

ISPD ’23, March 26ś29, 2023, Virtual Event, USA Pengwen Chen et al.

Design

files

Init 𝐿, 𝑋 ,

and 𝐸0

Alg. 1&2

placement

initial-

ization

Global

placement

Detailed

placement

Design

Layout

Figure 1: Placement flow. Our proposed method is a łplace-

ment initializationž stage, highlighted in yellow.

(4) We perform a comparison between various initialization

schemes for analytic placement with fixed macros.

In Sec. 2, we introduce the global placement problem and a gen-

eral framework for generating initial layouts (denoted in yellow

in Fig. 1). In Sec. 3, we introduce our technique for solving the

proposed QCQP and an extension (iterative reweighting) to facili-

tate direct minimization of HPWL (denoted in Fig. 3). In Sec. 4, we

validate our approach on a standard set of benchmarks. In Sec. 5,

we conclude and highlight potential avenues for future research.

2 PRELIMINARIES

Number of components 𝑛, 𝑛free, 𝑛fixed ∈ R+
Placement coordinates 𝑥,𝑦 ∈ R𝑛

Adjacency, Degree, & Laplacian matrices 𝐴, 𝐷, 𝐿 ∈ R𝑛×𝑛

Linear offset terms 𝑏, 𝑑 ∈ R𝑛, 𝐸0 = [𝑏 : 𝑑] ∈ R𝑛×2

Cell volumes 𝑣 ∈ R𝑛+,𝐺 = diag(𝑣) ∈ R𝑛×𝑛+
Cell area constraints 𝑐𝑖 , 𝑖 ∈ {1, 2, 3, 4, 5} ∈ R+
Lagrange multipliers Λ ∈ R2×2

Newton update direction 𝑍 ∈ R𝑛×2

Figure 2: Notation

Let 𝑥,𝑦 ∈ R𝑛 be vectors corresponding to the coordinates of 𝑛

components such that the 𝑖-th component has coordinates encoded

in the 𝑖-th row of [𝑥 : 𝑦]; [𝑥 : 𝑦]𝑖 . We aim to assign coordinates so

that the resulting layout has small cumulative wirelength.

2.1 Global analytical placement

Conventional global placement strategies minimize wirelength sub-

ject to density constraints. Density constraints are usually inte-

grated into the objective to yield an unconstrained relaxation [7, 17]:

min
𝑥,𝑦
(
∑
𝑒∈E𝑊𝑙 (𝑒;𝑥,𝑦) + 𝜆D(𝑥,𝑦)) (1)

where E denotes a set of given nets and𝑊𝑙 (·; ·) is a function that

takes a net instance 𝑒 as input and returns the cumulative wire-

length and D(·) is a density penalty. In the context of VLSI place-

ment, the wirelength of a net is commonly modelled with its Half-

Perimeter Wirelength (HPWL) or a smooth alternative and D is a

smooth density penalty [18].

A typical approach is to represent individual nets as rectangles

and to minimize the sum-perimeters over all nets. Repulsion is

often applied between overlapping nodes to reduce density. For

example, [17] adopt the smooth and differentiable weighted-average

wirelength (WL) model for the wirelength cost [15]. The horizontal

net-wirelength for net 𝑒 is given by

𝑊𝑙
(𝑒)
𝑥 =

∑
𝑖∈𝑒 𝑥𝑖 exp (

𝑥𝑖
𝑐)∑

𝑖∈𝑒 exp (
𝑥𝑖
𝑐)
−

∑
𝑖∈𝑒 𝑥𝑖 exp (−

𝑥𝑖
𝑐)∑

𝑖∈𝑒 exp (−
𝑥𝑖
𝑐)

where 𝑐 is a parameter that controls the smoothness and approxi-

mation error with respect to the HPWL of net 𝑒 (i.e. |𝑥𝑖 − 𝑥 𝑗 | for

two-pin net 𝑒 = (𝑖, 𝑗)). The wirelength of 𝑒 is:

𝑊𝑙 (𝑒;𝑥,𝑦) =𝑊𝑙
(𝑒)
𝑥 +𝑊𝑙

(𝑒)
𝑦

To model the density term, the placement area is divided into 𝐵

bins, and the placer seeks to equalize the overlap at each bin via

an analogy to an electrostatic system, with cells being modeled as

charges, density penalty modeled as potential energy, and density

gradient modeled as the electric field.

Overlap constraints are satisfied over the placement process by

gradually increasing 𝜆, usually at the cost of increased wirelength.

Current state-of-the-art VLSI placement algorithms [7, 17, 18] solve

Problem 1 in this manner.

2.2 QCQP-based layouts

In this section, we describe a basic formulation for spectral layouts

for global pre-placements, or initializations. Additionally, we more

generally motivate our adoption of the QCQP framework for global

placement initialization.

2.2.1 Formulation. The VLSI placement problem is reduced to a

graph layout problem by first collapsing the netlist hypergraph to a

component graph via various models (e.g. clique, star, etc.) [23]. A

matrix-representation of the graph connectivityÐthe graph Lapla-

cian is then derived. The solution to the associated eigenvalue

problem approximates the solution to the sparsest cut problem

[2, 14], and clusters arising out of the vertex-projection into the

space spanned by the first nontrivial eigenvalues correspond highly

connected components of the graph.

