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Cyclopentadienyl ring 
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Abstract

The cyclopentadienyl (Cp) ligand is a cornerstone of modern 
organometallic chemistry. Since the discovery of ferrocene, the Cp 
ligand and its various derivatives have become foundational motifs in 
catalysis, medicine and materials science. Although largely considered 
an ancillary ligand for altering the stereoelectronic properties of 
transition metal centres, there is mounting evidence that the core 
Cp ring structure also serves as a reservoir for reactive protons (H+), 
hydrides (H−) or radical hydrogen (H•) atoms. This Review chronicles 
the field of Cp ring activation, highlighting the pivotal role that Cp 
ligands can have in electrocatalytic H2 production, N2 reduction, 
hydride transfer reactions and proton-coupled electron transfer.
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in synthetic chemistry laboratories, it was relatively uncommon to 
isolate, characterize and study the reactivity of η4-cyclopentadiene 
complexes. Herein, we focus on some early accounts of reacting Cp 
with nucleophiles, electrophiles and organic radicals to generate stable 
(and often isolable) complexes containing η4-cyclopentadiene ligands 
coordinated to transition metals.

Nucleophilic additions to Cp rings
Some of the earliest examples of Cp derivatization use nucleophilic 
reagents that attack the electrophilic Cp ring of coordinatively satu-
rated metallocenes. The formal oxidation state of the metal decreases 
by 2, which is favoured by group 8 and 9 transition metals that readily 
undergo d6→d8 electronic reconfigurations. In 1959, seminal work by 
Green et al.17 reported the reactions of cobaltocenium or rhodocenium 
salts with hydride transfer agents to isolate (η4-C5H6)MCp (M = Co,  
Rh; 1), which were characterized by infrared (IR) and 1H NMR spectro
scopy (Fig. 2). In 1961, Fischer and Herberich18 first reported the nucleo-
philic addition of phenyllithium to [Cp2Co][ClO4], generating neutral 
(η4-C5H5Ph)CoCp (2). On the basis of IR spectroscopic data, this pro
duct was assigned as the endo-η4-C5H5Ph adduct; however, complex 2  
was verified as the exo isomer by X-ray crystallography in 1964 upon 
combining [Cp2Co][I] with phenyllithium19. Many years later, addi-
tional spectral data for 2, other alkyl derivatives, alkoxides, amides 
and phopshides indicated that exo-substitution occured in practi-
cally all cases20. In 1961, Wilkinson and co-workers21 extended their 
work to piano-stool (that is, half-sandwich) iron complexes, in which 
[CpFe(CO)2PPh3]+ was treated with sodium borohydride to generate 
(η4-C5H6)Fe(CO)2PPh3 (3) and characterized by IR and 1H NMR spectros-
copy. The rhodium variant, (exo-η4-C5H4Ph)RhCp, was reported 2 years 
later22. In 1978, these nucleophilic addition patterns were framed 
in a broader context as part of the Davies–Green–Mingos rules for 
nucleophilic addition to unsaturated hydrocarbon ligands23. Dec-
ades later, the electrophilic character of the cobaltocenium cation 
was ‘rediscovered’ to generate other exo-substituted η4-C5H4R deriva-
tives24–26. For example, the complex (exo-η4-C5H5C≡C(SiMe3))CoCp (4) 
was prepared by Tang and co-workers by reacting [Cp2Co][PF6] with 
lithium trimethylsilylacetylide. Complex 4 was then used as a building 
block to prepare monomers via azide-alkyne ‘click’ chemistry to make 
metallopolymers (5), which was later extended to rhodocenes27. Shortly 
afterwards, Bildstein and co-workers independently published a very 
similar pathway to prepare complex 4 as a synthon for the preparation 
of cobaltocenium carboxylic acid28. Very recently, Cp* ring activation 
with an IrIII cation was found to be strongly dependent on the identity 
of the carbon-based nucleophile29. In summary, the exo-addition of 
nucleophiles to Cp and Cp* has been firmly established; however, the 
release of H− (that is, the reverse reaction) has only been applied in 
recent years for the reduction of small molecules such as NAD+ and CO2.

Introduction
Ligand design has played a central role in expanding the toolbox of 
available transition metal complexes, with cyclopentadienyl (Cp) 
becoming a privileged ligand class in homogeneous catalyst develop-
ment throughout the past several decades1–5. The unsubstituted Cp and 
its well-known electron-rich analogue pentamethylcyclopentadienyl 
(Cp*) can modify the stereoelectronic properties of transition metals, 
usually serving as ‘innocent’ ancillary ligands that modulate reactiv-
ity at the metal centre without directly participating in bond-making 
and bond-breaking processes (Fig. 1). Although there are numerous 
literature examples showcasing the ancillary prowess of Cp and Cp* 
ligands, there is an established precedent that Cp and Cp* ligands have 
an active role in C–X bond activation in the presence of nucleophiles 
(Nu−), electrophiles (E+) or radicals (R•). In all the three cases, addi-
tion reactions to coordinatively saturated complexes containing Cp 
ligands disrupt the contiguous η5-binding mode to generate stable 
and isolable η4-cyclopentadiene frameworks, with exo-substitution 
being preferred in most cases.

