Check for
Updates

Assessment of Reinforcement Learning for Macro Placement

Chung-Kuan Cheng
University of California, San Diego
La Jolla, California, USA

Yucheng Wang
University of California, San Diego
La Jolla, California, USA

ABSTRACT

We provide open, transparent implementation and assessment of
Google Brain’s deep reinforcement learning approach to macro
placement [9] and its Circuit Training (CT) implementation in Git-
Hub [23]. We implement in open-source key “blackbox” elements
of CT, and clarify discrepancies between CTand [9]. New testcases
on open enablements are developed and released. We assess CT
alongside multiple alternative macro placers, with all evaluation
flows and related scripts public in GitHub. Our experiments also
encompass academic mixed-size placement benchmarks, as well
as ablation and stability studies. We comment on the impact of [9]
and CT, as well as directions for future research.

CCS CONCEPTS

« Hardware — Electronic design automation; Physical de-
sign (EDA); Partitioning and floorplanning,.

KEYWORDS
Macro placement, Reinforcement learning, Modern benchmarks

ACM Reference Format:

Andrew B. Kahng
University of California, San Diego
La Jolla, California, USA

Chung-Kuan Cheng, Andrew B. Kahng, Sayak Kundu, Yucheng Wang, and Zhi-

ang Wang. 2023. Assessment of Reinforcement Learning for Macro Place-
ment. In Proceedings of the 2023 International Symposium on Physical Design
(ISPD °23), March 26-29, 2023, Virtual Event, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3569052.3578926

1 INTRODUCTION

In June 2021, authors from the Google Brain and Chip Implementa-
tion and Infrastructure (CI2) teams reported a novel reinforcement
learning (RL) approach for macro placement [9] (Nature). The au-
thors stated, “In under six hours, our method automatically gener-
ates chip floorplans that are superior or comparable to those pro-
duced by humans in all key metrics, including power consumption,
performance and chip area” Results were reported to be superior
to those of an academic placer [3] and simulated annealing. Data
and code availability was promised (“The code used to generate
these data is available from the corresponding authors upon rea-
sonable request”). Google’s Circuit Training (CT) repository [23],
which “reproduces the methodology published in the Nature 2021
paper”, was made public in January 2022.

ISPD °23, March 26-29, 2023, Virtual Event, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9978-4/23/03.
https://doi.org/10.1145/3569052.3578926

This work is licensed under a Creative Commons Attribu-
tion International 4.0 License.

158

Sayak Kundu
University of California, San Diego
La Jolla, California, USA

Zhiang Wang
University of California, San Diego
La Jolla, California, USA

Evaluation of Nature and CT has been hampered because nei-
ther data nor code in these works is, to date, fully available. A
“Stronger Baselines” (SB) manuscript [11] claims that a stronger
simulated annealing baseline outperforms Nature, but apparently
uses a Google-internal version of CT along with different bench-
marks and evaluation metrics. Overall, inability to reproduce Na-
turemethods and results has led to controversy and slowed progress
in the field.

This paper summarizes efforts toward an open-source, transpar-
ent implementation and assessment of Nature and CT. Results are
public in the MacroPlacement GitHub repository [33]. Additional
background and details are given in a “For the Record” series of
updates [37], and in the “Our Progress” [34] and other documenta-
tion in MacroPlacement. Our main contributions are as follows.

e We summarize the major miscorrelations between Nature and
CT. We also describe the reverse-engineering of key “blackbox”
elements of CT - force-directed placement (Sec. 3.2.1) and proxy
cost calculation (Sec. 3.2.2) — which are not clearly documented
in Nature or open-sourced in CT. Further, we implement the
grid-based Simulated Annealing macro placement that is used
for comparison by both Nature and SB.

e We extend open foundations for academic research through (i)
augmentation of SKY130HD [19] and ASAP7 [18] design enable-
ments; (ii) bringup of modern, macro-heavy testcases including
Ariane [13], BlackParrot (Quad-Core) [14] and MemPool Group
[15]; and (iii) interactions with major EDA vendors leading to
policy changes that permit Tcl script sharing by researchers in
GitHub [12] [29].

o We assess CTusing benchmarks implemented in NanGate45 [16]
and GlobalFoundries GF12LP. Methods used for comparison in-
clude (i) a SOTA commercial macro placer (CMP); (ii) simulated
annealing following [11] (SA); (iii) human-expert solutions; (iv)
Nvidia’s AutoDMP [1]; and (v) RePlAce [22]. The evaluation flows
and related Tcl scripts are public in MacroPlacement [42]. Com-
parisons (ii), (iii) and (v) are also made in the Nature work.

e We report experimental assessments that shed light on several
aspects of CT: (i) how use of initial placement information from
a commercial physical synthesis tool affects CT results; (ii) stabil-
ity of CT: (iii) correlation between CT's proxy cost and “ground
truth” outputs of a commercial EDA tool; and (iv) performance
on ICCADO04 testcases studied in the SB manuscript.

In the following, Section 2 lists the macro placement methods stud-

ied, and Section 3 describes efforts toward open-source replication

of CT. Sections 4, 5 and 6 present experimental setup and methods,
along with results using both modern and academic benchmarks.

Section 7 gives conclusions and directions for future research.

ISPD °23, March 26-29, 2023, Virtual Event, USA

2 MACRO PLACEMENT METHODS

VLSI physical design researchers and practitioners have studied
macro placement for well over half a century, as reviewed in [38]
[10]. We study the following macro placement methods.

e CT [23] uses the RL approach to place macros in sequence. CT
first divides the layout canvas into small grid cells, using place-
ment locations along with hypergraph partitioning to group stan-
dard cells into standard-cell clusters, to set up the environment.
Then, the RL agent places macros one by one onto the centers of
grid cells; after all macros are placed, force-directed placement is
used to determine the locations of standard-cell clusters (see Sec.
3.2.1). Finally, proxy cost (Sec. 3.2.2) is calculated and provided as
the reward feedback to the RL agent.

e RePlAce [3] [22] models the layout and netlist as an electro-
static system. Instances are modeled as electric charges, and the
density penalty as potential energy. The instances are spread ac-
cording to the gradient with respect to the density penalty.

o AutoDMP [1] from Nvidia builds on the GPU-accelerated global
placer DREAMPlace [6] and detailed placer ABCDPlace [7]. Au-
toDMP adds enhanced concurrent macro and standard cell place-
ment, along with automatic parameter tuning based on multi-
objective Bayesian optimization (MOBO).

o CMP is a state-of-the-art commercial macro placer from Cadence
which performs concurrent macro and standard cell placement.
CMP results also serve as input to the Cadence Genus iSpatial
physical synthesis tool.

o Human-Expert macro placements are contributed by individ-
uals at IBM Research [28], ETH Zurich and UCSD [30]; human-
expert placements are one of the two baselines used by Nature
authors.

e Simulated Annealing (SA) is a baseline used by Nature au-
thors, and studied by both Nature and SB. Annealing is applied
to place macros in the same grid cells as CT (see Sec. 3.3).

3 REPLICATION OF CIRCUIT TRAINING

We now describe clarifications and reproduction in open source of
CT. First, we summarize the main miscorrelations between Nature
and CT. Second, we explain details of key “blackbox” elements of
CT, i.e., force-directed placement and proxy cost calculation, which
are to date hidden behind plc_client APIs in CT. Third, we describe
our implementation of Simulated Annealing. We thank Google en-
gineers for answering questions and for many discussions that
have helped our understanding since April 2022.

