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2 MACRO PLACEMENT METHODS
VLSI physical design researchers and practitioners have studied
macro placement for well over half a century, as reviewed in [8]
[10]. We study the following macro placement methods.
• CT [23] uses the RL approach to place macros in sequence. CT
first divides the layout canvas into small grid cells, using place-
ment locations alongwith hypergraph partitioning to group stan-
dard cells into standard-cell clusters, to set up the environment.
Then, the RL agent places macros one by one onto the centers of
grid cells; after all macros are placed, force-directed placement is
used to determine the locations of standard-cell clusters (see Sec.
3.2.1). Finally, proxy cost (Sec. 3.2.2) is calculated and provided as
the reward feedback to the RL agent.

• RePlAce [3] [22] models the layout and netlist as an electro-
static system. Instances are modeled as electric charges, and the
density penalty as potential energy. The instances are spread ac-
cording to the gradient with respect to the density penalty.

• AutoDMP [1] fromNvidia builds on the GPU-accelerated global
placer DREAMPlace [6] and detailed placer ABCDPlace [7]. Au-
toDMP adds enhanced concurrentmacro and standard cell place-
ment, along with automatic parameter tuning based on multi-
objective Bayesian optimization (MOBO).

• CMP is a state-of-the-art commercialmacro placer fromCadence
which performs concurrent macro and standard cell placement.
CMP results also serve as input to the Cadence Genus iSpatial
physical synthesis tool.

• Human-Expert macro placements are contributed by individ-
uals at IBM Research [28], ETH Zurich and UCSD [30]; human-
expert placements are one of the two baselines used by Nature
authors.

• Simulated Annealing (SA) is a baseline used by Nature au-
thors, and studied by both Nature and SB. Annealing is applied
to place macros in the same grid cells as CT (see Sec. 3.3).

3 REPLICATION OF CIRCUIT TRAINING
We now describe clarifications and reproduction in open source of
CT. First, we summarize the main miscorrelations between Nature
and CT. Second, we explain details of key “blackbox” elements of
CT, i.e., force-directed placement and proxy cost calculation, which
are to date hidden behind plc_client APIs in CT. Third, we describe
our implementation of Simulated Annealing. We thank Google en-
gineers for answering questions and for many discussions that
have helped our understanding since April 2022.

3.1 Mismatches between CT and Nature
We find several significant mismatches between CT and Nature.
• CT assumes that all instances of the input netlist have (𝑥,𝑦) loca-
tions, i.e., the netlist has already been placed before it is input to
CT. The location information is used by CT’s grouping, gridding
and clustering process. However, this was not apparent during
the paper review [37], and is not mentioned in Nature [9]. Ex-
periments in Sec. 5.2.1 show that having initial placement infor-
mation can significantly enhance CT outcomes.

• The proxy cost function defines the objective that drives the RL
agent’s learning. In Eq. 2 below, CT sets congestion weight 𝜆
to 0.5 and density weight 𝛾 to 1.0. Nature indicates “the conges-
tion weight 𝜆 is set to 0.01, the density weight 𝛾 is set to 0.01”.

However, engineers from Google Brain have suggested that we
set congestion weight 𝜆 = 0.5 and density weight 𝛾 = 0.5 [27];
we follow this last suggestion in all of our experiments. Sensi-
tivity of conclusions to the weighting of proxy cost elements is
discussed in Sec. 6 below.

• Nature “place[s] the centre of macros and standard cell clusters
onto the centre of the grid cells”. However, CT does not require
standard-cell clusters to be placed onto centers of grid cells. (See
Sec. 3.2.1.)

• Nature describes generation of the adjacency matrix based on
the register distance between pairs of nodes. This is consistent
with timing being a key metric for placement quality. However,
CT builds the adjacency matrix based only on direct connections
between nodes (i.e., macros, IO ports and standard-cell clusters).

3.2 Clarifying “blackbox” elements of CT
We now explain two key “blackbox” elements of CT: force-directed
placement and proxy cost calculation. Neither is clearly documented
in Nature, nor visible in CT. These examples are representative of
the reverse-engineering needed to understand and reimplement
methods that to date are visible only through APIs in the plc_client
of [23]. Note that when performing force-directed placement and
proxy cost calculation, CT assumes that each standard-cell cluster
has a square shape.