More concretely, we solve a variant of the following problem

where 𝑥 and 𝑦 are cell coordinates, 𝑐𝑖 are constants, 𝑣 is a vector

of cell areas, and 𝐿 is the graph Laplacian; 𝐿 = 𝐷 −𝐴, where 𝐴 is a

(weighted) adjacency matrix, and 𝐷 is the associated degree matrix.

min
𝑥,𝑦

𝑥⊤𝐿𝑥 + 𝑦⊤𝐿𝑦 s.t. 𝑣⊤𝑥 = 0, 𝑣⊤𝑦 = 0,

𝑥⊤𝐺𝑥 = 𝑐1, 𝑦⊤𝐺𝑦 = 𝑐2, 𝑥⊤𝐺𝑦 = 𝑐3

(2)

Typically, 𝐺 = diag(𝑣). In general, one can recover a reduction

to the case 𝐺 = 𝐼 via the normalization [𝑥,𝑦] ← 𝐺1/2 [𝑥,𝑦],

𝐿 ← 𝐺−1/2𝐿𝐺−1/2 and [𝑣, 𝑏, 𝑑] ← 𝐺−1/2 [𝑣, 𝑏, 𝑑]. Intuitively, the

objective is to minimize the weighted squared wirelength of a 2D

placement. The linear constraints characterize an origin (i.e. remove

translational invariance) and the quadratic constraints spread the

layout evenly over the 𝑥 and 𝑦 axes (i.e. ensure that the embedding

has nonzero constant variance).

2.2.2 Fixed node constraints. Many layouts involve constraints on a

subset of the cellsÐtypically large macros and primary input/output

pads. We show how such fixed node constraints naturally lead to

a decomposition of the 𝑥 , 𝑦 and 𝐿 terms in Eq. 2. We denote the

coordinates of the fixed nodes 𝑥1, 𝑦1. Likewise, let the movable

nodes be 𝑥2,𝑦2 Then, we can express 𝑥 ,𝑦, and 𝐿 and the parameters

134

Placement Initialization via Sequential Subspace Optimization with Sphere Constraints ISPD ’23, March 26ś29, 2023, Virtual Event, USA

𝑣 and 𝐺 in terms of these indices: 𝐿 =

[
𝐿11 𝐿12
𝐿21 𝐿22

]
, with 𝑥1 ∈ R

𝑛fixed ,

𝑥2 ∈ R
𝑛free , 𝐿22 ∈ R

𝑛free×𝑛free , and 𝐿12 ∈ R
𝑛free×𝑛fixed . 𝑥 = [𝑥1, 𝑥2]

⊤

(likewise for 𝑦). By considering fixed-node terms (i.e. 𝑥1 and 𝑦1) as

constants, Problem 2 may be re-written (ignoring constants):

min
𝑥2,𝑦2

𝑥⊤2 𝐿22𝑥2 + 𝑦
⊤
2 𝐿22𝑦2+ 2𝑏⊤𝑥2 + 2𝑑

⊤𝑦2

s.t. 𝑣⊤2 𝑥2 = 𝑐
′
1, 𝑣⊤2 𝑦2 = 𝑐

′
2,

𝑥⊤2 𝑥2 = 𝑐
′
3, 𝑦⊤2 𝑦2 = 𝑐

′
4, 𝑥⊤2 𝑦2 = 𝑐

′
5

(3)

with 𝑏 = 𝐿12𝑥1, 𝑑 = 𝐿12𝑦1. In Section 3.1, we derive 𝑐
′
𝑖 , 𝑖 = 1, 2, 3, 4, 5.

2.2.3 Motivation and high-level flow. Our motivation for express-

ing initializations to Prob. 1 with Prob. 2Ði.e. as a QCQP with

sphere constraintsÐis derived from two observations assuming

graph-models of netlists: (1.) if the𝑊𝑙 (·) corresponds to the squared

wirelength, its minimization is equivalent to minimizing a quadratic

form defined on a graph Laplacian. And if the𝑊𝑙 (·) corresponds to

the half-perimeter wirelength, its minimization may be expressed

as a sequence of quadratic problems of the same form as Prob. 2. For

example, we describe such a method in Sec. 3. (2.) a quadratic equal-

ityÐa sphere Ðconstraint implies constant variance and satisfaction

of density-constraints assuming a uniform grid.

We highlight the high-level flow of our framework in Fig. 3:

(1) Eigenvector initialization: The eigenvectors of 𝐿22, which

correspond to the minimum-squared wirelength solution are

computed (Sec. 3.1, Eq. 4).

(2) Eigenvector projection: These eigenvectors are projected

to satisfy the linear and quadratic constraints (Sec. 3.1, Prop. 2).

(3) Eigenvector rotation: An orthogonal transform is applied

to the projected eigenvectors to minimize the distance be-

tween free and fixed components (Sec. 3.1, Prop. 3).