3.1 Mismatches between CT and Nature

We find several significant mismatches between CT and Nature.

e CTassumes that all instances of the input netlist have (x, y) loca-
tions, i.e., the netlist has already been placed before it is input to
CT. The location information is used by CT's grouping, gridding
and clustering process. However, this was not apparent during
the paper review [37], and is not mentioned in Nature [9]. Ex-
periments in Sec. 5.2.1 show that having initial placement infor-
mation can significantly enhance CT outcomes.

e The proxy cost function defines the objective that drives the RL
agent’s learning. In Eq. 2 below, CT sets congestion weight A
to 0.5 and density weight y to 1.0. Nature indicates “the conges-
tion weight A is set to 0.01, the density weight y is set to 0.01”.

Chung-Kuan Cheng, Andrew B. Kahng, Sayak Kundu, Yucheng Wang, and Zhiang Wang

159

However, engineers from Google Brain have suggested that we
set congestion weight A = 0.5 and density weight y = 0.5 [27];
we follow this last suggestion in all of our experiments. Sensi-
tivity of conclusions to the weighting of proxy cost elements is
discussed in Sec. 6 below.

e Nature “place[s] the centre of macros and standard cell clusters
onto the centre of the grid cells”. However, CT does not require
standard-cell clusters to be placed onto centers of grid cells. (See
Sec. 3.2.1.)

e Nature describes generation of the adjacency matrix based on
the register distance between pairs of nodes. This is consistent
with timing being a key metric for placement quality. However,
CTbuilds the adjacency matrix based only on direct connections
between nodes (i.e., macros, IO ports and standard-cell clusters).

3.2 Clarifying “blackbox” elements of CT

We now explain two key “blackbox” elements of CT: force-directed
placement and proxy cost calculation. Neither is clearly documented
in Nature, nor visible in CT. These examples are representative of
the reverse-engineering needed to understand and reimplement
methods that to date are visible only through APIs in the plc_client
of [23]. Note that when performing force-directed placement and
proxy cost calculation, CT assumes that each standard-cell cluster
has a square shape.

3.2.1 Force-directed placement. Force-directed placement (FD) is
used to place standard-cell clusters based on the fixed locations of
macros and IO ports. During FD, only standard-cell clusters can
be moved, and they are not necessarily placed onto centers of grid
cells. At the start of FD, all standard-cell clusters are placed at the
center of the canvas. Then, the locations of standard-cell clusters
are iteratively updated. Each iteration first calculates the forces ex-
erted on each node (macro, standard-cell cluster or IO port). There
are two types of forces between nodes: attractive and repulsive.
Attractive force (F,) applies only to pairs of nodes that are con-
nected by nets. All multi-pin nets are decomposed into two-pin
nets using the star model. For the two-pin net connecting pin P1
of node M1 and P2 of node M2, the attractive force components
applied to M1 and M2 are Fy_ = kq X abs(P1.x — P2.x) and Fa, =
kq x abs(P1l.y — P2.y), where k, is the attractive factor. If one of
the pins is an IO port, k, is equal to the attractive factor multiplied
by the IO factor (default = 1.0).

Repulsive force (F,) applies only to nodes that overlap with each
other. We indicate the center coordinates of each node M using
(M.x, M.y). For two nodes M1 and M2 that overlap with each other,

the repulsive force components applied to M1 and M2 are F. =

abs(M1.x—M2.x) _ abs(M1.y—M2.y)
kr XFr o X —gistaatanzy - 20 Fry = keXFr o X =g oy

where k; is the repulsive factor, Fy,, is the maximum move dis-
tance (see Eq. 1) and dist(M1, M2) is the Euclidean distance be-
tween the centers of M1 and M2.
The net force exerted on the it standard-cell cluster is calcu-
lated and then normalized according to
Fi=F;, +F;,

dist _ max(width,height)
max_move_daistance = —numfiters

F.
F; = ————— X max_move_distance
b ™ max; ({[Fj [}) - -

(1)

F;i = ——"% X max_move_distance
ty T max; ({IF;, [}) - -

Assessment of Reinforcement Learning for Macro Placement

where width and height are respectively the width and height of

the canvas, num_iters is the number of iterations, and max; ({|Fj,|})
and max;({|Fj,|}) are respectively the maximum absolute values

of horizontal and vertical forces over all nodes. Finally, the standard-
cell clusters are moved based on the normalized forces exerted on

them. Any move that will push a standard-cell cluster outside of

the canvas is canceled. Our open-source implementation of FD is

available in MacroPlacement [39]. [39] gives a comparison of re-

sults from our FD and CT's FD for the Ariane testcase.

3.22 Proxy cost calculation. The proxy cost R is the weighted
sum of wirelength, density and congestion cost, i.e.,

@)
where A and y are both equal to 0.5 by default. Proxy cost is cru-
cial to understand, since it drives the RL agent’s learning and com-
prises the only apparent connection between CT and optimization
of “key metrics, including power consumption, performance and
chip area” (see also Table 1 in Nature). We now describe the three
components of proxy cost, with an emphasis on congestion cost.

First, the Wirelength cost is the normalized half-perimeter wire-
length (HPWL), defined as

1
Wirelength =
|nets| g;

where width and height are respectively the width and height of
the canvas. Second, the Density cost is the average density of the
top 10% densest grid cells. Third, Congestion cost is decomposed
into two parts: congestion due to macros (macro_cong) and conges-
tion due to net routing (net_cong). In the example of Figure 1, the
horizontal congestion of grid cell g; (H_congy,) is the sum of the
macro congestion (H_macro_congy,) induced by macro M1 (the
large green rectangle) and the routing congestion (H_net_congy,)
induced by the routing pattern of net N1 (the orange path).

R = Wirelength + y X Density + A X Congestion

net.weight x HPW L(net)
width + height

Grid Cell
| | s
------ e
E : M2 N_et E Macro
: Routing:N1
_______ ‘_ _' Route
Crossing

Figure 1: Illustration for congestion cost computation.

Computation of macro congestion. Macro congestion is induced
by the extra routing layer resources used by macros. When calcu-
lating macro congestion, the horizontal and vertical macro_cong
values of a grid cell g are, respectively, the summation of the rout-
ing resources used by macros that intersect g’s right and top bound-
aries. Full details are provided in [50] [35].

160

ISPD ’23, March 26-29, 2023, Virtual Event, USA

Computation of routing congestion. Routing congestion is in-
duced by the routing resources occupied by each routed net. In
CT's proxy cost calculation, a net is routed based on the number
of different grid cells occupied by its pins. (All pins of a given net
that are within a single grid cell are considered as a single pin when
computing routing congestion.) A k-grid net is a net whose pins oc-
cupy k different grid cells. The grid cell occupied by a net’s source
pin is the source grid cell of the net, and other grid cells occupied
by the net’s pins are sink grid cells. Then, the routing pattern of a
k-grid net is calculated as follows. (i) A I-grid net is ignored. (ii)
A 2-grid net is routed using an “L” that depends on relative loca-
tions of the source and sink grid cells. (iii) A 3-grid net has routing
pattern determined by relative positions of its three different grid
cells. (iv) A k-grid net, k > 3, is decomposed into k — 1 2-grid nets
using a star model centered at the source pin (grid cell). The rout-
ing congestion contributions from all nets are superposed. Then,
smoothing of H_net_cong and V_net_cong values per grid is per-
formed. Full details are provided in [35].

Computation of congestion cost. After computing macro con-
gestion and routing congestion, the total congestion for each grid
cell is obtained by adding macro congestion and routing conges-
tion for each direction separately, i.e.,

H_cong = H_macro_cong + H_net_cong

V_cong = V_macro_cong + V_net_cong

Then, congestion cost is given by the average of the top 5% of all
H_cong and V_cong values of grid cells in the canvas. Our open-
source implementation of proxy cost calculation is available in the
MacroPlacement repository [35]. [47] gives a comparison of our
and CT's calculations for the Ariane testcase.

