

1 Midgut-specific expression of *CYP321A8* P450 gene increases deltamethrin tolerance in the
2 fall armyworm *Spodoptera frugiperda*

3

4

5

6

7

8 Xien Chen and Subba Reddy Palli*

9

10

11

12

13

14 Department of Entomology, College of Agriculture, Food and Environment, University of
15 Kentucky, Lexington, KY 40546, United States of America

16 * Corresponding author. E-mail address: rpalli@uky.edu

17

18

19

20 **Abstract**

21 The *piggyBac*-based germline transformation system was recently established in a global
22 agricultural pest, the fall armyworm (FAW), *Spodoptera frugiperda*. Tissue-specific promoters are
23 needed to apply this transformation system to express transgenes in a tissue-specific manner.
24 Highly expressed genes in the midgut were identified by RNA sequencing and RT-qPCR.
25 Promoter regions of 11 genes highly expressed in the midgut were identified and cloned.
26 Baculoviruses expressing the luciferase gene under the control of these promoters were produced
27 and tested in the FAW. These baculoviruses did not show significant luciferase activity in the
28 FAW midgut. Four transgenic FAW lines expressing the luciferase gene under the control of the
29 SfSP38/P2000, SfCalphotin/P2000, SfMG17/P2000, and SfCPH38/P2000 promoters were
30 generated using *piggyBac*-based germline transformation methods. Significantly higher luciferase
31 activity was detected in the midgut than in other tissues of transgenic FAW. The SfCPH38/P2000
32 promoter with the highest activity and midgut specificity was used to drive the expression of P450,
33 *SfCYP321A8*, which is known to be involved in deltamethrin resistance. Higher mRNA levels of
34 *SfCYP321A8* and P450 activity were detected in the midgut of transgenic larvae than in wild-type
35 larvae. Bioassays showed that transgenic larvae expressing *SfCYP321A8* in the midgut are tolerant
36 to deltamethrin. Here, we presented methods for the identification of midgut-specific promoters in
37 the FAW and used them to study the role of P450 overexpression in the midgut on insecticide
38 resistance. These methods could also be used to identify other tissue-specific promoters for
39 applications of *piggyBac*-based germline transformation in functional genomics in FAW and other
40 non-model insects.

41 **Keywords**

42 Midgut-specific genes, promoters, transgenesis, P450, deltamethrin, and *Spodoptera frugiperda*

43 **Introduction**

44 The midgut is the second largest organ and site of digestion of ingested food and absorption of
45 nutrients (Hakim et al. 2010). As an important target tissue for many insecticides, the insect midgut
46 also plays a major role in insecticide resistance (Smagghe and Tirry 2001). It is also an immune
47 organ acting as the first line of defense against pathogens, including bacteria and viruses (Hakim
48 et al. 2010). The distinctive environment in the midgut also allows microbial colonization, which
49 benefits host insects (Engel and Moran 2013). Additionally, remodeling of the midgut is critical
50 for successful metamorphosis in insects (Parthasarathy and Palli 2007; Wu et al. 2006). It is
51 believed that the products from midgut genes, especially highly expressed genes and midgut-
52 specific genes, perform critical functions (Hakim et al. 2010). Studies on *Drosophila melanogaster*
53 extended our knowledge on the insect midgut (Harrop et al. 2014; Hung et al. 2020; Lucchetta and
54 Ohlstein 2012). However, these results may not apply to all insects with significant differences in
55 the structure and function of the midgut. The transgene-based overexpression, knockdown, and
56 knockout of midgut genes used routinely in *D. melanogaster* are still challenging in other insects.
57 The availability of these methods in pest insects will promote studies on the midgut and benefit
58 the management of these pests.

59 The fall armyworm (FAW), *Spodoptera frugiperda* (Lepidoptera: Noctuidae), is native to
60 tropical and subtropical regions of the Americas. It has now successfully invaded most parts of the
61 world (Gui et al. 2020). As a successful polyphagous pest, FAW feeds on more than 300 species
62 of host plants, including some major food crops (Montezano et al. 2018). FAW has developed
63 resistance to many chemical insecticides (Carvalho et al. 2013; Diez-Rodriguez 2001) and
64 transgenic *Bt* corn (Omoto et al. 2016). The midgut is likely to play a central role in FAW feeding

65 on multiple plants and developing insecticide resistance. However, there are not many studies on
66 FAW midgut.

67 Unlike in model insects, germline transformation systems are not well developed in
68 lepidopteran pest insects. We recently established a *piggyBac*-based transformation system in the
69 FAW (Chen et al. 2020b). Several highly active promoters have been identified in FAW
70 (Bleckmann et al. 2015; Chen et al. 2020a), which will further facilitate the use of the *piggyBac*
71 system in FAW. However, tissue-specific promoters are needed to conduct tissue-specific gain- or
72 loss-of-function studies using the *piggyBac*-based transformation system. There are no reports on
73 FAW tissue-specific promoters.

74 In model insects, including *D. melanogaster* and *Bombyx mori*, a few midgut-specific
75 promoters have been identified and used for tissue-specific expression of transgenes (Fischer et al.
76 1988; Hu et al. 2015; Jiang et al. 2013; Park and Kwon 2011; Zeng et al. 2010). Midgut-specific
77 promoters were also identified in several mosquito species (Moreira et al. 2000; Nolan et al. 2011;
78 Skavdis et al. 1996; Zhao et al. 2014). Although some midgut-specific promoters showed cross-
79 species activity (Skavdis et al. 1996), it is still not feasible to use midgut-specific promoters in
80 non-host insects. Information on midgut-specific promoters in non-model pest insects is not
81 available.

82 Transgenic insects have been used to evaluate the model insect promoters *in vivo*
83 (Anderson et al. 2010; Deng et al. 2013; Jiang et al. 2013; Moreira et al. 2000; Totten et al. 2013;
84 Xu et al. 2019; Xu et al. 2014). However, this method is not available to most insect species.
85 Recently, baculoviruses were used to evaluate the performance of *B. mori* promoters *in vivo* (Tian
86 et al. 2018; Zhang et al. 2015; Zhao et al. 2014). Conducting baculovirus transduction is much
87 easier than manipulating transgenesis in insects. Whether the baculovirus transduction method is

88 feasible in evaluating the activity of FAW promoters, including the midgut-specific promoters, *in*
89 *vivo* is unknown.

90 In our recent work, we found that a P450 gene, *SfCYP321A8*, is upregulated in the first
91 instar FAW larvae fed on deltamethrin, and transgenic over-expression of this P450 gene by a
92 strong constitutive promoter, *SfPub* promoter, confers deltamethrin resistance in FAW(Chen and
93 Palli 2021). However, whether over-expression of *SfCYP321A8* only in the midgut could confer
94 deltamethrin resistance in FAW in unknown. To develop tools for tissue-specific gain- or loss-of-
95 function studies in FAW, we analyzed RNA-Seq data from the midgut and other tissues, identified
96 several genes uniquely, and highly expressed in the midgut. Promoter regions of identified genes
97 were used to drive luciferase reporter gene expression in cells via the baculovirus system. In
98 addition, transgenic reporter FAW lines were established to investigate candidate promoter activity
99 *in vivo*. Finally, the promoter of the *SfCHP38* gene, which is highly active in the midgut compared
100 to that in other tissues, was selected to drive the expression of a P450 gene, *SfCYP321A8*, involved
101 in deltamethrin resistance. Deltamethrin tolerance was observed in transgenic animals expressing
102 *SfCYP321A8* in the midgut.

103

104 **Materials and Methods**

105 **Insect and cells**

106 The laboratory strain of FAW was purchased from Benzon Research Inc. (Pennsylvania, USA)
107 and reared for multiple generations without exposure to any pesticides. Larvae were fed an
108 artificial diet from Southland Product Inc. (Arkansas, USA). Adults were provided with a 10%
109 sucrose solution under the conditions of 23 ± 1 °C, $75 \pm 5\%$ relative humidity and a photoperiod

110 of 16:8 (light: dark). Sf9 cells were cultured at 27 °C in Sf-900 II medium (Thermo Fisher, USA).
111 The SfMG_0617 (hereafter referred to as Sf17) cell line, generated from the FAW midgut (Zhou
112 et al. 2020), was maintained in TNM-FH insect medium (Sigma-Aldrich, USA) supplemented with
113 10% FBS at 27 °C.

114 **Plasmid construction**

115 The candidate midgut gene promoters were identified and cloned as described in our previous
116 publication (Chen et al. 2020a). To generate plasmids for producing baculoviruses, the ORF of the
117 luciferase gene was amplified from the pG5Luc vector using primers containing 20 bp homologous
118 arms on either end of the EcoR I/Kpn I-digested pFastBac-S/His vector and cloned into the
119 pFastBac-S/His vector by Gibson assembly (NEB, USA). Promoters of FAW midgut-specific
120 genes containing 20 bp homologous arms on either end of the SnaB I/BamH I-digested pFastBac-
121 Luc plasmid were amplified from FAW genomic DNA and inserted into the SnaB I/BamH I-
122 digested pFastBac-Luc plasmid to generate pFastBac-promoter-Luc vectors as described above.
123 All vectors were transformed into *E. coli* 10G cells (Lucigen, USA). Positive transformants were
124 selected and cultured in 3 ml LB medium. Plasmid DNA was extracted using a plasmid mini kit
125 (Qiagen, USA)

126 To prepare the plasmids for generating transgenic FAW, a *piggyBac* vector, pBac:hr5ie1-
127 EGFP-SV40:hr5ie1-Cas9-SV40 (gifted from Dr. Tan, Shanghai Institute of Plant Physiology and
128 Ecology, China), was digested with Aat II/Apa I to remove the Cas9 cassette. The ORF of
129 luciferase or a P450 gene, *SfCYP321A8*, from FAW was inserted into the digested *piggyBac* vector
130 as described above to produce the intermediate vectors pBac:hr5ie1-EGFP-SV40:hr5ie1-Luc-SV4
131 and pBac:hr5ie1-EGFP-SV40:hr5ie1-SfCYP321A8-SV40. The cloned promoters were then
132 inserted into Kpn I/Aat II- or Xho I/Aat II-digested intermediate vectors to generate the final

133 vectors, pBac:hr5ie1-EGFP-SV40:hr5/Promoter-Luc-SV40, pBac:ie1-EGFP-SV40:Promoter-
134 Luc-SV40, pBac:hr5ie1-EGFP-SV40:hr5/Promoter-SfCYP321A8-SV40, and pBac:ie1-EGFP-
135 SV40: Promoter-SfCYP321A8-SV40. All constructs were transformed into *E. coli* 10G cells.
136 Positive transformants were selected and cultured in 100 ml LB medium. The plasmid DNAs for
137 transfection were prepared using the plasmid midi kit (Qiagen, USA).

138 The primers used to produce the constructs are listed in Table S1.

139 **Reporter baculovirus preparation**

140 pFastBac-promoter-Luc plasmids were extracted and transformed into *E. coli* DH10Bac cells
141 (Invitrogen, USA) to produce recombinant bacmids, which were then used to generate reporter
142 baculoviruses in Sf9 cells following the methods described in the bac-to-bac system (Invitrogen,
143 USA). The viral nucleic acids of P2 viruses were purified using the PureLinkTM Viral RNA/DNA
144 Mini Kit (Invitrogen, USA). The plaque-forming units (PFU) of reporter baculoviruses were
145 determined using the BacPAK qPCR Titration Kit (Takara Bio, USA).

