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ABSTRACT. In this note, we provide a smooth variational principle on Wasser-
stein space by constructing a smooth gauge-type function using the sliced
Wasserstein distance. This function is a crucial tool for optimization problems
and in viscosity theory of PDEs on Wasserstein space.

1. INTRODUCTION

This note is devoted to proving a smooth variational principle on Wasserstein
space. Due to the lack of local compactness, a continuous function on an infinite
dimensional space may not attain its local maxima/minima, which becomes an issue
when dealing with optimization problems. Smooth variational principle provides a
way to perturb the function smoothly so that its perturbation can attain its local
extremas. Recently, smooth variational principles on Wasserstein space appeared
in the study of viscosity solution of partial differential equations on Wasserstein
space. A major effort in this direction was performed by [6].

For a continuous function on a separable Hilbert space, Ekeland’s variational
principle provides a smooth variation so that the perturbation attains local ex-
tremas; see e.g. [7]. However, in the Wasserstein space the variation part is given
by the Wasserstein metric which is not smooth anymore. One of the observations
in [6] was to use the Borwein-Preiss variational principle [3, Theorem 2.5.2], to
have smooth variations on the Wasserstein space, which states that it is sufficient
to construct a topologically equivalent complete metric which is differentiable in
the sense of [4]. In this note, we achieve this using the sliced Wasserstein distance,
which defines a metric between high dimensional probability distributions using
their one dimensional projections; see e.g. [2] and page 214 of [§8]. The advantage
of our choice is that the optimal transport map in one dimension can be explicitly
written down, and is regular after a Gaussian convolution. As such, our choice of
the sliced Wasserstein distance allows a simple construction of smooth gauge type
function compared to the alternative in [6]; see in particular Lemma 4.4 therein.

In the next subsection, we recall the definition of Wasserstein distance, and the
L-derivative. Then in Section 2] we analyze the differential properties of Gaussian
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regularized sliced Wasserstein distance, and finally prove the smooth variational
principle in Proposition 2.5

1.1. Wasserstein distance and L derivative. We denote by P»(R¥) the set of
Borel probability measures p such that [ |7|? p(dz) < oo. We endow the space
P2 (RF) with the 2-Wasserstein distance W, i.e., for any u, v € Po(RF)

(1.1) Wa(ju,v)? = [ gk = ol nldo.dy),

in
mell(p,v)
where TI(j, ) denotes the collection of probability measures on R* x R¥ with first
and second marginals p and v respectively.

Let us now present the L-derivative introduced in [4]; see [5, Chapter 5] for a
survey. Let u : Po(R¥) — R, and (9, P,P) be an atomless probability space. The
lifting U of u on the Hilbert space L2(Q, P, P;R¥) is defined via

UX):=uPx), VXecL*QP,PR",
where Px stands for the distribution of X. Recall that U is said to be Fréchet
differentiable at some random variable X € L%(Q, P, P; R¥) if there exists a random
variable Z € L?(Q2, P, P; R¥) such that
lim UX+tY)-U(X)
t—0 t
and we denote this derivative Z by DU (X).

=E[ZY], VY € L*(Q,P,P;R"),

Definition 1.1. A function u : P2(R¥) — R is said to be L-differentiable at
w if there exists some X € L?(Q,P,P;R*) such that Py = p and U is Fréchet
differentiable at X. And w is said to be L-differentiable if there exists a jointly
measurable function D,u : Po(RF) x R¥ — R such that the lifting U is Fréchet
differentiable at any X € L*(Q,P,P;R¥) and DU(X) = D, u(u, X).

It was proven in [1, Theorem 2.2] that if the optimizers of (L1) are reduced
to the set {(Id,T)fu} for some measurable function T, then pu — Wa(u,v)? is L-
differentiable at . Additionally, the Fréchet derivative of its lift at X with X ~ p is
X —T(X). By the Brenier theorem the condition on the uniqueness of the optimizer
is satisfied when p is absolutely continuous.