3.3 Simulated Annealing

Simulated Annealing (SA) is used as a baseline for comparison by
both Nature and SB. We implement and run SA based on the de-
scription given in the SB manuscript; Table 2 of [11] gives a con-
cise comparison of hyperparameters used by SB and Nature. Our
implementation differs from that described in Nature in its use of
move and shuffle in addition to swap, shift and mirror actions. We
also use two initial macro placement schemes, i.e., “spiral macro
placement” whereby macros are sequentially placed around the
boundary of the chip canvas in a counterclockwise spiral manner,
and “greedy packer” whereby macros are packed in sequence from
the lower-left corner to the top-right corner of the chip canvas
[11]. FD placement (Sec. 3.2.1) is used to update the locations of
standard-cell clusters every {2n,3n,4n, 5n} macro actions, where
n is the number of hard macros; FD is not itself an action. The SA
cost function is the proxy cost described in Sec. 3.2.2. Our SA im-
plementations are open-sourced in MacroPlacement [36]; the C++
implementations of FD and proxy cost calculation are used in our
reported SA experiments.

4 MODERN BENCHMARKS AND
COMMERCIAL EVALUATION FLOW

We now describe testcases and design enablements that have been
developed to improve academic research foundations while also

ISPD °23, March 26-29, 2023, Virtual Event, USA

serving the MacroPlacement effort. In addition, we present the com-
mercial evaluation flow that we use to assess various macro place-
ment solutions.

4.1 Testcases and enablements

New, macro-heavy testcases and enhanced design enablements have
been developed and made available in MacroPlacement.

Testcases. MacroPlacement includes four open-source testcases: Ar-
iane [13] (20K FFs, 133 and 136 macros), BlackParrot (Quad-Core)
[14] (214K FFs, 220 macros), MemPool Group [15] (361K FFs, 324
macros), and NVDLA (partition “c”) [25] (45K FFs, 128 macros). All
macros in Ariane and in NVDLA have the same size, while Black-
Parrot and MemPool Group each contain macros of varying sizes.
Our experiments use the 133-macro Ariane variant to match the
Ariane in Nature and CT. [40] gives details of testcase creation.
Enablements. MacroPlacement includes three open-source enable-
ments: SKY130HD [19], NanGate45 [16] and ASAP7 [18]. We use
the bsg_fakeram [17] generator to generate SRAMs for SKY130HD
and NanGate45 enablements. The SKY130HD PDK has only five
metal layers, while SRAMs typically use or block the first four
metal layers; this makes it difficult to route macro-heavy testcases.
We therefore provide the SKY130HD FakeStack [41] enablement
which contains nine metal layers. We also provide FakeRAM2.0 [20]
to generate SRAM abstracts for ASAP7-based testcases.

4.2 Commercial evaluation flow

Figure 2 presents the commercial tool-based flow that we use to
create macro placement instances and evaluate macro placement
solutions.! The flow has the following steps.

Step 1: We run logic synthesis using Cadence Genus 21.1 to syn-
thesize a gate-level netlist for a given testcase.

Step 2: We input the synthesized netlist to Cadence Innovus 21.1
and use CMP (Concurrent Macro Placer) to place macros.

Step 3: We input the floorplan .def with placed macros to the Ca-
dence Genus iSpatial flow and run physical-aware synthesis. The
physical-aware synthesis is used to generate initial placement lo-
cations (i.e., (x,y) coordinates) for all standard cells.

Step 4: We obtain macro placement solutions from six methods:
CT, SA, RePlAce, AutoDMP, CMP and human-expert. (The CMP
macro placement is produced in Step 2.) Before running CT or SA
macro placement, we convert the verilog netlist to protocol buffer
(protobuf) format, and use CT-Grouping to generate standard-cell
clusters. The initial placement of standard cells obtained in Step 3 is
used to guide the CT-Grouping process. Code to generate the pro-
tobuf netlist and group standard cells are available in MacroPlace-
ment.? To generate a Bookshelf-format input netlist for RePlAce,
we use the LEF/DEF to Bookshelf converter from RosettaStone [4].
RePlAce, AutoDMP and human experts are not given any initial
placement information for standard cells or macros.

Step 5: For each macro placement solution, we input the floor-
plan .def with macro placement locations to Innovus for place and
route (P&R). After reading the .def file into Innovus, we set all
standard cells to unplaced, and legalize macro locations using the

'We do not perform any benchmarking of the EDA tools used in this study.
2For the CTand SA runs reported here, we run the grouping flow provided in Google’s
CT after generating the protobuf netlist.

Chung-Kuan Cheng, Andrew B. Kahng, Sayak Kundu, Yucheng Wang, and Zhiang Wang

161

refine_macro_placement command.> We then perform power de-
livery network (PDN) generation.* After PDN generation, we run
placement, clock tree synthesis, routing and post-route optimiza-
tion (postRouteOpt).

Step 6: We extract the total routed wirelength (rWL), standard
cell area, total power, worst negative slack (WNS), total negative
slack (TNS) and DRC count from the post-routed design. Table 1 of
the Nature paper [9] presents similar metrics to compare different
macro placement solutions.’ Below, we refer to these metrics as
the (Nature) “Table 1 metrics”.

®© ®

Logic S 0 + | Concurrent Macro
gic Sy v 2| Placer (CMP)

(Netlist) l
Physical Synthesis

.def (Floorplan and
Macro Placement)

.vand .def
(Floorplan,

vand .def (Genus iSpatial) M d
acro an
(Only Floorplan) Standard Cell
: v \} Placement)
RePlAce, AutoDMP, CT and SA

and Human Expert

i 1
| CMPFlow .
i 1
; 4

.def (Floorplan and

@ Wy Macro PIacemenl)@

Power Plan, Place and >
Route (Innovus) ld

Report Nature Table 1
Metrics

Figure 2: Evaluation flow for macro placement solutions pro-
duced by different macro placers.

5 EXPERIMENTS AND RESULTS

In this section, we first study the performance of CT and other
macro placers. We then present experimental results for ablation,
stability, and other studies. The results that we present are a subset
of what is summarized in [34] and [37].

5.1 Comparison of CT with other macro placers

Configuration of different macro placers. We generate macro
placement solutions using CT, CMP, SA, RePlAce and AutoDMP.
We also include macro placement solutions generated by human-
experts. For CT runs, we follow the default setting given in [23],
except that we use density weight 0.5 instead of 1.0, based on guid-
ance from Google engineers [27]. For CMP, we use the default tool
settings. For SA, we use the configurations described in [11] and
the C++ implementation available in MacroPlacement. Instead of
four random seeds, we use two random seeds {0, 1} and two ini-
tialization methods {greedy packing, spiral initialization]. We run
in parallel 320 SA workers for 12.5 hours and use the macro place-
ment solution with minimum proxy cost as the final SA solution.
The SA workers do not communicate with each other. RePlAce
3Macro placements produced by RePlAce, AutoDMP, CTand SA can have macros that
are not placed on grids.

4CT assumes that 18% of routing tracks are used by PDN [45]. We implement our
PDN scripts following the “18% rule” for all the enablements. All of our PDN scripts
are available at [46] in MacroPlacement.

5Accorcling to Nature authors, “The final metrics in Table 1 are reported after PlaceOpt,
meaning that global routing has been performed by the EDA tool”. In this paper, we
report metrics after postRouteOpt, meaning that the entire P&R flow has been per-

formed. A number of results reported in [34] include metrics after both PlaceOpt and
postRouteOpt.

