5 LN(0, s1 1 s2). t

To help illustrate this point, we have plotted two lognormal 
distributions that are supposed to represent the probability 
density functions (PDFs) of the true state (solid curve) and 
the analysis state (dashed curve), where the two states have 
the same Gaussian mean, mt 5 ma 5 ln 2, but with different 

2 2 Gaussian variances, s 5 0:252 and s 5 0:52, respectively, in t a 
Fig. 1. We have also plotted lines for the mode, median, and 
mean of the two distributions in this order in their respective 
line styles. 

It is clear from the left panel of Fig. 1 that the two distri-
butions have the same median, but that neither their modes 
nor their means are equal. In the right panel of Fig. 1 we 
have plotted the associated distribution for the equivalent 
analysis error « 5 x /x . While the distribution has a median a a t
at 1, the most likely state is to the left of this value, indicat-
ing that the state with the highest probability of occurring 
for the analysis error is not equality, which implies a bias in 
the analysis. 

In Fletcher and Jones (2014) it is shown that when follow-
ing a modal approach for the incremental formulation of 
mixed Gaussian–lognormal 4DVAR, the analysis error distri-
bution, or the posterior distribution as it is also referred to as, 
had a mode at 1. This is therefore indicating that the most 
likely answer from the data assimilation system was some-
thing close to the true state. 

b. Lognormal Kalman filter}Median-based approach 

Given this brief explanation and illustrations of the descrip-
tive statistics of the lognormal distribution, it is clear that that 
the way to derive an equivalent set of Kalman filter–type 
equations for lognormally distributed errors, using the fore-
cast error covariance matrix evolution described earlier, is to 
start with defining a cost function whose solution is the me-
dian of the analysis error distribution (Fletcher 2017), as this 
is equivalent to ln «a, and then find the associated covariance 
matrix for ln «a. In  Fletcher (2017) it is shown that the median 
analysis state for lognormally distributed background and 

J(x) 5 (lnx 2 lnxb)TP21 (lnx 2 lnxb) 

observation errors is the minimum of the following cost 
function: 

1 
f l  2 

1 
R21 1 [lny 2 lnh(x)]T [lny 2 lnh(x)], (20) l 2 

where h(x) is the nonlinear observation operator that maps 
the state to observation space, and Pf l, now defined in terms 
of the nonlinear numerical model, is given by 

n21 n21 n n21 n21 n Pn « ) 2 lnx ][lnM(x « ) 2 lnx ]T 
f l  5 [lnM(x b a t b a t 

1 Qn
l : (21) 

Differentiating (20) with respect to x results in 

= J(x) 5 W2T P21 (lnx 2 lnxb) 2 HTW2T R21 [lny 2 lnh(x)], x b f l  o l 

(22) 

where H is the Jacobian of the observation operator, defined 
by Hi,j ≡ ­hi(x)/­xj, and 
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x21 0 0 · · ·  0 The next step in deriving the lognormal version of the Kal-
1 

man filter equations is to state that we wish to associate the 
x21 0 0 · · ·  0 2 analysis state with the observations in terms of some form of 

W21 
b 

... 0
... . . 

.
. . 

. 
, lognormal-based Kalman gain matrix Kl. Thus, we require 

... . . 
.

. . 
. ... 

... 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎝ ⎠ 
x21 0 0 · · ·  0 n 

lnx 2 lnxb 5 Kl[lny 2 lnh(x )]: (27) a a

The reason for the form in (27) is that applying a logarithm to 
the lognormal random variables results in Gaussian random ⎧ ⎫ [h1(x)]21 0 0 · · ·  0 
variables, thus, one is free to consider a linear combination of 

0 [h2(x)]21 0 · · ·  0 these new variables, similar to the original Gaussian ap-

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎬ 

W21 
o 5 ... 0

... . . 
.

. . 
. 

, (23) 
proach. This form also enables us to form the analysis covari-
ance matrix that is consistent for a lognormal distribution. 

... . . 
.

. . 
. ... 

... 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 0 0 · · ·  0 [hN (x)]21 ⎭ 

o 

Next we introduce the logarithmic geometric tangent linear 
approximation (Fletcher and Jones 2014), which enables the 
logarithm of the model fields to be operated on by the Jaco-

where n is the total number of state variables, and No is the 
bian of the observation operator h(x). The starting point is to 
consider the numerical geometric derivative of ln hj(x), for a 

total number of observed variables. 
As it will be required later to finalize the derivation of the 

lognormal Kalman filter, it can be shown that the Hessian ma-
trix of (20) is 

2 P21 W21 R21 W21 = J(x) 5 W2T 1 HTW2T H: (24) x b f l b o l o 

To compare later with the analysis covariance matrix, it is use-
ful to write down a scaled Hessian matrix as 

1 WT R21 WT 2 J(x)Wb 5 P21 
b H

TW2T W21 HWb: b = x f l  o l o (25) 

An important feature to notice about (25) is that the Hessian 
matrix is positive definite because of the following short 
proof. Let A be a positive definite matrix, defined by 
xTAx . 0, ∀x Þ 0, and it is known that A21 is also positive 
definite. Now let B 5 WTA21W, and consider the scalar ex-
pression xTWTA21Wx 5 (Wx)TA21(Wx)5 0. Because we 
know that A21 is positive definite, then the only way this ex-
pression can be 0 is if Wx is equal to 0, but if we assume that 
W has full column rank, then this implies that x 5 0. This then 
implies that B 5 WTA21W must be positive definite. 

