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ABSTRACT: We recently provided mass spectrometric, H/D labeling, and computational evidence of pyranose to furanose N-
Acetylated ion isomerization reactions occurring prior to glycosidic bond cleavage in both O- and N-linked glycosylated amino
acid model systems (Phys. Chem. Chem. Phys., 2021, 23, 23256-23266). These reactions occurred irrespective of glycosidic
linkage stereochemistry (a/f) and N-Acetylated hexose structure (GlcNAc/GalNAc). In the present article we test the gener-
ality of the preceding findings by examining Threonyl a-GalNAc glycosylated peptides. We utilize computational chemistry to
compare the various dissociation and isomerization pathways accessible with collisional activation. We then interrogate the
structure(s) of the resulting charged glycan and peptide fragments with infrared “action” spectroscopy. Isomerization of the
original pyranose, protonated glycopeptide, [AT(GalNAc)A+H]*, is predicted to be facile compared to direct dissociation, as is
glycosidic bond cleavage of the newly formed furanose form. i.e., furanose oxazolinium ion structures are predicted to pre-
dominate. IR action spectra for the m/z 204, CsH14N10s*, glycan fragment population support this prediction. The IR action
spectra of the complementary m/z 262, peptide fragment are assigned as a mixture of the lowest energy structures of

[ATA+H]* consistent with the literature.

Peptide and protein glycosylation is widespread in bio-
logical systems. Glycosylation is involved in the pathogene-
sis of diseases, with variations of glycan at each particular
site thought to provide further biomarkers of disease!-? and
immune response.1%11 The spike, envelope, and membrane
structural proteins of SARS-CoV-2 and other coronaviruses
are glycosylated, affecting their attachment to host, entry,
replication, and infection.'213 These also affect the viruses
ability to mask the proteins from the body’s immune sys-
tem.!3 Consequently accurate profiling of site-specific gly-
can modifications has great importance.4-17

Despite these analytes’ importance there are still many
challenges to glycoprotein sequencing.®!# Current large-
scale sequencing and identification of glycopeptides is con-
tingent on algorithms almost wholly reliant on m/z differ-
ences between the fragment ion series.!8-20 Thus our ability
to differentiate a hexose (Hex) from a N-Acetylated-hexose
(HexNAc) residue or fragment, far outstrips our ability to
determine which Hex or HexNAc was present.”!* A greater
understanding of the dissociation chemistry of these ana-
lytes is one way to improve the accuracy of structural as-
signments and subsequent confidence in claims based on
these assignments.?21.22

We recently investigated the dissociation chemistry of
single-residue glycopeptide model systems for the core
structures of N-linked glycosylation, mucin-type glycosyla-
tion, and O-GIcNAcylation.?? O-linked glycosylation is more
varied than N-linked glycosylation due to the lack of either
core glycan structures and the lack of consensus peptide se-
quences to ease identification of potential sites of

glycosylation.?? However, O-linked glycosylation to an alpha
N-Acetyl galactose, a-GalNAc!72425, residue is the most com-
mon residue and linkage type combination in humans and
is also the subject of the present manuscript. Dissociation
of these analytes produces GalNAc reporter ions at m/z 204
(Scheme 1).23
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Scheme 1. Simplified mechanisms to formation of m/z 204
a-GalNAc oxazolinium reporter ion structures from proto-
nated glycopeptides (R = peptide): (a) Direct, pyranose B
ion;26-29 (b) Indirect, furanose B1 ion?2,

Recently we provided mass spectral, isotopic (H/D) label-
ling, and computational evidence indicating that the disso-
ciation chemistry of glycosylated amino acid model systems
was more complex than had previously been believed.??
Earlier labelling and tandem mass spectrometric work had



proposed mechanisms for these dissociation processes.?” In
contrast, further, extensive 13C and >N labelling and ion-
mobility data from Mookherjee et al.?? on bare N-Acetylated
hexose model systems was not consistent with these early
mechanistic proposals.?” i.e.,, HexNAc ions not attached to a
peptide/amino acid. Our findings?? were more consistent
with the Mookherjee et al..2? We found evidence for pyra-
nose to furanose isomerization prior to glycosidic bond
cleavage. i.e,, that furanose oxazolinium B1 ions are the pre-
dominant m/z 204 ion structure within the gas-phase pop-
ulations (Scheme 1b). The newly released carbons 5 and 6
in the furanose structures are then available for secondary
fragmentation to form the m/z 126 peak (loss of C2H402 and
H:0) utilized to differentiate HexNAc-linked peptides based
on MS3 abundances.?2:26-28

