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Abstract. In this note, we provide a smooth variational principle on Wasser-
stein space by constructing a smooth gauge-type function using the sliced
Wasserstein distance. This function is a crucial tool for optimization problems
and in viscosity theory of PDEs on Wasserstein space.

1. Introduction

This note is devoted to proving a smooth variational principle on Wasserstein
space. Due to the lack of local compactness, a continuous function on an infinite
dimensional space may not attain its local maxima/minima, which becomes an issue
when dealing with optimization problems. Smooth variational principle provides a
way to perturb the function smoothly so that its perturbation can attain its local
extremas. Recently, smooth variational principles on Wasserstein space appeared
in the study of viscosity solution of partial differential equations on Wasserstein
space. A major effort in this direction was performed by [6].

For a continuous function on a separable Hilbert space, Ekeland’s variational
principle provides a smooth variation so that the perturbation attains local ex-
tremas; see e.g. [7]. However, in the Wasserstein space the variation part is given
by the Wasserstein metric which is not smooth anymore. One of the observations
in [6] was to use the Borwein-Preiss variational principle [3, Theorem 2.5.2], to
have smooth variations on the Wasserstein space, which states that it is sufficient
to construct a topologically equivalent complete metric which is differentiable in
the sense of [4]. In this note, we achieve this using the sliced Wasserstein distance,
which defines a metric between high dimensional probability distributions using
their one dimensional projections; see e.g. [2] and page 214 of [8]. The advantage
of our choice is that the optimal transport map in one dimension can be explicitly
written down, and is regular after a Gaussian convolution. As such, our choice of
the sliced Wasserstein distance allows a simple construction of smooth gauge type
function compared to the alternative in [6]; see in particular Lemma 4.4 therein.

In the next subsection, we recall the definition of Wasserstein distance, and the
L-derivative. Then in Section 2, we analyze the differential properties of Gaussian
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regularized sliced Wasserstein distance, and finally prove the smooth variational
principle in Proposition 2.5.

1.1. Wasserstein distance and L derivative. We denote by P2(Rk) the set of
Borel probability measures µ such that

∫
|x|2 µ(dx) < ∞. We endow the space

P2(Rk) with the 2-Wasserstein distance W2, i.e., for any µ, ν ∈ P2(Rk)

W2(µ, ν)2 := inf
π∈Π(µ,ν)

∫
1

2
|x − y|2 π(dx, dy),(1.1)

where Π(µ, ν) denotes the collection of probability measures on Rk × Rk with first
and second marginals µ and ν respectively.

Let us now present the L-derivative introduced in [4]; see [5, Chapter 5] for a
survey. Let u : P2(Rk) → R, and (Ω, P, P) be an atomless probability space. The
lifting U of u on the Hilbert space L2(Ω, P, P; Rk) is defined via

U(X) := u(PX), ∀X ∈ L2(Ω, P, P; Rk),

where PX stands for the distribution of X. Recall that U is said to be Fréchet
differentiable at some random variable X ∈ L2(Ω, P, P; Rk) if there exists a random
variable Z ∈ L2(Ω, P, P; Rk) such that

lim
t→0

U(X + tY ) − U(X)

t
= E[ZY ], ∀Y ∈ L2(Ω, P, P; Rk),

and we denote this derivative Z by DU(X).

Definition 1.1. A function u : P2(Rk) → R is said to be L-differentiable at
µ if there exists some X ∈ L2(Ω, P, P; Rk) such that PX = µ and U is Fréchet
differentiable at X. And u is said to be L-differentiable if there exists a jointly
measurable function Dµu : P2(Rk) × Rk → R such that the lifting U is Fréchet
differentiable at any X ∈ L2(Ω, P, P; Rk) and DU(X) = Dµu(µ, X).

It was proven in [1, Theorem 2.2] that if the optimizers of (1.1) are reduced
to the set {(Id, T )#µ} for some measurable function T , then µ '→ W2(µ, ν)2 is L-
differentiable at µ. Additionally, the Fréchet derivative of its lift at X with X ∼ µ is
X−T (X). By the Brenier theorem the condition on the uniqueness of the optimizer
is satisfied when µ is absolutely continuous.