Returning to (24) we have that the diagonal matrices multi-
plying P21 are of full column rank, which from the proof f 
above, implies that the first term in (24) is positive definite. 
Turning to the second term, we know that W0 has full column 
rank as it is a diagonal matrix. With respect to H, we  know  
that there has to be a sensitivity to at least one state variable, 
and that the same observation is not assimilated twice; therefore, 
H must have full rank as well. Thus the second term in (24) is 
also positive definite. Given that the sum of two positive definite 
matrices is also a positive definite matrix, then the Hessian matrix 
must be positive definite. By these same arguments, the scaled 
Hessian matrix in (25) must also be positive definite. 

As with the minimization of the Gaussian cost function in 
3DVAR, setting the gradient of (20) equal to zero, and calling 
the state that achieves this the analysis state, denoted by xa, yields  

= J(x ) 5 W2T P21 (lnx 2 lnxb) x a b f l  a 

2 HTW2T R21 [lny 2 lnh(x )] 5 0: (26) o l a

component xi, with a multiplicative increment Dxi, such that 

lnhj(xiDxi) 2 lnhj(xi) dhj(xi) 1 
’ : (28) 

xi(Dxi 2 1) hj(xi) dxi 

Multiplying and dividing (28) by [ln (xiDxi) 2 ln xi] and inter-
changing the denominators on the left-hand side, yields 

lnhj(xiDxi) 2 lnhj(xi) ln(xiDxi) 2 lnxi dhj(xi) 1 
’ : (29) 

ln(xiDxi) 2 lnxi xi(Dxi 2 1) hj(xi) dxi 

Taking the limit of the second factor on the left-hand side of (29) 
with respect to Dxi " 1, and then multiplying by its inverse yields 

lnhj(xiDxi) 2 lnhj(xi) dhj(xi) 1 
’ xi: ln(xiDxi) 2 lnxi hj(xi) dxi 

Rearranging the expression above yields 

1 dhj(xi) lnhj(xiDxi) 2 lnhj(xi) ’ xi[ln(xiDxi) 2 lnxi], (30) 
hj(xi) dxi 

for i 5 1, 2, …, N and j 5 1, 2, …, No. Collecting all of the differ-
ent components for i and j results in the following general matrix-
vector geometric tangent linear approximation to h(x Dx) as 

lnh(x Dx) 2 lnh(x) ’ W21 HWb[ln(x Dx) 2 lnx]: (31) o 

Returning to the derivation of the lognormal Kalman gain 
matrix, we substitute xa for x Dx and xb for x, along with the 
assumption that the analysis error, or Dx, is close to one, 
which is consistent with the assumption made for the tangent 
linear approximation used in incremental variational data as-
similation (Fletcher and Jones 2014; Fletcher 2017). Thus, we 
have that 

lnh(x ) ’ lnh(xb) 1 W21 HWb(lnx 2 lnxb): (32) a o a 

Now substituting (32) into (26) results in 
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W2T P21 ) 2 HTW2T R21 
f l  (lnx 2 lnxb [lny 2 lnh(xb) b a o l 

2 W21 HWb(lnx 2 lnxb)] 5 0: (33) o a 

Pre-multiplying (33) by WT 
b and factorizing yields 

(P21 1 Wb
T HTW2T R21 W21 HWb)(lnx 2 lnxb) f l  o l o a 

5 WT 
bH

TW2T R21 [lny 2 lnh(xb)]: (34) o l 

Pre-multiplying (34) by the inverse of the first matrix factor 
results in a format as desired in (27), given by 

(lnx 2 lnxb) 5 (P21 1 WT 
bH

TW2T R21 W21 HWb)21 
a f l  o l o 

3 WT 
bH

TW2T R21 [lny 2 lnh(xb)], (35) o l 

and as such the lognormal Kalman gain matrix is of a similar 
form to the Gaussian version, but now containing the deriva-
tives of the logarithms, given by 

R21 W21 R21 ≡ (P21 1 Wb
T HTW2T HWb)21WT 

bH
TW2T , Kl f l  o l o o l 

bH
TW2T (W21 HWbPf lWb

T HTW2T 1 Rl)21: (36) ≡ Pf lW
T 

o o o 

To obtain the expression in (36) involves a double application 
of the Sherman–Morrison–Woodby formula. A proof for the 
Gaussian equivalent from the Physical Space Assimilation 
System (PSAS) can be found on page 755 in Fletcher (2017), 
but to obtain the expression above involves scaling by Wb and 
W21 . An important feature to note here is that it is required o 
that W2

o 
1 HWbPf lWb

T HTW2
o 
T 1 Rl is positive definite. From 

the argument presented earlier we know that the observa-
tional Jacobian matrix multiplied by the W matrices is still of 
full rank, and as such this implies that the expression above is 
positive definite. 