METHODS SECTION

Chemicals. HPLC grade Acetonitrile, HPLC grade water,
and the formic acid were purchased from Sigma Aldrich (St.
Louis, MO). Glycopeptides were custom synthesized by Ka-
rebay Biochemical, South Brunswick Township, New Jersey.
All samples were used as received.

Tandem Mass Spectrometry. An electrospray ionization
(ESI) Bruker MaXis plus quadrupole time-of-flight mass
spectrometer (Bruker, Billerica, MA) was utilized for the in-
itial MS and MS/MS experiments. Nitrogen was used as both
nebulizing and drying gas in the ESI source. MS/MS spectra
were obtained by quadrupole isolation of the precursor ion
(E.g., [AT(GalNAc)A+H]*, m/z 465.1+4) followed by colli-
sion-induced-dissociation (CID) with nitrogen in the hexa-
pole collision cell. Product ion dispersion was achieved by
the time-of-flight mass analyzer. Data were collected as a
function of collision energy (averages of 120 spectra pre-
sented). lonization was by electrospray with the samples in-
fused into the instrument in ~1 uM acetonitrile/water/for-
mic acid (50/50/0.1) solutions at a flow rate of 3 ul min-1.

IRMPD Spectroscopy. A last minute, major breakdown
of the free-electron laser at the Centre Laser Infrarouge
d’Orsay?3%3! precluded use of that photon source in the in-
tended energy range (800-2000 cm-1). Consequently, only
the X-H (X=N, O) stretching region provided by an optical
parametric oscillator/amplifier (OPO/OPA from LaserVi-
sion) laser system3233 light source was explorable. An In-
nolas Spitlight 600 non-seeded Nd:YAG (1064 nm, 550
m]/pulse, bandwidth ~1 cm1) laser running at 25 Hz and
delivering pulses of 4-6 ns duration pumps this system.
Typical output energy of the OPO/OPA was 12-13 m]/pulse
at 3600 cm ' with a 3-4 cm'! (FWHM) bandwidth.

Experimental spectroscopic work was carried out in a
Bruker Apex IV Qe, a 7 Tesla Fourier transform-ion cyclo-
tron resonance (FT-ICR) tandem mass spectrometer
(Bruker, Bremen, Germany)32. Precursor ions were pulse-
extracted into the ICR cell where they were irradiated with
IR light. With the OPO/OPA tuned on a vibrational transition
of the mass-selected ion a significant boost in signal-to-
noise is achieved by irradiating the ions for a few ms with a
CO2 laser pulse [10 Watt continuous wave (CW), BFi OPTi-
LAS, France] following each OPO/OPA pulse with a delay of
~1 ps. The total irradiation period was 1 s. This combina-
tion has been used previously.34-38

The abundances of the precursors and their correspond-
ing photo fragments were recorded at each IR wavenumber,
which was scanned stepwise. IR action spectra were de-
rived by plotting the IRMPD efficiency against the photon
energy. A Savitzky-Galoy3® filter, with a rolling window
length of 5 and a quadratic polynomial fit was used to
smooth the raw datapoints.

IR action spectra were collected for the m/z 204.087
(CsH14N10s5*), produced from [AT(GalNAc)A+H]*, [PT(Gal-
NAc)P+H]*, and [RVT(GalNAc)AG+2H]?*. i.e, the glycan
fragment. The IR action spectrum of the m/z 262.143
[ATA+H]*, [AT(GalNAc)A+H-CsH14N10s]* peptide fragment
was also collected. These ions were formed by low-energy
collisional activation and thermalization with Ar
(~10-3 mbar) in the linear hexapole. For the m/z 204.087
ions the IRMPD fragments followed were m/z 186.076,
168.066, 144.066, and 126.055. For [ATA+H]*, the frag-
ments followed were m/z 244.129 and 173.092.