Assessment of Reinforcement Learning for Macro Placement

is run with the default parameters given in [22] except that we

change pcofmax to 1.03 from the default value of 1.05. We run

AutoDMP [1] for 200 samples with two GPU workers, default con-

figuration space, and ppa_cost score function. In all experiments,

we use Genus 21.1 for synthesis (Step 1) and Innovus 21.1 for place

and route (Steps 5 and 6).

Evaluation of Table 1 metrics for different macro placers.

We generate macro placement solutions using testcases in open

NanGate45 (NG45) and commercial GlobalFoundries 12nm (GF12)

enablements. Table 1 presents Nature Table 1 metrics obtained us-

ing the evaluation flow of Figure 2 for different macro placers on
our testcases. The Table 1 metrics in GF12 are normalized to pro-
tect foundry IP: (i) standard-cell area is normalized to core area;

(ii) total power and rWL are normalized to the CT result; and (iii)

timing metrics (WNS, TNS) are normalized to the target clock pe-

riod (TCP) which we leave unspecified. In NG45, the respective
default TCP values for Ariane, BlackParrot Quad-Core (BlackPar-
rot) and MemPool Group (MemPool) are 1.3ns, 1.3ns and 4.0ns. All
testcases reported in Table 1 have 68% floorplan utilization, match-
ing the Ariane design that is public in CT. Studies of other testcases

and enablements are pending (updates will be posted in [34]).
Table 1 also reports the CTproxy cost for all macro placement so-

lutions, as evaluated by the plc_client provided in CT. To compute

the proxy cost for CMP, RePlAce, AutoDMP and human-expert so-
lutions, we first update hard macro locations and orientations, then
run the FD placer to place all standard-cell clusters (soft macros).

We then compute the proxy cost. Figure 3 shows Ariane-NG45

macro placements produced by the macro placers we study.” We

make the following observations.

e Comparison of routed wirelength (rfWL): CMP and AutoDMP
consistently dominate the other macro placers (we comment on
this in Footnote 11 below). For BlackParrot-GF12, AutoDMP’s
rWL is ~40% less than that of CT.

e Comparison of proxy cost: SA dominates other macro placers
in 4 out of 6 cases, and CT dominates other macro placers in 2
out of 6 cases.

e Comparison between CT and Human experts: For large ma-
cro-heavy designs such as BlackParrot and MemPool, human ex-
perts outperform CT in terms of the Nature Table 1 metrics of
“ground truth” postRouteOpt outcomes.

e Comparison between CT and SA: CT generates better TNS

than SA for 4 of 6 cases, while SA generates better tWL (5 of 6

cases) and proxy cost (4 of 6 cases) than CT.

Insertion of CT into a standard EDA flow: The commercial

evaluation flow for CTis equivalent to the CMP flow with inser-

tion of the CT macro placement step. CT outcomes have better
proxy cost but worse rWL than the “pure EDA flow”.

5.2 Ablation, Stability and Other Studies

We now give a sampling of results and takeaways from various
ablation, stability and other studies.

6The WNS and TNS timing metrics reported in Table 1 suggest that the TCP for
BlackParrot-GF12 should be reduced, while the TCP for MemPool-GF12 should be
increased. Ongoing studies adjust TCPs for these designs and will be reported in [34].
7 All postRouteOpt designs are DRC-clean, with the exception of CT, SA and AutoDMP
outcomes for MemPool-NG45; these respectively have 5K, 45K and 31K DRC viola-
tions. We are unable to successfully run RePlAce for the MemPool testcase.

162

ISPD °23, March 26-29, 2023, Virtual Event, USA

Table 1: Nature Table 1 metrics of different macro placers for
testcases in open NG45 and commercial GF12 enablements.
Data points for GF12 (excluding proxy cost) are normalized.
We highlight best values of metrics in blue bold font.

Design Macro Area rWL | Power | WNS | TNS |Proxy
Enablement | Placer (um?) (mm) | (mW) | (ps) (ns) Cost
CT 244,022 4,894 828.7 -79 -25.8 | 0.857
CMP 256,230 4,057 851.5 | -154 | -196.5 | 1.269
Ariane RePlAce | 252,444 4,609 843.9 | -103 -69.9 | 1.453
NG45 SA 248,344 4,014 831.9 | -111 -87.0 |0.752
AutoDMP | 243,720 | 3,764 | 821.7 -95 -37.5 | 1.247
Human 249,034 4,681 832.4 -88 -46.8 | 1.158
CT 1,956,712 | 36,845 | 4627.4 | -185 | -1040.8 | 1.021
CMP 1,916,166 | 23,144 | 4428.7 | -144 | -356.2 | 1.022
BlackParrot | RePlAce | 1,957,915 | 32,970 | 4591.5 | -252 | -6723.2 | 1.346
NG45 SA 1,935,896 | 30,927 | 4523.7 | -156 | -1839.8 | 0.921
AutoDMP | 1,920,024 | 23,376 | 4438.6 | -190 | -1183.1 | 1.007
Human | 1,919.928 | 25,916 | 4469.6 | -97 | -321.9 | 1.275
CT 4,890,644 | 123,330 | 2760.5 | -69 -119.3 | 1.253
MemPool CMP 4,837,150 | 102,907 | 2586.6 | -20 -1.0 1.571
NG45 SA 4,948,800 | 125,682 | 2805.8 | -124 -11.7 | 1.489
AutoDMP | 4,884,674 | 110,982 | 2658.8 | -115 -43.4 | 1.782
Human | 4,873,872 | 107,598 | 2640.0 | -49 -11.9 | 1.733
Note: Data points (excluding proxy cost) for GF12 are normalized.

CT 0.138 1.000 1.000 |-0.145| -123.4 | 0.706
CMP 0.139 0.865 | 0.990 |-0.159 | -142.3 | 0.878
Ariane RePlAce 0.140 1.042 | 1.015 |-0.168 | -197.4 | 1.160
GF12 SA 0.139 0.925 0.995 | -0.155 | -178.0 | 0.664
AutoDMP | 0.137 0.885 0.985 [-0.130| -90.5 | 0.972
Human 0.137 1.064 0.981 | -0.139 | -106.6 | 1.125
CT 0.179 1.000 1.000 | 0.001 0.000 | 0.789
CMP 0.178 0.593 0.918 | 0.001 | 0.000 | 0.844
BlackParrot | RePlAce 0.178 0.798 | 0.959 | 0.000 | 0.000 | 1.121
GF12 SA 0.178 0.731 0.944 | 0.000 | 0.000 |0.665
AutoDMP 0.178 0.587 | 0.917 | 0.000 | 0.000 | 0.816
Human 0.178 0.642 0.928 | 0.000 | 0.000 | 1.089
CT 0.410 1.000 1.000 | -0.195 | -1849.4 | 0.984
MemPool CMP 0.405 0.821 | 0.895 | -0.197 | -1961.3 | 1.422
GF12 SA 0.412 0.991 1.000 | -0.187 | -2442.7 | 1.196
AutoDMP 0.402 0.843 0.895 | -0.213 | -1015.7 | 1.448
Human 0.406 0.888 0.920 |-0.149 | -1766.5 | 1.446

5.2.1 CT is helped by placement from physical synthesis. As noted

in Sec. 3.1, CTrelies on placement locations in its input, though this
is not mentioned in Nature. To test the effect of initial placement
on the CT outcome, we generate three “vacuous” input placements
for the Ariane-NG45 design. Cases (1), (2) and (3) respectively have
all standard cells and macros located at (600, 600), at the lower-left
corner (0, 0), and at the upper-right corner (1347.1, 1346.8). For
each case, we generate the clustered netlist, run CT and collect Ta-
ble 1 metrics, following the evaluation flow of Sec. 4.2. We find that
placement information in the input provides significant benefit to
CT: given locations from Cadence CMP and Genus iSpatial (Steps
2 and 3 of Figure 2), CT's solution has rWL that is 10.32%, 7.24%
and 8.17% less than in Cases (1), (2) and (3), respectively. The Table
1 metrics of all three runs are given at [38] in MacroPlacement.