It is the latter expression of the lognormal Kalman gain matrix 
Kl that will be used in the next step, which is to derive the lognor-
mal equivalent of the analysis error covariance matrix. The start-
ing point here is to take the lognormal analysis error definition 
from (3) and use (27) to substitute ln xa. Thus, we have 

ln« 5 lnxb 2 lnx 1 Kl[lny 2 lnh(xb)]: (37) a t 

To obtain a similar form to that derived for the Gaussian ap-
proach, ln h(xb) must be rewritten in terms of the true state and 
the background error. This is achieved through using the geo-
metric tangent linear approximation (31) with xb 5 xt «bl, 
which results in 

lnh(xb) ’ lnh(xt) 1 W2
o 
1 HWbln«bl: (38) 

Substituting (38) into (37) yields 

ln« 5 ln«bl 1 Kl[lny 2 lnh(x ) 2 W21 HWbln«bl], a t o 

5 (I 2 KlW
2
o 
1 HWb)ln«bl 1 Klln«ol: (39) 

To simplify the appearance of the derivation we now define 
H ≡ W21 HWb. To form the lognormal analysis error covariance o 

matrix, we have to take the expectation of ln «a(ln «a)T, 
which is 

≡ E[ln« (ln« )T], Pal a a

5 (I 2 KlH)E[ln«bl(ln«bl)T](I 2 KlH)T 

1 KlE[ln«ol(ln«ol)T]KT 
l , 

ˆ5 I(I 2 KlH)Pf l(I 2 Kl H)T 1 KlRlK
T 
l : (40) 

Following the same expansion of the products in (40) as for 
the Gaussian case, and noticing that the lognormal Kalman 
gain equation can be written as 

T T [HPf lH 1 Rl]21, Kl 5 Pf lH 

results in (40) becoming 

Pal 5 (I 2 KlH)Pf l: (41) 

We now show that the analysis error covariance matrix is 
equivalent to the inverse of the scaled Hessian matrix in (25). 
The first step is to expand Kl in (41) in terms of H, and using 
the rule for the inverse of the product of two matrices, 
yielding 

T T 
R21 R21 1 I]21Pal 5 Pf l  2 Pf lH l [HPf lH l HPf l: (42) 

Next recalling the Sherman–Morrison–Woodbury formula: 

VTA21 (A 1 UVT)21 ≡ A21 2 A21U[I 1 VTA21U]21 , 

T 
R21 where for (42) this implies that A 5 P21 , and 

T f l  , U 5 H l 
V 5 H , the lognormal analysis error covariance matrix can 
be rewritten as 

T 
R21 H)21 1 H , f l  Pal 5 (P21 

l 

5 (P21 1 Wb
T HTW2T R21 W21 HWb)21, (43) f l  o l o 

where the expression inside the brackets on the right-hand 
side of (43) is the same as that of the scaled Hessian matrix of 
the cost function in (25). 

The final part of this derivation is to show that the expres-
sion for the lognormal Kalman gain matrix minimizes the 
trace of the analysis error covariance matrix. Thus differenti-
ating (40) with respect to Kl and setting to zero yields 

­Pal T 
522(I 2 KlH)Pf lH 1 2KlRl 5 0, 

­Kl 
T T ⇒ PfH 5 Kl(HPfH 1 Rl), 

T T ⇒ Kl 5 PfH (HPfH 1 Rl)21 : (44) 

It is clear that the expression for the lognormal-based Kalman 
gain matrix in (36) is the same as that in (44), and thus the log-
normal Kalman gain matrix minimizes in a least squares sense 
the analysis error covariances. 
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Thus in summary the equations for the analysis step of the 
lognormal Kalman filter are given by 

n21 n21 n Pn 
f l  5 [lnM(x « ) 2 lnx ] a a t 

n21 n21 n 3 [lnM(x « ) 2 lnx ]T 1 Qn
l , (45) a a t 

n n lnx 5 lnx b 1 Kn
l [lny 2 lnh(x )], (46) a a

Kn 5 Pn
b H

TW2T [W21 
b H

TW2T 1 Rl]21 
l f lW

T 
o o HWbPf l

n WT 
o , (47) 