Understanding the movement of protons and electrons by means 
of H+, H• and H− transfer is fundamentally important for synthetic chem-
istry, biology, materials science and energy-related processes. The 
reactivity of transition metal hydride complexes (M–H) has garnered 
sustained interest over the past several decades, and much has been 
discovered about their homolytic and heterolytic M–H bond strengths 
to deliver reactive H+/H•/H− moieties for applications in catalysis6–8. 
For example, generating reactive (weak) M–H bonds has enabled 
electrocatalytic H2 production and oxidation9, organoradical cycliza-
tion10,11, epoxide hydrogenation12 and hydrogenation of CO2 to formate 
(HCO2

−)13–15. By contrast, using C–H bonds within chelating ligands 
such as Cp and η4-cyclopentadiene (Fig. 1) to deliver reactive H+/H•/
H− moieties for applications in chemical fuel synthesis and electro-
catalysis remains quite rare. In this Review, we show that reactivity of 
the Cp manifold has long been a curiosity in organometallic chemistry 
by first presenting literature accounts of Cp ligand functionalization, 
chronologically highlighting selected examples and classifying these 
instances by the type of addition agent used (Nu−, E+ or R•). Then, we 
demonstrate how since 2016 this reactivity manifold has been used 
for applications in chemical energy conversion such as H2 production, 
N2 reduction, proton-coupled electron transfer (PCET) and hydride 
transfer reactions.

Early examples of Cp ring activation
Shortly after the discovery of ferrocene, there was a surge of interest in 
understanding its reactivity, preparing other metallocene derivatives 
and exploring the coordination chemistry of the Cp ligand in combi-
nation with other ligand types16. Although modification of the sub-
stituents surrounding the core Cp ring had become standard practice 
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Electrophilic additions to Cp rings
The discovery of electrophilic substitution reactions with ferro-
cene opened new vistas of organometallic chemistry in the twenti-
eth century30–32. It is widely accepted that Cp ring activation by the 

incoming electrophile (E+) occurs before loss of H+, generating a transient  
[(η4-C5H4E)FeCp]+ intermediate31,33. In later years, electrophilic addition 
products were reported with electron-rich metallocenes that formally 
have 20 valence electrons, which make the Cp ligands more susceptible 
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and complexes 10–14 were synthesized via radical addition (yellow)17,37,39–47. The 
lower box shows the resurgence of interest in cyclopentadienyl ring activation 
from 2016 onwards, which involves the net transfer of H+, H• or H− to/from small 
molecules91,95–97,107,122–124,129,132,134. TMS, trimethylsilyl.
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to electrophilic attack. In 1974, the protonation of nickelocene was 
achieved by treating it with anhydrous HF, which allowed for the spec-
troscopic detection of [(η4-C5H6)NiCp]+ (6) by 1H NMR spectroscopy 
with a proposed F− or [FHF]− counterion34 (Fig. 2). However, attempts 
to isolate this complex with a [BF4]− counterion led to diene loss and 
the formation of [CpNi][BF4]. In 1975 and 1976, reports of the electro-
generated anion [Cp2Co]− reacting with carbon-based electrophiles RX 
(R = CH2Ph, CHClPh, CCl3, CH2Br) to furnish the neutral (exo-η4-C5H5R)
CoCp (7) in high yield were published35,36. Interestingly, CO2 also reacts 
with [Cp2Co]− to generate a proposed (unstable) ring-activated carboxy-
late anion [(exo-η4-C5H5CO2)CoCp]− that is converted to the isolable 
ester (exo-η4-C5H5CO2Me)CoCp by reaction with methyl iodide. In 1980, 
the synthesis of [(exo-η4-C5Me5R)NiCp*][BF4] (9) from nickelocene was 
reported using several different alkyl and aryl electrophiles, which were 
suggested to be exo-products owing to the similar chemical shifts for 
all the endo-methyl resonances via 1H NMR spectroscopy37. In the same 
year, it was shown that HBF4 selectively protonates the electron-rich Cp* 
ligand of Cp*2Ni and Cp*NiCp to yield the stable [(η4-C5Me5H)NiCp][BF4] 
and [(η4-C5Me5H)NiCp*][BF4] (8); however, exo-protonation versus 
endo-protonation was structurally ambiguous38. As described in the 
sections covering N2 reduction and stoichiometric PCET, protonation of 
a paramagnetic metallocene yields an isolable ring-activated product 
that releases H•, whereas Cp protonation of diamagnetic piano-stool 
complexes precedes ligand-to-metal proton migration reactions. These 
types of electrophilic addition reactions are relevant to (electro)cata-
lytic NH3 formation and H2 production, respectively, under reducing 
conditions.