(4) Sequential subspace method (SSM): From these coor-

dinates, an iterative projected-subspace-descent algorithm

is applied which results in convergence to a local / block-

globally optimal solution (Sec. 3.2, Sec. 3.3).

(5) Iterative net reweighting:During iterative descent, 𝐿 is ad-

justed (reweighted) in order to find a min-HPWL coordinate

assignment (Sec. 3.4).

In the following section, we describe a sequential subspace method

for solving Prob. 3. We then show that one can easily adapt this

method to facilitate direct minimization of HPWL.

3 CONSTRAINED SPECTRAL LAYOUTS

In this section, we describe a method to compute the spectrum

of the matrix 𝐿22. The eigenvectors corresponding to the smallest

nontrivial eigenvalues are then projected and transformed to be

used as a candidate solution to Prob. 3 and iteratively improved.

3.1 Eigenvector method and projection

We start by re-writing the objective defined in Eq. 3 (for brevity,

writing 𝐿22 as ł𝐿ž and 𝑣2 as 𝑣). Let 𝑋2 = [𝑥2, 𝑦2] and 𝐸0 = [𝑏, 𝑑] ∈

R
𝑛free×2 and 𝑋1 = [𝑥1, 𝑦1] ∈ R

𝑛fixed×2.

Let [𝑐′1, 𝑐
′
2]
⊤
= −𝑟 , where 𝑟 := (𝑣⊤1 𝑋1)

⊤. To eliminate the linear

constraint 𝑣⊤𝑋2 = −𝑟⊤, we introduce two adjustments: first, let

(𝑋)𝑖 = (𝑋2)𝑖 +
1
𝑤 𝑟
⊤ denote a row-wise centering transformation

(1.)

Initialization

(Sec. 3.3):

Generalized

eigenvec-

tors of 𝑃𝐿𝑃

(2.)

Projection

(Sec. 3.3)

(3.)

Rotation

(Sec. 3.3)

SSM

(Sec. 3.3):

Calculate

subspace S

SQP

(Sec. 3.3):

Solve

Prob. 4 in

subspace

(5.)

Reweight

(Sec. 3.3):

Minimize

HPWL

SSM Initialization

(4.) SSM

Figure 3: QCQP placement initialization with reweighting.

with respect to the fixed nodes, where 𝑤 is a scale factor propor-

tional to 𝑣2. This yields the constraint 𝑣⊤𝑋 = 0 and implies the

quadratic constraint

𝐶 =

[
𝑐′3 𝑐

′
5

𝑐′5 𝑐
′
4

]
=

[𝑐1 𝑐3
𝑐3 𝑐2

]
− 𝑋⊤1 𝑋1 −

1

𝑤
𝑟𝑟⊤ .

Second, assuming that 𝑣 is normalized to be a unit vector, let 𝑃 =

𝐼 − 𝑣𝑣⊤ be the projection onto the subspace orthogonal to vector

𝑣 ∈ R𝑛free , i.e., 𝑣⊤ (𝑃𝑋) = [0, 0]. Without loss of generality, replacing

𝐸0 with 𝑃 (𝐸0 − 𝐿
1

𝑛free
1𝑟⊤), we have 𝑣⊤𝐸0 = [0, 0].

min
𝑋
{𝐹 (𝑋) = tr(𝑋⊤ (𝑃𝐿𝑃𝑋 + 2𝐸0))} (4)

subject to 𝑋⊤𝑋 = 𝐶 , We first address this problem in three stages:

(1.) by first solving the canonical eigenvalue problemmin𝑋 tr(𝑋⊤𝑃𝐿𝑃𝑋)

subject to the constraint 𝑋⊤𝑋 = 𝐼 , (2.) invoking a projection to

resolve the second order constraint 𝑋⊤𝑋 = 𝐶 , (3.) appropriately

transforming the solution so that 2𝑋⊤𝑃𝐸0 is reduced.

Stage 1. First, the eigenvectors of 𝑃𝐿𝑃 corresponding to the two

smallest nontrivial eigenvalues are computed. While 𝐿 may be ex-

tremely sparse, facilitating the application of sparse eigenvector

algorithms, 𝑃𝐿𝑃 may be prohibitively dense. To address this, we

adapt the Rayleigh Quotient Iteration method which exclusively re-

lies on matrix-vector multiplications, and the computation of 𝐿−1𝑢

which can be done efficiently using iterative methods (e.g. Conju-

gate Gradient). At a high level, the method proceeds by repeating

the following updates on vectors 𝑢:

𝑢𝑘−1 = 𝑃𝑟𝑘−1/| |𝑃𝑟𝑘−1 | | (5)

Solve 𝑃𝑟𝑘 from 𝑃𝐿𝑃𝑟𝑘 = 𝑢𝑘−1 (6)

To solve for 𝑟𝑘 in the second part, we state the following result,

which eliminates the need to compute (𝑃𝐿𝑃)−1:

Proposition 1 (Psudo-inverse of 𝑃𝐿−1𝑃). Let 𝑃 = 𝐼 − 𝑣𝑣⊤. Let

𝑟𝑘 = {𝑃𝐿−1𝑃}†𝑢𝑘−1. Then, derive projection of 𝑟𝑘 , i.e.