Pn
l W

21 HWb)Pn (48) al 5 (I 2 Kn
o f l, 

n n21 x b 5 M(x ): (49) a 

As shown with the development of the lognormal forms of 
variational data assimilation, we do not live in an one type 
of distribution only world, and as such the next step is to 
combine the lognormal Kalman filter just derived with the 
Gaussian Kalman filter to be able to use the mixed Gaussian– 
lognormal distribution from Fletcher and Zupanski (2006b) 
to form a second non-Gaussian-based Kalman filter system. 

c. Mixed Gaussian–lognormal Kalman filter 

In this section we shall refer to the mixed Gaussian–lognormal 
Kalman filter as MXKF. The starting point for the deriva-
tion of the MXKF is the definition of the associated back-
ground, observational, model, and analysis errors. As we 
are assuming that the error that is to be minimized is from 
a mixed distribution, it implies that there are a set of 
Gaussian distributed errors and a set of lognormal distrib-
uted errors that need to be minimized simultaneously. This 
then implies that the true state, background, and analysis 
states are given by 

xtG xbG xaG x ≡ , ≡ , x ≡ , (50) tmx xbmx amx xtl xbl xal 

where G represents the Gaussian distributed random varia-
bles, and l represents the lognormally distributed random var-
iables, which implies that the associated mixed distributed 
errors are given by 

n n n n x xbG 2 xtG aG 2 xtG n « , « ≡ , bmx ≡ amx n n n n lnxbl 2 lnx lnxal 2 lnxtl tl 

n n21 n yG 2 hG(x ) ⎧⎨⎪⎪⎪ [M(x )]G 2 x ⎬⎪⎪⎪⎫tmx tmx tG 
« ≡ , « ≡ : omx n mmx ⎪⎪⎪ n21 n ⎪⎪⎪lnyl 2 lnhl(xtmx) ⎩ ln[M(x )]l 2 lnx ⎭ 

tmx tl 

(51) 

It should be noted here that the number of Gaussian observa-
tion errors will, in most circumstances, be less than the dimen-
sion of the Gaussian component of the true state. This is also 
true for the lognormal distributed errors. Finally there may 
not be an equal number of Gaussian and lognormal back-
ground, or observational, errors 

The mixed distribution-based forecast error covariance ma-
trix can be shown to be 

T n21 n21 M(« ) M(« ) aG aG 
Pn , (52) fmx ≡ 

n21 n21 lnM(« ) lnM(« ) al al 

where it can clearly be seen that there are covariances be-
tween the Gaussian and the lognormal forecast errors. 

The next step is to define the equivalent cost function from 
the lognormal median approach to find the median of the 
mixed distribution, which is given by 

1 xtG 2 xbG 
T 

xtG 2 xbG 
J (x) 5 P21 
mx fmx 2 lnxtl 2 lnxbl lnxtl 2 lnxbl 

T 
1 yG 2 hG(x ) yG 2 hG(x ) t t

R21 1 , (53) mx 2 lnyl 2 lnhl(x ) lnyl 2 lnhl(x ) t t

where the Jacobian of (53) can be shown to be 

xtG 2 xbG 
P21 = J(x) 5 W2T 

x b fmx t lnxtl 2 lnxbl 
yG 2 hG(x ) t

2 HTW2T R21 , (54) o mx lnyl 2 lnhl(x ) t

and the associated Hessian and scaled Hessian matrices are 
given by 

2 P21 1 HTW2T R21 W21 = J(x) 5 W2T 
fmxW

21 
o H, xt b b mx 0 

⇒ WT 2 J(x)Wb 5 P21 
b H

TW2T R21 W21 HWb, b = x fmx 1 WT 
o mx 0 t 

(55) 

where ⎛   
1 

. . . 
1 

W21 
b ≡ x21 , 

tl1 
. . . 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎝ ⎠ 
x21 
tlN ⎡ 1 ⎤ 

. . . 
1 

W2
o 
1 ≡ hl1 

(xt) : 
. . . 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ hlNo 
(xt ) 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
The next stage is to form the analysis errors in terms of the 
background state combined with a weighting of the observa-
tions. Thus, for the mixed distribution approach this should 
be of the following form: 

xaG 2 xbG yG 2 hG(xa) 
5 K : (56) mx lnxal 2 lnxbl lnyl 2 lnhl(x a) 

As with the lognormal derivation, we introduce the geometric 
tangent linear approximations to the lognormal observation 
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operators and the additive tangent linear model to the 
Gaussian observation operators into the gradient of the 
mixed distribution cost function and set to zero. This re-
sults in 

xaG 2 xbG yG 2 hG(xb) 
0 5 WT 

b P
21 2 HTW2T R21 
fmx o mx lnxal 2 lnxbl lnyl 2 lnhl(xb) 

xaG 2 xbG 
2 HW2

o 
1 Wb : (57) 

lnxal 2 lnxbl 

Factorizing (57) results in 

xaG 2 xbG [P21 
b H

TW2T R21 W21 
fmx 1 WT 

o mx o HWb] lnxal 2 lnxbl 

yG 2 hG(xb) 
5 WT 

b H
T W2T R21 : (58) o mx lnyl 2 lnhl(xb) 