Radical additions to Cp rings
Radical-based addition reactions of haloalkanes to Cp-containing com-
plexes have been primarily investigated with cobaltocene (Cp2Co), 
a paramagnetic metallocene that formally possesses 19 valence 
electrons. In 1956, Wilkinson et al.39 observed that Cp2Co reacts with 
bromoethane to generate the diamagnetic cobaltocenium bromide, 
however the fate of the alkyl moiety was unclear. Subsequently, reac-
tions  with other haloalkanes were reported (MeI, CCl4), and Cp2Co 
disproportionates to afford (exo-η4-C5H5R)CoICp (10) (Fig. 2) and an 
equivalent of [Cp2CoIII][X] (X = I, Cl), as evidenced by IR and 1H NMR 
spectroscopy17,40. Starting in 1969, a series of papers were published that 
discovered a radical addition mechanism to form such exo-alkylation 
products. Kinetic studies showed that the rate of Cp2Co alkylation 
expectedly increases with better leaving group halogen (Cl > Br > I) 
and rates increase when the halomethyl group has one, two or three 
halogen atoms, respectively41. In 1970, the reaction of Cp2Co with 
the radical initiator azaisobutyronitrile afforded nearly quantitative 
amounts of (exo-η4-C5H5(C(CH3)2CN))CoCp (11), demonstrating that 
Cp2Co is an effective radical trap42. Follow-up kinetic studies further 
supported these claims, showing that an initial electron transfer step 
to generate [Cp2CoIII]+ and R• is rate-limiting43,44. The electron-rich 
Cp*2Co reacts similarly with CH3I and C6H5I to generate diamagnetic 
(exo-η4-C5Me5R)CoCp* (15) and [Cp*2Co][I]37. In 1994, the platinum 
adduct [(endo-η4-C5Me5H)PtCp*][BF4] (13) was reported to undergo 
oxidation via controlled potential electrolysis to produce the PtIV met-
allocene dication [Cp*2Pt]2+; however, the fate of released H• remained 
unclear45. Controlled potential electrolysis of the resultant [Cp*2Pt]2+ 
under reducing conditions regenerates [(η4-C5Me5H)PtCp*]+, with  
solvent or decomposition product (products) possibly acting as  
H• sources46. In 1996, the isolation and structural characterization 
of (exo-η4-C5H4CCl3)WCp(Cl)(CO) (14) was achieved by reaction of 

Cp2W(CO) with a large excess of CCl4, and it was proposed that initial 
exo-attack of a trichloromethyl radical on the Cp ring was followed by 
chloride addition to the metal centre47. In recent years, addition reac-
tions using organoradicals have garnered much less attention, but the 
release of H• from η4-CpH ligands has become important, as described 
in the sections below on N2 reduction and stoichiometric PCET.

Other instances of Cp ring activation
Other reports of Cp ring activation do not cleanly fit into one of the 
aforementioned reactivity classes. For instance, other hapticity 
changes (that is, ring slippage to η3-Cp or η1-Cp) can accompany ring 
activation; this subject has been reviewed elsewhere48. In some cases, 
ring-activated molecules are isolated as unexpected by-products and/or  
characterized to varying degrees49–53, whereas in other cases, the exact 
reaction conditions that lead to ring activation are unclear54–57. Ring-
activated complexes can also be isolated as products of intramolecular 
insertion reactions, in which a coordinatively saturated metal com-
plex bears a ligand capable of inserting into the Cp–M bond, driven to 
form an η4-C5H4R moiety in the presence of excess ligand and UV58 or 
visible59 light. Electronic effects at the metal centre60–62 or the influence 
of cluster ligands63–67 can also lead to cases in which η4-coordination 
is preferred over η5-coordination. Ring-activated complexes have also 
been proposed as transient reaction intermediates involving f-block 
metallocenes68 and to explain deuterium incorporation into the Cp 
ligand69–71. Notably, the reactivity of alkyl substituents on Cp ligands 
to generate fulvenes72–74 and of η6-C6Me6 ligands on CpFe sandwich 
complexes75 are beyond the scope of this Review.

Implications in synthesis and catalysis
The remainder of this Review focuses on the resurgence of Cp ring 
activation chemistry from 2016 onwards, where perturbation of the 
aromatic ring structure to form η4-CpH moieties becomes essential 
to mediate the delivery of H+, H− or H• to produce H2, NH3 and reduced 
organic molecules (Fig. 2, bottom). In particular, H2 and NH3 are essen-
tial commodity chemicals for the agriculture enterprise to support our 
current global population, and their sustainable production will have a 
central role in minimizing global CO2 emissions76. Furthermore, under-
standing the kinetic and thermochemical requirements for rapidly and 
efficiently moving hydrogen using the η4-Cp ring system has broad 
implications in developing new catalysts that mediate PCET reactions77.