𝑃𝑟𝑘 = {𝑃𝐿−1𝑃}†𝑢𝑘−1 = (𝐼 −
𝑣⊤𝑣

𝑣⊤𝑣
)𝐿−1𝑢𝑘−1, 𝑣 = 𝐿−1𝑣

135

Placement Initialization via Sequential Subspace Optimization with Sphere Constraints ISPD ’23, March 26ś29, 2023, Virtual Event, USA

3.3 Sequential subspace optimization

We introduce a Sequential Subspace Method (SSM) in Alg. 2 to

address the scalability of SQP. Inspired by the 1-dimensional algo-

rithm of [13], instead of solving Problem 4 directly, we instead solve

a sequence of quadratic programs in subspaces of much smaller

dimension relative to the size of the graph.

Despite the sparsity of 𝐿, repeatedly computing inverse-vector

products involving 𝐿 +𝑊𝑗 𝐼 in Eq. 10 and Eq. 11 may computation-

ally bottleneck the proposed method for large benchmarks. SSM

proceeds by iterating between the following three steps:

(1) Compute the Newton direction 𝑍 = 𝑆𝑄𝑃 (𝐿,Λ, 𝐸0, 𝑋) using

Eq. 11 and Alg.1, line 5. Let 𝑉 be the orthogonal matrix

consisting of columns in 𝑆 (Alg.2, lines 6 and 7), where

𝑆 = 𝑠𝑝𝑎𝑛(𝑃𝑋, 𝑍, 𝑣, 𝐿𝑃𝑋 + 𝐸0) .

(2) SSM generates an approximation of (𝑋,Λ) and an approxi-

mation of the smallest pair of eigenvalues 𝜎 /eigenvectors 𝑣

of 𝐿 in the subspace 𝑆 ,

[𝑋,Λ, 𝑣, 𝜎] = 𝑆𝑆𝑀 (𝐿, 𝐸0, 𝑆)

consider the approximation 𝑋 = 𝑉𝑋̃ for some 𝑋̃ . Compute

min
𝑋

𝐹𝑆 := min
𝑋̃

𝐹 (𝑋̃ ;𝐵,𝑉⊤𝐸0)

(3) The terms 𝐿 and 𝐸0 are reweighted according to Sec. 3.4 such

that the objective remains a tight upper-bound on the HPWL

(Alg.1, line 10).

It is interesting to note the connection with graph coarsening meth-

ods. The orthogonal matrix 𝑉 can be interpreted as a graph coars-

ening transform, and its inverse as a graph lifting transformÐby

reducing the size of the graph, we achieve significant improvements

in scalability without sacrificing solution quality. Future work may

investigate this alternative interpretation of SSM.

Algorithm 2 Sequential Subspace Minimization

Input: Partial Laplacian matrix 𝐿, unit vector 𝑣 maximum

iterations 𝑛

Output: Placement coordinates 𝑋

1: function ssm(𝐴, 𝑣)

2: 𝐿 ← 𝐷 − 𝐴 ⊲ Compute the graph Laplacian

3: Initialize 𝑋 to [𝑈1 : 𝑈2], where 𝑈𝑖 is the eigenvector of 𝑃𝐿𝑃

corresponding to the 𝑖-th smallest nonzero eigenvalue (Sec 3.1).

4: while 𝑡 < 𝑛 do

5: 𝑍 ← 𝑆𝑄𝑃 (𝐿,Λ, 𝐸0, 𝑋, 𝑣) ⊲ Compute 𝑍 using Eq. 11 & Alg. 2

6: S ← 𝑠𝑝𝑎𝑛 (𝑋,𝑍, 𝑣,Λ𝑋 + 𝐸0)

7: 𝑉 ← 𝑄𝑅 (𝑐𝑜𝑙 (𝑆))

8: 𝐵 ← 𝑉⊤𝐿𝑉

9: 𝑋̂ ← min𝑋 𝐹 (𝑋̂ ;𝐵,𝑉⊤𝐸0) ⊲ Solve Problem 4 in the subspace

10: 𝐿, 𝐸0 ← 𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡 (𝑋)

11: 𝑡 ← 𝑡 + 1

12: end while

13: return𝑉⊤𝑋̂ ⊲ Return lifted coordinates

14: end function

3.4 Minimization of HPWL via re-weighting

In this section, we show how our method may be adapted to facili-

tate direct minimization of HPWL. A similarmethodwas adopted by

the GORDIAN-L cell placement tool [1]. Inspired by asymptotically

optimal algorithms for lasso-type regression problems [4, 5, 8, 24],

we solve an equivalent ℓ1 minimization problem by solving a se-

quence of re-weighted ℓ2 minimization problems. In particular, we

propose an analogous algorithm for the 2-dimensional case. Note

that we now consider the following problem:
∑︁

𝑖, 𝑗∈E

𝑤𝑖 𝑗 (|𝑥𝑖 − 𝑥 𝑗 | + |𝑦𝑖 − 𝑦 𝑗 |) (12)