Therefore, for the mixed distribution approach one finds 

xaG 2 xbG 
5 [P21 

b H
T W2T R21 W21 

fmx 1 WT 
o mx o HWb]21 

lnxal 2 lnxbl 

yG 2 hG(xb) 
3 WT 

b H
TW2T R21 : (59) o mx lnyl 2 lnhl(xb) 

Thus, the Kalman gain matrix for the mixed Gaussian–lognormal 
approach is 

K ≡ [P21 
b H

TW2T R21 W21 HWb]21Wb 
T HTW2T R21 : mx fmx 1 WT 

o mx o o mx

(60) 

Through applying the Sherman–Morrison–Woodbury for-
mula twice it is possible to write (60) in the more usable form, 

K mx ≡ PfmxWb 
T HTW2

o 
T [W2

o 
1 HWbPfmxWb 

T HTW 2o 
T 1 R mx]21, 

(61) 

where the proof of the expression above can be found 
through using the derivation on page 755 from Fletcher 
(2017), and the proof of positive definiteness follows from the 
arguments from the lognormal Kalman filter analysis error 
derivation. 

As with the lognormal approach, we shall introduce some no-
tation to simplify the appearance of the derivation for the analy-
sis error covariance matrix. We shall denote H ≡ W21 HWb. o 
Using the definition of the analysis errors for the mixed distri-
bution from (51), the different forms of tangent linear approxi-
mations presented earlier, as well as the standard version from 
the Gaussian formulation, results in the mixed distribution anal-
ysis errors of the following form: 

«aG «bG «oG 
5 [I 2 K HT] 1 K : (62) mx mx ln«al ln«bl ln«ol 

Thus, forming the product of the analysis error vector with its 
transpose and taking the expectation results in 

P 5 [I 2 K HT]T 1 K R KT , (63) amx mxH
T]Pfmx[I 2 Kmx mx mx mx

where following the same arguments for the Gaussian and 
lognormal cases results in the analysis error covariance matrix 
of the following form: 

Pamx 5 [I 2 KmxH
T]Pfmx: (64) 

The final step is to confirm that the inverse of the analysis 
error covariance matrix is equivalent to the scaled Hessian of 
(53) in (55) which can easily be shown as the expression above 
is the same in appearance as the standard Gaussian and the 
lognormal version from the last section. Therefore, the analysis 
error covariance matrix for the mixed distribution approach is 
given by 

5 (P21 
b H

TW2T R21 W21 Pamx fmx 1 WT 
o mx o HWb)21 : (65) 

Thus, in summary, the mixed Gaussian–lognormal-based Kalman 
filter equations are given by 

T n21 n21 M(« ) M(« ) aG aG 
Pn 1 Qn , (66) fmx 5 mxn21 n21 lnM(« ) lnM(« ) al al 

n n n x x yG 2 hG(xb) aG bG 
5 1 Kn , (67) mx n n n lnx lnx lnyl 2 lnhl(xb) al bl 

Kn 5 Pn
b H

T W2T [W21 HWbP
n

b H
TW2T 

mx fmxW
T 

o o fmxW
T 

o 

]21 1 R , (68) mx

Pn 5 [I 2 Kn W21 HWb]Pn (69) amx mx o fmx, 

n n21 x xbG aG 
5 M : (70) 

n n21 x xbl al 

In this section it has been shown that it is possible to derive 
a nonlinear version of the Kalman filter equations to be used 
with lognormal random variables, as well as with a combination 
of lognormal and Gaussian random variables. The appearance 
of the set of equations are similar to the Gaussian form, but the 
evolution of the analysis error covariance matrix is exact and 
not through the application of the linearized model. 

In the next section the mixed Gaussian–lognormal Kalman 
filter equations will be tested against the original linearized 
Gaussian Kalman filter equations, referred to as the extended 
Kalman filter (EKF) with the Lorenz 1963 model. It has been 
shown in the development and testing of the mixed Gaussian– 
lognormal variational data assimilation systems that the z 
component of this model is highly non-Gaussian, and as 
such is a good test to assess the performance of these new 
equations. 