146 **RNA isolation, cDNA preparation and RT-qPCR**

147 Total RNA was isolated using TRI reagent (Molecular Research Center Inc., Cincinnati, OH) and
148 converted to cDNA using M-MLV Reverse Transcriptase (Invitrogen, USA). Real-time PCR
149 reactions were conducted in a 10- μ L total reaction volume containing 5 μ L of 2xSYBR Mix
150 (BioRad, USA), 0.4 μ L of each primer, 0.8 μ L of 20-fold diluted cDNA, and 3.4 μ L of double-
151 distilled water. Primers were designed using Primer3 (<http://bioinfo.ut.ee/primers-0.4.0/>) and are
152 listed in Table S1. The reaction conditions used were as follows: 95 °C for 2 min, 40 cycles of 95
153 °C for 10 seconds, and 60 °C for 1 min. The expression levels of each gene were calculated as a
154 fold change over the expression levels of a reference gene, 28S rRNA, which is stably expressed

155 in different tissues of both transgenic and wild-type FAW (Figure S1). All samples contain three
156 biological replicates.

157 **Transformation of FAW**

158 The hyperactive transposase mRNA was prepared as described previously (Chen et al. 2020b) and
159 stored at -80 °C. A mixture of hyperactive transposase mRNA (400 ng/μL) and each final vector
160 (300 ng/μL) was injected into fresh FAW embryos (less than 4 hr old) as previously described
161 (Chen et al. 2020b). The surviving larvae (G0) were reared under normal conditions. Collection
162 and screening of newly hatched 1st instar larvae (G1) were performed as described previously
163 (Chen et al. 2020b). All transgenic larvae and adults were reared under normal conditions.

164 **Luciferase activity assay**

165 To test the luciferase activity of reporter baculoviruses in cell lines, Sf9 and Sf17 cells were seeded
166 in 96-well culture plates at a density of 2x10⁵ cells per well and incubated at 27 °C overnight. A
167 total of 6x10⁴ PFU of each virus was added to 100 μL medium of Sf17 and Sf9 cells. Cells were
168 collected for luciferase activity assay at 24 hr postinfection, and the luciferase activity was
169 quantified as described (Chen et al. 2020a). Four biological replicates were performed for each
170 treatment.

171 To determine the luciferase activity in the midgut and other tissues of FAW larvae, newly molted
172 6th instar larvae were injected with 2x10⁵ PFU of each virus. Midguts and other tissues dissected
173 on the third day postinjection were homogenized in luciferase assay buffer and centrifuged at
174 12,000 rpm and 4 °C. Twenty microliters and 10 μL of each supernatant were used for luciferase
175 activity assay and protein concentration determination, respectively, as described previously (Chen
176 et al. 2020a). Three biological replicates were performed for each treatment.

177 To investigate the luciferase activity in tissues of transgenic reporter FAW larvae, four different
178 tissues, including head, epidermis, fat body, and midgut, were dissected from transgenic 6th instar
179 larvae. They were then processed and subjected to luciferase activity assays as described above.
180 Three biological replicates were performed for each treatment.

181 **P450 activity assay in tissues of transgenic insects**

182 Midgut and fat body were dissected from wild-type and transgenic FAW 6th instar larvae and
183 homogenized in 1.7-ml tubes containing ice-cold 0.1 M sodium phosphate buffer (pH 7.5) with 1
184 mM EDTA, 1 mM PMSF, 0.1 mM DTT, and 1 mM PTU. Then, the homogenates were clarified
185 two times by centrifugation at 1,000 x g for 5 min at 4 °C. The protein concentration in the
186 supernatant was measured using the Bradford method. The supernatant was diluted with sodium
187 phosphate buffer to give a final protein concentration of 1 mg/ml. Luminescent P450 activity
188 assays were performed in all-white 96-well plates using the commercial P450-Glo substrate
189 Luciferin-Be (Promega, Madison, WI, USA) as described (Inceoglu et al. 2009). To initiate the
190 P450 activity assay, 50 µM luciferin-Be substrate was added to each well containing 40 µL of
191 homogenate supernatant, and 0.1 M sodium phosphate buffer mentioned above was added to each
192 reaction to reach a final volume of 100 µL. The luminescent reactions were incubated at room
193 temperature for 1 hr. Then, 25 µL of the reaction mixture was transferred to a new well. After
194 adding 25 µL of luciferin detection reagent, the reactions were incubated at 27 °C for an additional
195 20 min. The luminescence was quantified using SpectraMax i3x (San Jose, CA, USA). The
196 average relative luminescence unit (RLU) values from wells containing all assay components
197 except the tissue were used as a blank. Three biological replicates were performed for each
198 treatment.

199 **Deltamethrin bioassay**

200 Bioassays were conducted with newly molted 1st instar larvae using a standard leaf disk method
201 (Yang et al. 2017). Deltamethrin (EMD Millipore Crop., USA) was diluted using 0.1% Triton X-
202 100 to produce serial concentrations of solution. Brussels sprout leaves were washed and dried at
203 room temperature, cut into small, ~1 x 0.5 cm pieces and dipped in deltamethrin solution for 10
204 seconds. These leaf discs were air-dried on food wrap film at room temperature for 20-30 min.
205 Leaf discs dipped in sterile distilled water containing 0.1% Triton X-100 were used as controls.
206 The treated leaf discs were then transferred to 2.0-ml Eppendorf tubes. Fifteen newly molted 1st
207 instar larvae were gently transferred into each tube. The tubes were sealed with cotton and kept at
208 27 ± 2 °C, 65 ± 5% relative humidity, and a photoperiod of 16:8 (light: dark). Each treatment has
209 three replicates. Mortality was recorded at 48 h after exposure to deltamethrin. Larvae were
210 considered dead if they failed to move when prodded with a brush.

211 **Statistical analysis**

212 LC₅₀ values were generated using GraphPad Prism 8. IBM SPSS Statistics 25 was used in the
213 statistical analysis. All data are shown as the mean ± SD (standard deviation). Significant
214 differences between the two groups were analyzed using independent samples *t* tests; *p*<0.05 was
215 considered statistically significant.

216 **Results**

217 **Identification of midgut-specific promoters in FAW**

218 Several highly active promoters from FAW have been identified, and their activity *in vivo*
219 was determined (Chen et al. 2020a). In this study, a group of eight highly expressed genes in the
220 midgut and other tissues and a group of 16 genes (Table S2) that are expressed only in the midgut

221 were identified in RNA-Seq data. The mRNA levels of these genes were investigated by RT-
222 qPCR. All eight highly expressed genes showed significantly higher expression levels in the
223 midgut than in the other tissues. The expression levels of *SfCPH38* in the midgut were substantially
224 higher than those in other tissues (Figure 1A). In the group of midgut-specific genes, two genes,
225 *SfZCPase2* and *SfmALP*, were not expressed in other tissues. However, their expression levels in
226 the midgut were much lower than those of the other 14 genes. Among these 14 genes, *SfTrypsinC*
227 showed the highest specificity in the midgut, 1,842,596-fold higher than in other tissues (Figure
228 1B). The overall relative expression levels of 16 midgut-specific genes were much lower than
229 those of eight highly expressed genes. NCBI accession numbers of these genes are provided in
230 Table S2.

231 Following the method described in our previous paper (Chen et al. 2020a), the putative
232 promoter regions of 11 midgut-specific genes, including *SfTrypsinC*/P844, *SfSP*/P415,
233 *SfLipase3*/P1558, *SfCBP-I*/P360, *SfCalphotin*/P799, *SfTrypsin*/P1705, *SfCptlike*/P857,
234 *SfMG17*/P2000, *SfSP11*/P2000, *SfSP38*/P2000, and *SfCPH38*/P2000, were amplified from the
235 genomic DNA and cloned.

236 **Determination of the specificity of candidate FAW midgut promoters *in vivo* using
237 baculovirus**

238 Two FAW ovarian cell lines, Sf9 and Sf21, and one FAW midgut cell line, Sf17, were used
239 to investigate FAW promoter activity. The FAW promoters from highly expressed genes displayed
240 weak or no activity in these cell lines (Bleckmann et al. 2015; Chen et al. 2020a). Cell lines are
241 not ideal for investigating the activity of tissue-specific promoters, which is likely due to the lack
242 of essential transcription factors required for the activation of tissue-specific genes. Additionally,
243 the promoter activity in the cell line may not always match that in the insect *in vivo*.

244 To test whether the baculovirus could be used to measure the promoter activity in FAW, a
245 reporter baculovirus expressing the luciferase gene under the control of the promoter region of an
246 early baculovirus gene, *pag1*, was constructed. This reporter baculovirus, pag1:Luc, was then
247 added to Sf9 cells and Sf17 cells. Both cell lines showed luciferase activity at 24 hr postinfection,
248 and the luciferase activity in virus-infected Sf9 cells was much higher than that in virus-infected
249 Sf17 cells (Figure S2). The virus was then injected into newly molted 6th instar larvae. Midgut and
250 other tissues were dissected at 1, 2, 3, 4, and 5 days postinjection. In the midgut, the maximum
251 luciferase activity was detected on day 3. In samples containing all other tissues, the maximum
252 luciferase activity was detected on day 4 (Figure S3). Luciferase activity was not detected in
253 uninfected wild-type larvae or those infected with another reporter baculovirus expressing EGFP
254 (data not shown). These results indicated that the reporter baculovirus could be employed to
255 evaluate FAW promoter performance *in vivo*. Since baculoviruses could quickly spread to different
256 tissues of FAW, we hypothesized that the reporter baculovirus carrying a tissue-specific promoter
257 may support tissue-specific transgene expression in infected FAW larvae. Reporter baculoviruses
258 expressing luciferase controlled by 11 candidate midgut-specific promoters were generated. The
259 plaque-forming units (PFU) of each reporter baculovirus were determined by RT-qPCR (Figure
260 S4). Unlike the pag1:Luc baculovirus, most of these 11 reporter baculoviruses showed higher
261 luciferase activity in Sf17 cells than in Sf9 cells (Figure 2A). These reporter baculoviruses were
262 injected into the hemocoel of FAW larvae, and the luciferase activity in the midgut and other
263 tissues was measured on day 3 after injection. The results showed that weak or no luciferase
264 activity was detected in the midgut, while the other tissues showed some luciferase activity (Figure
265 2B). The reporter baculoviruses failed to show the expected midgut-specific expression of the
266 reporter gene, which is likely due to the injection of the virus into the hemocoel. Additionally,

267 baculovirus infection may have altered cellular gene expression patterns (Blissard 1996; Clem and
268 Passarelli 2013), making endogenous promoters inactive and/or changing their tissue specificity.

269 **Determination of the specificity of candidate FAW midgut promoters *in vivo* using transgenic
270 insects**

271 The germline transformation technologies are not well established in nonmodel insects, likely due
272 to the low transformation efficiency and difficulty of delivering transformation components into
273 fresh embryos. We recently established a *piggyBac*-based transformation system in FAW (Chen
274 et al. 2020b), which was used to test FAW promoters *in vivo*.

275 A *piggyBac* vector expressing the marker protein EGFP under the control of the ie1
276 promoter, a baculovirus immediate-early gene promoter, was used to generate reporter vectors.
277 The promoters from the genes that are highly expressed in the midgut were cloned into this
278 *piggyBac* vector to drive luciferase expression. The hr5 enhancer (Rodems and Friesen 1993),
279 which can increase promoter activity, was placed between the ie1 promoter and the chosen midgut-
280 specific promoter to enhance the expression of both EGFP and luciferase (Figure 3A). Four
281 reporter vectors, hr5-SfSP38/P2000:Luc, hr5-SfMG17/P2000:Luc, hr5-SfCalphotin/P799:Luc,
282 and hr5-SfCPH38/P2000:Luc, were produced. A mixture of each reporter vector and the mRNA
283 of hyperactive transposase, which was reported to increase the transformation efficiency in several
284 insect species (Eckermann et al. 2018; Otte et al. 2018), was injected into 2000 fresh embryos
285 collected within 6 hr after oviposition. Forty-six transgenic hr5-SfSP38/P2000: Luc neonate larvae,
286 31 transgenic hr5-SfMG17/P2000:Luc neonate larvae, 56 transgenic hr5-SfCalphotin/P799: Luc
287 neonate larvae and 41 transgenic hr5-SfCPH38/P2000:Luc neonate larvae were identified based
288 on EGFP marker gene expression in the G1 generation (Table 1). The adults developed from G1-
289 positive larvae were crossed with wild-type adults to produce the G2 generation. The positive

290 transgenic larvae from all four lines showed strong GFP signals in G2 (Figure 3B), indicating that
291 the transgenic insertions are inheritable. We then tested the luciferase activity in four tissues,
292 including the head, epidermis, fat body, and midgut dissected from each transgenic line. The
293 results showed that the midgut has significantly higher luciferase activity than other tissues. The
294 luciferase activity in the midgut was 1,731-, 1,558-, 2,337-, and 14,124-fold higher than that in the
295 fat body of hr5-SfSP38/P2000:Luc, hr5-SfMG17/P2000:Luc, hr5-SfCalphotin/P799:Luc, and hr5-
296 SfCPH38/P2000:Luc transgenic larvae, respectively (Figure 3C). The SfCalphotin/P799 promoter
297 displayed higher activity in the midgut and fat body than the other three promoters tested. The
298 SfCPH38/P2000 promoter showed the best specificity in the midgut. Low luciferase activity was
299 also detected in other tissues, indicating the weak activity of these promoters in other tissues
300 (Figure 3C).