Informally, the objective is upper bounded by the expression

min
𝑢𝑖,𝑗>0

max
𝑣𝑖,𝑗>0





∑︁

𝑖, 𝑗∈E

(𝑢𝑖, 𝑗 |𝑥𝑖 − 𝑥 𝑗 |
2 +

1

𝑢𝑖, 𝑗
+ 𝑣𝑖, 𝑗 |𝑦𝑖 − 𝑦 𝑗 |

2 +
1

𝑣𝑖, 𝑗
)





Crucially, the equality holds if and only if 𝑢𝑖, 𝑗 = |𝑥𝑖 − 𝑥 𝑗 |
−1 and

𝑣𝑖, 𝑗 = |𝑦𝑖 − 𝑦 𝑗 |
−1 and implies a strategy for solving Prob. 12 that

involves Prob. 4 as a sub-problem:

(1) For each 𝑢 > 0, 𝑣 > 0, solve Prob. 12 with respect to 𝑥 , 𝑦.

(2) For each 𝑥 , 𝑦, solve Prob. 12 with respect to 𝑢, 𝑣 .

𝑢𝑖, 𝑗 = |𝑥𝑖 − 𝑥 𝑗 |
−1, 𝑣𝑖, 𝑗 = |𝑦𝑖 − 𝑦 𝑗 |

−1

In practice, we alter the above algorithm in two ways: (1.) follow-

ing [1], a small adjustment to the denominator of each weight for

normalization and to address numerical instability in the situa-

tion where two nodes overlapÐe.g., 𝑢𝑖, 𝑗 = 1/(W
√︃
(𝑥𝑖 − 𝑥 𝑗)2 + 𝛽),

whereW is the width of the placement area (2.) instead of solv-

ing Prob. 12 (step (1.)) to convergence, we perform incremental

1-step updatesÐi.e., we perform re-weighting each iteration of SSM

and compute the subsequent subspace with respect to the new re-

weighted matrix 𝐿 and associated 𝐸0. While the concept of iterative

re-weighting for optimization has most commonly been applied to

ℓ1 and ℓ∞ minimization problems, the framework is quite general

and a similar procedure motivates minimization of other kinds of

norms-based objectives. Future work includes investigating the effi-

cacy of this reweighting scheme for alternative norm-minimization

problems (e.g. robust 𝑝-normminimization) in the context of layout.

3.5 Complexity analysis of QCQP initialization

In this section, we discuss the computational cost of our QCQP-

based method, which is dominated by the SQP routine to compute

the Newton directions. We claim the complexity of the QCQP place-

ment initialization is 𝑂 (#iterations × 𝑇matrix), where #iterations

is the number of SSM iterations, and 𝑇matrix is the complexity of

each call to a sparse matrix (i.e. Laplacian-like) solver. Although

fast, nearly linear-time solvers exist for solving Laplacian-like sys-

tems [22], we adopt the Jacobi-preconditioned conjugate gradient

method due to its simplicity and efficacy in practice.

Generic quadratic programs are NP-hard [21], i.e. it takes super-

polynomial time to solve QPs optimally. In the convex case, there

are polynomial time interior point algorithms [9]. Also, there are

approximation algorithms that return local solutions of nonconvex

QPs in polynomial time [13]. Our method falls into the category of

algorithms that guarantee local, or block-globally optimal solutions.

In particular, although the objective of our algorithm satisfies

the conditions for convexity, the addition of quadratic equality

constraintsÐsphere constraintsÐintroduces a violation of the condi-

tions necessary for convexity. In practice, we find that our method

137

ISPD ’23, March 26ś29, 2023, Virtual Event, USA Pengwen Chen et al.

is typically stable to perturbations of the initialization as long as

(1.) the layout is feasible and (2.) there are a sufficient number of

fixed pins (i.e. the norm of 𝐸 is sufficiently large).

3.5.1 Computation of the descent direction𝑍 . In Sec 3.3, we express

the Newton direction 𝑍 as the solution to the system character-

ized by the linearization of the first order optimality conditions.

Namely, within each iteration of our procedure, we compute a set

of Lagrangian multipliers as well as their update directions and the

update directions for 𝑋 as defined in Eq. 10 and Eq. 11.

In Alg. 1, we present the detailed steps of our implementation.

The computations in lines 3-6 and 8-9 primarily involve vector-

vector and matrix-vector multiplications. Exploiting the sparsity

of 𝐿, both multiplications can be done in 𝑂 (𝑛). To compute the in-

verses in line 7, we first compute 𝐿−1
𝑊𝑗
𝐸 by solving the linear system

𝐿𝑊𝑗
𝑏 = 𝐸 for 𝑏. We solve 𝑋⊤𝐿−1

𝑊𝑗
𝑋𝛿 𝑗 = 𝑏 for 𝛿 𝑗 . Using conjugate

gradient, with an appropriate preconditioner 𝐾 , the computation

of 𝛿 𝑗 up to a residual 𝜖 can be done in 𝑂 (𝑛
√︁
𝜅 (𝐾𝐿) log(1/𝜖)) time.