H2 production
The sustainable and economical production of H2 is an essential compo-
nent of converting solar energy into chemical fuels78. Many groups have 
taken inspiration from hydrogenases79,80, placing amine bases capable 
of shuttling protons to the metal in the secondary coordination sphere 
to increase the efficacy of hydrogen production catalysis9,81. Complexes 
with the general formula [Cp*RhIIIL(bpy)]2+ (bpy = 2,2′-bipyridine, 
L = H2O or MeCN) are well-known precatalysts for various reactions 
such as reduction of NAD+ (refs. 82–84), oxidation of formate85,86 and 
the reduction of 2H+ to H2 (refs. 87,88). The hydrogen production reac-
tions were believed to proceed through a well-accepted mechanism that 
first involves 2e− reduction of [Cp*RhIII(NCMe)(bpy)]2+ (20) to furnish 
the electron-rich Cp*RhI(bpy) (15), followed by protonation to give 
hydride complex Cp*RhIIIH(bpy) (18), followed by electrophilic attack 
of Rh-H moiety with a second proton to generate H2 (ref. 87) (Fig. 3). 
Evidence in support of this mechanism first included 1H NMR spectro-
scopic observation of complex 15 (ref. 89), followed by the synthesis 
and crystallographic characterization of complex 15 in high yield90.
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In 2016, Blakemore et al. reported that Cp*RhI(bpy) (15) behaves 
as a chemically non-innocent Cp* ligand coordinated to Rh, forming an 
η4-Cp*H intermediate that might have a role in catalytic H2 evolution91 
(Fig. 3). Established conditions for catalytic H2 production using com-
plex 15 require strongly acidic conditions87,88, and exposure of complex 
15 to excess N,N-dimethylformamidinium trifluoromethanesulfonate 
([DMFH][OTf]; pKa

MeCN = 6.1)92 releases a stochiometric amount of 
H2, as measured by gas chromatography. Switching to weaker acids 
not only lowered the driving force for H2 evolution93 but also offered 
the possibility of isolating catalytically relevant intermediates if the 
acid is strong enough to react with the electron-rich catalyst but too 
weak to generate H2. When Cp*RhI(bpy) is exposed to [Et3NH][Br] 
(pKa

MeCN = 18.8)94, a colour change is observed but no H2 is released. This 
crucial reaction enabled the isolation and X-ray crystallographic char-
acterization of (endo-η4-C5Me5H)RhIBr(bpy) (16), in which the proton is 
located endo-orientation relative to the metal centre (Fig. 3, right). The 
bromide-free salt [(endo-η4-C5Me5H)RhI(bpy)][OTf] (17) was character-
ized via NMR spectroscopy by instead using [Et3NH][OTf] as the acid 
source. Importantly, exposure of these endo-η4-C5Me5H complexes 
to excess [DMFH][OTf] cleanly releases H2 and produces [Cp*RhIII(L)
(bpy)]+ (20), in which L is the coordinated solvent (MeCN) or conjugate  
base (DMF).

The protonation behaviour of Cp*RhI(bpy) was probed by ground-
state density functional theory (DFT) studies91,95. When complex 15 
reacts with a weaker acid, Et3NH,+ the metal is first protonated to give 
complex 18, which then isomerizes to give the more stable complex 17. 

These results are all consistent with the observation of exclusive endo-
selectivity in the presence of Et3NH+. The lowest computed energy 
pathway requires tautomerization from the ligand to the metal before 
protonation of complex 18 to generate transient dihydrogen-bound 
complex 19. In summary, these computational findings showed that 
[(endo-η4-C5Me5H)RhI(bpy)]+ (17) is an off-cycle thermodynamic sink 
during H2 production, which can be avoided in the presence of strong 
acids owing to the kinetically favourable sequential protonation of the 
RhI metal centre and RhIII–H intermediate95.

Conjugated N-donor ligands beyond 2,2′-bipyridine can also be 
used for stoichiometric and electrocatalytic H2 production96,97. The 
structurally authenticated complex (endo-η4-C5Me5H)RhIBr(phen) 
(phen = phenanthroline; 21) was synthesized, and its electrochemi-
cal behaviour was interrogated96 (Fig. 3, right). Controlled potential 
electrolysis experiments with complex 21 (or isostructural complex 16) 
produced 1 equiv. H2, underscoring that H2 evolution is feasible in 
the absence of exogenous acid. Electronic modifications at the 4,4′ 
positions of the bipyridine ligand (bpyR where R = tBu, H or CF3) were 
conducted and compared with the reactivity of 15 (ref. 97). Controlled 
potential electrolysis verified that H2 is produced in catalytic amounts, 
with a maximum turnover number of 4.4. Post-electrolysis solutions 
using [Cp*RhIIIBr(bpyCF3)]+ reveal a large build-up of the protonated 
solvent adduct [(endo-η4-C5Me5H)RhI(NCMe)(bpyCF3)]+, implying 
that it is a plausible (off-cycle) resting state during electrocatalysis. 
Collectively, these observations suggest that electronic modifica-
tions to the ancillary ligand environment do not enhance catalytic 
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performance and cast further doubt on the relevance of Cp* ring 
activation with these Rh-based systems.