301 As a promoter fused with the hr5 enhancer showed elevated activity (Chen et al. 2020a),
302 we hypothesized that removing the hr5 enhancer might decrease promoter activity in other tissues
303 and increase its specificity in the midgut. To test this hypothesis, a new reporter vector,
304 SfCPH38/P2000:Luc, was constructed (Figure 3A) and injected into 2000 eggs. Twenty-nine
305 EGFP-positive neonate larvae were obtained (Table 1). The EGFP signals in transgenic
306 SfCPH38/P2000:Luc G2-positive larvae were not as bright as those in transgenic hr5-
307 SfCPH38/P2000:Luc G2-positive larvae (Figure 3B), as the hr5 enhancer also boosted ie1
308 promoter activity, resulting in the production of more EGFP protein. The luciferase activity in the
309 midgut was 13,152-fold higher than that in the fat body of SfCPH38/P2000:Luc larvae.
310 Additionally, the luciferase activity in SfCPH38/P2000:Luc larval tissues was lower than that in
311 the tissues of hr5-SfCPH38/P2000 Luc larvae (Figure 3C). These results suggest that the hr5

312 enhancer could significantly enhance the activity, but not the midgut specificity, of the CPH38
313 promoter.

314 **Midgut-specific promoter-mediated overexpression of P450 confers deltamethrin tolerance**
315 **to *S. frugiperda***

316 P450 enzymes metabolize insecticides and plant toxins (Dermauw et al. 2020; Feyereisen 2012),
317 and their overexpression is involved in insecticide resistance (Feyereisen 2012; Jiang et al. 2015).
318 Although many P450 genes were found in the genome of FAW (Gui et al. 2020), little is known
319 about their function in insecticide resistance. A recent study revealed that overexpression of
320 *CYP321A8* in *Spodoptera exigua*, a close relative of *S. frugiperda*, conferred resistance to
321 deltamethrin (Hu et al. 2021). The insect midgut is the major organ encountering plant toxins and
322 insecticides (Hakim et al. 2010; Smagghe and Tirry 2001). Transgenic overexpression of P450
323 genes in the midgut likely confers tolerance to insecticides. We recently reported that transgenic
324 over-expression of *SfCYP321A8* by a strong constitutive promoter conferred deltamethrin
325 resistance in FAW (reference). To test whether the identified midgut-specific promoters could be
326 used in transgenic FAW to study insecticide resistance, the SfCPH38/P2000 promoter was used to
327 drive the expression of the *SfCYP321A8* gene in the midgut.

328 The *SfCYP321A8* gene was cloned. Two vectors, SfCPH38/P2000:CYP321A8 and hr5-
329 SfCPH38/P2000:CYP321A8, were produced and injected into embryos (Figure 4A). Seventy-nine
330 transgenic SfCPH38/P2000:CYP321A8 neonate larvae and 38 transgenic hr5-
331 SfCPH38/P2000:CYP321A8 neonate larvae were identified based on EGFP marker gene
332 expression in the G1 generation (Table 1). The EGFP signals in transgenic
333 SfCPH38/P2000:CYP321A8 G2-positive larvae were less bright than those in transgenic hr5-
334 SfCPH38/P2000:CYP321A8 G2-positive larvae (Figure 4B).

335 The relative mRNA levels of *SfCYP321A8* were determined in the head, midgut, fat body,
336 and epidermis dissected from the 6th instar larvae of wild-type and two G2 *SfCYP321A8* transgenic
337 insects. The highest expression levels of *SfCYP321A8* mRNA were detected in the midgut of both
338 transgenic lines. Increases of 155.5- and 287.6-fold in the SfCPH38/P2000:CYP321A8 and hr5-
339 SfCPH38/P2000:CYP321A8 mRNA levels in transgenic larvae, respectively, compared to their
340 levels in the wild-type larvae were detected (Figure 4C). The expression also increased by 6.3- and
341 10.6-fold in the fat body of SfCPH38/P2000:CYP321A8 and hr5-SfCPH38/P2000:CYP321A8
342 transgenic larvae, respectively. In the epidermis of transgenic hr5-SfCPH38/P2000:CYP321A8
343 larvae, the mRNA level of *SfCYP321A8* was slightly higher than that in wild-type and control
344 transgenic larvae. No significant changes in *SfCYP321A8* expression were detected in the
345 epidermis of either transgenic larvae (Figure 4C). To test whether overexpression of *SfCYP321A8*
346 in the midgut leads to an overall increase in total P450 activity in the midgut of the transgenic
347 animals, the midgut and fat body were tested for P450 activity. The total P450 activity in the
348 midgut dissected from SfCPH38/P2000:CYP321A8 and hr5-SfCPH38/P2000: CYP321A8
349 transgenic larvae increased by 1.41- and 1.48-fold, respectively, when compared to the P450
350 activity in the wild-type larvae. However, no increase in P450 activity was detected in the fat body
351 of either transgenic larvae (Figure 4D). These results suggest that the SfCPH38/P2000 promoter
352 is capable of driving midgut-specific expression of SfCYP321A8.

353 The expression levels of both *SfCPH38* and *SfCYP321A8* were investigated in the eggs and
354 1st instar larvae of wild-type and transgenic lines. The expression of *SfCYP321A8* in 1st instar
355 larvae of both transgenic lines gradually increased, similar to the *SfCPH38* gene expression (Figure
356 S5). Leaf-disc assays were performed to evaluate the efficacy of deltamethrin in wild-type and
357 transgenic 1st instar larvae. The results showed that the LC₅₀ of deltamethrin in

358 SfCPH38/P2000:CYP321A8 and hr5-SfCPH38/P2000:CYP321A8 larvae increased by 4.2- and
359 4.5-fold, respectively, when compared to the wild-type larvae (Figure 4E). The 95% confidence
360 limits for the LC₅₀ values in wild-type, SfCPH38/P2000:CYP321A8 and hr5-
361 SfCPH38/P2000:CYP321A8 larvae are 0.085~0.675 mg/L, 0.423~3.313 mg/L, and 0.512~5.307
362 mg/L, respectively. These data suggest that transgenic overexpression of *SfCYP321A8* in the
363 midgut increased deltamethrin tolerance in FAW larvae.

364 Discussion

365 Identification and characterization of midgut-specific promoters from a non-model insect, FAW,
366 are included in this paper. The *de novo* mining of tissue-specific promoters requires gene
367 expression data, which are not available for many insects. Since information on many tissue-
368 specific promoters from model insects is available, it may be possible to identify homologous
369 promoters in target non-model insects. In the lepidopteran model insect *B. mori*, the promoter of
370 the *APN* gene is only active in the midgut (Jiang et al. 2015). We found six *APN* genes in *S.*
371 *frugiperda*. RT-qPCR analysis revealed midgut-specific expression of all *APN* genes (Figure S6).
372 The candidate promoter region of the *SfAPN6* gene was cloned and used to drive the expression of
373 *SfCYP321A8*. Transgenic SfAPN6/P1949:CYP321A8 animals were obtained (Table S3, Figure
374 S7A). However, the mRNA levels of *SfCYP321A8* only increased by 2.3-fold in the midgut of this
375 transgenic line compared with the wild-type line (Figure S7B). Additionally, this transgenic line
376 showed similar levels of deltamethrin susceptibility as the wild-type line (Figure S7C). The
377 candidate promoter region of *SfSP11*, a homolog of a midgut-specific serine protease in *B. mori*
378 (Liu et al. 2017), was also tested to drive the expression of *SfCYP321A8* in animals (Table S3,
379 Figure S7A). A 16.7-fold increase in *SfCYP321A8* mRNA levels was detected in the midgut of
380 transgenic animals compared with the wild-type animals (Figure S7B). However, no increase in

381 deltamethrin tolerance was observed (Figure S7C). Since these two midgut-specific promoters of
382 FAW were identified from information that *B. mori* did not show good activity as the
383 SfCPH38/P2000 promoter, our hypothesis on using information from model insects to identify
384 promoters in non-model insects is not supported. We used an ~2 kp region upstream of the ATG
385 of each gene as a candidate promoter region. The low activity of the *SfAPN6* and *SfSP11* promoters
386 might be because this region did not include a complete promoter.

387 Transgenic reporter insects have been used to investigate promoter performance *in vivo*.
388 However, germline transformation technologies are not available in most nonmodel insects. We
389 tried to use baculoviruses to deliver reporter gene expression cassettes to different tissues of FAW
390 larvae but failed to determine the activity of midgut-specific promoters *in vivo*. A recent report
391 revealed that one baculovirus species, *Autographa californica* multiple nucleopolyhedrovirus
392 (AcMNPV), is an efficient vector for gene delivery into several mosquito species; it can transduce
393 both larvae and adults with little or no tissue barriers and without obvious negative effects (Naik
394 et al. 2018). It seems that baculovirus could be used to investigate promoter performance in
395 nonpermissive hosts *in vivo*.

396 In conclusion, transgenic reporter insects were successfully used to determine the *in vivo*
397 performance of midgut-specific promoters in an important agricultural pest, FAW. The midgut-
398 specific promoter was used to investigate the role of P450 in insecticide resistance. This work
399 could serve as a model for exploring other tissue-specific promoters, which will benefit functional
400 genomic studies in FAW and other non-model insects.

401 **Acknowledgments**

402 We thank Jeff Howell from the University of Kentucky for help with FAW rearing, Dr. Anjiang
403 Tan of the Shanghai Institute of Plant Physiology and Ecology, China, for the gift of the *piggyBac*

404 vector, and Dr. Cynthia L. Goodman from USDA, ARS, BCIRL at Columbia, MO, for the gift of
405 SfMG_0617 cells. This material is based on work supported by the National Science Foundation
406 I/UCRC, the Center for Arthropod Management Technologies, under Grant No. IIP1821936,
407 industry partners, and the National Institute of Food and Agriculture, US Department of
408 Agriculture (under HATCH Project 2353057000).

409

410 **Declarations**

411 All authors certify that they have no affiliations with or involvement in any organization or entity
412 with any financial interest or nonfinancial interest in the subject matter or materials discussed in
413 this manuscript.

414 All data generated or analyzed during this study are included in this published article [and its
415 supplementary information files].