3.2.1 Force-directed placement. Force-directed placement (FD) is
used to place standard-cell clusters based on the fixed locations of
macros and IO ports. During FD, only standard-cell clusters can
be moved, and they are not necessarily placed onto centers of grid
cells. At the start of FD, all standard-cell clusters are placed at the
center of the canvas. Then, the locations of standard-cell clusters
are iteratively updated. Each iteration first calculates the forces ex-
erted on each node (macro, standard-cell cluster or IO port). There
are two types of forces between nodes: attractive and repulsive.
Attractive force (𝐹𝑎) applies only to pairs of nodes that are con-
nected by nets. All multi-pin nets are decomposed into two-pin
nets using the star model. For the two-pin net connecting pin 𝑃1

of node 𝑀1 and 𝑃2 of node 𝑀2, the attractive force components
applied to 𝑀1 and 𝑀2 are 𝐹𝑎𝑥 = 𝑘𝑎 × 𝑎𝑏𝑠 (𝑃1.𝑥 − 𝑃2.𝑥) and 𝐹𝑎𝑦 =

𝑘𝑎 × 𝑎𝑏𝑠 (𝑃1.𝑦 − 𝑃2.𝑦), where 𝑘𝑎 is the attractive factor. If one of
the pins is an IO port, 𝑘𝑎 is equal to the attractive factor multiplied
by the IO factor (default = 1.0).
Repulsive force (𝐹𝑟 ) applies only to nodes that overlap with each
other. We indicate the center coordinates of each node 𝑀 using
(𝑀.𝑥,𝑀.𝑦). For two nodes𝑀1 and𝑀2 that overlapwith each other,
the repulsive force components applied to 𝑀1 and 𝑀2 are 𝐹𝑟𝑥 =

𝑘𝑟 ×𝐹𝑟𝑚𝑎𝑥
×
𝑎𝑏𝑠 (𝑀1.𝑥−𝑀2.𝑥 )
𝑑𝑖𝑠𝑡 (𝑀1,𝑀2)

and 𝐹𝑟𝑦 = 𝑘𝑟 ×𝐹𝑟𝑚𝑎𝑥
×
𝑎𝑏𝑠 (𝑀1.𝑦−𝑀2.𝑦)
𝑑𝑖𝑠𝑡 (𝑀1,𝑀2)

,
where 𝑘𝑟 is the repulsive factor, 𝐹𝑟𝑚𝑎𝑥

is the maximum move dis-
tance (see Eq. 1) and 𝑑𝑖𝑠𝑡 (𝑀1, 𝑀2) is the Euclidean distance be-
tween the centers of𝑀1 and𝑀2.

The net force exerted on the 𝑖𝑡ℎ standard-cell cluster is calcu-
lated and then normalized according to

𝐹𝑖 = 𝐹𝑖𝑎 + 𝐹𝑖𝑟

𝑚𝑎𝑥_𝑚𝑜𝑣𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

𝑚𝑎𝑥 (𝑤𝑖𝑑𝑡ℎ,ℎ𝑒𝑖𝑔ℎ𝑡 )
𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑠

𝐹𝑖𝑥 =

𝐹𝑖𝑥
max𝑗 ({ |𝐹 𝑗𝑥 | } )

×𝑚𝑎𝑥_𝑚𝑜𝑣𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐹𝑖𝑦 =

𝐹𝑖𝑦
max𝑗 ({ |𝐹 𝑗𝑦 | } )

×𝑚𝑎𝑥_𝑚𝑜𝑣𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

(1)
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serving theMacroPlacement effort. In addition, we present the com-
mercial evaluation flow that we use to assess various macro place-
ment solutions.

4.1 Testcases and enablements
New,macro-heavy testcases and enhanced design enablements have
been developed and made available in MacroPlacement.
Testcases.MacroPlacement includes four open-source testcases: Ar-
iane [13] (20K FFs, 133 and 136 macros), BlackParrot (Quad-Core)
[14] (214K FFs, 220 macros), MemPool Group [15] (361K FFs, 324
macros), and NVDLA (partition “c”) [25] (45K FFs, 128 macros). All
macros in Ariane and in NVDLA have the same size, while Black-
Parrot and MemPool Group each contain macros of varying sizes.
Our experiments use the 133-macro Ariane variant to match the
Ariane in Nature and CT. [40] gives details of testcase creation.
Enablements.MacroPlacement includes three open-source enable-
ments: SKY130HD [19], NanGate45 [16] and ASAP7 [18]. We use
the bsg_fakeram [17] generator to generate SRAMs for SKY130HD
and NanGate45 enablements. The SKY130HD PDK has only five
metal layers, while SRAMs typically use or block the first four
metal layers; this makes it difficult to route macro-heavy testcases.
We therefore provide the SKY130HD FakeStack [41] enablement
which contains ninemetal layers.We also provide FakeRAM2.0 [20]
to generate SRAM abstracts for ASAP7-based testcases.

