Placement Initialization via Sequential Subspace Optimization
with Sphere Constraints

Pengwen Chen
pengwen@email.nchu.edu.tw
National Chung Hsing University

Chester Holtz"
chholtz@eng.ucsd.edu
University of California San Diego

ABSTRACT

State-of-the-art analytical placement algorithms for VLSI designs
rely on solving nonlinear programs to minimize wirelength and cell
congestion. As a consequence, the quality of solutions produced us-
ing these algorithms crucially depends on the initial cell coordinates.
In this work, we reduce the problem of finding wirelength-minimal
initial layouts subject to density and fixed-macro constraints to
a Quadratically Constrained Quadratic Program (QCQP). We ad-
ditionally propose an efficient sequential quadratic programming
algorithm to recover a block-globally optimal solution and a sub-
space method to reduce the complexity of problem. We extend our
formulation to facilitate direct minimization of the Half-Perimeter
Wirelength (HPWL) by showing that a corresponding solution can
be derived by solving a sequence of reweighted quadratic programs.
Critically, our method is parameter-free, i.e. involves no hyperpa-
rameters to tune. We demonstrate that incorporating initial layouts
produced by our algorithm with a global analytical placer results in
improvements of up to 4.76% in post-detailed-placement wirelength
on the ISPD’05 benchmark suite. Our code is available on github.

CCS CONCEPTS

« Hardware — Very large scale integration design.

KEYWORDS
global placement, VLSI, optimization

ACM Reference Format:

Pengwen Chen, Chung-Kuan Cheng, Albert Chern, Chester Holtz, Aoxi Li,
and Yucheng Wang. 2023. Placement Initialization via Sequential Subspace
Optimization with Sphere Constraints. In Proceedings of the 2023 Interna-
tional Symposium on Physical Design (ISPD °23), March 26-29, 2023, Virtual
Event, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3569052.3571877

*Corresponding author
!https://github.com/choltz95/laplacian-eigenmaps-revisited

ISPD °23, March 26-29, 2023, Virtual Event, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9978-4/23/03.
https://doi.org/10.1145/3569052.3571877

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Chung-Kuan Cheng
ckcheng@eng.ucsd.edu
University of California San Diego

Aoxi Li
aoli@ucsd.edu
University of California San Diego

133

Albert Chern
alchern@eng.ucsd.edu
University of California San Diego

Yucheng Wang
yuwl32@ucsd.edu
University of California San Diego

1 INTRODUCTION

Given a circuit and a region, the placement problem is to assign
each circuit module to a specific location in the region. Most state-
of-the-art layout algorithms for large-scale VLSI placement rely on
solving non-linear problems using iterative first-order optimization
algorithms [7, 16-19]. As a consequence, there are typically few
guarantees regarding the convergence of these methods to optimal,
or even good, coordinate assignments in a limited time frame and
initialization of the variables plays a critical role [18]. Despite the
importance of initialization, existing methods for placement ini-
tialization are primarily based on naive heuristics—including min-
imizing wirelength without second-order constraints [16, 18, 19],
uniformly assigning the cell coordinates to the origin, or assigning
coordinates to small random values [12, 17].
In this work, we address the following question:

Is it possible to improve upon random initializa-
tion for large-scale placement engines?

We investigate a novel fixed node-aware formulation and describe
an efficient algorithm to solve it. More concretely, we formulate ini-
tialization as a Quadratically Constrained Quadratic Optimization
Problem (QCQP) with sphere constraints. Our formulation is aware
of fixed nodes via a decomposition of the netlist-graph. Although
the QCQP is non-convex, we propose an algorithm that can recover
local and block-globally optimal (under certain assumptions) solu-
tions. We validate our technique by demonstrating scalability and
convergence to superior post-detailed placement solutions com-
pared to min-wirelength and random initializations using an open
source placement flow [12, 17]. Furthermore, we propose a statis-
tical test to quantify the preservation of local structures derived
from the initialization through global placement.

1.1 Contributions

Our contributions are summarized below.

(1) We introduce a novel formulation of global placement ini-
tialization as a sphere-constrained quadratic programming
problem, an extension of a classic Rayleigh Quotient prob-
lem [13] and devise a novel algorithm to solve it.

(2) We propose a way to exploit the structure of the QCQP to
improve the efficiency of optimization by iteratively solving
the problem in a sequence of carefully chosen subspaces.

(3) We adapt our approach via iterative reweighting to facilitate
direct minimization of Half-Perimeter Wirelength (HPWL).

ISPD °23, March 26-29, 2023, Virtual Event, USA
Design Design
files Layout
Alg. 1&2 ‘
Init L, X, placement Global Detailed
and Eo initial- placement placement

ization

Figure 1: Placement flow. Our proposed method is a “place-
ment initialization” stage, highlighted in yellow.
(4) We perform a comparison between various initialization
schemes for analytic placement with fixed macros.

In Sec. 2, we introduce the global placement problem and a gen-
eral framework for generating initial layouts (denoted in yellow
in Fig. 1). In Sec. 3, we introduce our technique for solving the
proposed QCQP and an extension (iterative reweighting) to facili-
tate direct minimization of HPWL (denoted in Fig. 3). In Sec. 4, we
validate our approach on a standard set of benchmarks. In Sec. 5,
we conclude and highlight potential avenues for future research.

2 PRELIMINARIES

Number of components 1, Nfrees Nixed € R+
Placement coordinates x,y € R"?
Adjacency, Degree, & Laplacian matrices A,D,L € R™Xn
Linear offset terms b,d e R",Ey = [b : d] € R™?
Cell volumes v € R, G = diag(v) € R}*"
Cell area constraints ci,i € {1,2,3,4,5} e Ry
Lagrange multipliers A € R?X2
Newton update direction Z e R™2

Figure 2: Notation

Let x,y € R" be vectors corresponding to the coordinates of n
components such that the i-th component has coordinates encoded
in the i-th row of [x : y]; [x : y];. We aim to assign coordinates so
that the resulting layout has small cumulative wirelength.