2. GAUSSIAN REGULARIZED SLICED WASSERSTEIN DISTANCE

Denote by S¥~1 the unit sphere in R*. For any u € Py (R¥), and 6 € S¥~1, define
the mapping Py : R¥ — R by the expression Py(x) = x'6 and the pushforward
measure py = Pylip € Po(R). For any u,v € Py(R¥), the sliced Wasserstein
distance is defined via

(2.1) SWo(u,v)? = /WQ(MQ,I/@)Q de,

where the integration is with respect to the standard spherical measure on S¥=1;
see e.g. [2] and page 214 of [8]. Moreover, we consider the Gaussian regularized
version

(2.2) SWQU(:va) = SWQ(/’LUaVU)v

where p% := p* N, and N, € Py(R*) is the Normal distribution with variance oIy
for some o € (0,00). By abuse of notation, N, also denotes the one dimensional
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normal distribution (and its density) with mean 0 and variance o2, and then we
have that (u7), = (p*Ny), = po * (Ny)o = pe * N, where the last Gaussian is
one-dimensional and the previous one is k-dimensional.

Lemma 2.1. For any o >0, (P2(R¥), SWY) is a complete metric space, and it is
equal to (P2(R¥), Ws) as a topological space.

Proof. Let us first prove the first claim. Take any Cauchy sequence (u™),>1 in
(P2(R¥), SW¥), and we can assume without loss of generality by taking a subse-
quence that

S SWE () = [ 3 Wl e N N ) 0 < 4o

n>1 n>1

Define S € SF~! to be the set of 6 such that anl Wa(uy *Ng,ug"rl * N,)? is

finite. Then it is clear that S C S*~! is of full spherical measure. Choose a finite
subset {6(1),...,0(F)} C S with the property that

yaen

Then it can be easily seen that

lim sup/ 22 1™ % N, (dz) = 0,
{z€RF:|z|>R}

R—00 neN

and hence {u" x N, },>1 is tight with respect to W5 topology. As in [6, Lemma
4.2], it can be shown that (u"),>1 is also tight, and has a limit v € Po(R¥) with
respect to the Ws metric. Due to the inequality

WZ(Mg *NO'>V0 *Na') < W2(M37V9) < WQ(MH7V)7

we conclude that p™ converges to v in SWy distance.

The above inequality implies that the topology generated by W5 is stronger than
that generated by SWy. By the argument in the first paragraph, for any sequence
(4™)n>1 such that SWg (u™,v) — 0 with some limit v € Po(R¥), there is a tight
subsequence that converges to v in the Wy distance. Therefore, SWy induces the
same topology as SWs and Wo. O

The advantage of SW{ is that we can easily compute its derivatives. Denote the
cumulative distribution function of y by F),. Then it is well known that in the one
dimensional case, the optimal transport map from p§ to v§ is given by

) -1
T3 () == i (Fyg (@),

v

where F;gl(x) = inf{t € R: F,¢(t) > x}, Vo € [0,1] denotes the left-continuous
inverse of F,¢. Moreover, we have that Wa(ug,v§)? = [ 3lz — Tg (z)|* ug (dz).
It can be easily seen that there exists some positive constant « such that

(2.3) / 00" db = kI,
Sk—1
and hence

/ 0T z|?do = k|z|?, Vo cRF.
Sk—1
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Lemma 2.2. Let v € Po(R¥) be fized. Suppose either o > 0 or Fuez and F,g are
continuous and strictly increasing for each 6 € S*¥~1. Then, the mapping

1€ Py(RE) s SWS (1, v)?
is L-differentiable, and

(2.4) D, SW3 (p, v / / Te —T5(0" x +y)Ns(y)) dydf.
Sk—1

Moreover, we have the estimate

25 [ 0w P utan) < ¢ ( [ 1o utao)+ [ 1P an)

and the mapping x — D, SWS (u,v)*(x) is continuous on RF.