Theoretical Methods. Similar to prior systems?240-44 we
performed quantum chemical calculations to model the po-
tential energy surfaces of [AT(GalNAc)A+H]*, [ATA+H]",
[GalNAc-H20+H]*, ATA, and (GalNAc-H20). Initial candidate
structures were systematically generated via the tool
Fafoom*>-48, a genetic algorithm with the generated struc-
tures initially optimized using the MMFF94 Force Field+°-53.
Geometry optimizations of the resulting candidate confor-
mations were performed with the Gaussian 09 software
package>* at four increasing levels of theory: HF/3-21g,
B3LYP/6-31G(d), B3LYP/6-31+G(d,p),>557 and M06-2X/6-
31+G(d,p)385°. Degenerate structures were removed after
each level and the remaining structures were utilized as the
starting points of the subsequent calculation set. Supple-
mental manual manipulation and adjustment of the lowest
energy structures followed by re-optimizations were also
undertaken to ensure that other important conformers had
not been missed.

Calculations of reaction pathways including transition
structures, product ions and neutrals were performed at the
B3LYP/6-31G(d), B3LYP/6-31+G(d,p), and MO06-2X/6-
31+G(d,p) levels of theory. Multiple transition structures
(TSs) were systematically generated and calculated from
multiple precursor ion structures for each potential frag-
mentation pathway. All minima and TSs were tested by vi-
brational analysis (all real frequencies or 1 imaginary fre-
quency, respectively). The potential energy surface gener-
ated combines the zero-point energy correction (ZPE) to the
electronic energy (Ee,ox) for improved accuracy (AEei+zpr0x).
The related, standard enthalpy (AHz29sk), Gibbs free energy
(AGz29sk), and entropy (ASz9sk) corrections to 298 K were
also determined. The reaction pathway through each TS
was tested with intrinsic reaction coordinate calculations
(GS2 keyword) with up to 10 steps in each direction. The
terminating points of these calculations (one on product-
side, one on reactant-side) were then optimized further to
determine which minima were connected to each TS. Tar-
geted single point calculations utilizing the B3LYP, M06-2X,
and wB97XD5460 models with 6-311+G(2d,2p) basis sets to
assess the extent of energetic variability followed.

B3LYP/6-311+G(2d,p) vibrational frequencies from opti-
mized structures at the same level of theory were utilized
for comparisons with the experimental IRMPD spectra. A 20



cm? full width at half maximum Gaussian line shape and a
scaling factor of 0.960 was utilized for the vibrational fre-
quencies for comparison to the experimental spectra.

RESULTS AND DISCUSSION

Tandem Mass Spectrometry. For [AT(GalNAc)A+H]*
our electrospray-quadrupole time-of-flight tandem mass
spectra show abundant peaks at m/z 204 and 262 (Figure
1). These peaks are complementary from a single cleavage
of the glycosidic bond: m/z 204 is [GalNAc-H20+H]*,
CsH14N10s*, and m/z 262 is protonated alanylthreonylala-
nine, [ATA+H]*, C10H20N30s*. Facile cleavage of the glyco-
sidic bond to produce substantial peaks at m/z 204 is con-
sistent with the literature.151427.2861 At increased collision
energies consecutive losses from these ions become in-
creasingly prevalent (m/z 186, 138, 126).
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Figure 1. Electrospray-quadrupole time-of-flight MS/MS data:

(a) Example spectrum of [AT(GalNAc)A+H]*, m/z 465.1+4, at

12 eV laboratory frame collision energy. (b) Breakdown graph

summarizing the [AT(GalNAc)A+H]* MS/MS spectra as a func-
tion of laboratory frame collision energy.