4.2 Commercial evaluation flow
Figure 2 presents the commercial tool-based flow that we use to
create macro placement instances and evaluate macro placement
solutions.1 The flow has the following steps.
Step 1: We run logic synthesis using Cadence Genus 21.1 to syn-
thesize a gate-level netlist for a given testcase.
Step 2: We input the synthesized netlist to Cadence Innovus 21.1
and use CMP (Concurrent Macro Placer) to place macros.
Step 3: We input the floorplan .def with placed macros to the Ca-
dence Genus iSpatial flow and run physical-aware synthesis. The
physical-aware synthesis is used to generate initial placement lo-
cations (i.e., (x,y) coordinates) for all standard cells.
Step 4: We obtain macro placement solutions from six methods:
CT, SA, RePlAce, AutoDMP, CMP and human-expert. (The CMP
macro placement is produced in Step 2.) Before running CT or SA
macro placement, we convert the verilog netlist to protocol buffer
(protobuf) format, and use CT-Grouping to generate standard-cell
clusters.The initial placement of standard cells obtained in Step 3 is
used to guide the CT-Grouping process. Code to generate the pro-
tobuf netlist and group standard cells are available in MacroPlace-
ment.2 To generate a Bookshelf-format input netlist for RePlAce,
we use the LEF/DEF to Bookshelf converter from RosettaStone [4].
RePlAce, AutoDMP and human experts are not given any initial
placement information for standard cells or macros.
Step 5: For each macro placement solution, we input the floor-
plan .def with macro placement locations to Innovus for place and
route (P&R). After reading the .def file into Innovus, we set all
standard cells to unplaced, and legalize macro locations using the

1We do not perform any benchmarking of the EDA tools used in this study.
2For theCT and SA runs reported here, we run the grouping flow provided in Google’s
CT after generating the protobuf netlist.

refine_macro_placement command.3 We then perform power de-
livery network (PDN) generation.4 After PDN generation, we run
placement, clock tree synthesis, routing and post-route optimiza-
tion (postRouteOpt).
Step 6: We extract the total routed wirelength (rWL), standard
cell area, total power, worst negative slack (WNS), total negative
slack (TNS) and DRC count from the post-routed design. Table 1 of
the Nature paper [9] presents similar metrics to compare different
macro placement solutions.5 Below, we refer to these metrics as
the (Nature) “Table 1 metrics”.

Logic Synthesis Concurrent Macro
Placer (CMP)

Physical Synthesis
(Genus iSpatial)

.v
(Netlist)

.v and .def
(Floorplan,
Macro and
Standard Cell
Placement)

.v and .def
(Only Floorplan)

.def (Floorplan and
Macro Placement)

Power Plan, Place and
Route (Innovus)

Report Nature Table 1
Metrics

.def (Floorplan and
Macro Placement)

1 2

4

3

5 6

RePlAce, AutoDMP,
and Human Expert CT and SACMP Flow

Figure 2: Evaluationflow formacro placement solutions pro-
duced by different macro placers.

5 EXPERIMENTS AND RESULTS
In this section, we first study the performance of CT and other
macro placers. We then present experimental results for ablation,
stability, and other studies. The results that we present are a subset
of what is summarized in [34] and [37].