The sluggish catalytic activity reactivity of the precious 
metal complexes described above indicates that they are economi-
cally and environmentally impractical to meet demands for sustain-
able H2 on a scale suitable for chemical energy production98. Iron is 
the most abundant transition metal in the upper crust of the Earth 
and represents an ideal alternative; however, the library of syntheti-
cally tractable CpFe-based H2 production or H2 oxidation electro-
catalysts remains limited99–104 and none rival the efficiency and speed 
of [FeFe]-hydrogenase (less than 0.1 V overpotential and turnover 
frequency of 6,000–9,000 s−1 for H2 production)80,105,106. Thus, there 
is still great interest in designing Earth-abundant H2 production cata-
lysts, particularly with systems that incorporate biomimetic primary 
or secondary coordination sphere modifications to facilitate pro-
ton shuttling to/from the metal centre9,79,105. In 2021, Prokopchuk and 
co-workers reported tri-amine-functionalized piano-stool Fe com-
plexes [enCpRFe(NCMe)(CO)2]+ (en = N,N′-dimethylethylenediamine, 
R = NHiPr, Pyrr, NBn) as proton reduction electrocatalysts to form H2, 
with the iPr variant [enCpNhiPrFe(NCMe)(CO)2]+ (22)107 shown in Fig. 4. All 
three solvent adducts catalyse the production of H2 in acetonitrile using 
Tos2NH as the proton source with maximum H2 production catalytic 
rates of 29–45 s−1.

The reaction mechanism was rationalized via state-of-the-art 
DFT approaches108 using [enCpNHiPrFe(NCMe)(CO)2]+ (22)107 (Fig. 4). The 
delivery of 2H+ and 2e− to complex 22 can occur in several different 
permutations before H2 evolution, which include protonation at many 
possible sites as highlighted in blue for the structure of complex 22. 
The most thermochemically reasonable pathway after 1e− reduction 
was found to be endo-selective protonation at the Cp ring (23) based on 
its computed acidity (pKa

MeCN = 15.7) relative to exogenous acid Tos2NH 
(pKa

MeCN = 11.97)109, whereas protonation at the NHiPr moiety (25) was 
deemed unlikely on thermochemical grounds (pKa

MeCN = 8.9). Steric 
arguments presumably make exo-protonation at the enCpNHiPr ring sig-
nificantly less favourable (pKa

MeCN = 5.4), and direct protonation of the 

metal centre (24) is also implausible owing to the higher computed acid-
ity of the resultant FeIII-H intermediate (pKa

MeCN = 9.6). Reduction of the 
solvent-coordinated intermediate [(endo-η4-enCpH)Fe(NCMe)(CO)2]+ 
(E° = −1.01 V) followed by solvent dissociation and ligand-to-metal 
proton migration was proposed to yield a stable FeIIH complex (26). 
Finally, complex 26 was proposed to undergo direct protonation by 
exogenous acid to yield complex 27, followed by H2 release. Overall, 
these data indicated that the amines were chemically innocent during 
electrocatalysis, and ligand-to-metal proton migration was essen-
tial for electrocatalytic H2 evolution, contrasting with the inhibitory 
tautomerization behaviour of the Cp*RhI(bpy) complexes described 
earlier. Therefore, amine-functionalized Cp ligands coordinated to 
Earth-abundant metals exhibit unique chemically non-innocent reac-
tivity patterns under electrochemical bias, and the kinetic details for 
these elementary reaction steps warrant deeper investigation.

N2 reduction
There have been widespread efforts to develop homogeneous and 
heterogeneous catalysts for the efficient conversion of N2 to NH3 
(ref. 110), particularly in processes that minimize the use of fossil fuel 
feedstocks to circumvent the need for centralized Haber–Bosch produc-
tion facilities76. To date, no molecular catalysts have been reported that 
directly convert gaseous H2 and N2 into NH3; therefore, powerful reduct-
ants (E° ≤ −1.3 V versus Fc+/0) and strong acids (pKa

THF ≤ 8) dissolved in 
organic solvent are commonly used in molecular catalysis to achieve 
catalytic turnovers in the N2 reduction reaction (N2RR), with particular 
attention focused on minimizing H2 evolution by metering the amount 
of available H+/e− in solution111–115. In recent years, researchers have made 
progress towards increasing molecular N2RR efficiency by surveying 
PCET reagents that minimize the thermochemical driving force for this 
6H+/6e− reaction77,116–118. In 2017, Peters and co-workers recognized that 
some of the most active molecular N2RR catalysts use Cp2Co or Cp*2Co 
as 1e− reductants in the presence of strong acid to generate NH3 and/or  
N2H4 (refs. 111,112,119–121) and postulated that metallocenes might 
play a chemically non-innocent role122. Compelling DFT calculations 
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and electron paramagnetic resonance (EPR) experiments revealed that 
the Cp* ring of Cp*2Co is protonated in the exo-position to generate 
[(exo-η4-C5Me5H)CoCp*]+ (28), priming it to deliver H• via PCET during 
N2 reduction catalysed by iron boratrane complex [P3