5.2.2 Both physical synthesis tools lead to similar CT outcomes.
The evaluation flow in Figure 2 uses Cadence CMP and Genus iS-
patial. We have also used Synopsys Design Compiler Topographi-
cal version R-2020.9 to run physical-aware synthesis and generate
standard-cell and macro placement locations, for the Ariane-NG45
design. We observe similar outcomes with either physical synthe-
sis tool; details of Nature Table 1 metrics are given at [48].

ISPD °23, March 26-29, 2023, Virtual Event, USA

RePlAce

Chung-Kuan Cheng, Andrew B. Kahng, Sayak Kundu, Yucheng Wang, and Zhiang Wang

AutoDMP

LT LT
| g
LIAEY p {I

Figure 3: Ariane-NG45 (68% utilization, 1.3ns TCP) macro placements generated by different macro placers.

5.2.3 Proxy cost is not well-correlated to Nature Table 1 metrics.
Since the RL agent in Nature and CTis driven by proxy cost, we ex-
amine the correlation of proxy cost with Nature Table 1 metrics. We
collect 15 macro placement solutions generated by CT for Ariane-
NG45 that have proxy cost less than 0.9, and generate the Table 1
metrics for each macro placement (details are given at [44]). Table 2
shows the Kendall rank correlation coefficient for proxy cost and
Table 1 metrics. Values close to +1 or -1 indicate strong correlation
or anticorrelation, respectively, while values close to 0 indicate a
lack of correlation. Thus, in the regime of relatively low proxy cost,
we observe poor correlation of proxy cost and its components with
Table 1 metrics.

Table 2: Kendall rank correlation coefficient between proxy
cost and Nature Table 1 metrics.

Proxy Cost | Std Cell WL | Power | wNs | TNs
Element Area
Wirelength | -0.221 |0.317 | -0.144 | 0.163 | 0.317
Congestion | -0.029 |0.086 | -0.010 | 0.105 | -0.048
Density 0.096 |[0.230| 0.096 |0.268 | 0.077
Proxy -0.010 |0.257| 0.048 | 0.200 | 0.048

5.24 SA gives more stable results than CT. CT results can vary
even if the same global seed is used, due to stochasticity in train-
ing. SA results are deterministic for any given seed, but vary across
different seeds. We empirically assess the stability of CT and SA
results across different seeds, by recording the mean and standard
deviation of the overall proxy cost, proxy cost components, and Na-
ture Table 1 metrics. Table 3 gives results for CT, where six runs are
made for each of three seeds, i.e., a total of 18 training runs. Table 4
gives results for SA, where six runs are made with different seeds.
Note that a single run of SA is configured with a pair of seeds;
half of the run’s 320 independent threads use the first seed, and
the other half use the second seed. From (aggregated) proxy cost
metrics and Nature Table 1 metrics, we observe that SA exhibits
significantly smaller standard deviation than CT. Timing metrics
(WNS, TNS) show larger variation than other Table 1 metrics.

5.2.5 Confirmation of CT setup and execution. As noted above,
Google engineers have generously provided clarifications and guid-
ance over the course of our efforts. An early confirmation of our CT
setup and execution methodology involved Google engineers run-
ning CT in-house on the clustered netlist of Ariane in NG45 with
68% utilization and 4ns TCP. Figure 4 shows the CT training curves
generated by us and by Google engineers. Running the evaluation
flow on both macro placement solutions produces similar Nature
Table 1 metrics, as detailed in [49].

163

Table 3: Mean (standard deviation) of proxy cost and Nature
Table 1 metrics for different global seeds in CT.

Metric CT Cost Metrics Nature Table 1 Metrics

Seed Proxy | WL ‘ Den. | Cong. | Area |Power| rWL |WNS| TNS
Cost | Cost | Cost | Cost | (um?) | (mW) | (mm) | (ps) (ns)

Ariane-NG45

111 0.841 | 0.105 | 0.525 | 0.949 | 246,651 | 834.2 | 4,880 | -102 -68.3
(0.012) | (0.002) | 0.013) | (0.014) | (1,258) | (24) | (137) | @7) | (40.5)

992 0.924 | 0.106 | 0.529 | 1.107 | 247,755 | 836.5 | 5,114 | -112 -79.5
(0.035) | (0.006) | (0.024) | (0.050) | (1,776) | (5.7) | (433) | 37) | (39.7)

333 0.914 | 0.106 | 0.529 | 1.086 | 246,855 | 833.7 | 4,941 | -87 -48.0
(0.033) | (0.003) | 0.012) | (0.057) | (1,926) | (3.9) | (97) | (20) | (28.3)

AGGR 0.893 | 0.106 | 0.528 | 1.047 | 247,087 | 834.8 | 4,978 | -100 -65.3
(0.046) | (0.003) | (0.016) | (0.08) | (1,652) | (4.1) | (272) | (28) | (36.9)

BlackParrot-NG45

11 1.059 | 0.074 | 0.802 | 1.169 |1,957,636 |4,646.3| 37,699 | -200 | -1342.5
(0.064) | 0.009) | (0.051) | (0.061) | (10,955) | (76.2) | (4,382) | (39) | (1171.5)

992 1.064 | 0.072 | 0.820 | 1.163 |1,957,891 |4,628.9| 36,849 | -221 | -1707.6
(0.040) | (0.004) | (0.022) | (0.053) | (8,215) | (38.2) | (1,888)| (41) | (974.2)

333 1.097 | 0.077 | 0.851 | 1.189 | 1,959,685 | 4,656.0 | 39,159 | -189 | -986.8
(0.043) | (0.005) | (0.048) | (0.032) | (6,004) | (34.8) | (2,348) | (36) | (458.4)

AGGR 1.073 | 0.074 | 0.824 | 1.173 | 1,958,404 | 4,643.7 | 37,902 | -203 | -1345.6
(0.050) | (0.006) | (0.045) | (0.048) | (8,162) | (51.3) | (3,046) | (39) | (914.5)

Table 4: Mean (standard deviation) of proxy cost and Nature
Table 1 metrics for different global seeds in SA.