416 **References**

417 Anderson MA, Gross TL, Myles KM, Adelman ZN (2010) Validation of novel promoter sequences derived
418 from two endogenous ubiquitin genes in transgenic *Aedes aegypti* Insect molecular biology
419 19:441-449

420 Bleckmann M et al. (2015) Genomic analysis and isolation of RNA polymerase II dependent promoters
421 from *spodoptera frugiperda* PLoS One 10:e0132898

422 Blissard GW (1996) Baculovirus-insect cell interactions Cytotechnology 20:73-93

423 Carvalho RA, Omoto C, Field LM, Williamson MS, Bass C (2013) Investigating the molecular mechanisms
424 of organophosphate and pyrethroid resistance in the fall armyworm *Spodoptera frugiperda* PLoS
425 One 8:e62268

426 Chen X, Chereddy SC, Gurusamy D, Palli SR (2020a) Identification and characterization of highly active
427 promoters from the fall armyworm, *Spodoptera frugiperda* Insect Biochemistry and Molecular
428 Biology 126:103455

429 Chen X, Koo J, Gurusamy D, Mogilicherla K, Reddy Palli S (2020b) *Caenorhabditis elegans* systemic RNA
430 interference defective protein 1 enhances RNAi efficiency in a lepidopteran insect, the fall
431 armyworm, in a tissue-specific manner RNA biology:1-9

432 Chen X, Palli SR (2021) Transgenic overexpression of P450 genes confers deltamethrin resistance in the
433 fall armyworm, *Spodoptera frugiperda* Journal of Pest Science:1-9

434 Clem RJ, Passarelli AL (2013) Baculoviruses: sophisticated pathogens of insects PLoS Pathog 9:e1003729

435 Deng D, Xu H, Wang F, Duan X, Ma S, Xiang Z, Xia Q (2013) The promoter of *Bmfp3* gene can direct fat
436 body-specific expression in the transgenic silkworm, *Bombyx mori* Transgenic research 22:1055-
437 1063

438 Dermauw W, Van Leeuwen T, Feyereisen R (2020) Diversity and evolution of the P450 family in arthropods
439 Insect biochemistry and molecular biology 127:103490

440 Diez-Rodriguez G, Omoto, C. (2001) Inheritance of lambda-cyhalothrin resistance in *Spodoptera*
441 *frugiperda* (JE Smith)(Lepidoptera: Noctuidae) Neotropical Entomology 30:311-316

442 Eckermann KN et al. (2018) Hyperactive piggyBac transposase improves transformation efficiency in
443 diverse insect species Insect biochemistry and molecular biology 98:16-24

444 Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function FEMS
445 microbiology reviews 37:699-735

446 Feyereisen R (2012) Insect CYP genes and P450 enzymes. In: Insect molecular biology and biochemistry.
447 Elsevier, pp 236-316

448 Fischer JA, Giniger E, Maniatis T, Ptashne M (1988) GAL4 activates transcription in *Drosophila* Nature
449 332:853-856

450 Gui F et al. (2020) Genomic and transcriptomic analysis unveils population evolution and development of
451 pesticide resistance in fall armyworm *Spodoptera frugiperda* Protein & Cell:1-19

452 Hakim RS, Baldwin K, Smagghe G (2010) Regulation of midgut growth, development, and metamorphosis
453 Annual review of entomology 55:593-608

454 Harrop TW, Pearce SL, Daborn PJ, Batterham P (2014) Whole-genome expression analysis in the third
455 instar larval midgut of *Drosophila melanogaster* G3: Genes, Genomes, Genetics 4:2197-2205

456 Hu B et al. (2021) Changes in both trans-and cis-regulatory elements mediate insecticide resistance in a
457 lepidopteran pest, *Spodoptera exigua* PLoS genetics 17:e1009403

458 Hu C, Wang F, Ma S, Li X, Song L, Hua X, Xia Q (2015) Suppression of intestinal immunity through silencing
459 of TCTP by RNAi in transgenic silkworm, *Bombyx mori* Gene 574:82-87

460 Hung R-J et al. (2020) A cell atlas of the adult *Drosophila* midgut Proceedings of the National Academy of
461 Sciences 117:1514-1523

462 Inceoglu A, Waite T, Christiansen J, McAbee R, Kamita S, Hammock B, Cornel A (2009) A rapid luminescent
463 assay for measuring cytochrome P450 activity in individual larval *Culex pipiens* complex
464 mosquitoes (Diptera: Culicidae) *Journal of medical entomology* 46:83-92

465 Jiang L et al. (2013) Identification of a midgut-specific promoter in the silkworm *Bombyx mori* *Biochemical*
466 and *biophysical research communications* 433:542-546

467 Jiang L et al. (2015) The 5' -UTR intron of the midgut-specific BmAPN4 gene affects the level and location
468 of expression in transgenic silkworms *Insect biochemistry and molecular biology* 63:1-6

469 Liu HW et al. (2017) A midgut - specific serine protease, BmSP36, is involved in dietary protein digestion
470 in the silkworm, *Bombyx mori* *Insect science* 24:753-767

471 Lucchetta EM, Ohlstein B (2012) The *Drosophila* midgut: a model for stem cell driven tissue regeneration
472 *Wiley Interdisciplinary Reviews: Developmental Biology* 1:781-788

473 Montezano DG et al. (2018) Host plants of *Spodoptera frugiperda* (Lepidoptera: Noctuidae) in the
474 Americas *African Entomology* 26:286-300

475 Moreira LA, Edwards MJ, Adhami F, Jasinskiene N, James AA, Jacobs-Lorena M (2000) Robust gut-specific
476 gene expression in transgenic *Aedes aegypti* mosquitoes *Proceedings of the National Academy of*
477 *Sciences* 97:10895-10898

478 Naik NG, Lo Y-W, Wu T-Y, Lin C-C, Kuo S-C, Chao Y-C (2018) Baculovirus as an efficient vector for gene
479 delivery into mosquitoes *Scientific reports* 8:1-14

480 Nolan T, Petris E, Müller H-M, Cronin A, Catteruccia F, Crisanti A (2011) Analysis of two novel midgut-
481 specific promoters driving transgene expression in *Anopheles stephensi* mosquitoes *PloS one*
482 6:e16471

483 Omoto C et al. (2016) Field - evolved resistance to Cry1Ab maize by *Spodoptera frugiperda* in Brazil *Pest*
484 *Management Science* 72:1727-1736

485 Otte M, Netschitailo O, Kaftanoglu O, Wang Y, Page Jr R, Beye M (2018) Improving genetic transformation
486 rates in honeybees *Scientific reports* 8:1-6

487 Park J-H, Kwon JY (2011) Heterogeneous expression of *Drosophila* gustatory receptors in enteroendocrine
488 cells *PLoS One* 6:e29022

489 Parthasarathy R, Palli SR (2007) Developmental and hormonal regulation of midgut remodeling in a
490 lepidopteran insect, *Heliothis virescens* *Mechanisms of development* 124:23-34

491 Rodems SM, Friesen PD (1993) The hr5 transcriptional enhancer stimulates early expression from the
492 *Autographa californica* nuclear polyhedrosis virus genome but is not required for virus replication
493 *Journal of Virology* 67:5776-5785

494 Skavdis G, Sidén - Kiamos I, Müller H, Crisanti A, Louis C (1996) Conserved function of *anopheles gambiae*
495 midgut - specific promoters in the fruitfly *The EMBO journal* 15:344-350

496 Smagghe G, Tirry L (2001) Insect midgut as a site for insecticide detoxification and resistance. In:
497 *Biochemical sites of insecticide action and resistance*. Springer, pp 293-321

498 Tian S, Zhang Z, Zhang R, Liu Q, Xu S, Gong J, Hou Y (2018) Analysis of cysteine protease inhibitor gene
499 (BmCPI) promoter activity in silkworms using bac-to-bac baculovirus systems *Bioscience, biotechnology,*
500 *and biochemistry* 82:1488-1496

501 Totten DC, Vuong M, Litvinova OV, Jinwal UK, Gulia - Nuss M, Harrell RA, Beneš H (2013) Targeting gene
502 expression to the female larval fat body of transgenic *Aedes aegypti* mosquitoes *Insect molecular*
503 *biology* 22:18-30

504 Wu Y, Parthasarathy R, Bai H, Palli SR (2006) Mechanisms of midgut remodeling: juvenile hormone analog
505 methoprene blocks midgut metamorphosis by modulating ecdysone action *Mechanisms of*
506 *development* 123:530-547

507 Xu J et al. (2019) Identification of a germline - expression promoter for genome editing in *Bombyx mori*
508 *Insect science* 26:991-999

509 Xu J et al. (2014) Functional characterization of the vitellogenin promoter in the silkworm, *Bombyx mori*
 510 Insect molecular biology 23:550-557

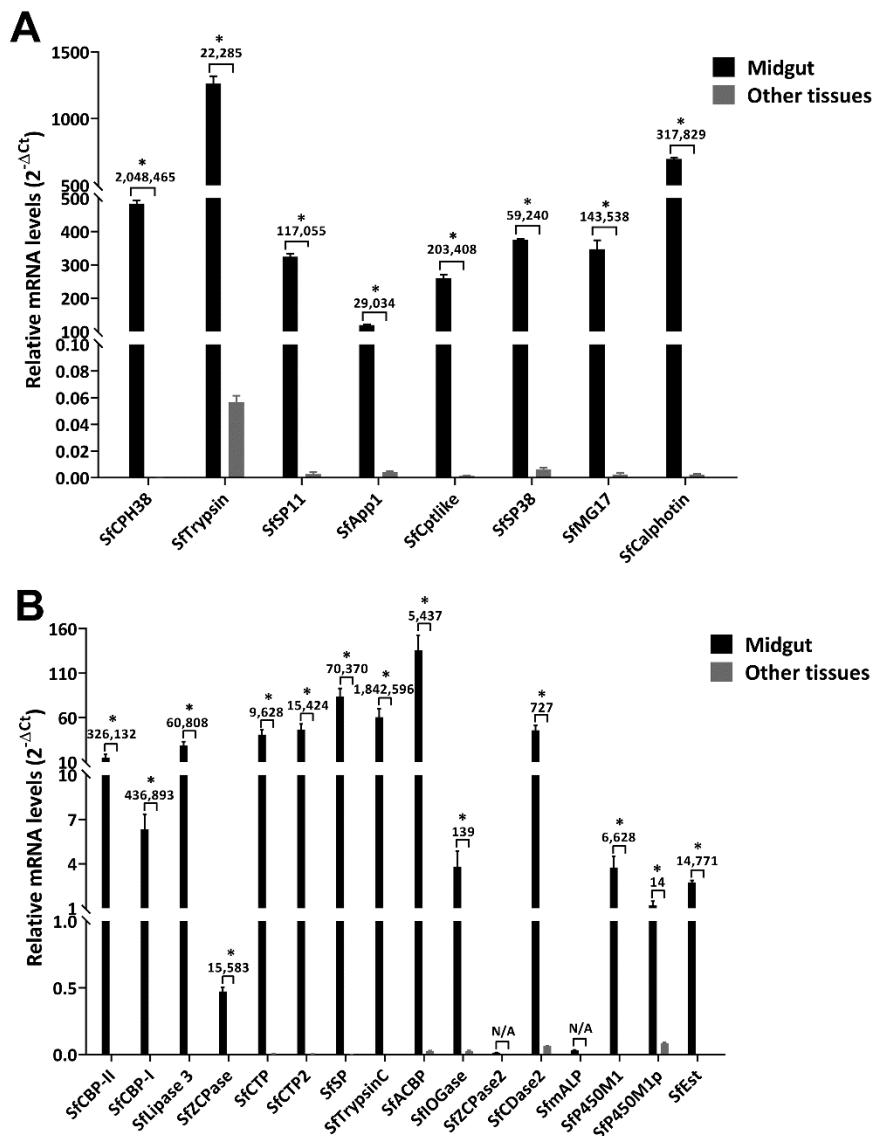
511 Yang F, Kerns DL, Head GP, Price P, Huang F (2017) Cross - resistance to purified Bt proteins, Bt corn and
 512 Bt cotton in a Cry2Ab2 - corn resistant strain of *Spodoptera frugiperda* Pest management science
 513 73:2495-2503

514 Zeng X, Chauhan C, Hou SX (2010) Characterization of midgut stem cell - and enteroblast - specific Gal4
 515 lines in *Drosophila* Genesis 48:607-611