The computation of 𝑍 𝑗 can be done in the same way.

In otherwords, the computation of the columns of the Lagrangian

multipliers (Δ) 𝑗 can be decomposed into (1.) the computation

of 𝐿 +𝑊𝑗 𝐼 twice in 𝑂 (𝑛) time (2.) its inverse three times (once

for each column of 𝑋 and once for 𝐸 𝑗) via conjugate gradient,

again in 𝑂 (𝑛
√︁
𝜅 (𝐾𝐿) log(1/𝜖)) time (3.) two left-multiplications

by 𝑋⊤ in 𝑂 (2𝑛) time. To compute the columns of the Newton di-

rection; 𝑍 𝑗 , first note that 𝑃 can be re-written as 𝐼 − 𝑣𝑣⊤. Then,

(𝑊𝑗 𝐼)
−1𝑃 = (𝑊𝑗 𝐼)

−1 − ((𝑊𝑗 𝐼)
−1𝑣)𝑣⊤.

In summary, the complexity of our method is dominated by the

computation of the SQP newton direction 𝑍 in line 5 of Alg. 2, due

to the necessity of computing three unique inverse-vector products

involving the Laplacian (lines 7 and 10 of Alg. 1).

4 EXPERIMENTS

In this section we describe a set of comprehensive experiments on

eight VLSI testcases from the ISPD’05 contest suite [20]. Summary

statistics of the testcases are presented in Table 1. Our numerical

experiments are aimed at establishing the efficacy of our method

with respect to post-detailed placement wirelength. We leverage the

DREAMPlace [17] placement engine and substitute the heuristic

initialization schemes with our proposed method.

Table 1: Design characteristics. 𝑛free =#Free cells and

𝑛fixed =#Fixed pins. Max Deg, Avg Deg correspond to charac-

teristics of the graph-models of the design netlists.

Design #Free cells #Fixed pins #Nets Max Deg Avg Deg

adaptec1 211𝑘 29𝑘 221𝑘 340 4.2

adaptec2 255𝑘 21𝑘 266𝑘 153 3.9

adaptec3 452𝑘 25𝑘 467𝑘 82 4.0

adaptec4 496𝑘 29𝑘 516𝑘 171 3.7

bigblue1 278𝑘 11𝑘 284𝑘 74 4.1

bigblue2 558𝑘 141𝑘 577𝑘 260 3.5

bigblue3 558𝑘 37𝑘 1123𝑘 91 3.4

bigblue4 2177𝑘 170𝑘 2230𝑘 129 3.7

4.1 Experimental Setup

4.1.1 Algorithm parameters. To produce graph-layouts of IC netlists

we adopt a hybrid net model [23]Ða combination of the clique and

star models. Each net is converted to a star or clique-graph depend-

ing on the size of the netÐi.e. nets with three or fewer pins are

modeled as cliques and nets with four or more pins are modeled as

stars, with an associated free pseudo-pin variable introduced. To de-

termine 𝑣 , we first consider the surface area of cells (i.e. 𝑣𝑖 = 𝑤𝑖 ×ℎ𝑖 ,

where𝑤𝑖 and ℎ𝑖 is the width and height of cell 𝑖), scaled such that

the distribution is centered about 1. 𝑣 is then normalized. The 𝑐𝑖
are determined according to the free layout space.

4.1.2 Implementation details. We implemented our algorithms in

Python using the JAX framework [3] on a GCP c2-standard-8 ma-

chine with 8 virtual CPUs, 32 GB of memory, and a single Nvidia

Tesla K80 GPU. In particular, we exploit JAX’s capability to vec-

torize batched computation and compilation to XLA via the jit

decorator. XLA facilitates hardware acceleration and the entire

framework (initialization, global placement, detailed placement /

legalization) may exploit GPU and multi-GPU-based parallelism

without returning to a Python interpreter.

4.2 Results

4.2.1 Numerical results. We applied the proposed method to eight

benchmarks from the ISPD’05 contest suite [20] and measured the

cumulative HPWL post-detailed placement. Numerical results are

provided in Table 2. We find that origin initializations consistently

under-perform the other three methods, and that random and min-

wirelength exhibit comparable results. However, initialization us-

ing the vanilla projected eigenvectors of the reduced Laplacian [6]

result in superior HPWLÐimprovement between 1.0% and 3.0%

compared to the random and min-wirelength heuristics. Larger

gains are achieved when the initialization corresponds to the so-

lution to Prob. 3 using SSM without reweightingÐbetween 1.58%

and 3.96%. Additionally, improvements in global placement runtime

correlate with better initialization. We provide the global placement

(DREAMPlace) runtime in Table 2. The GP runtime ranges from

62.42𝑠 to 1293.10𝑠 for the Projected Eigenvectors + SSM method,

which is comparable to or less than the other methods.