Metric CT Cost Metrics Nature Table 1 Metrics
Seed | PTOXY | WL ‘ Den. | Cong. | Area |Power| rWL [WNS ‘ TNS
Cost | Cost | Cost | Cost | (um?) | (mW) | (mm) | (ps) | (ns)
Ariane-NG45

0,1 0.752 | 0.085 | 0.499 | 0.835 | 248,343 | 831.9 | 4,014 | -111 | -87.0
2,3 0.751 | 0.085 | 0.498 | 0.834 | 244,218 | 827.2 | 4,023 | -103 | -72.2
4,5 0.755 | 0.087 | 0.497 | 0.839 | 245,604 | 830.7 | 4,062 | -197 | -229.7
6,7 0.754 | 0.088 | 0.500 | 0.833 | 247,213 | 831.6 | 4,128 | -141 | -117.0
8,9 0.752 | 0.085 | 0.501 | 0.833 | 246,159 | 828.8 | 3,992 | -111 | -56.4
10,11 | 0.755 | 0.086 | 0.5007 | 0.8378 | 247,820 | 832.4 | 3,990 | -135 | -133.9
AGGR 0.753 | 0.086 | 0.499 | 0.835 | 246,560 | 830.4 | 4,035 | -133 | -116.0
(0.002) | (0.001) | (0.002) | (0.002) | (1,533) | (2.0) | (53) | 35) | (62.5)

BlackParrot-NG45

0,1 0.921 | 0.064 | 0.708 1.06 |1,935,896|4,523.7 {30,927 | -156 | -1839.8
2,3 0.921 | 0.062 | 0.720 | 0.999 | 1,939,640 |4,529.8 30,499 | -219 |-1857.3
4,5 0.926 | 0.059 | 0.732 | 1.001 | 1,937,104 |4,516.3 | 29,696 | -216 |-1880.5
6,7 0.921 | 0.062 | 0.735 | 0.983 | 1,936,302 |4,526.0|31,010| -181 | -733.0
8,9 0.923 | 0.058 | 0.729 | 1.001 1,934,343 |4,514.3|29,495| -183 | -472.5
10,11 | 0.931 | 0.063 | 0.748 | 0.988 | 1,936,369 |4,533.5 (31,121 | -172 | -718.6
AGGR 0.924 | 0.061 | 0.729 | 0.996 |1,936,609 |4,523.9|30,458 | -188 |-1250.3
(0.004) | (0.002) | (0.014) | (0.009) | (1,745) | (7.5) | (703) | (25) | (673.6)

5.2.6 Ariane is less challenging than other testcases. We perform
a shuffling experiment to evaluate the relative difficulty of finding
good solutions for different testcases. Starting from the CT macro
placement, we randomly shuffle the locations of same-size macros
and generate six macro placements corresponding to six different
random seeds. During macro shuffling, when macro A moves to the

Assessment of Reinforcement Learning for Macro Placement

ISPD ’23, March 26-29, 2023, Virtual Event, USA

0.141 0.9 2.001
" —— Google : —— Google - —— Google
%] R - R 4] N
8013/ Our %08 our g11s our
c (@] c
©0.12 207 S 1504
2 c (0]
20114 2 0.6 ©1.251
= 8

0.10 0.5 1.001

0 200K 400K 600K 800K 1M 0 200K 400K 600K 800K 1M 0 200K 400K 600K 800K 1M

Step

Step

Step

Figure 4: CT training curves of Ariane in NG45, generated by us and by Google engineers.

initial location of macro B, we update the orientation of macro A
with the initial orientation of macro B. We then run the evaluation
flow and generate Table 1 metrics for each macro placement.

Table 5 shows the average change in Table 1 metrics and P&R
runtime (Steps 5 and 6 of Figure 2) for shuffled macro placements,
relative to the original CT macro placement. For Ariane, shuffling
increases IWL by 16.17% and P&R runtime by 8.17%. For BlackPar-
rot, shuffling increases rtWL by 33.51% and P&R runtime by 23.76%.
Because Ariane has less degradation of Table 1 metrics with shuf-
fling, we consider Ariane to be a less difficult testcase than Black-
Parrot. Details of Table 1 metrics for all the macro placements gen-
erated using macro shuffling are available at [43]. Macro shuffling
for MemPool resulted in flow failure for all runs, suggesting that
MemPool is even more difficult than BlackParrot.

Table 5: Average change of Table 1 metrics and P&R runtime
due to macro shuffling (Ariane, BlackParrot).

Design Standard Cell Area | rWL | Total Power | Runtime
Ariane 1.75% 16.17% 1.49% 8.17%
BlackParrot 2.23% 33.51% 6.54% 23.76%

6 ACADEMIC BENCHMARKS AND
EVALUATION FLOW

The SB manuscript [11] opened the question of assessment using
standard benchmarks from the VLSI CAD physical design field. We
assess CT on the ICCADO04 Mixed-size Placement benchmarks [21]
studied in SB. 17 testcases contain macros, with number of macros
ranging from 178 to 786 and number of standard cells ranging from
12K to 210K; each testcase has multiple macro sizes. Here, we de-
scribe our academic evaluation flow and then compare the perfor-
mance of CT, SA and RePlAce. We also study the effect of proxy
cost weighting on the CT vs. SA comparison.

Academic evaluation flow. Figure 5 shows the academic tool-
based flow used to create macro placement instances and evalu-
ate macro placement solutions. Our six-step flow enables compari-
son according to both HPWL and proxy cost, as in SB. (1) We take
the netlist in Bookshelf format as input, and run RePlAce [22] and
NTUplace3 [26] to generate initial placement locations (i.e., (x,y)
coordinates) for all standard cells and macros. HPWL for RePlAce
is reported at this point.® (2) We convert the placed netlist (Book-
shelf format) into CT's protobuf format. (3) We use CT-Grouping

SLEF/DEF versions of these testcases are malformed; hence, only Bookshelf versions
can be used, and commercial EDA tools cannot be run.

164

to generate standard-cell clusters, with macro spacing = 0.0 (de-
fault = 0.1) and cell_area_utilization = 1.0 (default = 0.5) to handle
high area utilizations. (4) We run FD with only repulsive forces
(attractive factor k4 = 0) on the clustered netlist to reduce overlap
between standard-cell clusters. Proxy cost for RePlAce is reported
at this point. (5) We run CT and SA to minimize proxy cost on the
clustered netlist. Proxy cost for CT and SA is reported at this point.
(6) After running CT or SA, we fix the locations of macros and run
RePlAce and NTUplace3 to place standard cells. HPWL for CT or
SA is reported at this point. Settings for CT, SA and RePlAce are
as described in Sec. 5.1, and all runscripts are provided at [50].

Netlist
(Bookshelf
Format)

[Proxy Cost for CT, SAetc.| [HPWL for CT, SAetc. |

® ®

e e
ey HPWL for RePlAce CT, sAete. e
Flat Netist
Placed with placed macros
@ Netist @ @ (Bookshelf Format)
Generate | 4f Rup) FD (k, = 0) Proxy Cost for RePIAce
Protobuf Netlist CT-Grouping o
Protobu Clustered

Netlist Netlist

Figure 5: Academic evaluation flow for macro placers.

Comparison of CT with SA and RePlAce. Table 6 presents re-
sults for CT, SA and RePlAce on ICCADO04 testcases. We observe

the following. (i) In terms of proxy cost, RePlAce is always better

than SA, and SA is always better than CT.? (ii) In terms of HPWL,
RePlAce is better than SA for 15 of 17 testcases, and SA is better

than CTin 16 of 17 testcases. (iii) Our RePlAce runs obtain similar

HPWL to that reported in SB’s Table 1. (iv) Compared to SB’s Table

B2, our SA runs produce better HPWL than SB’s SA in 10 out 17

testcases, and our CT runs produce worse HPWL than SB’s CT in

15 out of 17 testcases.!°

CT vs. SA is stable across proxy cost weighting. For a multi-
objective optimization (wirelength, density and congestion), reward
engineering is very important in practice. Following a suggestion

9RePlAce is superior to CT in every element of proxy cost, across all ICCADO4 test-
cases. However, this would not necessarily translate to production contexts where
Nature Table 1 metrics such as congestion would apply. Indeed, as integrated into the
OpenROAD open-source P&R tool [2], RePlAce has undergone significant changes
for improved routability and timing-driven quality of results [32].

1°Qur proxy cost values cannot be compared with those in the SB manuscript, since
routing resource assumptions used to compute congestion cost in SB are unknown.
Density and congestion weights required to compute proxy cost are also unknown.