2. Gaussian regularized sliced Wasserstein distance

Denote by Sk−1 the unit sphere in Rk. For any µ ∈ P2(Rk), and θ ∈ Sk−1, define
the mapping Pθ : Rk → R by the expression Pθ(x) = x$θ and the pushforward
measure µθ := Pθ#µ ∈ P2(R). For any µ, ν ∈ P2(Rk), the sliced Wasserstein
distance is defined via

SW2(µ, ν)2 =

∫
W2(µθ, νθ)

2 dθ,(2.1)

where the integration is with respect to the standard spherical measure on Sk−1;
see e.g. [2] and page 214 of [8]. Moreover, we consider the Gaussian regularized
version

SW σ
2 (µ, ν) := SW2(µ

σ, νσ),(2.2)

where µσ := µ∗Nσ and Nσ ∈ P2(Rk) is the Normal distribution with variance σ2Ik

for some σ ∈ (0,∞). By abuse of notation, Nσ also denotes the one dimensional
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normal distribution (and its density) with mean 0 and variance σ2, and then we
have that (µσ)θ = (µ ∗ Nσ)θ = µθ ∗ (Nσ)θ = µθ ∗ Nσ where the last Gaussian is
one-dimensional and the previous one is k-dimensional.

Lemma 2.1. For any σ ≥ 0, (P2(Rk), SW σ
2 ) is a complete metric space, and it is

equal to (P2(Rk), W2) as a topological space.

Proof. Let us first prove the first claim. Take any Cauchy sequence (µn)n≥1 in
(P2(Rk), SW σ

2 ), and we can assume without loss of generality by taking a subse-
quence that

∑

n≥1

SW σ
2 (µn, µn+1)2 =

∫ ∑

n≥1

W2(µ
n
θ ∗ Nσ, µn+1

θ ∗ Nσ)2 dθ < +∞.

Define S ⊂ Sk−1 to be the set of θ such that
∑

n≥1 W2(µn
θ ∗ Nσ, µn+1

θ ∗ Nσ)2 is

finite. Then it is clear that S ⊂ Sk−1 is of full spherical measure. Choose a finite
subset {θ(1), . . . , θ(F )} ⊂ S with the property that

|x|2 ≤ 2 max
i=1,... ,F

|x$θ(i)|2, ∀x ∈ Rk.

Then it can be easily seen that

lim
R→∞

sup
n∈N

∫

{x∈Rk:|x|≥R}
|x|2 µn ∗ Nσ(dx) = 0,

and hence {µn ∗ Nσ}n≥1 is tight with respect to W2 topology. As in [6, Lemma
4.2], it can be shown that (µn)n≥1 is also tight, and has a limit ν ∈ P2(Rk) with
respect to the W2 metric. Due to the inequality

W2(µ
n
θ ∗ Nσ, νθ ∗ Nσ) ≤ W2(µ

n
θ , νθ) ≤ W2(µ

n, ν),

we conclude that µn converges to ν in SW σ
2 distance.

The above inequality implies that the topology generated by W2 is stronger than
that generated by SW σ

2 . By the argument in the first paragraph, for any sequence
(µn)n≥1 such that SW σ

2 (µn, ν) → 0 with some limit ν ∈ P2(Rk), there is a tight
subsequence that converges to ν in the W2 distance. Therefore, SW σ

2 induces the
same topology as SW2 and W2. !

The advantage of SW σ
2 is that we can easily compute its derivatives. Denote the

cumulative distribution function of µ by Fµ. Then it is well known that in the one
dimensional case, the optimal transport map from µσ

θ to νσθ is given by

Tσ
θ (x) := F−1

νσ
θ

(Fµσ
θ
(x)),

where F−1
νσ
θ

(x) := inf{t ∈ R : Fνσ
θ
(t) ≥ x}, ∀x ∈ [0, 1] denotes the left-continuous

inverse of Fνσ
θ
. Moreover, we have that W2(µσ

θ , νσθ )2 =
∫

1
2 |x − Tσ

θ (x)|2 µσ
θ (dx).

It can be easily seen that there exists some positive constant κ such that
∫

Sk−1

θθ$ dθ = κIk,(2.3)

and hence
∫

Sk−1

|θ$x|2 dθ = κ|x|2, ∀x ∈ Rk.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

4092 ERHAN BAYRAKTAR, IBRAHIM EKREN, AND XIN ZHANG

Lemma 2.2. Let ν ∈ P2(Rk) be fixed. Suppose either σ > 0 or Fµσ
θ

and Fνσ
θ

are

continuous and strictly increasing for each θ ∈ Sk−1. Then, the mapping

µ ∈ P2(Rk) '→ SW σ
2 (µ, ν)2

is L-differentiable, and

DµSW σ
2 (µ, ν)2(x) =

∫

Sk−1

∫

R
θ
(
θ$x − Tσ

θ (θ$x + y)Nσ(y)
)

dydθ.(2.4)

Moreover, we have the estimate
∫

Rk

|DµSW σ
2 (µ, ν)2(x)|2 µ(dx) ≤ C

(∫

Rk

|x|2 µ(dx) +

∫

Rk

|y|2 νσ(dy)

)
(2.5)

and the mapping x '→ DµSW σ
2 (µ, ν)2(x) is continuous on Rk.