2.1 Global analytical placement

Conventional global placement strategies minimize wirelength sub-
ject to density constraints. Density constraints are usually inte-
grated into the objective to yield an unconstrained relaxation [7, 17]:

min(Zeeg Wi(e:x,y) + AD(x,) (1)

where & denotes a set of given nets and WI(+;) is a function that
takes a net instance e as input and returns the cumulative wire-
length and D(-) is a density penalty. In the context of VLSI place-
ment, the wirelength of a net is commonly modelled with its Half-
Perimeter Wirelength (HPWL) or a smooth alternative and D is a
smooth density penalty [18].

A typical approach is to represent individual nets as rectangles
and to minimize the sum-perimeters over all nets. Repulsion is
often applied between overlapping nodes to reduce density. For
example, [17] adopt the smooth and differentiable weighted-average

134

Pengwen Chen et al.

wirelength (WL) model for the wirelength cost [15]. The horizontal
net-wirelength for net e is given by
Sicexiop (%) Ticexiexp (-2
2ice exp(%) ice €XP (_%
where c is a parameter that controls the smoothness and approxi-

mation error with respect to the HPWL of net e (i.e. |x; — x;| for
two-pin net e = (i, j)). The wirelength of e is:

wil =

Wl(e;x,y) = Wl,(ce) + Wl!(/e)

To model the density term, the placement area is divided into B
bins, and the placer seeks to equalize the overlap at each bin via
an analogy to an electrostatic system, with cells being modeled as
charges, density penalty modeled as potential energy, and density
gradient modeled as the electric field.

Overlap constraints are satisfied over the placement process by
gradually increasing A, usually at the cost of increased wirelength.
Current state-of-the-art VLSI placement algorithms [7, 17, 18] solve
Problem 1 in this manner.

2.2 QCQP-based layouts

In this section, we describe a basic formulation for spectral layouts
for global pre-placements, or initializations. Additionally, we more
generally motivate our adoption of the QCQP framework for global
placement initialization.

2.2.1 Formulation. The VLSI placement problem is reduced to a
graph layout problem by first collapsing the netlist hypergraph to a
component graph via various models (e.g. clique, star, etc.) [23]. A
matrix-representation of the graph connectivity—the graph Lapla-
cian is then derived. The solution to the associated eigenvalue
problem approximates the solution to the sparsest cut problem
[2, 14], and clusters arising out of the vertex-projection into the
space spanned by the first nontrivial eigenvalues correspond highly
connected components of the graph.

More concretely, we solve a variant of the following problem
where x and y are cell coordinates, c; are constants, v is a vector
of cell areas, and L is the graph Laplacian; L = D — A, where Aisa
(weighted) adjacency matrix, and D is the associated degree matrix.

min x"Lx+y Ly sto'x=0, 0Ty =0,
x,
T)
x Gy=c3

x'Gx = c1, yTGy = ¢y,

Typically, G = diag(v). In general, one can recover a reduction
to the case G = I via the normalization [x,y] <« GY/2[x, yl,
L « G~ 121G=1/2 and [0,b,d] « G_l/z[v, b, d]. Intuitively, the
objective is to minimize the weighted squared wirelength of a 2D
placement. The linear constraints characterize an origin (i.e. remove
translational invariance) and the quadratic constraints spread the
layout evenly over the x and y axes (i.e. ensure that the embedding
has nonzero constant variance).

2.2.2 Fixed node constraints. Many layouts involve constraints on a
subset of the cells—typically large macros and primary input/output
pads. We show how such fixed node constraints naturally lead to
a decomposition of the x, y and L terms in Eq. 2. We denote the
coordinates of the fixed nodes x1, y;. Likewise, let the movable
nodes be x7, y2 Then, we can express x, y, and L and the parameters

Placement Initialization via Sequential Subspace Optimization with Sphere Constraints

v and G in terms of these indices: L = [Ei E;], with x; € RMixed

Xy € Rnfree’ LZZ e Rnfreexnfree, and le c Rnfreexnﬁxed. x = [xla xZ]T
(likewise for y). By considering fixed-node terms (i.e. x1 and y1) as
constants, Problem 2 may be re-written (ignoring constants):

)I;IZli}Il;x;—ngxz + y;ngyz+ ZbTxg + 2dTy2
s.t. vaxg =c, U;—yz = ¢, (3)
xg %z = ¢, Ya Y2 = ¢4 X3 Y2 =
with b = Ly2x1,d = L12y1. In Section 3.1, we derive c;, i=1,23,45.

2.2.3 Motivation and high-level flow. Our motivation for express-
ing initializations to Prob. 1 with Prob. 2—i.e. as a QCQP with
sphere constraints—is derived from two observations assuming
graph-models of netlists: (1.) if the WI(-) corresponds to the squared
wirelength, its minimization is equivalent to minimizing a quadratic
form defined on a graph Laplacian. And if the WI(-) corresponds to
the half-perimeter wirelength, its minimization may be expressed
as a sequence of quadratic problems of the same form as Prob. 2. For
example, we describe such a method in Sec. 3. (2.) a quadratic equal-
ity—a sphere —constraint implies constant variance and satisfaction
of density-constraints assuming a uniform grid.
We highlight the high-level flow of our framework in Fig. 3:

(1) Eigenvector initialization: The eigenvectors of Ly, which
correspond to the minimum-squared wirelength solution are
computed (Sec. 3.1, Eq. 4).