4. Experiments with the Lorenz 1963 model 

As just mentioned, the Lorenz 1963 model has been used 
extensively to test the development of the mixed Gaussian– 
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lognormal-based variational data assimilation systems. An im-
portant feature of the Lorenz 1963 model is that there are re-
gions of the Lorenz attractor where the z component does not 
follow a Gaussian distribution, as has been shown in Fletcher 
(2010) and Goodliff et al. (2020). This component is always 
positive, while the x and y components have positive and neg-
ative values. In Fletcher (2010) there are four climatologies of 
the z component that are created from the Lorenz 1963 model 
with the initial conditions that we shall define soon, where it 
was clear that after 100 000 time steps this component ap-
peared to have a global mode with a skewness to the left and 
then a secondary mode with a smaller occurrence rate than 
the global mode. When fitting a lognormal distribution to this 
data the global mode is very well captured with a slight under-
estimation of the secondary mode. When a Gaussian distribu-
tion was fitted to this data, both modes were underestimated 
and the Gaussian mode was in between the two modes and 
was assigning higher probabilities to states that did not occur 
that often. See Fig. 21.3 in Fletcher (2017) for this example. 

This model is also a good choice due to its simplicity for a 
dynamical model that exhibits chaotic behavior. Another im-
portant property of this model is that it is very sensitive to the 
initial conditions from which it starts, and as such can give 
very different answers even by being out by a few decimal 
places from the true state. For an example of this sensitivity 
see Fletcher (2017). The continuous model equations are as 
given by 

dx 
52s(x 2 y), 

dt 
(71) 

dy 
5 rx 2 y 2 zx, 

dt 
(72) 

dz 
5 xy 2 bz, 

dt 
(73) 

where x 5 x(t), y 5 y(t), and z 5 z(t) are the state variables, 
s 5 10, r 5 28, and b 5 8/3 are parameters. 

The experiments will compare the analysis errors from the 
EKF, which uses the linearized model, against those from the 
MXKF, that uses the full nonlinear model. The two filters will 
be tested with different observational errors, where it is as-
sumed that x and y components have Gaussian errors and the 
z component has lognormal errors. The observations are gen-
erated with different observational error variances, and with 
different times between analysis updates to determine the ro-
bustness of the new approach. 

In this section we shall look at the sensitivity of the EKF 
and the MXKF to both observational error variance size, as 
well as time between observations. The numerical scheme 
that is used for the discretization of the nonlinear model is the 
second-order explicit Runge–Kutta scheme. The MXKF uti-
lizes the nonlinear numerical model for all three components, 
while the EKF utilizes a linearized version of the model, 
which was calculated analytically and then discretized with 
the same scheme as the nonlinear model. The adjoint model 
was also calculated by hand. This is all coded in MATLAB. 
See Fletcher (2017) for more details on this calculation. 

We shall consider four different configurations in this 
section; 1) so 5 0.5, 50 time steps between observations, 
2) so 5 2, 25 time steps between observations, 3) so 5 0.25, 
200 time steps between observations, and 4) so 5 1, 100 time 
steps between observations, where so is the observational 
error standard deviation. 

The true solution is started from the initial conditions: 
x0t 5 25.4458, y0t 5 25.4841, and z0t 5 22.5606, while the 
background solution starts from x0b 5 25.9, y0b 5 25.0, and 
z0b 5 24.0. These are the same set of initial conditions that 
have been used with the mixed Gaussian–lognormal variational 
data assimilation schemes. However, an extra feature that is used 
in these experiments, and is the same for both the EKF and the 
MXKF is an approximation for the model error term. We use 
the values that are suggested in Evensen and Fabio (1997): ⎛   

0:1491 0:1505 0:0007 

Q ≡ 0:1505 
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0:9048 0:0014 : 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (74) 

0:0007 0:0014 0:9180 

a. Experiment 1: s0 5 0.5, 50 time steps between 
observations 

In Fig. 2 we have two sets of plots, the first is of the z and x 
trajectories for the true states (red lines), the solution from 
the MXKF (blue lines), and the solution from the EKF (black 
lines), along with the observations (green circles). The second 
set of plots is of the z and x errors, where for the z component 
we consider the ratio to define the error, while for the x com-
ponent the error is defined as the difference. 

It is clear from the trajectory plots in Fig. 2 that the obser-
vations are not that accurate, but are frequent. Both solutions 
appear drawn toward the observations in that the error in-
creases when the less accurate observations are assimilated 
compared to the more accurate ones. However, when we con-
sider the error plots we can see that both approaches are im-
pacted by the less than perfect observations, but that the 
MXKF solution is able to be more consistent for both the x 
and z components, as measured by the z error being close to 
one, and close to zero for the x component, with the MXKF 
scheme able to recover quicker. 

b. Experiment 2: so 5 2, 25 time steps between 
observations 

In this section we consider the case where we have more 
observations than in experiment one, but these observations 
are less accurate. These results are presented in Fig. 3 in the 
same configuration as in experiment one. We can see that 
while there are some quite inaccurate observations, the solu-
tions from either approach are not able to go out of phase 
from the true solution. Again it is clear that the MXKF ap-
proach is able to stay more consistent than the EKF solutions. 