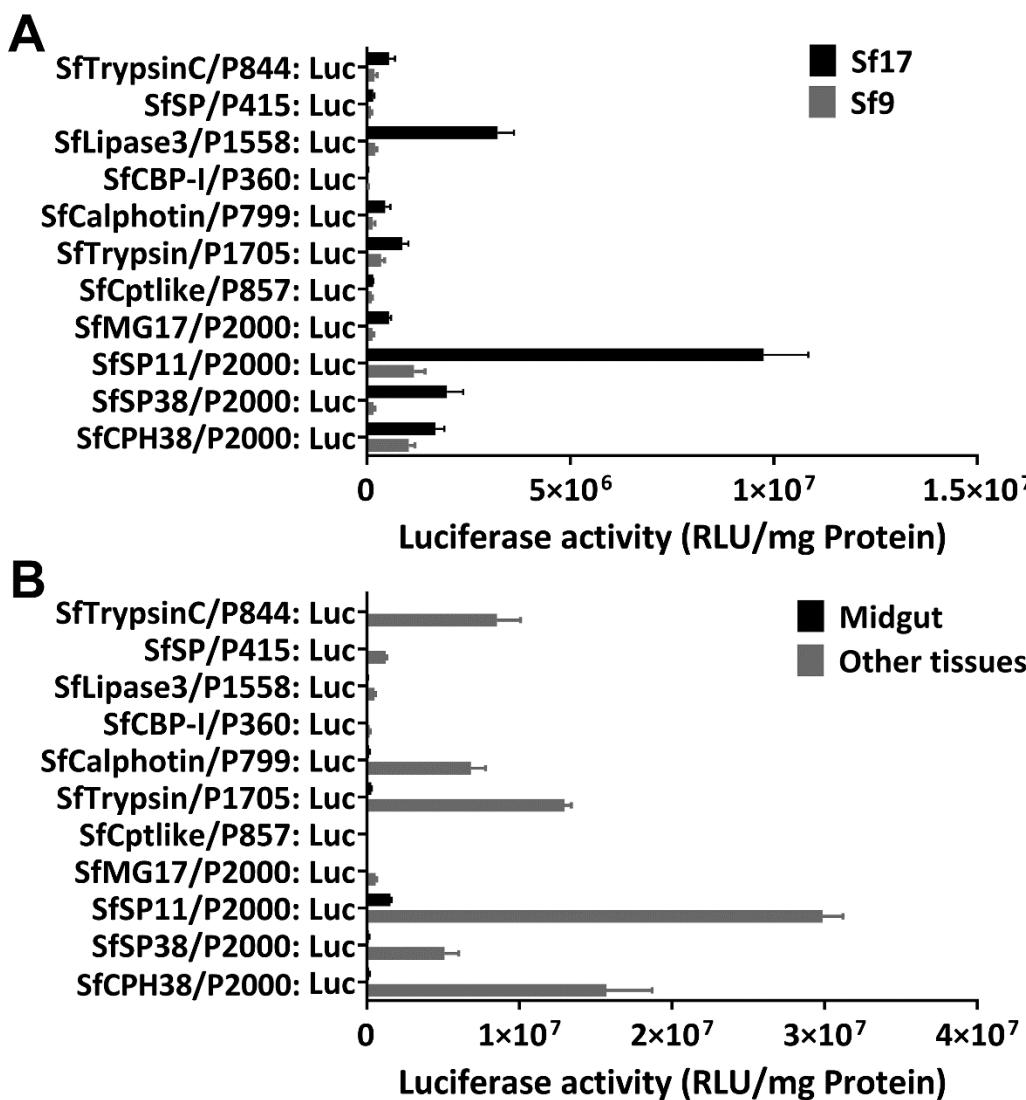
516 Zhang K et al. (2015) Identification and characterization of three novel hemocyte-specific promoters in
 517 silkworm *Bombyx mori* Biochemical and biophysical research communications 461:102-108

518 Zhao G et al. (2014) Activation of BmGSTd1 promoter and regulation by transcription factor Krüppel (Kr)
 519 in silkworm, *Bombyx mori* Gene 551:152-159

520 Zhou K, Goodman CL, Ringbauer J, Song Q, Beernstsen B, Stanley D (2020) Establishment of two midgut cell
 521 lines from the fall armyworm, *Spodoptera frugiperda* (Lepidoptera: Noctuidae) In Vitro Cellular &
 522 Developmental Biology-Animal 56:10-14

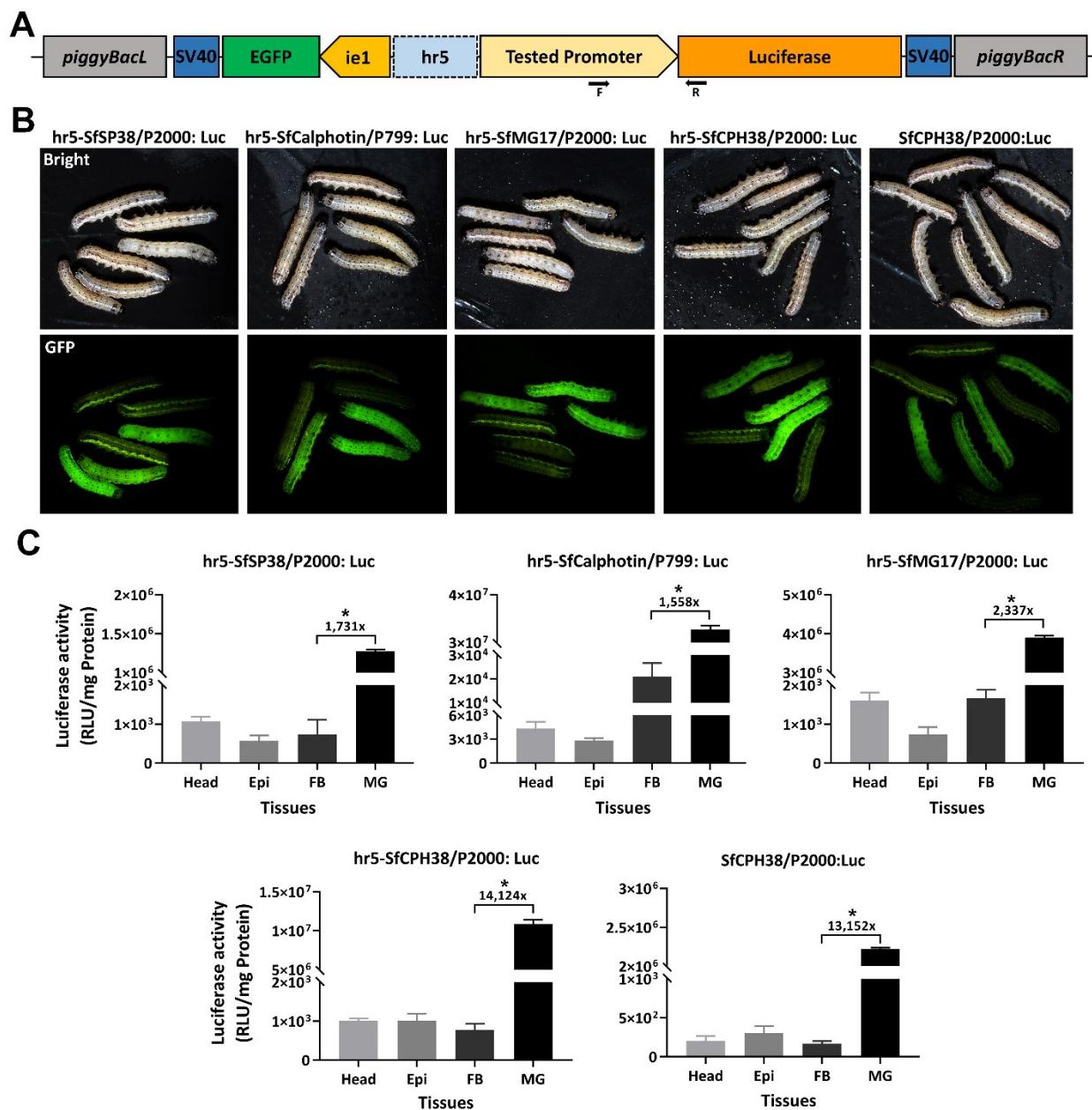

523

524 **Table 1. Germline transformation of transgenic constructs.**

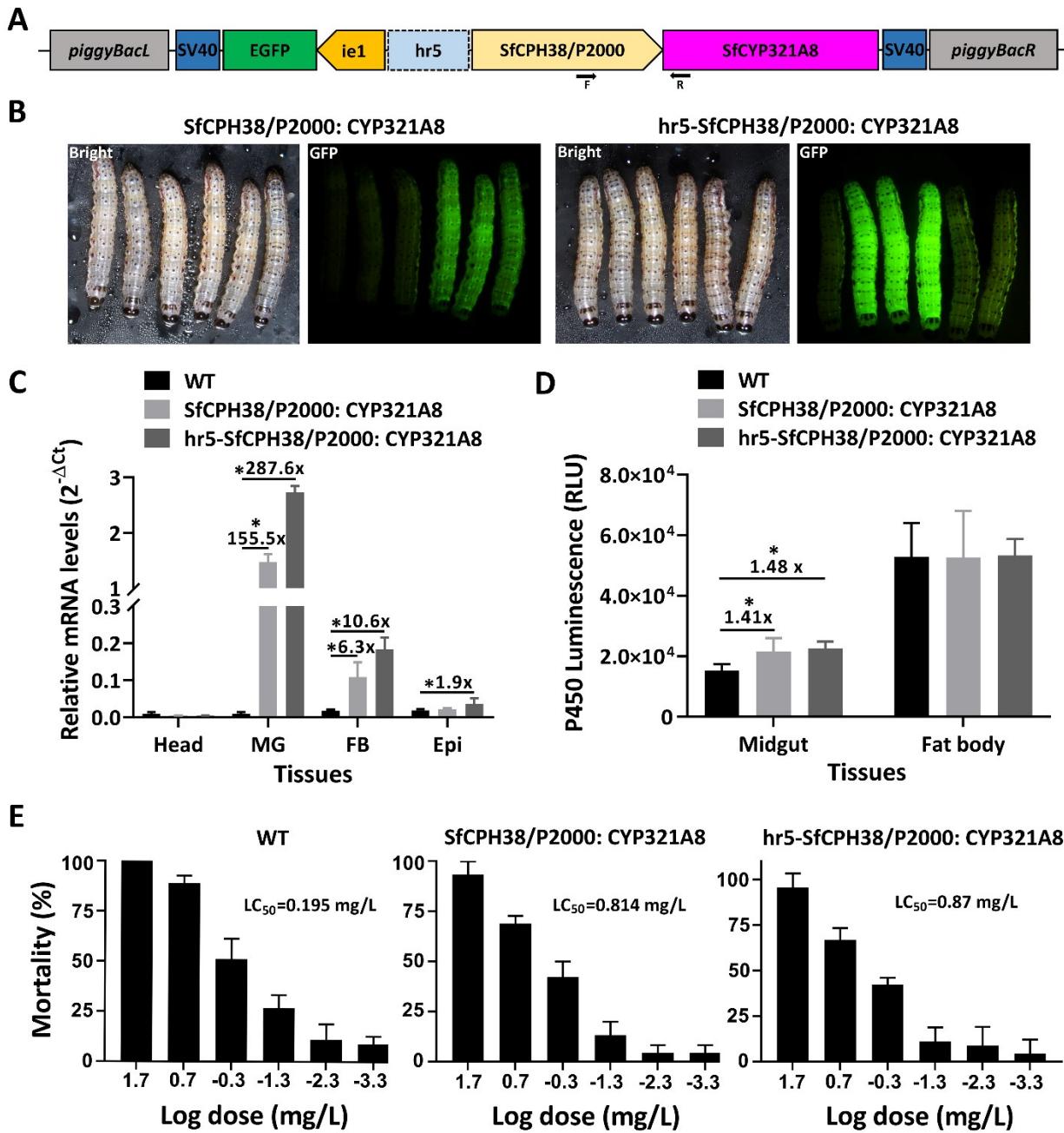

Plasmids	Injected eggs (n)	G0 Larvae (n)	G0 Pupae (n)	G1 Positive (n)
hr5-SfSP38/P2000: Luc	~2200	~800	~600	46
hr5-SfMG17/P2000: Luc	~2400	~900	~700	31
hr5-SfCalphotin/P799: Luc	~2400	~1000	~700	56
hr5-SfCPH38/P2000: Luc	~2000	~800	~600	41
SfCPH38/P2000: Luc	~2000	~700	~600	29
hr5-SfCPH38/P2000: CYP321A8	~2400	~600	~500	38
SfCPH38/P2000: CYP321A8	~2400	~800	~600	79

525

526


530 Midgut-specific genes expressed in the midgut (A) and other tissues (B) of 6th instar FAW larvae.
 531 Total RNA was isolated from the midgut and all other tissues and converted to cDNA, and cDNA
 532 and gene-specific primers were used in RT-qPCR to determine relative mRNA levels using 28S
 533 *rRNA* as the reference gene. Means \pm SD (n=3) are shown. Data were analyzed using student's t-
 534 test. *, $p<0.05$.