(2) Eigenvector projection: These eigenvectors are projected

to satisfy the linear and quadratic constraints (Sec. 3.1, Prop. 2).

(3) Eigenvector rotation: An orthogonal transform is applied
to the projected eigenvectors to minimize the distance be-
tween free and fixed components (Sec. 3.1, Prop. 3).

(4) Sequential subspace method (SSM): From these coor-
dinates, an iterative projected-subspace-descent algorithm
is applied which results in convergence to a local / block-
globally optimal solution (Sec. 3.2, Sec. 3.3).

(5) Iterative net reweighting: During iterative descent, L is ad-
justed (reweighted) in order to find a min-HPWL coordinate
assignment (Sec. 3.4).

In the following section, we describe a sequential subspace method
for solving Prob. 3. We then show that one can easily adapt this
method to facilitate direct minimization of HPWL.

3 CONSTRAINED SPECTRAL LAYOUTS

In this section, we describe a method to compute the spectrum
of the matrix Lyy. The eigenvectors corresponding to the smallest
nontrivial eigenvalues are then projected and transformed to be
used as a candidate solution to Prob. 3 and iteratively improved.

3.1 Eigenvector method and projection

We start by re-writing the objective defined in Eq. 3 (for brevity,
writing Lps as “L” and vy as v). Let Xo = [x2,y2] and Eg = [b,d] €
RMreeX2 and X7 = [x1, 1] € R™MixedX2,

Let [c},c,]T = —r, where r := (0] X1)T. To eliminate the linear
T we introduce two adjustments: first, let

(X)i = (X2); + %rT denote a row-wise centering transformation

constraint v ' Xy = —r

135

ISPD °23, March 26-29, 2023, Virtual Event, USA

() SSM Initialization

Initialization (2) (3)
G(S“:- :i‘_”d Projection Rotation
eneralize (Sec. 3.3) (Sec. 3.3)

eigenvec-
tors of PLP

SQP
(Sec. 3.3):
Solve
Prob. 4 in
subspace

SSM
(Sec. 3.3):
Calculate

subspace S

(5)
Reweight
(Sec. 3.3):
Minimize

(4.) SSM HPWL

Figure 3: QCQP placement initialization with reweighting.

with respect to the fixed nodes, where w is a scale factor propor-
tional to vz. This yields the constraint o7 X = 0 and implies the
quadratic constraint
e] e e T 1+

c=|de]=l1a8]-xx-—r.
Second, assuming that v is normalized to be a unit vector, let P =
I— 00" be the projection onto the subspace orthogonal to vector
v € RMre e, 0" (PX) = [0,0]. Without loss of generality, replacing
Ey with P(Ey — Lﬁlr-r), we have v Ey = [0, 0].

n}}n{F (X) = tr(XT (PLPX + 2Ey))} 4

subject to X "X = C, We first address this problem in three stages:

(1.) by first solving the canonical eigenvalue problem miny tr(X T PLPX)
subject to the constraint XX = I, (2.) invoking a projection to
resolve the second order constraint X "X = C, (3.) appropriately
transforming the solution so that 2X T PEy is reduced.

Stage 1. First, the eigenvectors of PLP corresponding to the two
smallest nontrivial eigenvalues are computed. While L may be ex-
tremely sparse, facilitating the application of sparse eigenvector
algorithms, PLP may be prohibitively dense. To address this, we
adapt the Rayleigh Quotient Iteration method which exclusively re-
lies on matrix-vector multiplications, and the computation of L™1u
which can be done efficiently using iterative methods (e.g. Conju-
gate Gradient). At a high level, the method proceeds by repeating
the following updates on vectors u:

Ug—1 = Pric_1/1|Pri_4l| ©)
Solve Pry. from PLPry = up_, (6)

To solve for ry in the second part, we state the following result,
which eliminates the need to compute (PLP)~!:

PROPOSITION 1 (PSUDO-INVERSE OF PL™1P). LetP =I—uo". Let
re = {PL™'P} up_,. Then, derive projection of ry, i.e.

T
Prp = {PL7'PYlu_y = (1= 2L My, 0=L"0
0'v

ISPD °23, March 26-29, 2023, Virtual Event, USA

Once the smallest eigenvector w is obtained, we can proceed to
compute the eigenvector of PLP corresponding to the subsequent
eigenvalue using the same approach with a minor adjustment: re-
placing P=1-00" withP=1-00" —ww'.

Stage 2. Given a set of candidate coordinates, we apply the pro-
jection []4 to resolve the quadratic constraints according to the
following proposition:

PROPOSITION 2 (PROJECTION). Let Xq be an intermediate solution
and Cy := X[Xy and C > 0.

The projection of X1, [X1]+ = argn}}n{F(X) =X - X113
= tr(C) + tr(C1) — 2max(X, X1)}

s.t. XTX = C. Take the Singular Value Decomposition (SVD) of
1/2,1/2 _ ~1/2,1/2

cize usvT = cte)c

Then the minimizer X = [X1]4+ is given by

X = x;¢; PuvTel?)

Stage 3. We apply an orthogonal transformation (i.e. a rotation /
reflection) which preserves the eigenvector structure while mini-
mizing the euclidean distance between fixed pins and free cells.

PrROPOSITION 3 (ORTHOGONAL TRANSFORM OF X). Assume C =
I. Note the first term of F satisfies the invariance tr(X " PLPX) =
tr(XT PLPX), where X = XQ for any orthogonal Q € R**2. X is a lo-
cal minimizer if—X " Eo > 0 and symmetric. Take the SVD of X "Eg =
UEDEV];.'—. LetQ = —UEVE. Then, tr((XQ)TEy) = —tr(Dg) < 0.