BFe]122 (Fig. 5a). 
The proclivity for C–H bond scission in complex 28 is rationalized by 
its low bond dissociation free energy (BDFE(CH) < 29 kcal mol−1)123, 
driven by re-aromatization of the ring system to the η5-C5Me5 state 
and subsequent generation of the diamagnetic [Cp*2Co]+. DFT calcula-
tions further support this hypothesis by revealing that the calculated  
N–H bond dissociation enthalpy for an early-stage N2 reduction 
intermediate is higher (47 kcal mol−1)122 than the measured C–H bond 
dissociation enthalpy of complex 28 (< 29 kcal mol−1)123. Thus, Cp* ring 
protonation was proposed to be an essential component of delivering 
reactive H• moieties during N2RR.

In a separate report, thorough catalytic studies were undertaken 
using Cp*2Co, demonstrating a strong correlation between N2RR activ-
ity, acidity of the exogenous cationic acid and its counteranion124.  
Freeze-quench Mössbauer spectra containing stoichiometric 
amounts of the acid 2,6-dichloroanilinium trifluoromethanesulfonate 
([2,6-ClPhNH3][OTf]) with the early-stage N2-fixed intermediate [P3

BFe-
N≡N]− did not furnish the known protonation product [P3

BFe-NNH2]+ 
(ref. 125), suggesting that Cp*2Co and acid must react with one another 
before productive N2RR can occur. DFT calculations revealed a cor-
relation between the equilibrium constant (Keq) for the formation of 
complex 28 and the pKa of the exogenous acid used124 (Fig. 4b). In all 
the three instances, protonation is kinetically facile but stronger acids 
increase the concentration of available [(exo-η4-C5Me5H)CoCp*]+ (28) 

in solution through a computed transition state involving hydrogen-
bonded [OTf]−. Therefore, the observed pKa effects on catalytic activ-
ity largely arise from the differences in concentration of protonated 
metallocene relative to Fe catalyst, with higher concentrations of 
complex 28 enhancing the rate of N2RR. To further show the critical role 
of metallocene-mediated N2RR, cyclic voltammetry (CV) studies with 
[P3

BFe], exogenous acid and [Cp*2Co]+ revealed a current enhancement 
in comparison to CVs without added metallocene. Controlled potential 
electrolysis experiments with added metallocene also showed a mod-
est increase in overall NH3 yield, verifying that [P3

BFe] is a bona fide 
molecular electrocatalyst for the reduction of N2 to NH3 in the presence 
of exogenous acid and a Cp*2Co PCET mediator.

Unequivocal spectroscopic evidence for the formation of com-
plex 28 was later reported, in which both the endo-isomers and exo-
isomers were thoroughly characterized using pulse EPR spectroscopic 
techniques123. Protonating Cp*2Co with a sterically unencumbered 
strong acid such as HOTf at low temperature generated a 10:1 mixture of 
endo-isomers and exo-isomers, with computations revealing the latter 
being more thermochemically stable by approximately 2 kcal mol−1. 
By choosing a bulkier acid, the endo/exo ratio can become 3:10, as meas-
ured by X-band EPR spectroscopy. On the basis of steric arguments, the 
exo-isomer is the only one considered to be active for PCET. Although 
the X-ray structure of [(exo-η4-C5Me5H)CoCp*]+ (28) remains elusive, the  
reduction product (exo-η4-C5Me5H)CoCp* (29) can be isolated 
and structurally characterized (Fig. 4c). By using thermochemical 
free energy relationships, the C–H BDFE and hydride donor ability 
(hydricity) of complexes 28 and 29 were experimentally determined, 
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respectively, validating the exceptionally weak C–H BDFE of the radical 
cation (<29 kcal mol−1) and potent hydride donor ability of the neutral 
adduct (<41 kcal mol−1). Therefore, it was posited that complex 29 may 
also serve as a hydride donor during catalytic N2RR, delivering a hydride 
equivalent to the proximal N atom of a coordinated diazenido ligand.

Although the unique reactivity of Cp*2Co has been thoroughly 
demonstrated through the vignette of N2RR catalysed by [P3

BFe], it is 
not a general-purpose PCET/hydride donor for N2RR. An isostructural 
silatrane ligand that uses an Si anchor in place of boron is inactive 
for N2RR catalysis under otherwise identical reaction conditions122. 
Recently, Peters and co-workers126 reported a more generally compat-
ible class of amine-functionalized Cp2Co mediators that deliver H• via 
N–H bond cleavage for electrocatalytic N2RR. In summary, redox-active 
metallocene mediators have proven to be successful at delivering 
potent H• to inert substrates such as N2 via C–H or N–H bond activation 
pathways.