535


536 **Figure 2. Luciferase activity of reporter baculoviruses in FAW cell lines (A) and tissues (B).**
 537 Baculoviruses harboring a luciferase expression cassette under the control of candidate midgut-

538 specific promoters were generated. The viruses were added to Sf9 cells and Sf17 cell medium.
 539 Infected cells were collected, and luciferase activity was measured at 24 hr after adding the virus.
 540 Newly molted 6th instar larvae were injected with each virus. Midgut and other tissues dissected
 541 on the 3rd day postinjection were subjected to the luciferase activity assay. Means \pm SD (n=4 for
 542 cells, n=3 for tissues) are shown.

543

544 **Figure 3. Characterization of transgenic reporter FAW lines to determine midgut-specific**
545 **promoter activity *in vivo*.** (A) Schematic representation of *piggyBac*-based reporter constructs.
546 Expression of luciferase driven by four candidate midgut-specific promoters, SfSP38/P2000,
547 SfCalphotin/P799, SfMG17/P2000, and SfCPH38/P2000. Expression of a marker gene, EGFP, is
548 under the control of the ie1 promoter. The hr5 enhancer, highlighted in the dashed quadrangle, was
549 inserted between ie1 and the midgut-specific promoter in some reporter constructs. (B)
550 Fluorescence in GFP-negative and GFP-positive animals. (C) Luciferase activity in the head,
551 epidermis (Epi), fat body (FB), and midgut (MG) of transgenic reporter animals. Tissues were
552 dissected from transgenic 6th instar larvae and subjected to luciferase activity assays. Means \pm SD
553 (n=3) are shown. Data were analyzed using student's t-test. *, p<0.05.

555 **Figure 4. Characterization of transgenic FAW overexpressing P450 in the midgut.** (A)

556 Schematic representation of *piggyBac*-based constructs expressing *SfCYP321A8* under the control

557 of a midgut-specific promoter, *SfCPH38/P2000*. Expression of a marker gene, *EGFP*, is under the

558 control of the *ie1* promoter. The *hr5* enhancer, highlighted in the dashed-line rectangle, is located

559 between the *ie1* and *SfCPH38/P2000* promoters. (B) Fluorescence in GFP-negative and GFP-

560 positive animals. (C) Relative mRNA levels of SfCYP321A8 in wild-type (WT) and two
561 transgenic lines. Total RNA was isolated from four tissues, including the head, midgut (MG), fat
562 body (FB), and epidermis (Epi). The RNA was converted to cDNA, and cDNA and gene-specific
563 primers were used in RT-qPCR to determine relative mRNA levels using *28S rRNA* as the
564 reference gene. Means \pm SD (n=3) are shown. Data were analyzed using student's t-test. *, $p<0.05$.
565 (D) P450-Glo assay of proteins extracted from the midgut and fat body from transgenic animals.
566 The midgut and fat body were dissected from wild-type and transgenic FAW 6th instar larvae, and
567 homogenates were prepared and assayed using Luciferin-Be as substrate. Mean \pm SD (n=3) are
568 shown. Data were analyzed using student's t-test. *, $p<0.05$. (E) Bioassay of deltamethrin in wild-
569 type and transgenic neonate larvae. GFP-positive neonates were collected under a fluorescence
570 microscope and fed leaf discs treated with different concentrations of deltamethrin. Mortality was
571 recorded at 48 hr post-treatment. Mean \pm SD (n=3) are shown.

572

573

574

575

576

577

578

579

580 **Supplementary information**

581 **Midgut-specific expression of *CYP321A8* P450 gene increases deltamethrin tolerance in the**
582 **fall armyworm, *Spodoptera frugiperda***

583

584 Xien Chen and Subba Reddy Palli*

585

586

587 Department of Entomology, College of Agriculture, Food and Environment, University of
588 Kentucky, Lexington, KY 40546, United States of America

589 * Corresponding author. E-mail address: rpalli@uky.edu

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604 **Supplementary Tables**

605 **Table S1**

606 **Table S1. Primers used in this study.**

Primer	Sequence (5'-3')
SfCPH38-QF	TGACACTCACCCCATCTCTG
SfCPH38-QR	ACGTCAGCAGAAGCCTTGT
SfTrysin-QF	TGGATGGGAACTACCTCTG
SfTrysin-QR	CGAAAGAGCAGACACCAACA
SfSP11-QF	TCCTCCGCATTAGCTCTGTT
SfSP11-QR	GTTGGAGATCACGGGAGTA
SfApp1-QF	TATCAAGCCTGAGCCTGTCC
SfApp1-QR	GCCTGGTTGATGTTCAGGAT
SfCptlike-QF	TAGCAGAAGCGTGGTTGATG
SfCptlike-QR	ATGGATTGACTTCCCCCTTC
SfSP38-QF	ACAACCTTGCCTCATCAAC
SfSP38-QR	CGAACTCGGTAGCCTCAAAG
SfMG17-QF	AAATCCTTGGTTGCCCTGTT
SfMG17-QR	GGATGGCAGGGTACTCATTG
SfCalphotin-QF	CCATCATTGAGAGCCCAGAG
SfCalphotin-QR	ACGTCAGCAGAAGCCTTGT
SfCBP-II-QF	CCTCTTGGTCCGATGACGAT
SfCBP-II-QR	CTGGGGTCATCGAAGTTGTT
SfCBP-1-QF	TAAGCGGTGATGGAGGAAAC
SfCBP-1-QR	TGACATTTCAAGGCAATCA
SfLipase3-QF	GAACCAGAAGAAGCCTGTCG
SfLipase3-QR	TGCCTATTCATCCCAGGAG
SfZCPase-QF	CGGTCTTTGGAAATGGAGA
SfZCPase-QR	CTTCATTCCAGAGCCAGGAG
SfCTP-QF	CATCACCGCCTACGGATACT
SfCTP-QF	CAAGGAACCACACACACAC
SfCTP2-QF	TCCAGAATTGTTGGTGGTCA
SfCTP2-QR	ACCGAGAACAAACGGTGAATC
SfSP-QF	TCCTTGCTCTGCCACTCTCCT
SfSP-QR	CCAGGACACGATACCGAACT
SfTrypsinC-QF	TCTTCGGAGTCTGGACTGGT
SfTrypsinC-QR	CCGGTGTACGGTAGGAAGA
SfACBP-QF	TCCGTCAGGAACCTGGAAGAC
SfACBP-QR	GCCAGTTCTCAGCCATCTC
SfLOGase-QF	GTGGGCCAAGTCTATCGTGT

SfI0Gase-QR	CCTTCTCTGGGATCTTGCTG
SfZCPase2-QF	TCACTGACATGGCCGATAAA
SfZCPase2-QR	ACCCAGTCAACACTCGTTCC
SfCDase2-QF	TCTACCCAGGATTGCGTTGT
SfCDase2-QR	GCAGAGATGAAGGCTTCGTG
SfAPN-QF	AGAGGCCAATACGCGACTAA
SfAPN-QR	AGATGGTCGAGCGTAGATGG
SfmALP-QF	GGAATCGTGAGCAGCTGATG
SfmALP-QR	CTAGCTCTACCCAGTTGCGA
SfP450M1-QF	TGATCTCGGACTTGCACTTG
SfP450M1-QR	GCGACCGCTATCTTCATCTC
SfP450M1p-QF	TTGGCTACGAGACGGGTTAC
SfP450M1p-QR	TCGCAGTTTCACAGATGGAG
SfEst-QF	GGAGCCTCTTGCTGTATGG
SfEst-QR	ATGGTAGGACACCGAACGCAC
SfCYP321A8-QF	TCCTAACACCTGCGCTCTT
SfCYP321A8-QR	GCCGTAACACAACGGAGTCAT
SfAPN1-QF1	CTATACGCGAGCGTTGAACA
SfAPN1-QR1	TCAGATGCATACGGAGCAAG
SfAPN1-QF2	GCTATGGAAAATGGGGCCT
SfAPN1-QR2	CTCAGCCTTGTCCGTATGT
SfAPN2-QF1	TCAGCCCTGACTCTTGGACT
SfAPN2-QR1	GCGACAGCATTGAAAGTTGA
SfAPN2-QF2	TAGCGACTCGTCTCCTGTCA
SfAPN2-QR2	CGCAAAGTGCTCAACAACGA
SfAPN3-QF1	TATTCCGATTTGGAGCTG
SfAPN3-QR1	ATAGAACGTCCCACCAGTCG
SfAPN3-QF2	AGCAACTGCAGCTCGTTTG
SfAPN3-QR2	GAGGTGATGAGGGTTGGCA
SfAPN4-QF1	CAAAACCGTGGTTCTCCAGT
SfAPN4-QR1	GCTTGGTTGAGCTGAAGTCC
SfAPN4-QF2	GCTCAGACATTACTGCGCG
SfAPN4-QR2	GGTGGGTCTAACGCCAGAAA
SfAPN5-QF1	TCTGGATCAACGAGGGATT
SfAPN5-QR1	GGGACTATTGACGGTGTGCT
SfAPN5-QF2	AATCTGGCTACAGGCACCAC
SfAPN5-QR2	CAGGCTCATCGAACGCTAGGG
SfAPN6-QF1	GGGCTTCTGCTGGTACTGAG
SfAPN6-QR1	CCCTCGTTGATCCAAGTGT
SfAPN6-QF2	GAAGTCCCCGCTCGAGAAA
SfAPN6-QR2	CTCAGCTTGGCCTGGATGA