3.2 Sequential Quadratic Programming method

In this section, we introduce SQP, a key component of SSM. The
framework of SQP is applied to iteratively compute search direc-
tions to improve the projected and transformed eigenvectors with
respect to the quadratic objective while maintaining satisfication of
all constraints (Problem 4). We define the Lagrangian of Problem 4
by introducing multipliers A € R2%2,

L(X,A) = (X,PLPX + 2Ey) + (A, XX - C) (8)
The derivative of the Lagrangian characterizes the first order con-

ditions (FOC) satisfied by an optimal X:
PLPX =-Ey—-XA, X'X=C 9)

To find a solution, we derive Newton directions A and Z associated
with A and X. Following the principal of SQP, X « [X + aZ]4+ and
A «— A+ al according to the linearization of the FOC:

(PLPZ + ZA) + XA = E := —Ey — (PLPX + XA)
XTZ=0
PROPOSITION 4 (NEWTON DIRECTION OF THE LAGRANGIAN EQ. 8).

Assume A symmetric and PZ = Z, i.e,v'Z = 0" X = [0,0]. The
solution (Z, A) is

() = (XT@+ WD) 7X@+ WD) TUE;
Zj = P(L+W;D) ™' P{=X(A); + E;}

(10)
(11)

136

Pengwen Chen et al.

010

Figure 4: Eigenvector method and projection. (a): Eigenvec-
tors of full Laplacian L (b): Eigenvectors of reduced Laplacian
L, ignorant of fixed node (denoted in red) (c): Projected eigen-
vectors of L (Prop. 1) (note the axis scale). (d): Orthogonal
transform applied to projected eigenvectors (Prop. 2).

where W is given by the eigenvector decomposition of A: A = UWU 71,
W = diag(Wh, Wa) for two eigenvalues Wy, W of A.

Algorithm 1 SQP Update

Input: Partial Laplacian L, linear objective term Ey, intermediate
solution X, intermediate Lagrangian multipliers A
Output: j — th columns of Newton updates—A j, Z;
1: function SQP(L, A, Ey, X, v)
2: W « eigvals(A)
3 LPX « L(X - 0(¢7X))
4 PLPX « LPX — 0(0"LPX)
5. Ee —Ey— (LPX +XL)
6
7
8
9

Lw, « L+ W1

Tr-1 -17-1
Aj— (X ijX) LWjE >Eq. 10
T —XAj+E
: RHS « T — (To)o"
10: Zj — L;;jRHs - v(uTL;VljRHS) > Eq. 11

11: return Zj, A
12: end function

Applying the projection operation []+ onto the manifold X "X = C,
we generate {X = Xj.,k =1,2,3,...} X1 = [X + aZ]+ where a
is chosen to decrease the cost.

Alg. 1 presents the detailed steps involved in the computation of
the Newton directions, i.e. Egs. 10, & 11 defined in Prop. 4. In Sec. 3.5,
we refer to Alg. 1 in the context of evaluating computational cost.

Placement Initialization via Sequential Subspace Optimization with Sphere Constraints

3.3 Sequential subspace optimization

We introduce a Sequential Subspace Method (SSM) in Alg. 2 to
address the scalability of SQP. Inspired by the 1-dimensional algo-
rithm of [13], instead of solving Problem 4 directly, we instead solve
a sequence of quadratic programs in subspaces of much smaller
dimension relative to the size of the graph.

Despite the sparsity of L, repeatedly computing inverse-vector
products involving L + W;I in Eq. 10 and Eq. 11 may computation-
ally bottleneck the proposed method for large benchmarks. SSM
proceeds by iterating between the following three steps:

(1) Compute the Newton direction Z = SQP(L, A, Eo, X) using

Eq. 11 and Alg.1, line 5. Let V be the orthogonal matrix
consisting of columns in S (Alg.2, lines 6 and 7), where

S =span(PX, Z,v, LPX + Ep).

(2) SSM generates an approximation of (X, A) and an approxi-
mation of the smallest pair of eigenvalues o /eigenvectors v
of L in the subspace S,

[X. A 0,0] = SSM(L, Eo, S)
consider the approximation X = VX for some X. Compute

min Fg := min F(X; B, V" Eg)
X X

(3) The terms L and Ej are reweighted according to Sec. 3.4 such
that the objective remains a tight upper-bound on the HPWL
(Alg.1, line 10).

It is interesting to note the connection with graph coarsening meth-
ods. The orthogonal matrix V can be interpreted as a graph coars-
ening transform, and its inverse as a graph lifting transform—by
reducing the size of the graph, we achieve significant improvements
in scalability without sacrificing solution quality. Future work may
investigate this alternative interpretation of SSM.

Algorithm 2 Sequential Subspace Minimization

Input: Partial Laplacian matrix L, unit vector v maximum
iterations n
Output: Placement coordinates X
1: function ssM(A4, v)
2: L—D-A > Compute the graph Laplacian
3: Initialize X to [U; : Uz], where U; is the eigenvector of PLP
corresponding to the i-th smallest nonzero eigenvalue (Sec 3.1).