Proof. The proof relies on the proof of Theorem 3.2 of [1]. We first prove that if
Fµσ

θ
and Fνσ

θ
are continuous and strictly increasing functions for some θ ∈ Sk−1,

then the function
µ ∈ P2(Rk) '→ W2(µ

σ
θ , νσθ )2

is L-differentiable at µ, and its L-derivatives are given by

Dµ

(
W2(µ

σ
θ , νσθ )2

)
(x) = θ

(
θ$x −

∫
Tσ
θ (θ$x + y)Nσ(y) dy

)
.(2.6)

Fix X ∈ L2(Ω, P, P; Rk) with distribution µ and ξ ∈ L2(Ω, P, P; Rk) with norm
1. Denote Nσ ∈ L2(Ω, P, P; Rk) which is independent of X and ξ with distribution
Nσ. Denote µn,σ the distribution of X+ ξ

n +Nσ and note that µσ is the distribution
of X + Nσ. By the minimality of the 2-Wasserstein distance, we have that

W2(µ
n,σ
θ , νσθ )2 ≤ 1

2
E
[∣∣∣∣X

$θ +
ξ$θ

n
+ N$

σ θ − Tσ
θ (θ$(X + Nσ))

∣∣∣∣
2
]

≤ W2(µ
σ
θ , νσθ )2 + E

[
ξ$θ

n

(
(X + Nσ)$θ − Tσ

θ ((X + Nσ)$θ)
)]

+
1

2
E
[
(ξ$θ)2

n2

]
.

We now take Y n ∈ L2(Ω, P, P; Rk) with distribution νσθ so that the coupling (X$θ+
ξ"θ
n + N$

σ θ, Y n) yields to an optimal coupling between µn,σ
θ and νσθ . We have the

following estimate

W2(µ
σ
θ , νσθ )2 ≤ 1

2
E
[∣∣(X + Nσ)$θ − Y n

∣∣2
]

≤ W2(µ
n,σ
θ , νσθ )2 − E

[
ξ$θ

n

(
(X + Nσ)$θ − Y n

)]
+

1

2
E
[
(ξ$θ)2

n2

]

≤ W2(µ
n,σ
θ , νσθ )2 − E

[
ξ$θ

n

(
(X + Nσ)$θ − Tσ

θ

(
(X + Nσ)$θ

))]

− E
[
ξ$θ

n

(
Tσ
θ

(
(X + Nσ)$θ

)
− Y n

)]
+

1

2
E
[
(ξ$θ)2

n2

]
.

Thus, we obtain the inequality

n

∣∣∣∣W2(µ
n,σ
θ , νσθ )2 − W2(µ

σ
θ , νσθ )2 − E

[
ξ$θ

n

(
(X + Nσ)$θ − Tσ

θ

(
(X + Nσ)$θ

))]∣∣∣∣

≤ E
[∣∣Tσ

θ

(
(X + Nσ)$θ

)
− Y n

∣∣2
]1/2

+
1

2n
,
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where the last line goes to 0 thanks to Lemma 3.5 of [1], and we obtain (2.6) thanks
to the fact that Nσ has 0 mean.

Integrating (2.6) over θ, we obtain (2.4). Indeed, for each θ ∈ Sk−1, we have
that

n
∣∣W2(µ

n,σ
θ , νσθ )2 − W2(µ

σ
θ , νσθ )2

∣∣

≤ n |W2(µ
n,σ
θ , νσθ ) − W2(µ

σ
θ , νσθ )| |W2(µ

n,σ
θ , νσθ ) + W2(µ

σ
θ , νσθ )| .