c. Experiment 3: so 5 0.25, with 200 time steps between 
observations 

In this experiment we are considering the case where we 
have fewer observations, but they are quite accurate. These 
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FIG. 2. (left)  z and x true (red), mixed Gaussian–lognormal Kalman filter (MXKF) (blue), and extended Kalman filter (EKF) (black), 
observations (green circles). (right) z /ztt error and xa 2 xt error plots for the analysis from the MXKF (solid black) and the EKF (black a
dashed) for so 5 0.5 with 50 time steps between observations. 

results are presented in Fig. 4. As expected there is a decrease 
in the accuracy of both approaches, but we also have that nei-
ther of the solutions go out of phase. We again see that the 
MXKF is able to produce a more consistent solution than the 
EKF for both the x and z components. 

d. Experiment 4: so 5 1, 100 time steps between 
observations 

The results from this experiment are presented in Fig. 5 
where we can see that we have the situation where the EKF 
does go out of phase with the true solution, even going on to 
the wrong attractor for a short while, before assimilating addi-
tional observations to bring it back toward the true solution. 

However, for this configuration we see that the MXKF ap-
proach does not go out of phase in neither the z nor the x 
component to the extreme that the EKF solution does and ap-
pears to be able to better assimilate the observations each 
time. 

e. Robustness testing 1: Observational error standard 
deviations and observational frequency 

In this subsection we present results from running experi-
ments 1 to 4 with 5000 different random draws from the ob-
servational error distribution to test the robustness of the 
MXKF. To determine the robustness we calculate the analysis 
error as a lognormally distributed random variable, i.e., the 

FIG. 3. (left)  z and x true (red), mixed Gaussian–lognormal Kalman filter (MXKF) (blue), and extended Kalman filter (EKF) (black), 
observations (green circles). (right) z /z error and xa 2 xt error plots for the analysis from the MXKF (solid black) and the EKF (black a t 
dashed) for so 5 2 with 25 time steps between observations. 
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FIG. 4. (left)  z and x true (red), mixed Gaussian–lognormal Kalman filter (MXKF) (blue), and extended Kalman filter (EKF) (black), 
observations (green circles). (right) z /z error and xa 2 xt error plots for the analysis from the MXKF (solid black) and the EKF (black a t 
dashed) for so 5 0.25 with 200 time steps between observations. 

ratio of the analysis to the true state for all 5000 solutions 
from the MXKF and the EKF, and from these errors we cal-
culate the average minimum error and the average maximum 
error for the MXKF and the EKF. These results are summa-
rized in Table 1 to highlight the spread from the average mini-
mum analysis error to the maximum analysis error for the 
MXKF and the EKF. 

We note here that during the 5000 evaluations for using 
experiment 3 and 4 configurations there was one instance 
for each where the MXKF did not converge. This aside, 
given that the analysis error is a ratio and if the scheme is 
performing well then the analysis error should be approxi-
mately equal to 1 as seen in the results in Fletcher and Jones 
(2014). 

From the values in Table 1 it is clear that the MXKF on av-
erage for the situations considered here has a smaller spread 
between the average maximum and average minimum analy-
sis error for all four experiments, bearing in mind the caveat 
above. It appears that the scheme performs best on average 
for the situation where there are inaccurate observations but 
more of them (experiment 2). The largest spread for the 
MXKF appears to be for experiment 3, accurate observations 
but less frequent. 

f. Robustness testing 2: Perturbing the true and 
background states’ initial conditions 

In the results present here experiment 1 was used for the 
observational error standard deviation and frequency but the 

FIG. 5. (left)  z and x true (red), mixed Gaussian–lognormal Kalman filter (MXKF) (blue), and extended Kalman filter (EKF) (black), 
observations (green circles). (right) z /z error and xa 2 xt error plots for the analysis from the MXKF (solid black) and the EKF (black a t 
dashed) for so 5 0.5 with 50 time steps between observations. 
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TABLE 1. Summary of the average minimum and maximum 
analysis errors for experiments 1–4 over 5000 assimilation runs. 

MXKF EKF 

Expt Avg min Avg max Avg min Avg max 

1 0.836 1.25 0.723 1.432 
2 0.904 1.112 0.786 1.268 
3 0.662 1.403 0.527 1.556 
4 0.766 1.278 0.605 1.505 

initial conditions for the true state and the background state 
were randomly perturbed using the MATLAB function 
NORMRND with mean zero and three different standard de-
viations, sp 5 0.1, 0.5, 1. Different perturbations were applied 
to the true initial conditions and the background initial condi-
tions from those presented at the beginning of this section but 
were drawn from the same distribution. The performance 
metrics as for robustness testing 1 were applied here and are 
summarized in Table 2. 