Stoichiometric hydrogen atom and hydride transfer reactions
The FeIII hydride complex [Cp*Fe(dppe)H]+ (30; 1,2-bis(diphenyl
phosphino)ethane (dppe)) was isolated in 1992 via oxidation of the 
neutral 18e− complex Cp*Fe(dppe)H using Fc+ (ref. 127) (Fig. 6). After 
X-ray structural characterization and analysis via EPR and 57Fe Möss-
bauer spectroscopies, a follow-up report reacted complex 30 with 
CO, which was proposed to generate the formally 19e− intermediate 
[Cp*FeH(dppe)(CO)]+ (ref. 128). Reduction of ‘[Cp*FeH(dppe)(CO)]+’ 

with Cp2Co furnishes the stable 18e− complex (endo-η4-C5Me5H)
Fe(dppe)CO (31), which was further characterized by 1H and 31P NMR 
spectroscopy. Re-examination of the X-band EPR spectra of the puta-
tive [Cp*FeH(dppe)(CO)]+, including additional pulse EPR spectro-
scopic data, determined that the 1H and 31P hyperfine parameters differ 
significantly from terminal transition metal hydrides and the com-
plex is actually [(endo-η4-C5Me5H)FeI(dppe)CO]+ (ref. 129) (32) (Fig. 6). 
This structural assignment was also confirmed by X-ray crystallogra-
phy. Notably, warming a sample of complex 32 to room temperature 
under a CO atmosphere yields the complex [Cp*Fe(dppe)CO]+ (33) and 
releases 0.5 equivalents of H2 in nearly quantitative yield, suggesting 
that the C–H BDFE of this paramagnetic ring-activated species is lower 
than the driving force for homolytic H2 formation (ΔG°(1/2 H2 → H•)  
= 52 kcal mol−1)130. Consistent with this interpretation, thermochemi-
cal analysis of complex 32 indicates that the C–H BDFE is less than 
36 kcal mol−1. Interestingly, complex 31 is able to transfer a hydride to 
CO2, indicating that its hydricity must be less than the hydricity of the 
formate anion (HCOO−; approximately 44 kcal mol−1 in acetonitrile)13,131.

The diamagnetic cation 33 was reacted with LiHBEt3 to give  
the exo-isomer (exo-η4-C5Me5H)FeI(dppe)CO (34), consistent with the 
selectivity observed for nucleophilic addition reactions on coordina-
tively saturated complexes described earlier (1–5) (Fig. 2). Oxidation 
of 34 with ferrocenium (Fc+) generated the exo-substituted radical 
cation [(exo-η4-C5Me5H)FeI(dppe)CO]+ (35), whose low computed BDFE 
(25 kcal mol−1) was also consistent with H2 release upon warming (Fig. 6). 
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To demonstrate the utility of transferring reactive hydrogen atoms to 
other substrates, exposure of complexes 32 or 35 to azobenzene at 
−78 °C generated 1,2-diphenylhydrazine (BDFE(N–H)avg = 65 kcal mol−1) 
in 25% and 78% yield, respectively (Fig. 6, bottom). The only observ-
able by-products are H2 and complex 33 and using ring-deuterated 
Fe analogues (η4-C5Me5D) resulted in the formation of PhDN–NDPh. 
Although these systems suffer from thermal instability and deleteri-
ous H2 formation, the incredibly weak C–H bonds of metalloradicals 
32 and 35 demonstrated that PCET chemistry is possible with group 8 
piano-stool complexes.

In contrast to using H+ and H• transfer for H2 production and N2 
reduction described in the previous sections, organic and inorganic 
sources of hydride (H−) can also have a key role in catalysis, chemical 
energy storage and chemical energy conversion8. Concurrent with 
the 2016 discovery that protonation of Cp*RhI(bpy) (15) generated 
(endo-η4-C5Me5H)RhIBr(bpy) (16), Miller and co-workers132 reported 
the preparation and structural elucidation of (endo-η4-C5Me5H)
RhICl(bpy) (37) via two different synthetic pathways starting from 
[Cp*RhIIICl(bpy)]+ (36) (Fig. 7a). The aqueous hydricity of complex 37 
was found to be 23 kcal mol−1, enabling stoichiometric hydride transfer 
to the enzyme cofactor NAD+ (ΔGH

− = 29 kcal mol−1), regenerating com-
plex 36 and producing 1,4-NADH. Thus, direct hydride transfer from 
an endo-η4-C5Me5H moiety is possible on thermochemical grounds in 
bio-organometallic 1,4-NADH regeneration catalysis. However, recent 
DFT calculations on hydride transfer from [exo-(η4-C5Me5H)RhI(bpy)]+ 

(17) (Fig. 3) to NAD+ suggest that direct H− transfer from the CpH ring 
is kinetically disfavoured over H− transfer from the transition metal 
hydride complex (18)133.