4.2.2 Reweighted SSM iterations and runtime. In Table 3, we demon-

strate that the directly minimizing HPWL via reweighting yields

still further improvementsÐbetween 1.68% and 4.76% compared to

random and min wirelength initializations. We note that reweight-

ing methods are typically slow to converge [10]. As a consequence,

instead of running our algorithm to convergence, we set a hard max-

imum limit of 100 reweighting / SSM steps. We additionally observe

a mean per-iteration wall-time of 26.34 − 322.32 and a significant

(𝜌 = 0.99, 𝑝 = 1.1𝑒 − 7) linear correlation with the number of free

cells. We plot this trend in Fig. 5b. It is likely that further gains

could be achieved with a direct method for HPWL minimization.

While the per-iteration runtime of our method is nontrivial, we

highlight three key points: (1.) the experiments imply that the pro-

posed QCQP formulation and method can consistently improve

placement quality. This evidence incentivises future work to en-

hance the efficiency of these algorithmsÐparticularly Laplacian

solvers to drastically speed up turnaround time, (2.) few iterations

138

ISPD ’23, March 26ś29, 2023, Virtual Event, USA Pengwen Chen et al.

consistency of the colors (cluster) pre- and post-global placement

serves demonstrate that the global placement algorithm preserves

the global and local structure induced by the seed layout. Inspired

by metrics proposed in Fogaça et al. [11] to evaluate the quality

of a graph partitioning / clustering, we propose to evaluate this

hypothesis by proposing a novel two-sample permutation test. We

formulate the null (𝐻0) and alternative (𝐻𝑎) hypotheses below:

𝐻0: no effect of the initialization on the final layout

𝐻𝑎 : there is an effect

Intuitively, under the null hypothesis, the cells component to any

initial spatial partitioning (e.g. an arbitrary cell’s neighbors) would

separate during the global placement process, and a new partition-

ing after global placement would yield very different groups of

cells. We consider a partitioning computed based on the initial lay-

outÐe.g. we apply Euclidean 𝑘-medoids2 with 𝑘 = 100. After global

placement, we re-partition the final layout using 𝑘-means. For each

centroid-cell 𝑐 of an initial partition 𝑃𝑐 , we find 𝑐’s partition 𝑃
′
𝑐 in

the final layout. The statistic with respect to 𝑐 is

𝑧𝑐 =

|𝑃𝑐 ∩ 𝑃
′
𝑐 |

|𝑃𝑐 | + |𝑃
′
𝑐 |

(13)

We consider the mean over all 𝑐 ; 𝑧 = 1
𝑘

∑
𝑖∈[𝑘] 𝑧𝑐𝑖 , as the test statis-

tic for a given initialization. Intuitively, the null-distribution is

centered about zero (samples in the initial partition 𝑃𝑐 character-

ized by 𝑐 may end up arbitrarily far from 𝑐 after global placement).

Likewise, the łidealž test-static corresponds to 0.5 (𝑃𝑐 = 𝑃 ′𝑐 , parti-

tions don’t change after global placement). In Table 3, we report

the 𝑧-scores associated with each design (since we find 𝑝-values

are trivial). We simulate the null-distribution associated with each

testcase 1000 times to compute the p-value 𝑝struct, the percentage

of simulations which result in a test statistic equal to or larger

than proposed method’s test statistic. We find significance at the

0.01-level for all designs, with the null-distribution close to zero

(e.g. 𝑧null = 0.00579 with standard deviation < 10−5 for adaptec3).

5 CONCLUSION AND FUTURE WORK

We have presented a novel QCQP formulation to initialize global

placement engines. Despite the nonconvexity of the constraints, we

describe an algorithm to efficiently solve the problem and extend

it to facilitate minimization of HPWL. In an extensive study on

eight VLSI designs, we have demonstrated that our approach to ini-

tialization consistently outperforms relevant methods with respect

to post-detailed placement layout quality. Furthermore, we have

proposed a statistical test for initialization quality. Future work

includes a more detailed analysis of the algorithm, exploration of

formulations for partitioning and local congestion, improving the

method for HPWL minimization, and improving runtime.

ACKNOWLEDGMENTS

We acknowledge support from NSF CCF-2110419 and the Ministry

of Science and Technology, Taiwan 110-2115-M-005-007-MY3.

2𝑘-means assigns centers to arbitrary coordinates, 𝑘-medoids assigns centers to cells.

REFERENCES
[1] C.J. Alpert, T.F. Chan, A.B. Kahng, I.L. Markov, and P. Mulet. 1998. Faster

minimization of linear wirelength for global placement. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 17, 1 (1998), 3ś13.

[2] C.J. Alpert and A.B. Kahng. 1996. Simple eigenvector-based circuit clustering
can be effective. In 1996 IEEE International Symposium on Circuits and Systems.
Circuits and Systems Connecting the World. ISCAS 96, Vol. 4. 683ś686.

[3] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. http://github.com/google/jax

[4] Emmanuel Candès, Michael Wakin, and Stephen Boyd. 2007. Enhancing Sparsity
by Reweighted L1 Minimization. J. of Fourier Analysis and Applications 14 (2007),
877ś905.