Proof. The proof relies on the proof of Theorem 3.2 of [1]. We first prove that if
F,z and F,z are continuous and strictly increasing functions for some 6 € Sk
then the function

p € Po(RY) s Wo(ug,v§)?
is L-differentiable at u, and its L-derivatives are given by

26 Dy (Wali§)) ) =0 (670 [ 130T a4 N0 dy).

Fix X € L*(Q,P,P;RF) with distribution y and ¢ € L2(Q, P, P;R*) with norm
1. Denote N, € L%(Q, P,P; R¥) which is independent of X and ¢ with distribution
N5. Denote u™° the distribution of X -+ % + N, and note that ” is the distribution
of X + N,. By the minimality of the 2-Wasserstein distance, we have that

< Wo(ug,vg)? +E [5 (X+N,)T0-Tg (X +Na)T9))} + %E [(gnS)Q] :

We now take Y € L?(, P, P; R¥) with distribution v so that the coupling (X "6+

ETTQ + N6, Y™) yields to an optimal coupling between py'” and v§. We have the
following estimate

o 1 0
Wa(uy ) < 3| [x 70+ £L 4 N0 - 1707 (x4 Vo)

Wa(ug, v§)? < 5B [|(X + No)T6 - V"]

< W) —E |2 (0 + Ny To - v+ 2e [0
€70 '

< Wy ) - |

(X+N,)T0—Tg (X + NU)TG))}

FT (T8 (X +Ny) ") - )]+%E_(if)1.

Thus, we obtain the inequality

5
Wl )2 - Watug)? B [ 2 (06 4+ No) o - 77 (X + No)T0)) |

n‘2:| 1/2 n 1

<E [\Tg (X+N,)T0)—Y =,
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where the last line goes to 0 thanks to Lemma 3.5 of [1], and we obtain (2.6) thanks
to the fact that N, has 0 mean.

Integrating (2.6) over 6, we obtain (2.4). Indeed, for each § € S¥~! we have
that

n [ Walpy ., v§)? — Wa(ug, v§)?|
< nWalpy”,vg) — Walpg, vg)| IWa(ug™, v§) + Wa(ug, v§ )l -
By the triangle inequality of Wasserstein distance, it can be seen that
n|Walpy®,vg) — Wa(ug, vg)|l < nWa(ug™®, png) < ny/E[(§/n)?] =1
and hence
n | Wa(ug”,v§)? = Waug, v§)?| < [Walpy, v§) + Wa(ug, vg)| < C,

where the upper bound C' only depends on o, u,v. Therefore it follows by the
dominated convergence theorem that

i n(SWF (P ¢/n),v)? — SWS (Px,v)?)

= lim [ n(Wa(py?, vg)? — Wa(ug,vg)?) do

n— oo

_ /]E (€70 (XT0— T5 (X + Ny)T0))] do

-E [gT/e(eTX—JE [Tg (07 (X + N,))]) de} ,

where the last equality is due to Fubini’s theorem.
Now let us show (2.5). According to |a + b|?> < 2|a|? + 2[b|?, it can be easily
verified that
2 2
1D, SWE (11, v)%(2)]? <2 ’/%T;vdﬁ

+2 ‘/G]E (7507 (x + N,))] d6

szﬂaxw+-2/Ww2ﬂ{/<E[Tgaﬂkx—kAa>ﬂ>2d&

Integrating the above inequality with respect to p, we conclude

[ 12w @) utao) < € ( [ 1o utan) + [ a0 [ 150 o))
<c( 1ol utan + [ av [ vgian)
<o ([l utan + [1Pvan).