By the triangle inequality of Wasserstein distance, it can be seen that

n |W2(µ
n,σ
θ , νσθ ) − W2(µ

σ
θ , νσθ )| ≤ nW2(µ

n,σ
θ , µσ

θ ) ≤ n
√

E[(ξ/n)2] = 1,

and hence

n
∣∣W2(µ

n,σ
θ , νσθ )2 − W2(µ

σ
θ , νσθ )2

∣∣ ≤ |W2(µ
n,σ
θ , νσθ ) + W2(µ

σ
θ , νσθ )| ≤ C,

where the upper bound C only depends on σ, µ, ν. Therefore it follows by the
dominated convergence theorem that

lim
n→∞

n(SW σ
2 (PX+(ξ/n), ν)2 − SW σ

2 (PX , ν)2)

= lim
n→∞

∫
n(W2(µ

n,σ
θ , νσθ )2 − W2(µ

σ
θ , νσθ )2) dθ

=

∫
E
[
ξ$θ

(
X$θ − Tσ

θ

(
(X + Nσ)$θ

))]
dθ

= E
[
ξ$

∫
θ
(
θ$X − E

[
Tσ
θ (θ$(X + Nσ))

])
dθ

]
,

where the last equality is due to Fubini’s theorem.
Now let us show (2.5). According to |a + b|2 ≤ 2|a|2 + 2|b|2, it can be easily

verified that

|DµSW σ
2 (µ, ν)2(x)|2 ≤ 2

∣∣∣∣
∫

θθ$x dθ

∣∣∣∣
2

+ 2

∣∣∣∣
∫

θE
[
Tσ
θ (θ$(x + Nσ))

]
dθ

∣∣∣∣
2

≤ 2κ2|x|2 + 2

∫
|θ|2 dθ

∫ (
E
[
Tσ
θ (θ$(x + Nσ))

])2
dθ.

Integrating the above inequality with respect to µ, we conclude
∫

|DµSW σ
2 (µ, ν)2(x)|2 µ(dx) ≤ C

(∫
|x|2 µ(dx) +

∫
dθ

∫
|Tσ

θ (x)|2 µσ
θ (dx)

)

≤ C

(∫
|x|2 µ(dx) +

∫
dθ

∫
|y|2 νσθ (dy)

)

≤ C

(∫
|x|2 µ(dx) +

∫
|y|2 νσ(dy)

)
.

In the end, we show the continuity of x '→ DµSW σ
2 (µ, ν)2(x). To prove this

point, we only need to prove the continuity of

x '→
∫

Sk−1

∫

R
θTσ

θ (θ$x + y)e−
y2

2σ2 dydθ =

∫

Sk−1

∫

R
θTσ

θ (y)e−
(y−θ"x)2

2σ2 dydθ.

Thanks to the proof of (2.5), we have that
∫

Rk

µ(dx)

∫

Sk−1

∫

R
|Tσ

θ (y)|2e−
(y−θ"x)2

2σ2 dydθ =

∫
dθ

∫

R
|Tσ

θ (y)|2 µσ
θ (dy) < ∞,
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and hence there exists x0 ∈ Rk so that
∫

Sk−1

∫

R
|Tσ

θ (y)|2e−
(y−θ"x0)2

2σ2 dydθ < ∞.(2.7)

Fix M > 0 and let x ∈ Rk so that |x − x0| ≤ M . Then, we have the estimate

∣∣∣∣θT
σ
θ (y)e−

(y−θ"x)2

2σ2

∣∣∣∣ ≤ |Tσ
θ (y)|e

M|y−θ"x0|
σ2 e−

(y−θ"x0)2

2σ2

≤ |Tσ
θ (y)|2e−

(y−θ"x0)2

2σ2 + e
2M|y−θ"x0|

σ2 e−
(y−θ"x0)2

2σ2(2.8)

which is independent of x and integrable. Thus, we can use the dominated conver-
gence theorem to obtain the continuity of x '→ DµSW σ

2 (µ, ν)2(x) on Rk. !

Remark 2.3. Note that according to Definition 1.1, the L-derivatives of µ '→
SW σ

2 (µ, ν)2 may not be unique since the definition only requires the value of
DµSW σ

2 (µ, ν)2(·) on the support of µ. However, Lemma 2.2 shows that as a con-
sequence of the convolution with the Gaussian distribution Nσ, the derivative in
(2.4) admits a continuous version on Rk. In the following lemma, we show that this
function is in fact continuously differentiable and compute its derivative.

Lemma 2.4. For σ > 0, we have the following results for derivatives.

D2
xµSW σ

2 (µ, ν)2(x) =

∫

SK−1

∫

R
θθ$

(
1 − (θ$x − y)

σ2
Tσ
θ (y)Nσ(θ$x − y)

)
dydθ,

(2.9)

∫

Rk

|D2
xµSW σ

2 (µ, ν)2(x)| µ(dx) ≤ C

(
1 +

1

σ

√∫
|y|2 νσ(dy)

)
.