[AT(GalNAc)A+H]* Minima. The lowest energy con-
former of [AT(GalNAc)A+H]* (Figure 2, Table S1) is pre-
dicted to have a highly folded structure®? offering excellent
charge solvation through hydrogen bonding side-chain N-
acetyl and C-terminal carbonyl oxygens to the protonated
N-terminus. These beneficial interactions result in a skew
hexose ring which in turn has an additional hydrogen bond-
ing network between the hydroxyls. Other low energy
structures (Figure S1, Table S1) are predicted to be a mix-
ture of highly folded (II) and more extended, so entropically
favorable conformations (III, IV).

Figure 2. Global minimum precursor ion structure, I, of
[AT(GalNAc)A+H]".

Glycosidic Bond Cleavage. The m/z 204, CsH14N10s*,
[GalNAc-H20+H]* and m/z 262, C10H20N30s*, [ATA+H]* frag-
ments are complementary resulting from cleavage of the
glycosidic bond. Consistent with the wider understanding of
peptide dissociation chemistry, the key difference is which
fragment keeps the ionizing proton.63-65

For the [AT(GalNAc)A+H]* ions, the lowest energy mech-
anism involves isomerization?2 prior to glycosidic bond
dissociation (Scheme 2). This pathway begins with mobili-
zation of the ionizing proton to the carbonyl oxygen of the
N-terminal alanine. The reactive configuration positions the
pyranose ring oxygen solvating the ionizing proton (V, Fig-
ure S2, Table S1). Transfer of the proton to the ring oxygen
and concerted nucleophilic attack into carbon 1 of the Gal-
NAc residue in a Sn2-like transition structure (TS_V_VI,
AHz98k (AG29sx) = 113 (113) k] mol* (M06-2X/6-31+G(d,p)),
Table S1, Figure 3) forms an oxazolinium-derivative that al-
lows free rotation of carbons 3 to 6. Once the hydroxyl
group of carbon 4 is appropriately positioned a second Sn2-
like transition structure may occur (TS_VII_VIII, 131 (116)
k] mol-, Figure 3, Table S1) to produce a furanose GalNAc
residue and protonation back at the carbonyl oxygen of the
N-terminal alanine. Further proton transfers and rotations
enable population of the furanose glycosidic bond cleavage
reactive configuration (IX, Table S1, Figure S2). This elon-
gated structure positions the ionizing proton close to the
glycosidic oxygen while simultaneously bridged between
the threonyl carbonyl oxygen and the carbonyl oxygen of
the GalNAc residue. Proton transfer weakens the glycosidic
bond,?122 enabling cleavage with concerted oxazolinium ion
formation through nucleophilic attack by the carbonyl oxy-
gen of GalNAc into carbon 1 of the GalNAc residue (TS_IX X,
132 (111) k] mol, Table S1, Figure 3, Figure S2). The re-
sulting proton bound dimer of ATA and the furanose oxa-
zolinium ion, X, then either dissociates directly to yield the
m/z 204 ion and neutral ATA or transfers a proton to ATA
prior to dissociation, thereby generating m/z 262,
[ATA+H]".
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The conceptually simpler direct mechanism?6-28 of disso-
ciation (Scheme S1) is again?? predicted to be more



energetically demanding (TS_XI_XII, 143 (130) k] mol, Ta-
ble S1, Figure S3). The mechanism begins with mobilization
of a proton from the global minimum, N-terminally proto-
nated structure to the glycosidic oxygen via the carbonyl ox-
ygen of the GalNAc residue enabling concerted glycosidic
bond cleavage and nucleophilic attack into carbon 1 to form
a pyranose GalNAc oxazolinium ion.

The predicted reaction energetics are consistent for both
the M06-2X and B3LYP models with 6-31+G(d,p) basis sets
although the magnitude of the predicted barriers differs. To
assess the effect of chemical model as a function of basis set,
we utilized the larger 6-311+G(2d,2p) basis set and the
wB97XD functional too. All 3 models consistently predict
the furanose-forming mechanism be most likely (Table S2).
Like the Kuo group,%” we find that the newer models which
contain dispersion terms and larger proportions of exact ex-
change produce larger barriers for gas-phase glycan reac-
tions.212241 Here, the key reactions are Sn2-like which is a
known weakness of the B3LYP model which systematically
underestimates Sn2 reaction barriers.68-71