In the end, we show the continuity of x — D, SW(u,v)?(z). To prove this
point, we only need to prove the continuity of

y2 y— T )2
x> / /HTé’(QTx + y)e 202 dydf :/ /HTé’(y)e_( o dydo.
Sk—1 JR Sk—1 JR
Thanks to the proof of (2.5, we have that

o) [ [mswpe 5 agan = [ an [ 115w ) <
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and hence there exists zy € R* so that

(2.7) / /|T9 () 2e "5 dydd < oo.
Sk—1

Fix M > 0 and let = € R* so that |z — x9| < M. Then, we have the estimate

Mly—0Tagl _ (y=0" zg)?

<TG (Y)le e 2

(w=0")?

o3 ()

(w—0"z)? 2Mly—0" x| _ (y—0"=g)?

(2.8) < [T (y)Pe a4 e

which is independent of  and integrable. Thus, we can use the dominated conver-
gence theorem to obtain the continuity of z — D, SW (1, v)*(x) on RF. O

Remark 2.3. Note that according to Definition [LL1l the L-derivatives of p —
SWg (u,v)? may not be unique since the definition only requires the value of
D,,SW (1u,v)?(-) on the support of . However, Lemma [2.2] shows that as a con-
sequence of the convolution with the Gaussian distribution N, the derivative in
([2.4) admits a continuous version on R¥. In the following lemma, we show that this
function is in fact continuously differentiable and compute its derivative.

Lemma 2.4. For o > 0, we have the following results for derivatives.

(2.9)

2 ST (.1 /K 1/99T( 0295, )Ng(HTx—y)> dydf),
(2.10) ’

/ |D2,SW3 (1, v)?(z)| p(da) < C (1 4L /IyZV"(dy)> :
Rk g

Proof. To show (2.9)), it suffices to prove that we can interchange the derivative
with respect to x and the integral. To that end, we prove that for any fixed M > 0,
there exists an integrable bound of (" z — y)T¢ (y)N, (072 — y) uniformly for all
|z| < M. Take 2y € R as in (2.7) such that

[ [P @7 ) dye < .
st-1JR

Without loss of generality, we assume that |z —xo| < M. Then we have the estimate

(2.11)
M0 T zg—y]
(072 =) T (YN (0T — )| < (M + 10720 — y]) |T§ ()N (0T 20 —y)e™ =2
2M[6 Tz —yl

<TG (W) PN (0T 2o —y) + (M +[0Tao —yl)2e™ > No(0Two — ),

which is independent of x and integrable with respect to variables y, 6. Therefore by
the dominated convergence theorem, we can interchange the integral and derivative,
and thus obtain (2.9).
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Let us integrate D2, SWg (u,v)?(x) over . Using (2.9), we have
[ 102,898 (.22 ()
<c+ 5 [ ao [ wian) [1670~ yll77 )NGOTe - ) dy

c -
<c+ 5 [ a0 [ atdo) [ W7 @+ 9IN ) o
Then the Cauchy—Schwarz inequality yields

[ wata) [z + i) dy\

<\/ / / |y|2Na(y)dyu9(dx)\/ / / TS (& + 9)|2NG (y) dy o (de)

=0 / |z|? vg (dx).

Integrating the inequality above over 6, we conclude that

/ID;}%MSW;(M,V)Q(w)Iu(dx) <C (1 +§ /Iylzvg(dy)> :

For each o > 0, let us define the function p, : ([0, 7] x P2(R¥))? — R via
(2.12) oo (5,10, (60)) = [t — 5[ + SWE (1, )",

Then p, is a gauge type function on (P2(RF), SWS); see [3, Definition 2.5.1]. The
following smooth variational principle is the main result of this paper.