4 while ¢ < n do

5: Z «— SQP(L,A,Ey,X,v) » Compute Z using Eq. 11 & Alg. 2
6: S « span(X,Z, v, AX + Ey)

7 V < QR(col(S))

8: B« VTLV

9: X « minx F(X;B,VTEy) » Solve Problem 4 in the subspace
10: L,Ey « reweight(X)

11: t—1t+1

12: end while

13: return VT X > Return lifted coordinates

14: end function

3.4 Minimization of HPWL via re-weighting

In this section, we show how our method may be adapted to facili-
tate direct minimization of HPWL. A similar method was adopted by
the GORDIAN-L cell placement tool [1]. Inspired by asymptotically

137

ISPD °23, March 26-29, 2023, Virtual Event, USA

optimal algorithms for lasso-type regression problems [4, 5, 8, 24],
we solve an equivalent #; minimization problem by solving a se-
quence of re-weighted £, minimization problems. In particular, we
propose an analogous algorithm for the 2-dimensional case. Note
that we now consider the following problem:

D7 wijlx = xj1+ lyi = yj)

i,je&

(12)

Informally, the objective is upper bounded by the expression

1 1
§ 2 2
(ui,j|xi_xj| +f+vl’,j|yi_yj| +_)
i,je& bJ Oi.j

min max
u; ;>0 0; ;>0

Crucially, the equality holds if and only if u; ; = |x; — x;|~! and
vi,j = lyi — y;| 7! and implies a strategy for solving Prob. 12 that
involves Prob. 4 as a sub-problem:

(1) For each u > 0, v > 0, solve Prob. 12 with respect to x, y.
(2) For each x, y, solve Prob. 12 with respect to u, v.

vij = lyi —y;I™"
In practice, we alter the above algorithm in two ways: (1.) follow-

ing [1], a small adjustment to the denominator of each weight for
normalization and to address numerical instability in the situa-

tion where two nodes overlap—e.g., u; j = 1/(W/(x; — x;)? + f),

where ‘W is the width of the placement area (2.) instead of solv-
ing Prob. 12 (step (1.)) to convergence, we perform incremental
1-step updates—i.e., we perform re-weighting each iteration of SSM
and compute the subsequent subspace with respect to the new re-
weighted matrix L and associated Ey. While the concept of iterative
re-weighting for optimization has most commonly been applied to
1 and £ minimization problems, the framework is quite general
and a similar procedure motivates minimization of other kinds of
norms-based objectives. Future work includes investigating the effi-
cacy of this reweighting scheme for alternative norm-minimization
problems (e.g. robust p-norm minimization) in the context of layout.

-1
uij = |xi — x|,

3.5 Complexity analysis of QCQP initialization
In this section, we discuss the computational cost of our QCQP-
based method, which is dominated by the SQP routine to compute
the Newton directions. We claim the complexity of the QCQP place-
ment initialization is O(#iterations X Tinatrix), Where #iterations
is the number of SSM iterations, and Ty,trix is the complexity of
each call to a sparse matrix (i.e. Laplacian-like) solver. Although
fast, nearly linear-time solvers exist for solving Laplacian-like sys-
tems [22], we adopt the Jacobi-preconditioned conjugate gradient
method due to its simplicity and efficacy in practice.

Generic quadratic programs are NP-hard [21], i.e. it takes super-
polynomial time to solve QPs optimally. In the convex case, there
are polynomial time interior point algorithms [9]. Also, there are
approximation algorithms that return local solutions of nonconvex
QPs in polynomial time [13]. Our method falls into the category of
algorithms that guarantee local, or block-globally optimal solutions.

In particular, although the objective of our algorithm satisfies
the conditions for convexity, the addition of quadratic equality
constraints—sphere constraints—introduces a violation of the condi-
tions necessary for convexity. In practice, we find that our method

ISPD °23, March 26-29, 2023, Virtual Event, USA

is typically stable to perturbations of the initialization as long as
(1.) the layout is feasible and (2.) there are a sufficient number of
fixed pins (i.e. the norm of E is sufficiently large).

3.5.1 Computation of the descent direction Z. In Sec 3.3, we express
the Newton direction Z as the solution to the system character-
ized by the linearization of the first order optimality conditions.
Namely, within each iteration of our procedure, we compute a set
of Lagrangian multipliers as well as their update directions and the
update directions for X as defined in Eq. 10 and Eq. 11.

In Alg. 1, we present the detailed steps of our implementation.
The computations in lines 3-6 and 8-9 primarily involve vector-
vector and matrix-vector multiplications. Exploiting the sparsity
of L, both multiplications can be done in O(n). To compute the in-
verses in line 7, we first compute L;‘%E by solving the linear system
Lw;b = E for b. We solve XTL;\%X(SJ- = b for §;. Using conjugate
gradient, with an appropriate preconditioner K, the computation
of §; up to a residual € can be done in O(n+/k(KL) log(1/¢)) time.
The computation of Z; can be done in the same way.

In other words, the computation of the columns of the Lagrangian
multipliers (A); can be decomposed into (1.) the computation
of L + W;I twice in O(n) time (2.) its inverse three times (once
for each column of X and once for Ej) via conjugate gradient,
again in O(n+/k(KL)log(1/e)) time (3.) two left-multiplications
by XT in O(2n) time. To compute the columns of the Newton di-
rection; Zj, first note that P can be re-written as I — vo". Then,
(WiD™'P = (W;D)™! = (WD)~ Mo)oT.

In summary, the complexity of our method is dominated by the
computation of the SQP newton direction Z in line 5 of Alg. 2, due
to the necessity of computing three unique inverse-vector products
involving the Laplacian (lines 7 and 10 of Alg. 1).

4 EXPERIMENTS

In this section we describe a set of comprehensive experiments on
eight VLSI testcases from the ISPD’05 contest suite [20]. Summary
statistics of the testcases are presented in Table 1. Our numerical
experiments are aimed at establishing the efficacy of our method
with respect to post-detailed placement wirelength. We leverage the
DREAMPIlace [17] placement engine and substitute the heuristic
initialization schemes with our proposed method.

Table 1: Design characteristics. ngee =#Free cells and
ngxed =#Fixed pins. Max Deg, Avg Deg correspond to charac-
teristics of the graph-models of the design netlists.