ISPD °23, March 26-29, 2023, Virtual Event, USA

Table 6: Proxy cost and HPWL of CT, SA and RePlAce for
ICCADO04 testcases.

. CT SA RePlAce
Design Proxy Proxy Proxy
Cost HPWL Cost HPWL Cost HPWL
ibm01 |1.6617 | 3,373,670 | 1.3166 2,546,110 | 0.9976 | 2,241,590
ibm02 |2.2130| 6,281,060 |1.9072| 5,118,090 | 1.8370 5,265,410
ibm03 |2.0316 | 9,353,340 | 1.7401 7,456,430 | 1.3222 | 6,344,390
ibm04 |1.7542| 9,781,980 | 1.5037 8,445,470 | 1.3024 | 7,112,910
ibm06 |2.9395| 7,097,540 | 2.5057 6,334,540 | 1.6187 | 5,725,280
ibm07 |2.2191 | 13,060,600 | 2.0229 | 11,956,000 | 1.4633 | 9,813,440
ibm08 | 2.3428 | 15,684,500 | 1.9239 | 14,093,200 | 1.4285 | 11,185,400
ibm09 | 1.6998 | 15,691,200 | 1.3875 | 13,222,300 | 1.1194 | 11,940,500
ibm10 | 2.5972 | 54,718,400 | 2.1108 | 37,128,500 | 1.5009 | 39,453,000
ibm11 |1.8916 | 21,647,400 | 1.7111 | 20,723,300 | 1.1774 | 16,589,100
ibm12 |3.1022 | 48,175,200 | 2.8261 | 40,259,300 | 1.7261 | 30,497,500
ibm13 |1.9785 29,679,600 | 1.9141 | 27,099,500 | 1.3355 | 21,832,200
ibm14 |2.4594 | 51,257,200 | 2.2750 | 43,863,600 | 1.5436 | 33,917,600
ibm15 | 2.7759 | 54,563,400 | 2.3000 | 50,491,900 | 1.5159 | 44,368,200
ibm16 |2.3018 | 68,664,000 | 2.2337 | 65,699,600 | 1.4780 | 51,509,800
ibm17 |4.0724 | 81,895,000 | 3.6726 | 76,482,600 | 1.6446 | 62,749,100
ibm18 |3.2188 | 43,119,400 | 2.7755 | 43,784,200 | 1.7722 | 39,705,400
Table 7: CT and SA results for ibm09 and ibm15 using differ-

ent weight combinations in proxy cost (Eq. 2).

Design WL | Den. | Cong. | Prox

(CT/gA) A Cost | Cost Cos% Costy HPWL
ibm09 (0.5,0.5) |0.098|0.873 | 2.331 | 1.700 | 15,691,200
CT) (1,0.5) 0.100 | 0.818 | 2.407 | 2.122 | 15,508,600
(0.01, 0.01) | 0.095 | 0.904 | 2.679 |0.1304 | 15,129,200
ibm09 (0.5,0.5) |0.0910.749 | 1.845 | 1.387 | 13,222,300
(SA) (1, 0.5) 0.100 | 0.737 | 1.981 | 1.828 | 14,119,400
(0.01, 0.01) | 0.079 | 0.934 | 2.233 | 0.111 | 14,713,400
ibmis (0.5,0.5) |0.103 | 1.022 | 4.323 | 2.776 | 54,563,400
€T (1,0.5) 0.101 { 0.932 | 3.572 | 2.819 | 52,283,200
(0.01, 0.01) | 0.093 | 1.049 | 4.229 | 0.146 | 53,496,300
ibm15 (0.5,0.5) |0.093|0.971 | 3.443 | 2.300 | 50,491,900
(SA) (1, 0.5) 0.094 | 0.977 | 3.448 | 2.795 | 50,235,500
(0.01, 0.01) | 0.086 | 1.146 | 3.927 | 0.136 | 51,834,900

from [31], we explore alternative proxy cost weighting to poten-
tially improve final CT outcomes for ICCADO04 testcases. We study
three weight combinations (see Sec. 3.2.2): (1) y = 0.5, A = 0.5 (sug-
gested by Google Brain [27]); (2) y = 1.0, A = 0.5 (default setting of
CT); and (3) y = 0.01, A = 0.01 (default setting of Nature). Table 7
shows that SA consistently achieves lower proxy cost than CT for
ibm09 and ibm15 across the different weight combinations.

7 CONCLUSION

Google’s Nature paper [9] and the subsequent release of Circuit
Training in GitHub [23] have drawn broad attention throughout
the EDA and IC design communities. The work presents a novel
orchestration of multiple elements: (i) a proxy cost function that
captures wirelength, density and congestion and is efficiently eval-
uated with FD placement; (ii) a sequential framework for macro
placement; (iii) gridding of the layout canvas whereby macros can
be placed on centers of grid cells, thus reducing the solution space

Chung-Kuan Cheng, Andrew B. Kahng, Sayak Kundu, Yucheng Wang, and Zhiang Wang

165

for macro locations; and (iv) clustering of standard cells based on
an initial physical-synthesis placement, which reduces both the
size of the graph input to GNN and the runtime of proxy cost
evaluation. The “News and Views” commentary [5] that accompa-
nied the Nature paper noted, “We can therefore expect the semicon-
ductor industry to redouble its interest in replicating the authors’
work” — and this is indeed what has transpired since June 2021.

To date, the bulk of data used by Nature authors has not been
released, and key portions of source code remain hidden behind
APIs. This has motivated our efforts toward open, transparent im-
plementation and assessment of Nature and CT. MacroPlacement
provides open testcases, design enablements, commercial and aca-
demic evaluation flows, and experimental evaluations to clarify
inconsistencies and gaps seen in Nature and CT. Throughout our
work, Google engineers have provided guidance and clarifications.

Our experiments show the following. (i) Poor quality of initial
placement in the CT input can degrade rWL by up to 10%. The use
of initial placement locations from physical synthesis is an impor-
tant element of CT. (ii) SA produces better proxy cost than CT for
modern testcases (4/6) and ICCADO4 testcases (17/17), as well as
across varying weight combinations that we study. (iii) For large
macro-heavy designs such as BlackParrot and MemPool, human
experts outperform CT in terms of Nature Table 1 metrics. This be-
ing said, developing a proxy cost with higher correlation to Na-
ture Table 1 metrics will likely improve the “ground truth” perfor-
mance of CT. (iv) Analytical macro placers (e.g., DREAMPlace in
AutoDMP) produce better routed wirelength compared to CT and
SA. Replacing the force-directed placement used in Nature with
analytical mixed-size placement is likely to improve wirelength.!!

The difficulty of reproducing methods and results of [9], and
the effort spent on MacroPlacement, highlight potential benefits of
a “papers with code” culture change in the academic EDA field.
Recent policy changes of EDA vendors are a laudable step forward;
they enable us to include Tcl scripts for commercial SP&R flows in
the MacroPlacement GitHub. Contributions of benchmarks, design
enablements, implementation flows and additional studies to the
MacroPlacement effort are warmly welcomed.

ACKNOWLEDGMENTS

We thank David Junkin, Patrick Haspel, Angela Hwang and their
colleagues at Cadence and Synopsys for policy changes that per-
mit our methods and results to be reproducible and sharable in
the open, toward advancement of research in the field. We thank
many Google engineers (Azalia Mirhoseini, Anna Goldie, Mustafa
Yazgan, Eric Johnson, Roger Carpenter, Sergio Guadarrama, Guan-
hang Wu, Joe Jiang, Ebrahim Songhori, Young-Joon Lee and Ed
Chi) for their time and discussions to clarify aspects of Circuit
Training, and to run their internal flow with our data. We thank
Ravi Varadarajan for early discussions and flow setup, and Mingyu
Woo for guidance on RePlAce versions and setup. Support from
NSF CCF-2112665 (TILOS) and DARPA HR0011-18-2-0032 (Open-
ROAD) is gratefully acknowledged.