Proposition 2.5. Fiz § > 0 and let G : [0,T] x Po(R¥) — R be upper semicontin-
uous and bounded from above. Given A > 0, let (to, o) € [0,T] x P2(RF) be such
that

sup G(t, 1) — A < G(to, po)-
(t,1)€[0,T]x P2 (R¥)
Then there exist (t, i) € [0,T] x Po(R*) and a sequence {(tn, fin)}n>1 C [0,T] x
Po(R¥) such that:
(1) pl/zi((gv /1)7 (tn7£flfn)) S ﬁlfor every n Z 0;'
(1) Glto, o) < G(E, i) — 6205(F, i), with és : [0,T] x Pa(R¥) = [0, +00) given
by
—+oo
1 k
(213) (;55(t7/1,) = Z 2—np1/5((t,,u), (tnvﬂn))7 V(t,,u) € [OvT} X PQ(R );
n=0
(i) G(t,p) — P¢s(t,p) < Gt ) — 6°¢s(t, 1), for every (t,u) € ([0,T] x
P2(R) \ {(Z, 1)}
Furthermore, the function ¢s satisfies the following properties:

(1) ¢s is differentiable in time and measure;
(2) idts time derivative is bounded by 4T';
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its measure derivative is bounded by

/ IDus(t )@ tan) < € ([l o)+ [ o o) + 55 )

(4) the derivative D2,,¢5(t, p)(x) satisfies

[ 102,050, )Iu(dff)<C<1+5 [1al2 <dx>).

Proof. Parts (i), (i), (iil) directly follow from [3| Theorem 2.5.2]. Denoting o :=
1/6, let us first estimate second moments of ug.
Recall the x defined in ([2.3). For any u,v € Pa(RF), it can be easily seen that

w [l vtan) = [ a0 [l vata) <2 [ a0 [ 1o o) +25Walny
< 0 ( [ 1of utao) + 5Walp.)?).

where C is twice the volume of S¥~1. Replacing v and p with 18 and 1% respectively
in the above inequality, by part (i) we obtain that

(2.14) o [lePustan) < o  [1olao o) + ).

It is clear that ¢; is differentiable in time, and we show that one can interchange
the infinite sum and the derivative in measure. Supposing X € L2(Q,P,P;R¥)
with distribution g and & € L2(2, P, P; R¥) with norm 1, then it can be easily seen
that for any n >0

po((taPX-i-Ef)v (tna Mn)) - pa((taPX)v (t’mun)) ’

(2.15) -

|SWS (Px e, Px)

€

< (SWQU(PXJre&Nn) + SW3 (Px, tin))

The first term on the right is bounded by second moments of u?, u?, and hence
by second moments of p7, 1% thanks to (214). The second term is bounded by
[ VE[0T€[2] df, and thus by the volume of S*~1. Therefore, the left hand side of
(2.13) is uniformly bounded in n, and we conclude that

lim ¢5(t7PX+e£)_¢6(t7]P)X) _ = lim pa((tv]P)X—i-e&)a (tnaﬂn))_pa((tva)a (tnnufn))

=0 ¢ €0 e
n=0

—Z E [€" D, SWS (11, pn)*(X)]

=E lgT (Z %D#SWZU(MaMn)2(X)>‘| .

n=0

Thus ¢s is differentiable in measure, and

oo

Duds 1)) = 3 5 DS (1 i) (0).

n=0
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Part (2) is trivial. It follows from (2.14), Lemma [2.2] the Minkowski inequality,
and the monotone convergence theorem that

VB D5t 0] 3 o5 [10,5W5 1200
n=0

~ 1
<oy ([t + [1of atan) + 5 ).
which justifies part (3).

In the end, using estimates (2.8) and [2.11), it can be easily checked that the
mapping @ — D, ¢s(t, 1) (z) = Y07 3w DpSWS (1, pun)? () is continuous and dif-
ferentiable as in Lemma 2.2] and Lemma IZ,__ZLl Then, by (2.10) and ([2.14), we con-

clude that

/|D,m¢atu )| u(da) < Z /|D LSWS (1) ()| pa(der)

]

Remark 2.6. |6l Lemma 4.4] constructed a gauge type function using dyadic par-
titions of the underlying space R*. Our construction p, is much simpler, and can
serve as a substitute of [6 Lemma 4.4]. Furthermore, p, is twice differentiable
with respect to u, and thus could be useful in the study of second-order partial
differential equations on Wasserstein space.
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