Luciferase-pfF	ATCACCATCACCATCACGGGAATTCATGGAAGACGCCAAAACATAAAGAAAG
Luciferase-pfR	AGTACTTCTGACAAGCTGGTACCTACACGGCGATTTCCGCCCT
SfCptlike-pfPF	TAGTTCTAGGGTGGCTACGTAgcggctgtacaagactatgcc
SfCptlike-pfPR	CGGTTTCTTCATggtgtGGATCCccccttacccctgactaactaag
SfTrypsin-pfPF	TAGTTCTAGGGTGGCTACGTAgaaatcgacgtacatcgacgagg
SfTrypsin-pfPR	CGGTTTCTTCATggtgtGGATCCtttgtacttgtgaacaagtgtac
SfCalphotin-pfPF	TAGTTCTAGGGTGGCTACGTAGTCCTTCGGCGTGGACACGCACAG
SfCalphotin-pfPR	CGGTTTCTTCATggtgtGGATCCTCTGGAATAATAATTATGGATATAC
SfCBP-I-pfPF	TAGTTCTAGGGTGGCTACGTAGGTTACCGGGACTCCGGCTCG
SfCBP-I-pfPR	CGGTTTCTTCATggtgtGGATCCACTGACCGTGTAAACAATT
SfLipase3-pfPF	TAGTTCTAGGGTGGCTACGTAATGTGATCGTGTAACTGATAGGA
SfLipase3-pfPR	CGGTTTCTTCATggtgtGGATCCTGTTCACTCGCAGCCGTTAGTA
SfSP-pfPF	TAGTTCTAGGGTGGCTACGTAggtacccgactccttagac
SfSP-pfPF	CGGTTTCTTCATggtgtGGATCCgttaacaacgccccgactgtact
SfTrypsinC-pfPF	TAGTTCTAGGGTGGCTACGTAatgaaatgtacccgactgcattacac
SfTrypsinC-pfPR	CGGTTTCTTCATggtgtGGATCCgtttgtttgaatcgaagactact
SfCPH38-pfPF	TAGTTCTAGGGTGGCTACGTAAGGTAATGTGTACCCCTATAGG
SfCPH38-pfPR	CGGTTTCTTCATggtgtGGATCCTTGATAGTATCTGAAAAGTGATG
SfSP38-pfPF	TAGTTCTAGGGTGGCTACGTACAATCATTATTCTTACTACGG
SfSP38-pfPR	CGGTTTCTTCATggtgtGGATCCCTCAACGGCCAATTCACTGAC
SfSP11-pfPF	TAGTTCTAGGGTGGCTACGTAGGAAAATGTGTAATGTAATGGT
SfSP11-pfPR	CGGTTTCTTCATggtgtGGATCCTATTAGCATAAAATTACCT
SfMG17-pfPF	TAGTTCTAGGGTGGCTACGTATCCTGCCTTATGCAGATGACCTA
SfMG17-pfPR	CGGTTTCTTCATggtgtGGATCCTGTGATGGTTGAGGTATTACTGC
Luciferase-pbF	gacactggccggcacaagagacgtcATGGAAGACGCCAAAACATAAAGAAAG
Luciferase-pbR	ctgattatgatctagagtcgggcccTTACACGGCGATTTCCGCCCT
SfCYP321A8-pbF	gacactggccggcacaagagacgtcATGTTGTTCTACCTTGAGTTGATAG
SfCYP321A8-pbR	ctgattatgatctagagtcgggcccCTATTGATATTCTCGGAATTAGTTGG
SfCPH38-pbFLuc	ctcactatagggcgaattgggtaccAGGTACTGTTGACCCCTATAGG
SfCPH38-pbRLuc	TATGTTTTGGCGTCTCCATgacgtcTTGATAGTATCTGAAAAGTGATG
SfSP38-pbFLuc	ctcactatagggcgaattgggtaccCAATCATTATTCTTACTACGG
SfSP38-pbRLuc	TATGTTTTGGCGTCTCCATgacgtcCTTCCAACGGCCAATTCACTGAC
SfSP11-pbFLuc	ctcactatagggcgaattgggtaccGGAAAATGTGTAATGTAATGGT
SfSP11-pbRLuc	TATGTTTTGGCGTCTCCATgacgtcTATTAGCATAAAATTACCT
SfMG17-pbFLuc	ctcactatagggcgaattgggtaccTCCTGCCTTATGCAGATGACCTA
SfMG17-pbRLuc	TATGTTTTGGCGTCTCCATgacgtcTGTGATGGTTGAGGTATTACTGC
SfCPH38-pbFLuc/P450	ctcactatagggcgaattgggtaccAGGTACTGTTGACCCCTATAGG
SfCPH38-pbF2Luc/P450	cgataatagtgtgcaacctcgagAGGTACTGTTGACCCCTATAGG
SfCPH38-pbRLuc	TATGTTTTGGCGTCTCCATgacgtcTTGATAGTATCTGAAAAGTGATG
SfCPH38-pbRP450	CTCAAAGGTAGAACACATgacgtcTTGATAGTATCTGAAAAGTGATG
SfAPN6-pbFP450	ctcactatagggcgaattgggtacctaagttaggtcatttaattgact

SfAPN6-pbRP450	CTCAAAGGTAGAAACACATgacgtctctgcaaatttgaaggaacaa
SfSP11-pbFP450	ctcactatagggcgaattgggtaccGGAAAATGTGTAATGTAATGGTT
SfSP11-pbRP450	CTCAAAGGTAGAAACACATgacgtcTATTATAGCATAAATTATACCT

607

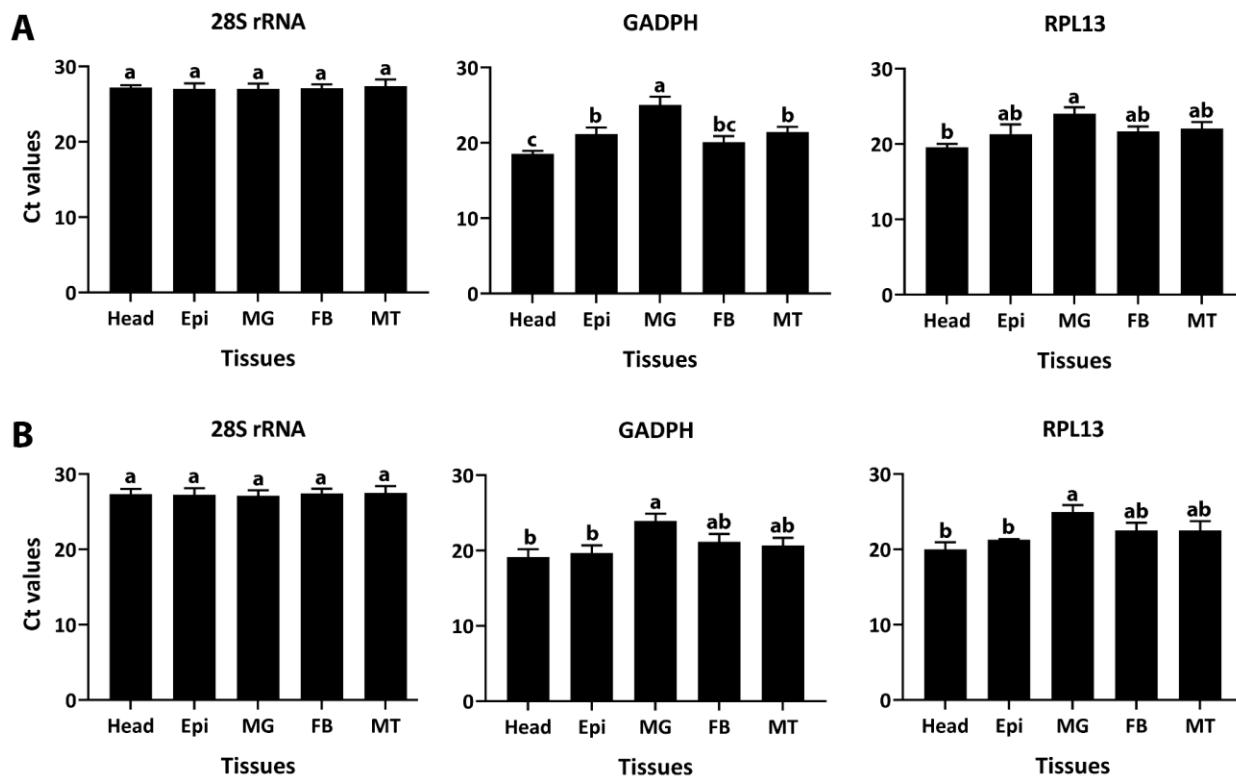
608 **Table S2. NCBI accession numbers of genes studied**

Gene	ID
SfCPH38	LOC118265824
SfTrypsin	LOC118274791
SfSP11	LOC118267724
SfCptlike	LOC118265666
SfSP38	LOC118273955
SfMG17	LOC118266716
SfCBP-II	LOC118274188
SfCBP-I	LOC118274195
SfLipase3	LOC118272788
SfZCPase	LOC118275823
SfCTP	LOC118281920
SfCTP2	LOC118281927
SfSP	LOC118267797
SfTrypsinC	LOC118278126
SfACBP	LOC118267206
SfOGase	LOC118274792
SfZCPase2	LOC118275719
SfCDase2	LOC118279197
SfmALP	LOC118271569
SfP450M1	LOC118270597
SfP450M1p	LOC111352929
SfEst	LOC118273652
SfAPN1	LOC118268536
SfAPN2	LOC118268089
SfAPN3	LOC118268537
SfAPN4	LOC118268536
SfAPN5	LOC118268345
SfAPN6	LOC118268367

609

610

611


612

613 **Table S2. Germline transformation of two additional transgenic P450 constructs**

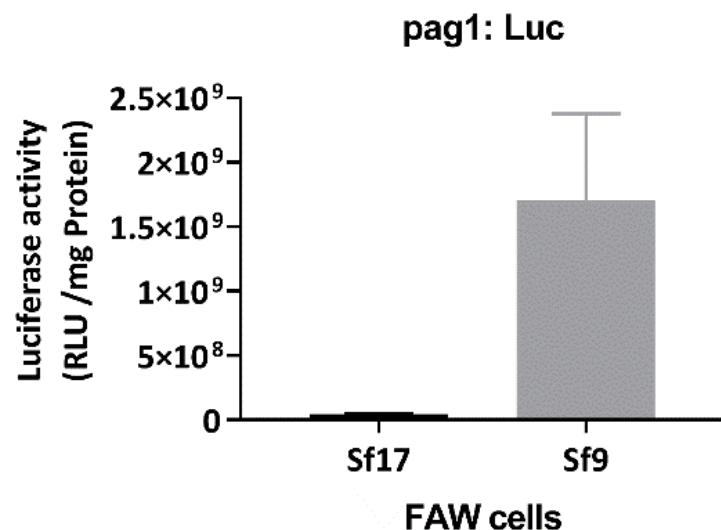
Plasmids	Injected eggs (n)	G0 Larvae (n)	G0 Pupae (n)	G1 Positive (n)
SfAPN6/P1949: CYP321A8	~2000	~800	~600	32
SfSP11/P2000: CYP321A8	~2000	~800	~500	91

614

615

616 **Supplementary Figures**617 **Figure S1**

618

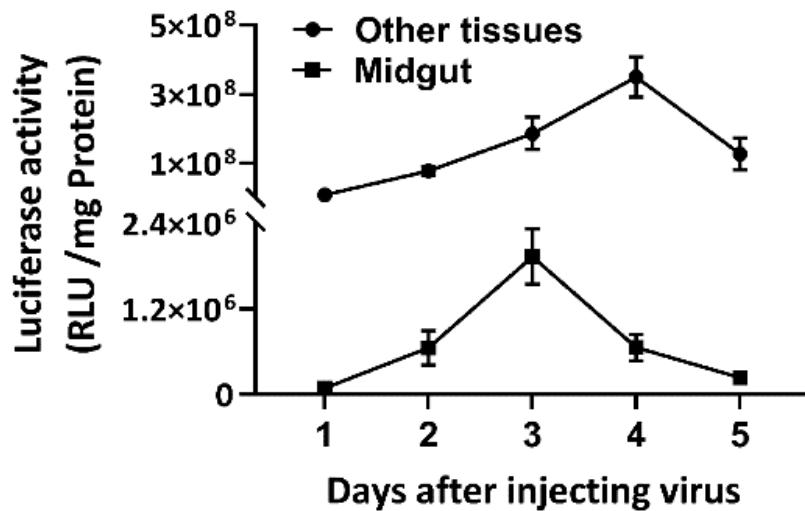

619

620 **Figure S1. Stability analysis of three reference genes, 28S rRNA, GADPH, and RPL13 in the**
 621 **FAW.** Threshold cycle (Ct) values of the reference genes in wild-type (A) and transgenic hr5-
 622 SfCPH38/P2000:CYP321A8 FAW (B) tissues, including head, midgut (MG), fat body (FB),
 623 Malpighian tubules (MT), and epidermis (Epi), of 6th instar larvae. Mean \pm SD (n=3) are shown.