Design #Free cells #Fixed pins #Nets Max Deg Avg Deg
adaptecl 211k 29k 221k 340 4.2
adaptec2 255k 21k 266k 153 3.9
adaptec3 452k 25k 467k 82 4.0
adaptec4 496k 29k 516k 171 3.7
bigbluel 278k 11k 284k 74 4.1
bigblue2 558k 141k 577k 260 3.5
bigblue3 558k 37k 1123k 91 3.4
bigblue4 2177k 170k 2230k 129 3.7

138

Pengwen Chen et al.

4.1 Experimental Setup

4.1.1 Algorithm parameters. To produce graph-layouts of IC netlists
we adopt a hybrid net model [23]—a combination of the clique and
star models. Each net is converted to a star or clique-graph depend-
ing on the size of the net—i.e. nets with three or fewer pins are

modeled as cliques and nets with four or more pins are modeled as

stars, with an associated free pseudo-pin variable introduced. To de-
termine v, we first consider the surface area of cells (i.e. v; = w; X h;,
where w; and h; is the width and height of cell i), scaled such that

the distribution is centered about 1. v is then normalized. The c;

are determined according to the free layout space.

4.1.2 Implementation details. We implemented our algorithms in
Python using the JAX framework [3] on a GCP c2-standard-8 ma-
chine with 8 virtual CPUs, 32 GB of memory, and a single Nvidia
Tesla K80 GPU. In particular, we exploit JAX’s capability to vec-
torize batched computation and compilation to XLA via the jit
decorator. XLA facilitates hardware acceleration and the entire
framework (initialization, global placement, detailed placement /
legalization) may exploit GPU and multi-GPU-based parallelism
without returning to a Python interpreter.

4.2 Results

4.2.1 Numerical results. We applied the proposed method to eight
benchmarks from the ISPD’05 contest suite [20] and measured the
cumulative HPWL post-detailed placement. Numerical results are
provided in Table 2. We find that origin initializations consistently
under-perform the other three methods, and that random and min-
wirelength exhibit comparable results. However, initialization us-
ing the vanilla projected eigenvectors of the reduced Laplacian [6]
result in superior HPWL—improvement between 1.0% and 3.0%
compared to the random and min-wirelength heuristics. Larger
gains are achieved when the initialization corresponds to the so-
lution to Prob. 3 using SSM without reweighting—between 1.58%
and 3.96%. Additionally, improvements in global placement runtime
correlate with better initialization. We provide the global placement
(DREAMPlace) runtime in Table 2. The GP runtime ranges from
62.42s to 1293.10s for the Projected Eigenvectors + SSM method,
which is comparable to or less than the other methods.

4.2.2 Reweighted SSM iterations and runtime. In Table 3, we demon-
strate that the directly minimizing HPWL via reweighting yields
still further improvements—between 1.68% and 4.76% compared to
random and min wirelength initializations. We note that reweight-
ing methods are typically slow to converge [10]. As a consequence,
instead of running our algorithm to convergence, we set a hard max-
imum limit of 100 reweighting / SSM steps. We additionally observe
a mean per-iteration wall-time of 26.34 — 322.32 and a significant
(p =0.99, p = 1.1e — 7) linear correlation with the number of free
cells. We plot this trend in Fig. 5b. It is likely that further gains
could be achieved with a direct method for HPWL minimization.
While the per-iteration runtime of our method is nontrivial, we
highlight three key points: (1.) the experiments imply that the pro-
posed QCQP formulation and method can consistently improve
placement quality. This evidence incentivises future work to en-
hance the efficiency of these algorithms—particularly Laplacian
solvers to drastically speed up turnaround time, (2.) few iterations

Placement Initialization via Sequential Subspace Optimization with Sphere Constraints

ISPD ’23, March 26-29, 2023, Virtual Event, USA

Table 2: Post-detailed place metrics. We report cumulative HPWL and runtime of global and detailed placement and legalization
using various initializations. We report the percent improvement over random init. in parenthesis. The best result is bolded.

Design Random Min-wirelength Projected Eigenvectors Projected Eigenvectors + SSM

HPWL GP runtime (s) | HPWL GP runtime (s) HPWL GP runtime (s) runtime (s) HPWL GP runtime (s) runtime / iter. (s)
adaptecl 73.24 84.39 73.23 74.31 70.36 (3.9%) 63.86 93.6 70.34 (3.96%) 62.42 26.34
adaptec2 82.51 189.46 82.24 172.91 81.68 (1.0%) 164.37 88.2 81.21 (1.58%) 162.49 22.56
adaptec3 | 194.12 314.54 | 193.87 309.88 | 189.13 (2.5%) 313.29 181.2 | 187.95 (3.18%) 314.01 57.78
adaptecd | 174.43 371.72 | 174.16 354.16 | 171.73 (1.5%) 372.14 168.6 | 171.62 (1.61%) 361.37 47.94
bigbluel 89.43 112.64 89.43 107.56 87.32 (2.3%) 94.11 124.2 87.04 (2.67%) 94.23 45.71
bigblue2 136.69 387.94 | 136.69 361.75 | 132.49 (3.0%) 327.14 150.6 | 131.37 (3.89%) 321.86 53.56
bigblue3 | 303.99 1064.63 | 303.99 1047.66 | 298.47 (1.8%) 847.03 369.0 | 297.31 (2.20%) 849.23 110.63
bigblue4 | 743.75 1534.11 | 743.75 1500.70 | 726.71 (2.2%) 1372.49 1539.6 | 724.78 (2.55%) 1293.10 322.32

Table 3: HPWL and structure-preservation test statistic for
Prob. 3 (min-squared objective) and Prob. 3 (HPWL objective).