From Table 2 it is clear that there is a sensitivity in the 
MXKF to the initial conditions for the true and background 
state. It should be noted that the MXKF had an approximate 
1% failure rate for all three configurations, while the EKF did 
not. As with robustness testing 1, the MXKF has a smaller 
spread between its average maximum and minimum analysis 
error compared to the EKF when it converged. 

5. Conclusions and further work 

In this paper we have been able to show that it is not possi-
ble to follow the linear least squares approach that is used to 
derive the Kalman filter, and the extended Kalman filter 
(EKF) equations, to derive a similar expression for lognor-
mally distributed errors. However, we have been able to show 
that if we keep the nonlinear model and follow a cost function– 
based approach associated with the median from Fletcher 
(2010), then it is possible to derive a set of nonlinear equations 
for the update of the median of the lognormal analysis state 
together with its uncertainty. We were able to extend this to 
the mixed Gaussian–lognormal probability density function, 
where the associated Kalman filter equations are referred to 
as the MXKF. 

We coded the new MXKF, along with the EKF, for the 
Lorenz 1963 model in MATLAB, and showed that for differ-
ent configurations of observational error variances and time 
steps between observations, where the observational errors 
for the x and y components were Gaussian distributed, while 
for the z component these were lognormally distributed, the 
MXKF appeared to be more consistent with the true solutions 
for longer periods than the EKF. We should note that the EKF 
was using the linearized numerical model, while the MXKF was 
using the nonlinear numerical model. It appears that this has an 
effect on the performance of the EKF compared to the MXKF 
in that it appears to fit more to the observations, while the 
MXKF does not always pull straight to the observations. 

To evaluate the general performance of the MXKF against 
the EKF a set of 5000 assimilation experiments was run for 

TABLE 2. Summary of the average minimum and maximum 
analysis errors for perturbing the true and background initial 
condition over 5000 assimilation runs using experiment 1’s 
observational configuration. 

MXKF EKF 

Expt Avg min Avg max Avg min Avg max 

sp 5 0.1 0.820 1.408 0.680 1.710 
sp 5 0.5 0.804 1.521 0.679 1.806 
sp 5 1 0.788 1.631 0.668 1.791 

each of the four experimental configurations from section 4. It  
was shown that the MXKF had a smaller spread between the 
average minimum and average maximum analysis error for all 
four experimental configurations, but we note that there was 
one realization for both experiment 3 and 4 where the MXKF 
did not converge. This robustness test was followed up with a 
sensitivity study of the MXKF and the EKF to perturbed true 
state and background state initial conditions. 

It has been shown in Fletcher and Jones (2014) that lognormal-
based data assimilation systems can be quite sensitive to the ac-
curacy of the observations of the different components of the 
Lorenz 1963 model near the transition zones between the two 
attractors, and it is possible that the lognormal Kalman filter 
could also be suffering from this here, and is left for further 
work to determine if this is the case. 

The next step in this work is to build the theory for an 
ensemble-based approach to the MXKF equations and rigor-
ously test them with different toy problems. Given the nonlin-
ear nature of the equations, and the dependence on the 
equations being derived from a cost function, the most likely 
candidate would be the maximum likelihood ensemble filter 
(MLEF) from Zupanski (2005). The MLEF is comprised of 
two steps: the forecast step uses the standard definition of the 
update for the forecast error covariance matrix from the 
Kalman filter but uses the nonlinear model to evolve this ma-
trix between analysis times, instead of a linear model, through 
an ensemble where each ensemble member’s perturbation is 
a column from the analysis error covariance matrix from that 
assimilation cycle. The analysis step is to solve a flow depen-
dent 3D VAR cost function projected into ensemble space 
through a Hessian preconditioner. The square root analysis 
error covariance is updated through the inversion of the Hes-
sian preconditioner. The steps here are easily adaptable to the 
new MXKF equations for the updates of the analysis and 
forecast error covariance matrices. 

The reason behind the non-Gaussian work over the last 
15 years has been to develop more consistent data assimila-
tion systems for positive definite variables. In the atmosphere 
it is well know that relative humidity is positive definite, that 
is to say it is always larger than zero, and as such we do not 
wish for a data assimilation system to produce an answer that 
is negative or equal to zero for this field. It has been shown in 
Kliewer et al. (2016) that through using a mixed Gaussian– 
lognormal 1DVAR for a temperature–mixing ratio it is possible 
to obtain better fits to both the temperature and the moisture 
channels through the covariances between the Gaussian and 
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lognormal random variables. A full description of the links be-
tween the two distributions can be found in Fletcher (2017). 

As most of the operational numerical weather prediction 
centers use a form of hybrid ensemble/variational data assimila-
tion algorithm, it became important for the mixed Gaussian– 
lognormal theory to move toward that approach. However, the 
major stumbling block has been the Kalman filter component 
to create the ensemble covariance. The work in this paper is the 
first step toward a Gaussian–lognormal hybrid 4DVAR. 
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