624 Significant differences among multiple groups were analyzed using one-way ANOVA followed
625 by the Tukey HSD test.

626

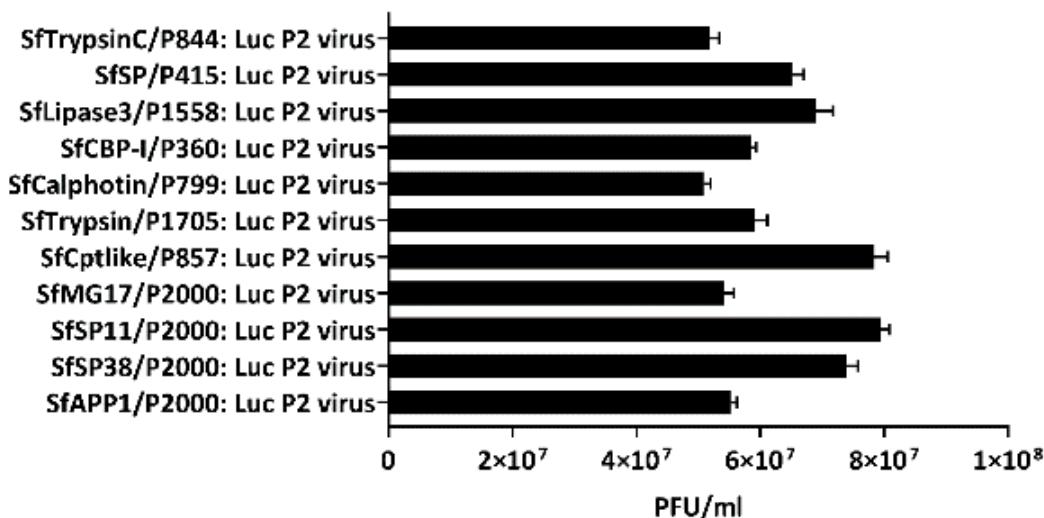
627 **Figure S2**


628
629

630 **Figure S2. Luciferase activity of a positive control reporter baculoviruses in cell lines.** The
631 promoter region of an early baculovirus gene, *pag1*, was used to drive the expression of the
632 luciferase gene. The reporter baculovirus, pag1: Luc, was produced and used to infect Sf9 cells
633 and Sf17 cells. The luciferase activity was determined at 24 hr post-infection. Mean \pm SD (n=4)
634 are shown.

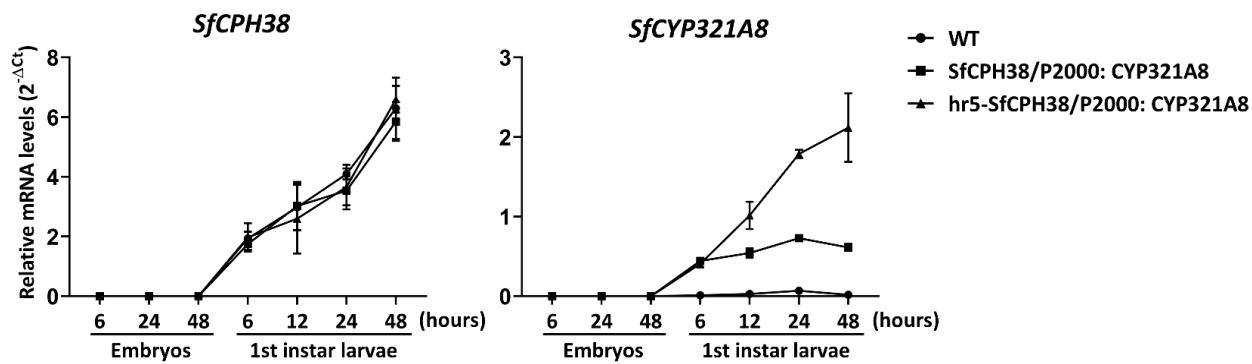
635

636


637 **Figure S3.**

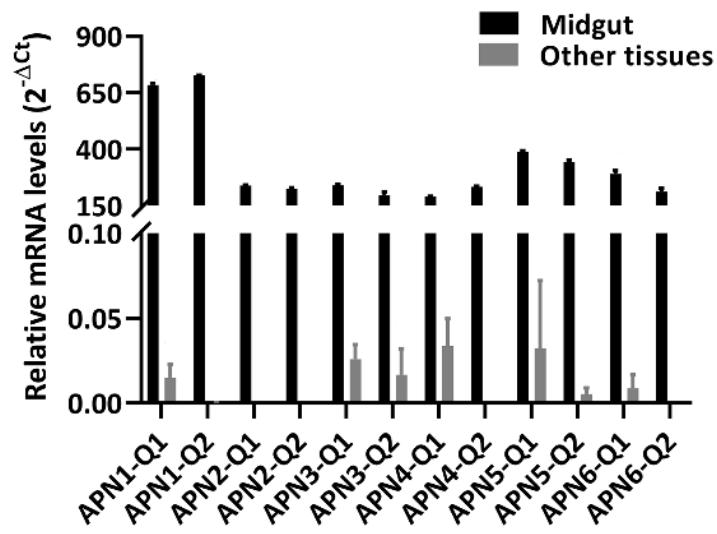
638

639 **Figure S3.** Time-course of luciferase activity in the midgut and other tissues of 6th instar
 640 larvae injected with pag1:Luc reporter baculovirus. The virus was injected into the newly
 641 molted 6th instar larvae. Midgut and other tissues were dissected at 1, 2, 3, 4, and 5 days post-
 642 injection. Homogenates were prepared and subjected to the luciferase assay. Mean \pm SD (n=3) are
 643 shown.


644 **Figure S4.**

645

646 **Figure S4. Determination of the plaque-forming units (PFU) of reporter baculoviruses.** The
647 viral nucleic acids of P2 reporter baculoviruses were purified and subjected to RT-qPCR to
648 measure the PFU of reporter baculoviruses. Mean \pm SD (n=4) are shown.


649 **Figure S5**

650
651
652 **Figure S5. Relative mRNA levels of *SfCPH38* and *SfCYP321A8* in embryos and 1st instar
653 larvae of wild-type (WT) and two transgenic lines.** Eggs and 1st instar larvae were collected at
654 different time points during development. Total RNA was isolated from the midgut and all other
655 tissues. The RNA was converted to cDNA and the cDNA and gene-specific primers were used in
656 RT-qPCR to determine relative mRNA levels using 28S rRNA as the reference gene. Means \pm SD
657 (n=3) are shown.

658
659
660
661
662
663
664
665

666 **Figure S6**

667

668 **Figure S6. Relative mRNA levels of six *SfAPN* genes in the midgut and other tissues of 6th
669 instar larvae.** Total RNA was isolated from the midgut and all other tissues and converted to
670 cDNA. Two pairs of gene-specific primers were used in RT-qPCR to determine relative mRNA
671 levels using 28S *rRNA* as the reference gene. Means \pm SE (n=3) are shown.

672

673

674

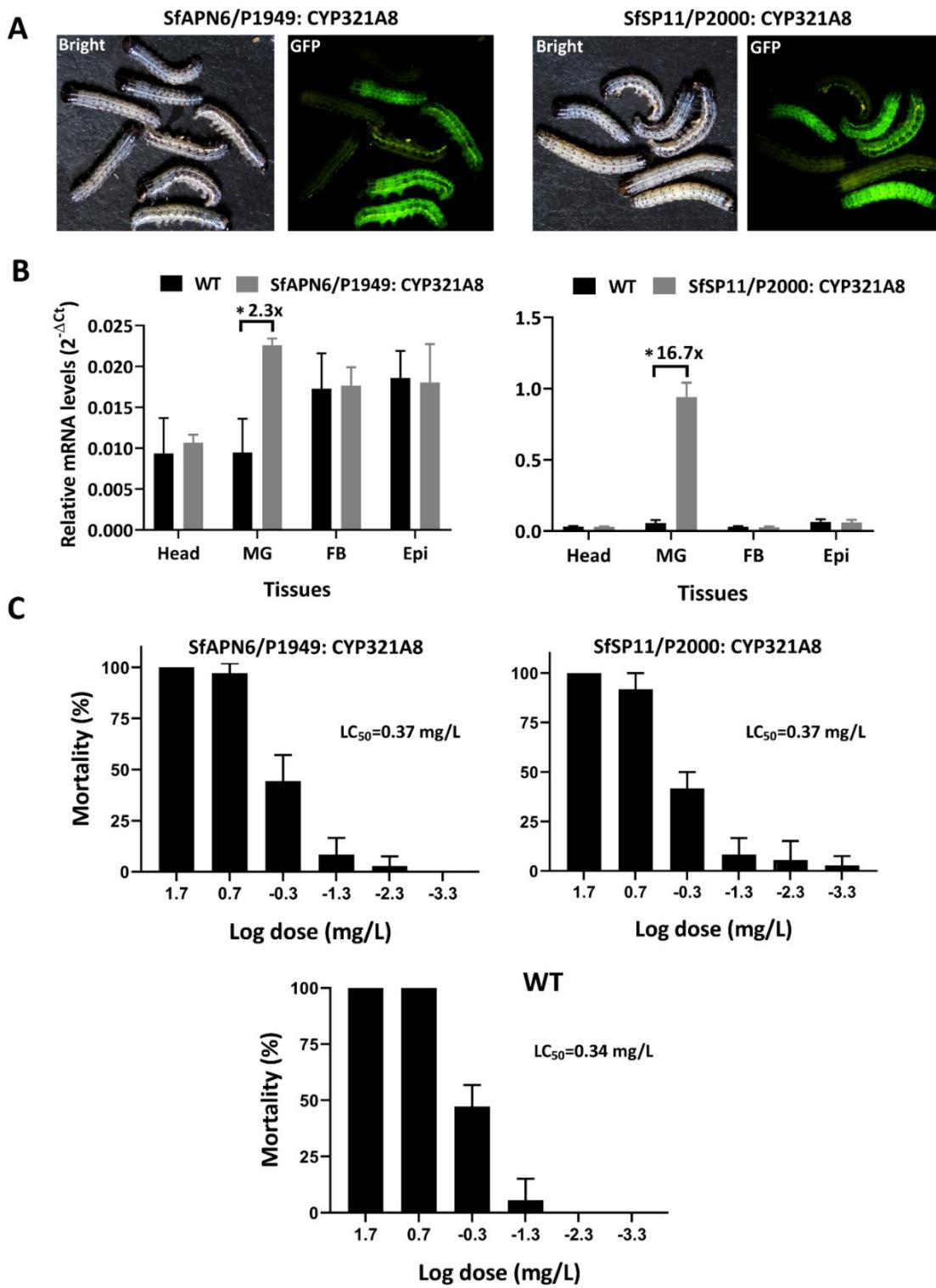
675

676

677

678

679


680

681

682

683

684 **Figure S7**

686 **Figure S7. Characterization of transgenic FAW lines expressing *SfCYP321A8* under the**
687 **control of SfAPN6/P1949 and SfSP11/P2000 promoters. (A)** Fluorescence in GFP-negative and
688 –positive animals. (B) Relative mRNA levels of *SfCYP321A8* in wild-type (WT), and two
689 transgenic lines. Total RNA was isolated from four tissues, including head, midgut (MG), fat body
690 (FB), and epidermis (Epi). The RNA was converted to cDNA and the cDNA and gene-specific
691 primers were used in RT-qPCR to determine relative mRNA levels using 28S rRNA as the
692 reference gene. Means \pm SD (n=3) are shown. Data were analyzed using student's t-test. *, $p<0.05$.
693 (C) Deltamethrin bioassay in wild-type and transgenic neonate larvae. The GFP-positive neonates
694 were collected under the fluorescent microscope and fed on leaf discs treated with different
695 concentrations of deltamethrin. Mortality was recorded at 48 hr post-treatment. Mean \pm SD (n=3)
696 are s

697