Design Squared-wirelength Direct HPWL

HPWL z HPWL z
adaptecl | 7034 (3.96%) 0.131+0.046 | 70.12(4.26%) 0.139 + 0.052
adaptec2 81.21 (1.58%) 0.069 + 0.031 81.12 (1.68%) 0.073 + 0.038
adaptec3 | 187.95(3.18%) 0.072 +0.041 | 186.61(3.87%) 0.076 + 0.043
adaptec4 | 171.62 (1.61%) 0.126 +0.057 | 170.34 (2.34%) 0.131 £ 0.061
bigbluel 87.04 (2.67%) 0.063 + 0.039 85.72 (4.15%) 0.067 + 0.041
bigblue2 | 131.37 (3.89%) 0.079 +0.037 | 130.19 (4.76%) 0.081 + 0.044
bigblue3 297.31(2.2%) 0.074 +0.041 | 296.04 (2.61%) 0.074 + 0.043
bigblue4 | 724.78 (2.55%) 0.081 +0.053 | 723.77 (2.69%) 0.081 + 0.054
o ® © @ oo T e

(@ (b)

Figure 5: Eigenvector method and projection. (a): Mean nor-
malized decay in HPWL of adaptec cases. (b): Per-iteration
turnaround (seconds) vs. dimension of Ly;: # free cells + #
nets in 10% unit.

are needed to significantly improve the post-detailed placement
wirelength (as demonstrated in Fig. 5a), (3.) typical placement flows
usually involve multiple runs of the global and detailed placement
engine to validate different choices of hyperparameters, while our
parameter-free initializations need only be computed once.

In Fig. 5a, we demonstrate that relatively few iterations are
needed to improve the quality of post-detailed placement HPWL.
For each testcase, we apply 100 iterations of SSM. Global and de-
tailed placement is performed using each intermediate SSM iterate
as the initialization. The HPWL of the post-detailed placement is
measured and normalized to lie in the range [0, 1]. We plot the
distribution of normalized post-detailed placement HPWL with

139

the shaded region corresponding to 1 standard deviation in nor-
malized HPWL. We observe that across all testcases, 60% of the
improvement in post-detailed placement wirelength is achieved
within the first 5 — 10 iterations while roughly 80% of the improve-
ment is achieved after the first ~ 20 iterations. Additionally, we
emphasize that our method is parameter free and yields the same
solution across multiple runs. One may only need to generate a
single initialization to validate multiple choices of global / detailed
placement hyperparameters.

Figure 6: Adaptec3 layout. (a): Projected eigenvectors for seed
layout. Colors denote initial spatial partitions. (b—d) Inter-
mediate DREAMPlace results. Note the preservation of cell
groups (colors) through global placement.

4.2.3 Preservation of initial structure through global placement. In
Fig 6, we plot intermediate iterations of the global placer, with
colors corresponding to clusters of standard cells derived according
to physical proximity via Euclidean k-means with k = 10. The

ISPD °23, March 26-29, 2023, Virtual Event, USA

consistency of the colors (cluster) pre- and post-global placement
serves demonstrate that the global placement algorithm preserves
the global and local structure induced by the seed layout. Inspired
by metrics proposed in Fogaca et al. [11] to evaluate the quality
of a graph partitioning / clustering, we propose to evaluate this
hypothesis by proposing a novel two-sample permutation test. We
formulate the null (Hy) and alternative (H,) hypotheses below:

Hy: no effect of the initialization on the final layout

Hy: there is an effect

Intuitively, under the null hypothesis, the cells component to any
initial spatial partitioning (e.g. an arbitrary cell’s neighbors) would
separate during the global placement process, and a new partition-
ing after global placement would yield very different groups of
cells. We consider a partitioning computed based on the initial lay-
out—e.g. we apply Euclidean k-medoids? with k = 100. After global
placement, we re-partition the final layout using k-means. For each
centroid-cell ¢ of an initial partition P, we find ¢’s partition P, in
the final layout. The statistic with respect to c is

_ PP

= 13
TARITA (13)

Zc
We consider the mean over all ¢; z = % 2ie[k] Zc;» as the test statis-
tic for a given initialization. Intuitively, the null-distribution is
centered about zero (samples in the initial partition P, character-
ized by ¢ may end up arbitrarily far from c after global placement).
Likewise, the “ideal” test-static corresponds to 0.5 (P = P/, parti-
tions don’t change after global placement). In Table 3, we report
the z-scores associated with each design (since we find p-values
are trivial). We simulate the null-distribution associated with each
testcase 1000 times to compute the p-value psiryct, the percentage
of simulations which result in a test statistic equal to or larger
than proposed method’s test statistic. We find significance at the
0.01-level for all designs, with the null-distribution close to zero
(e.8. Znull = 0.00579 with standard deviation < 107> for adaptec3).

5 CONCLUSION AND FUTURE WORK

We have presented a novel QCQP formulation to initialize global
placement engines. Despite the nonconvexity of the constraints, we
describe an algorithm to efficiently solve the problem and extend
it to facilitate minimization of HPWL. In an extensive study on
eight VLSI designs, we have demonstrated that our approach to ini-
tialization consistently outperforms relevant methods with respect
to post-detailed placement layout quality. Furthermore, we have
proposed a statistical test for initialization quality. Future work
includes a more detailed analysis of the algorithm, exploration of
formulations for partitioning and local congestion, improving the
method for HPWL minimization, and improving runtime.

ACKNOWLEDGMENTS

We acknowledge support from NSF CCF-2110419 and the Ministry
of Science and Technology, Taiwan 110-2115-M-005-007-MY3.

2k-means assigns centers to arbitrary coordinates, k-medoids assigns centers to cells.

140

Pengwen Chen et al.

REFERENCES

[1] CJ. Alpert, TF. Chan, A.B. Kahng, LL. Markov, and P. Mulet. 1998. Faster
minimization of linear wirelength for global placement. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 17, 1 (1998), 3—-13.