[5] Rick Chartrand and Wotao Yin. 2008. Iteratively reweighted algorithms for
compressive sensing. In 2008 IEEE International Conference on Acoustics, Speech
and Signal Processing. 3869ś3872. https://doi.org/10.1109/ICASSP.2008.4518498

[6] Pengwen Chen, Chung-Kuan Cheng, Albert Chern, Chester Holtz, Aoxi Li, and
Yucheng Wang. 2022. Placement Initialization via a Projected Eigenvector Al-
gorithm: Late Breaking Results. In Proceedings of the 59th ACM/IEEE Design
Automation Conference. 1398ś1399.

[7] C. Cheng, A. B. Kahng, I. Kang, and L. Wang. 2018. RePlAce: Advancing Solution
Quality and Routability Validation in Global Placement. IEEE TCAD.

[8] Ingrid Daubechies, Ronald DeVore, Massimo Fornasier, and C. Sinann Güntürk.
2010. Iteratively reweighted least squares minimization for sparse recovery.
Communications on Pure and Applied Mathematics 63, 1 (2010), 1ś38.

[9] I. I. Dikin. 1967. Iterative solution of problems of linear and quadratic program-
ming. Sov. Math., Dokl. 8 (1967), 674ś675.

[10] Alina Ene and Adrian Vladu. 2019. Improved Convergence for ℓ_∞
and ℓ_1 Regression via Iteratively Reweighted Least Squares. arXiv
abs/1902.06391 (2019).

[11] Mateus Fogaça, Andrew B. Kahng, Ricardo Reis, and Lutong Wang. 2019. Finding
Placement-Relevant Clusters with Fast Modularity-Based Clustering. In Proceed-
ings of the 24th Asia and South Pacific Design Automation Conference (Tokyo,
Japan) (ASPDAC). Association for Computing Machinery, 569ś576.

[12] Jiaqi Gu, Zixuan Jiang, Yibo Lin, and David Z. Pan. 2020. DREAMPlace 3.0:
Multi-Electrostatics Based Robust VLSI Placement with Region Constraints. In
2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD).

[13] William W. Hager. 2001. Minimizing a Quadratic Over a Sphere. SIAM J. Optim.
12.

[14] Kenneth M. Hall. 1970. An r-Dimensional Quadratic Placement Algorithm.
Management Science 17.

[15] Meng-Kai Hsu, Valeriy Balabanov, and Yao-Wen Chang. 2013. TSV-Aware Analyti-
cal Placement for 3-D IC Designs Based on a NovelWeighted-AverageWirelength
Model. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 32, 4 (2013), 497ś509. https://doi.org/10.1109/TCAD.2012.2226584

[16] Andrew B. Kahng, Sherief Reda, and Qinke Wang. 2005. APlace: A General
Analytic Placement Framework. In ISPD (San Francisco, California, USA).

[17] Yibo Lin, Shounak Dhar, Wuxi Li, Haoxing Ren, Brucek Khailany, and David Z.
Pan. 2019. DREAMPlace: Deep Learning Toolkit-Enabled GPU Acceleration for
Modern VLSI Placement. In DAC.

[18] Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha, Dennis Jen-Hsin Huang,
Chin-Chi Teng, and Chung-Kuan Cheng. 2015. ePlace: Electrostatics-Based
Placement Using Fast Fourier Transform and Nesterov’s Method. ACM TODAES
20.

[19] Jingwei Lu, Hao Zhuang, Pengwen Chen, Hongliang Chang, Chin-Chih Chang,
Yiu-ChungWong, Lu Sha, Dennis Huang, Yufeng Luo, Chin-Chi Teng, and Chung-
Kuan Cheng. 2015. ePlace-MS: Electrostatics-Based Placement for Mixed-Size
Circuits. IEEE TCAD 34, 5 (2015), 685ś698.

[20] Gi-Joon Nam, Charles J. Alpert, Paul Villarrubia, Bruce Winter, and Mehmet
Yildiz. 2005. The ISPD2005 Placement Contest and Benchmark Suite. In ISPD.

[21] Panos M. Pardalos and Stephen A. Vavasis. 1991. Quadratic programming with
one negative eigenvalue is NP-hard. J. of Global Optimization 1 (1991), 15ś22.

[22] Daniel A. Spielman and Shang-Hua Teng. 2014. Nearly Linear Time Algorithms
for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Sys-
tems. SIAM J. Matrix Anal. Appl. 35, 3 (jan 2014), 835ś885.

[23] Natarajan Viswanathan and Chris Chu. 2004. FastPlace: Efficient analytical
placement using cell shifting, iterative local refinement, and a hybrid net model.
IEEE TCAD, 26ś33.

[24] David Wipf and Srikantan Nagarajan. 2010. Iterative Reweighted ℓ1 and ℓ2
Methods for Finding Sparse Solutions. IEEE J. of Selected Topics in Signal Processing
4 (2010), 317ś329.

140

	Abstract
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Global analytical placement
	2.2 QCQP-based layouts

	3 Constrained Spectral Layouts
	3.1 Eigenvector method and projection
	3.2 Sequential Quadratic Programming method
	3.3 Sequential subspace optimization
	3.4 Minimization of HPWL via re-weighting
	3.5 Complexity analysis of QCQP initialization

	4 Experiments
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion and Future Work
	Acknowledgments
	References