Stoichiometric proton-coupled electron transfer reactions
In general, transition metal hydride intermediates are frequently 
observed and/or proposed in chemical energy conversion reactions 
involving H2 and CO2. As demonstrated through piano-stool Fe 
complexes (Figs.  4,6), PCET processes containing Cp ligands 
can involve the interconversion of η4-C5Me5H moieties and metal 
hydride intermediates. To better understand the relationship between 
the kinetics of Co-H formation and the strength of exogenous acid in 
[CpCo(dxpe)(NCMe)]2+ (38; dxpe = dppe, depe, dcpe), Dempsey and 
co-workers investigated the proton transfer kinetics under an applied 
cathodic bias via CV134 (Fig. 7b). The coordinated acetonitrile ligand 
dissociated after 2e− reduction and in the presence of acid, the CoH 
complex 41 is generated. To probe this mechanism further, the 2e− 
reduction product CoICp(dppe) (39) was reacted with weak and 
strong deuterated acids, and deuterium incorporation is observed 
at both the Cp ring and CoH positions of complex 41. Therefore, 
deuteration of the Cp ring likely occurs through endo-protonation 
or exo-protonation to generate complex 40 before formation of 
complex 41. Ground-state computational data indicate that initial Cp 
ligand protonation followed by ligand-to-metal proton migration are 
exothermic (ΔG° ≅ −20 kcal mol−1), strongly disfavouring metal–ligand 
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tautomerization equilibria. Thus, protonation may be indiscriminate 
to exo versus endo attack, which would support the observed CoD/
CpD isotope distribution (Fig. 7b). These data also suggest that there 
is a substantially larger kinetic barrier for direct protonation of the 
metal centre, contrasting with the kinetically preferred direct metal 
protonation pathway for Rh complex 18 described earlier95. Nonethe-
less, a seemingly ‘simple’ PCET reaction with an Earth-abundant metal 
proceeds through a series of unexpected elementary reaction steps 
involving Cp ring activation.

Conclusions and future outlook
The Cp ligand is a ubiquitous ancillary ligand in transition metal chem-
istry. In certain cases, however, the contiguous carbon ring is suscep-
tible to attack by nucleophiles, electrophiles or radicals. Addition of 
such functional groups can occur in the exo-position or endo-position 
relative to the metal centre and breaks the aromaticity of the η5-Cp 
ring, generating an η4-diene (η4-CpH) ligand coordinated to a transi-
tion metal. Although largely considered a laboratory curiosity in the 
decades following the discovery of ferrocene, developments since 
2016 have revealed that the chemically non-innocent character of Cp, 
Cp* and other Cp derivatives can be essential to the electrocatalytic 
reduction of H+ to H2, catalytic PCET of H• to N2 and transfer of H•/H− 
to organic substrates. Carbon–hydrogen bond strength analyses via 
experiment and/or computation have emerged as indispensable tools 
to rationalize H+, H• and H− movement with ring-activated complexes, 
enabling the measurement of C−H acidity, BDFE and hydricity, respec-
tively. Thus, the phenomenon of Cp ring activation is more general 
than initially thought, and practitioners are encouraged to (re)con-
sider pathways involving ring activation of Cp ligands, especially when 
proton, hydrogen atom or hydride transfer is invoked to rationalize 
reaction outcomes.

Ground-state thermochemical measurements have allowed 
researchers to rationally design Cp/CpH-mediated catalysts with a suf-
ficient driving force for sustainable fuel-forming reactions; however, 
these results do not provide kinetic information for the making and 
breaking of ligand-based C–H bonds. It has been recently suggested 
that slow Cp ring protonation with Cp2Co is governed by the high 
ligand reorganization energy associated with a change from sp2 to sp3 
hybridization upon addition of H+ (ref. 135). Although this may be true 
for Cp2Co, a key challenge moving forward in this field will be to under-
stand the requirements for promoting rapid H+/H•/H− transfer via Cp 
ring activation by exploring variations in metal centre (precious versus 
Earth abundant), overall spin state (paired versus unpaired electrons), 
ancillary ligand environment (metallocene versus piano-stool struc-
ture) and Cp ligand substitution pattern (Cp, Cp* and other derivatives). 
Another key challenge for expanding the vistas of ring-activated CpH 
complexes will be to avoid H2 production via homolytic or heterolytic 
H–H bond formation pathways when the highly reactive H•/H− moiety 
is intended for delivery to other substrates of interest. Overcoming 
these challenges, among others, will be achieved by surveying kinetic 
and thermodynamic landscapes for the myriad of other Cp-containing 
complexes awaiting deeper exploration.

Published online: xx xx xxxx
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