UThe latest release of CT [24] replaces force-directed placement with DREAMPlace
[6]. We understand that for a given fixed macro placement, DREAMPlace not only re-
duces HPWL of the clustered standard-cell placement compared to FD, but has better
correlation to methods used in commercial EDA placers, and more naturally handles
utilization (cf. the cell_area_utilization inflation parameter in CT-Grouping) [31].

Assessment of Reinforcement Learning for Macro Placement ISPD °23, March 26-29, 2023, Virtual Event, USA

REFERENCES [20] FakeRAM2.0 Repo. https://github.com/ABKGroup/FakeRAM2.0
[1] A. Agnesina, P. Rajvanshi, T. Yang et al., “AutoDMP: Automated DREAMPlace- [21] ICCADO4 Mixed-size Placement Benchmarks. http://vlsicad.eecs.umich.edu/BK/

(2]

based Macro Placement”, Proc. ISPD, 2023.

T. Ajayi, V. A. Chhabria, M. Fogaca et al., “Toward an Open-Source Digital Flow:
First Learnings from the OpenROAD Project”, Proc. ACM/IEEE DAC, 2019, pp.
76:1-76:4.

C.-K. Cheng, A. B. Kahng, I. Kang and L. Wang, “RePlAce: Advancing Solution
Quality and Routability Validation in Global Placement”, IEEE TCAD 38(9) (2018),
pp. 1717-1730.

A. B. Kahng, M. Kim, S. Kim and M. Woo, “RosettaStone: Connecting the Past,

ICCADO4bench/

RePlAce Repo. https://github.com/mgwoo/RePlAce, commit hash: f500065.
Circuit Training: An Open-source Framework for Generating Chip Floorplans
with Distributed Deep Reinforcement Learning. https://github.com/google-
research/circuit_training, commit hash: 91e14fd1ca.

Circuit Training: An Open-source Framework for Generating Chip Floorplans
with Distributed Deep Reinforcement Learning. https://github.com/google-
research/circuit_training, commit hash: 8c6925f2ce.

Present and Future of Physical Design Research’, IEEE Design & Test, 2022. [25] NVDLA Open S(')urce Hardware. https://github.com/nvdla/hw/tree/nv_small
[5] A B. Kahng, “Al system outperforms humans in designing floorplans for [26] NTUplace3 detalle(:l placer. http://eda.ee'.ntl‘l.edutw/research.htm
microchips”, Nature News and Views, 2021. https://www.nature.com/articles/ [27] G. Wu, Google Brain, perfom?l communication, August 2022.
d41586-021-01515-9 [28] J.Jung, personal communication, December 2022.
[6] Y.Lin, Z.Jiang, J. Gu et al., “DREAMPlace: Deep Learning Toolkit-Enabled GPU [29] P.Haspel and A. Hwar.lg, personal communl.cat{on, December 2022.
Acceleration for Modern VLSI Placement”, IEEE TCAD 40(4) (2021), pp. 748-761. [30] M. ACavalcante and J Liu, personal comm.um?atlon, December 2022.
[7] Y. Lin, W. Li, J. Gu et al., “ABCDPlace: Accelerated Batch-Based Concurrent De- [31] J. Jiang, Qoogle Brain, personal cqmmumcatzon, January 2023.
tailed Placement on Multithreaded CPUs and GPUs”, IEEE TCAD 39(12) (2020), [32] RePlAce in OpenROAD. htps://bit.ly/3DxpoH5 X .
pp. 5083-5096. [33] MacroPlacement Repo. https://github.com/TILOS- Al-Institute/
[8] I L. Markov, J. Hu and M. Kim, “Progress and Challenges in VLSI Placement MacroPlacement .
Research”, Proc. IEEE 103(11) (2015), pp. 1985-2003, [34] Our Progress; A Chronology. http://bltAly'/SkTHjHT)
[9] A.Mirhoseini, A. Goldie, M. Yazgan et al., “A Graph Placement Methodology for [35] Implementat?on of PFOXY Cost Comp P‘tamn‘ http Sf/ / blt‘!y/ 3XNkeHh
Fast Chip Design”, Nature 594 (2021), pp. 207-212. [36] Implementation of Simulated Annealing. https://bit.ly/3jg3Yam

[10] L.-T. Wang, Y.-W. Chang and K.-T. Cheng, Electronic Design Automation: Synthe- [37] A. B. Kahng, “For the Record” and Updates, June 2022 - present. https://bit.ly/
sis, Verification, and Test, Morgan Kaufmann, 2009. 3H13mYW . .

[11] “Stronger Baselines for Evaluating Deep Reinforcement Learning in Chip (38] Impact of 1n1F1al placement' on the outcome of CT. httl?s:/ /bit ly/3kzg8LO
Placement”, August, 2022. https://statmodeling.stat.columbia.edu/wp-content/ [39] Implementation of force-directed p le}cement. https://bitly/3Hgx29T
uploads/2022/05/MLcontra.pdf [40] MacroPlacement testcases. https://bit.ly/3RcPl4b

[12] D. Junkin, “Supporting the Scientific Method for the Next Generation of In- [41] SKY130HD FakeStack. https://bitly/403vdph
novators”, DAC-2022 BoF Open-Source EDA and Benchmarking Summit. https: [42] MacroPlacement tool ﬂow scripts. https:/| bltjly“WVbXBn
//bitly/3KK60jB [43] Macro shuffling experiment results. https://bit.ly/3XIBFjR

[13] Ariane RISC-V CPU Repo. https://github.com/openhwgroup/cva6 [44] Proxy c0§t correlation withApost—RouteOpt metrics.‘ https:/(bit.ly/3DIOD9B

[14] BlackParrot Repo. https://github.com/black-parrot/black-parrot [45] Assumptions for power delivery network. https://bit.ly/3RiHrom

[15] MemPool Repo. https://github.com/pulp-platform/mempool [46] Power d'ehvery network script. https://b1t4ly'/3DC6'df0 ,)

[16] NanGate45 PDK. https://eda.ncsu.edu/freepdk/freepdkds/ [47] Comparison of UCSD proxy cost evaluation with CT binary. https://bit.ly/

[17] BSG Black-box SRAM Generator Repo. https://github.com/jjcherry56/bsg_ 3HIJoNZ
fakeram [48] Effect of different physical synthesis tool on CT solution. https://bit.ly/3wIAftM

(18] ASAP7 PDK and Cell Libraries Repo. https:/github.com/The-OpenROAD- [49] Ariane-NG45 CT result generated by Google engineers. https://bit.ly/3Rgi5sV
Project/asap? [50] ICCADO04 Testcases: Bookshelf to Protobuf, CT Flow and Results. https://bit.ly/

[19] SkyWater Open Source PDK. https://github.com/google/skywater-pdk 3wskk20

166

	Abstract
	1 Introduction
	2 Macro Placement Methods
	3 Replication of Circuit Training
	3.1 Mismatches between CT and Nature
	3.2 Clarifying ``blackbox'' elements of CT
	3.3 Simulated Annealing

	4 Modern Benchmarks and Commercial Evaluation Flow
	4.1 Testcases and enablements
	4.2 Commercial evaluation flow

	5 Experiments and Results
	5.1 Comparison of CT with other macro placers
	5.2 Ablation, Stability and Other Studies

	6 Academic Benchmarks and Evaluation Flow
	7 Conclusion
	Acknowledgments
	References