(2.10)

Proof. To show (2.9), it suffices to prove that we can interchange the derivative
with respect to x and the integral. To that end, we prove that for any fixed M > 0,
there exists an integrable bound of (θ$x − y)Tσ

θ (y)Nσ(θ$x − y) uniformly for all
|x| ≤ M . Take x0 ∈ Rk as in (2.7) such that

∫

Sk−1

∫

R
|Tσ

θ (y)|2Nσ(θ$x0 − y) dydθ < ∞.

Without loss of generality, we assume that |x−x0| ≤ M . Then we have the estimate

∣∣(θ$x − y)Tσ
θ (y)Nσ(θ$x − y)

∣∣ ≤
(
M + |θ$x0 − y|

)
|Tσ

θ (y)|Nσ(θ$x0 − y)e
M|θ"x0−y|

σ2

(2.11)

≤ |Tσ
θ (y)|2Nσ(θ$x0 − y) + (M + |θ$x0 − y|)2e

2M|θ"x0−y|
σ2 Nσ(θ$x0 − y),

which is independent of x and integrable with respect to variables y, θ. Therefore by
the dominated convergence theorem, we can interchange the integral and derivative,
and thus obtain (2.9).
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Let us integrate D2
xµSW σ

2 (µ, ν)2(x) over µ. Using (2.9), we have
∫

|D2
xµSW σ

2 (µ, ν)2(x)| µ(dx)

≤ C +
C

σ2

∫
dθ

∫
µ(dx)

∫
|θ$x − y||Tσ

θ (y)|Nσ(θ$x − y) dy

≤ C +
C

σ2

∫
dθ

∫
µθ(dx)

∫
|y||Tσ

θ (x + y)|Nσ(y) dy.

Then the Cauchy–Schwarz inequality yields
∣∣∣∣
∫

µθ(dx)

∫
|yTσ

θ (x + y)|N σ(y) dy

∣∣∣∣

≤

√∫ ∫
|y|2Nσ(y) dy µθ(dx)

√∫ ∫
|Tσ

θ (x + y)|2Nσ(y) dy µθ(dx)

= σ

√∫
|x|2 νσθ (dx).

Integrating the inequality above over θ, we conclude that
∫

|D2
xµSW σ

2 (µ, ν)2(x)| µ(dx) ≤ C

(
1 +

1

σ

√∫
|y|2 νσ(dy)

)
.

!

For each σ > 0, let us define the function ρσ : ([0, T ] × P2(Rk))2 → R via

ρσ ((s, µ), (t, ν)) = |t − s|2 + SW σ
2 (µ, ν)2.(2.12)

Then ρσ is a gauge type function on (P2(Rk), SW σ
2 ); see [3, Definition 2.5.1]. The

following smooth variational principle is the main result of this paper.

Proposition 2.5. Fix δ > 0 and let G : [0, T ]×P2(Rk) → R be upper semicontin-
uous and bounded from above. Given λ > 0, let (t0, µ0) ∈ [0, T ] × P2(Rk) be such
that

sup
(t,µ)∈[0,T ]×P2(Rk)

G(t, µ) − λ ≤ G(t0, µ0).

Then there exist (t̃, µ̃) ∈ [0, T ] × P2(Rk) and a sequence {(tn, µn)}n≥1 ⊂ [0, T ] ×
P2(Rk) such that:

(i) ρ1/δ((t̃, µ̃), (tn, µn)) ≤ λ
2nδ2 , for every n ≥ 0;

(ii) G(t0, µ0) ≤ G(t̃, µ̃) − δ2φδ(t̃, µ̃), with φδ : [0, T ] × P2(Rk) → [0, +∞) given
by

φδ(t, µ) =
+∞∑

n=0

1

2n
ρ1/δ((t, µ), (tn, µn)), ∀ (t, µ) ∈ [0, T ] × P2(Rk);(2.13)

(iii) G(t, µ) − δ2φδ(t, µ) < G(t̃, µ̃) − δ2φδ(t̃, µ̃), for every (t, µ) ∈ ([0, T ] ×
P2(Rk)) \ {(t̃, µ̃)}.