C.J. Alpert and A.B. Kahng. 1996. Simple eigenvector-based circuit clustering
can be effective. In 1996 IEEE International Symposium on Circuits and Systems.
Circuits and Systems Connecting the World. ISCAS 96, Vol. 4. 683-686.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. http://github.com/google/jax

Emmanuel Candeés, Michael Wakin, and Stephen Boyd. 2007. Enhancing Sparsity
by Reweighted L1 Minimization. J. of Fourier Analysis and Applications 14 (2007),
877-905.

Rick Chartrand and Wotao Yin. 2008. Iteratively reweighted algorithms for
compressive sensing. In 2008 IEEE International Conference on Acoustics, Speech
and Signal Processing. 3869-3872. https://doi.org/10.1109/ICASSP.2008.4518498
Pengwen Chen, Chung-Kuan Cheng, Albert Chern, Chester Holtz, Aoxi Li, and
Yucheng Wang. 2022. Placement Initialization via a Projected Eigenvector Al-
gorithm: Late Breaking Results. In Proceedings of the 59th ACM/IEEE Design
Automation Conference. 1398-1399.

C. Cheng, A. B. Kahng, I. Kang, and L. Wang. 2018. RePlAce: Advancing Solution
Quality and Routability Validation in Global Placement. IEEE TCAD.

Ingrid Daubechies, Ronald DeVore, Massimo Fornasier, and C. Sinann Guntiirk.
2010. Iteratively reweighted least squares minimization for sparse recovery.
Communications on Pure and Applied Mathematics 63, 1 (2010), 1-38.

L I Dikin. 1967. Iterative solution of problems of linear and quadratic program-
ming. Sov. Math., Dokl. 8 (1967), 674-675.

Alina Ene and Adrian Vladu. 2019. Improved Convergence for ℓ_∞
and ℓ_1 Regression via Iteratively Reweighted Least Squares. arXiv
abs/1902.06391 (2019).

Mateus Fogaca, Andrew B. Kahng, Ricardo Reis, and Lutong Wang. 2019. Finding
Placement-Relevant Clusters with Fast Modularity-Based Clustering. In Proceed-
ings of the 24th Asia and South Pacific Design Automation Conference (Tokyo,
Japan) (ASPDAC). Association for Computing Machinery, 569-576.

Jiagi Gu, Zixuan Jiang, Yibo Lin, and David Z. Pan. 2020. DREAMPlace 3.0:
Multi-Electrostatics Based Robust VLSI Placement with Region Constraints. In
2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD).
William W. Hager. 2001. Minimizing a Quadratic Over a Sphere. SIAM 7. Optim.
12.

Kenneth M. Hall. 1970. An r-Dimensional Quadratic Placement Algorithm.
Management Science 17.

Meng-Kai Hsu, Valeriy Balabanov, and Yao-Wen Chang. 2013. TSV-Aware Analyti-
cal Placement for 3-D IC Designs Based on a Novel Weighted-Average Wirelength
Model. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 32, 4 (2013), 497-509. https://doi.org/10.1109/TCAD.2012.2226584
Andrew B. Kahng, Sherief Reda, and Qinke Wang. 2005. APlace: A General
Analytic Placement Framework. In ISPD (San Francisco, California, USA).

Yibo Lin, Shounak Dhar, Wuxi Li, Haoxing Ren, Brucek Khailany, and David Z.
Pan. 2019. DREAMPlace: Deep Learning Toolkit-Enabled GPU Acceleration for
Modern VLSI Placement. In DAC.

Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha, Dennis Jen-Hsin Huang,
Chin-Chi Teng, and Chung-Kuan Cheng. 2015. ePlace: Electrostatics-Based
Placement Using Fast Fourier Transform and Nesterov’s Method. ACM TODAES
20.

Jingwei Lu, Hao Zhuang, Pengwen Chen, Hongliang Chang, Chin-Chih Chang,
Yiu-Chung Wong, Lu Sha, Dennis Huang, Yufeng Luo, Chin-Chi Teng, and Chung-
Kuan Cheng. 2015. ePlace-MS: Electrostatics-Based Placement for Mixed-Size
Circuits. IEEE TCAD 34, 5 (2015), 685-698.

Gi-Joon Nam, Charles J. Alpert, Paul Villarrubia, Bruce Winter, and Mehmet
Yildiz. 2005. The ISPD2005 Placement Contest and Benchmark Suite. In ISPD.
Panos M. Pardalos and Stephen A. Vavasis. 1991. Quadratic programming with
one negative eigenvalue is NP-hard. 7. of Global Optimization 1 (1991), 15-22.
Daniel A. Spielman and Shang-Hua Teng. 2014. Nearly Linear Time Algorithms
for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Sys-
tems. SIAM J. Matrix Anal. Appl. 35, 3 (jan 2014), 835-885.

Natarajan Viswanathan and Chris Chu. 2004. FastPlace: Efficient analytical
placement using cell shifting, iterative local refinement, and a hybrid net model.
IEEE TCAD, 26-33.

David Wipf and Srikantan Nagarajan. 2010. Iterative Reweighted ¢ and ¢,
Methods for Finding Sparse Solutions. IEEE J. of Selected Topics in Signal Processing
4(2010), 317-329.

[2]

[3]

4

(12]

[13

(14]

[15]

[16

[17

[18

[19

[20]

[21

[22

[23

[24

	Abstract
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Global analytical placement
	2.2 QCQP-based layouts

	3 Constrained Spectral Layouts
	3.1 Eigenvector method and projection
	3.2 Sequential Quadratic Programming method
	3.3 Sequential subspace optimization
	3.4 Minimization of HPWL via re-weighting
	3.5 Complexity analysis of QCQP initialization

	4 Experiments
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion and Future Work
	Acknowledgments
	References