IR Action Spectra of dissociation products: m/z 204.
Figure 4 shows our experimental IR action spectroscopy
data for the m/z 204 population compared to theoretical
spectra of the six lowest energy furanose oxazolinium ion
structures predicted within 20 k] mol! (Figure S4). All the-
oretical spectra have at least one intense band predicted at
~3460 cm! corresponding to the NH stretch, and higher en-
ergy bands predicted in the 3640-3680 cm™ region corre-
sponding to free OH stretches. H-bonding pattern strongly
affects which OH stretch this corresponds to. i.e., all three
hydroxyl stretches are predicted as the highest energy band
for at least one structure in Figure 4 (Table S3). No individ-
ual structure’s theoretical spectrum explains all experi-
mental features. Population of several low energy struc-
tures is more plausible. In particular, one low energy struc-
ture (panel d, ~3525 cm!, C5-OH hydrogen bonded to C6-
OH, Table S3) predicts a substantial band assignable to the
experimental feature ~3510-3550 cm!; conversely, the ex-
perimentally lower signal-to-noise band at ~3580 cm! is
only predicted for one low energy structure (panel g, C5-OH
hydrogen bonded to the free C6-OH, Table S3). What about
the typically invoked?26-28 pyranose oxazolinium ion struc-
tures?

Calculated IR spectra of the lowest energy pyranose oxa-
zolinium ion structures (Figure S5) are compared to the ex-
perimental spectrum in Figure S6. Both experimental and
theoretical spectra show a substantial band at ~3460 cm!
again corresponding to the NH stretch. However, no pyra-
nose oxazolinium structure has a predicted band which
could explain the intense experimental at ~3510-3550 cm™1.
The much less intense experimental feature at 3575-3600
cm? is potentially consistent with an intense band pre-
dicted for the lowest energy pyranose oxazolinium ion
structure (Figure S6, panel f). Although we cannot rule out
a population of the pyranose oxazolinium ion structures
based on these data, these structures are insufficient to ex-
plain all experimental features.

Additionally, data from the m/z 204 peaks produced from
2 other protonated glycopeptides, [PT(GalNAc)P+H]* and
[RVT(GalNAc)AG+2H]?* collected on a subsequent days
produced similar, but noisier spectra (Figure S7) to those in

Figure 4. While these spectra are lower signal-to-noise, the
consistency in band position supports a similar distribution
of m/z 204 ion gas-phase ion populations despite changes
in peptide sequence and charge state. i.e., indirect support
for current MS3-based approaches to residue identifica-
tion.26:27
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Figure 4. IR action spectra of the m/z 204 population (a) com-
pared to the six lowest energy furanose GalNAc oxazolinium
ion structures (b-g).

IR Action Spectra of dissociation products: m/z 262.
Figure S8 shows our experimental IR action spectroscopy
data for the m/z 262 population compared to the 6 lowest
energy theoretical IR action spectra of [ATA+H]*. These are
O-protonated structures of similar energy (range <10 kJ
mol!, Figure S9) and band position making definitively ex-
cluding structures difficult. The enthalpically lowest energy
structure (Figure S8, panel f, Figure S9) is insufficient to ex-
plain the higher energy bands in the spectrum as it lacks a
band predicted at ~3665 cm-1. This is consistent with the
greater entropic favorability of these structures (Figure S9).

Conclusions. Our combined tandem mass spectrometric,
computational, and spectroscopic analyses provide evi-
dence indicating that protonated o-GalNAc glycosylated
peptides can produce furanose oxazolinium ion, m/z 204,
CsH14N10s*, structures. Multiple levels of theory support
isomerization prior to glycosidic bond dissociation to pro-
duce this ion. However, multiple, low energy structures are
necessary to explain the IR action spectrum. Concomitantly,
we are unable to entirely rule out simultaneous production
of at least some pyranose oxazolinium ion population due a
combination of similar predicted bands and reaction barri-
ers not being drastically different.

Future work will involve testing the generality of these
findings for a wider range of glycan linkage types, glycan
compositions, and at differing photon energies.
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