Furthermore, the function φδ satisfies the following properties:

(1) φδ is differentiable in time and measure;
(2) its time derivative is bounded by 4T ;
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(3) its measure derivative is bounded by
∫

|Dµφδ(t, µ)(x)|2 µ(dx) ≤ C

(∫
|x|2 µ(dx) +

∫
|x|2 µ̃(dx) +

1

δ2

)
;

(4) the derivative D2
xµφδ(t, µ)(x) satisfies

∫
|D2

xµφδ(t, µ)(x)| µ(dx) ≤ C

(
1 + δ

√∫
|x|2 µ̃(dx)

)
.

Proof. Parts (i), (ii), (iii) directly follow from [3, Theorem 2.5.2]. Denoting σ :=
1/δ, let us first estimate second moments of µσ

n.
Recall the κ defined in (2.3). For any µ, ν ∈ P2(Rk), it can be easily seen that

κ

∫
|x|2 ν(dx) =

∫
dθ

∫
|y|2 νθ(dy) ≤ 2

∫
dθ

∫
|y|2 µθ(dy) + 2SW2(µ, ν)2

≤ C

(∫
|x|2 µ(dx) + SW2(µ, ν)2

)
,

where C is twice the volume of Sk−1. Replacing ν and µ with µσ
n and µ̃σ respectively

in the above inequality, by part (i) we obtain that

κ

∫
|x|2 µσ

n(dx) ≤ C

(∫
|x|2µ̃σ(dx) +

λ

2nδ2

)
.(2.14)

It is clear that φδ is differentiable in time, and we show that one can interchange
the infinite sum and the derivative in measure. Supposing X ∈ L2(Ω, P, P; Rk)
with distribution µ and ξ ∈ L2(Ω, P, P; Rk) with norm 1, then it can be easily seen
that for any n ≥ 0

∣∣∣∣
ρσ((t, PX+εξ), (tn, µn)) − ρσ((t, PX), (tn, µn))

ε

∣∣∣∣(2.15)

≤ (SW σ
2 (PX+εξ, µn) + SW σ

2 (PX , µn))
|SW σ

2 (PX+εξ, PX)|
ε

.

The first term on the right is bounded by second moments of µσ, µσ
n, and hence

by second moments of µσ, µ̃σ thanks to (2.14). The second term is bounded by∫ √
E[|θ$ξ|2] dθ, and thus by the volume of Sk−1. Therefore, the left hand side of

(2.15) is uniformly bounded in n, and we conclude that

lim
ε→0

φδ(t, PX+εξ)−φδ(t, PX)

ε
=

∞∑

n=0

lim
ε→0

ρσ((t, PX+εξ), (tn, µn))−ρσ((t, PX), (tn, µn))

2nε

=
∞∑

n=0

1

2n
E
[
ξ$DµSW σ

2 (µ, µn)2(X)
]

=E
[
ξ$

( ∞∑

n=0

1

2n
DµSW σ

2 (µ, µn)2(X)

)]
.

Thus φδ is differentiable in measure, and

Dµφδ(t, µ)(x) =
∞∑

n=0

1

2n
DµSW σ

2 (µ, µn)2(x).
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Part (2) is trivial. It follows from (2.14), Lemma 2.2, the Minkowski inequality,
and the monotone convergence theorem that

√
E
[
|Dµφδ(t, µ)(X)|2

]
≤

∞∑

n=0

1

2n

√
E
[
|DµSW σ

2 (µ, µn)2(X)|2
]

≤C

√(∫
|x|2 µ(dx) +

∫
|x|2 µ̃(dx) +

1

δ2

)
,

which justifies part (3).
In the end, using estimates (2.8) and (2.11), it can be easily checked that the

mapping x '→ Dµφδ(t, µ)(x) =
∑∞

n=0
1
2n DµSW σ

2 (µ, µn)2(x) is continuous and dif-
ferentiable as in Lemma 2.2 and Lemma 2.4. Then, by (2.10) and (2.14), we con-
clude that

∫ ∣∣D2
µxφδ(t, µ)(x)

∣∣ µ(dx) ≤
∞∑

n=0

1

2n

∫ ∣∣D2
µxSW σ

2 (µ, µn)2(x)
∣∣ µ(dx)

≤ C

(
1 + δ

√∫
|x|2 µ̃(dx)

)
.

!

Remark 2.6. [6, Lemma 4.4] constructed a gauge type function using dyadic par-
titions of the underlying space Rk. Our construction ρσ is much simpler, and can
serve as a substitute of [6, Lemma 4.4]. Furthermore, ρσ is twice differentiable
with respect to µ, and thus could be useful in the study of second-order partial
differential equations on Wasserstein space.
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