5.1 Comparison of CTwith other macro placers
Configuration of different macro placers. We generate macro
placement solutions using CT, CMP, SA, RePlAce and AutoDMP.
We also include macro placement solutions generated by human-
experts. For CT runs, we follow the default setting given in [23],
except that we use density weight 0.5 instead of 1.0, based on guid-
ance from Google engineers [27]. For CMP, we use the default tool
settings. For SA, we use the configurations described in [11] and
the C++ implementation available in MacroPlacement. Instead of
four random seeds, we use two random seeds {0, 1} and two ini-
tialization methods {greedy packing, spiral initialization}. We run
in parallel 320 SA workers for 12.5 hours and use the macro place-
ment solution with minimum proxy cost as the final SA solution.
The SA workers do not communicate with each other. RePlAce
3Macro placements produced by RePlAce, AutoDMP, CT and SA can have macros that
are not placed on grids.
4CT assumes that 18% of routing tracks are used by PDN [45]. We implement our
PDN scripts following the “18% rule” for all the enablements. All of our PDN scripts
are available at [46] in MacroPlacement.
5According toNature authors, “The final metrics in Table 1 are reported after PlaceOpt,
meaning that global routing has been performed by the EDA tool”. In this paper, we
report metrics after postRouteOpt, meaning that the entire P&R flow has been per-
formed. A number of results reported in [34] include metrics after both PlaceOpt and
postRouteOpt.
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is run with the default parameters given in [22] except that we
change 𝑝𝑐𝑜 𝑓𝑚𝑎𝑥 to 1.03 from the default value of 1.05. We run
AutoDMP [1] for 200 samples with two GPU workers, default con-
figuration space, and ppa_cost score function. In all experiments,
we use Genus 21.1 for synthesis (Step 1) and Innovus 21.1 for place
and route (Steps 5 and 6).
Evaluation of Table 1 metrics for different macro placers.
We generate macro placement solutions using testcases in open
NanGate45 (NG45) and commercial GlobalFoundries 12nm (GF12)
enablements. Table 1 presents Nature Table 1 metrics obtained us-
ing the evaluation flow of Figure 2 for different macro placers on
our testcases. The Table 1 metrics in GF12 are normalized to pro-
tect foundry IP: (i) standard-cell area is normalized to core area;
(ii) total power and rWL are normalized to the CT result; and (iii)
timing metrics (WNS, TNS) are normalized to the target clock pe-
riod (TCP) which we leave unspecified.6 In NG45, the respective
default TCP values for Ariane, BlackParrot Quad-Core (BlackPar-
rot) and MemPool Group (MemPool) are 1.3ns, 1.3ns and 4.0ns. All
testcases reported in Table 1 have 68% floorplan utilization, match-
ing the Ariane design that is public in CT. Studies of other testcases
and enablements are pending (updates will be posted in [34]).

Table 1 also reports theCT proxy cost for all macro placement so-
lutions, as evaluated by the plc_client provided in CT. To compute
the proxy cost for CMP, RePlAce, AutoDMP and human-expert so-
lutions, we first update hardmacro locations and orientations, then
run the FD placer to place all standard-cell clusters (soft macros).
We then compute the proxy cost. Figure 3 shows Ariane-NG45
macro placements produced by the macro placers we study.7 We
make the following observations.
• Comparison of routedwirelength (rWL):CMP andAutoDMP
consistently dominate the other macro placers (we comment on
this in Footnote 11 below). For BlackParrot-GF12, AutoDMP’s
rWL is ∼40% less than that of CT.

• Comparison of proxy cost: SA dominates other macro placers
in 4 out of 6 cases, and CT dominates other macro placers in 2
out of 6 cases.

• Comparison betweenCT andHuman experts: For large ma-
cro-heavy designs such as BlackParrot andMemPool, human ex-
perts outperform CT in terms of the Nature Table 1 metrics of
“ground truth” postRouteOpt outcomes.

• Comparison between CT and SA: CT generates better TNS
than SA for 4 of 6 cases, while SA generates better rWL (5 of 6
cases) and proxy cost (4 of 6 cases) than CT.

• Insertion of CT into a standard EDA flow: The commercial
evaluation flow for CT is equivalent to the CMP flow with inser-
tion of the CT macro placement step. CT outcomes have better
proxy cost but worse rWL than the “pure EDA flow”.

5.2 Ablation, Stability and Other Studies
We now give a sampling of results and takeaways from various
ablation, stability and other studies.

6The WNS and TNS timing metrics reported in Table 1 suggest that the TCP for
BlackParrot-GF12 should be reduced, while the TCP for MemPool-GF12 should be
increased. Ongoing studies adjust TCPs for these designs and will be reported in [34].
7All postRouteOpt designs are DRC-clean, with the exception of CT, SA andAutoDMP
outcomes for MemPool-NG45; these respectively have 5K, 45K and 31K DRC viola-
tions. We are unable to successfully run RePlAce for the MemPool testcase.

Table 1:Nature Table 1metrics of differentmacro placers for
testcases in open NG45 and commercial GF12 enablements.
Data points for GF12 (excluding proxy cost) are normalized.
We highlight best values of metrics in blue bold font.

Design
Enablement

Macro
Placer

Area
(𝜇𝑚2)

rWL
(𝑚𝑚)

Power
(𝑚𝑊 )

WNS
(𝑝𝑠)

TNS
(𝑛𝑠)

Proxy
Cost

Ariane
NG45

CT 244,022 4,894 828.7 -79 -25.8 0.857
CMP 256,230 4,057 851.5 -154 -196.5 1.269

RePlAce 252,444 4,609 843.9 -103 -69.9 1.453
SA 248,344 4,014 831.9 -111 -87.0 0.752

AutoDMP 243,720 3,764 821.7 -95 -37.5 1.247
Human 249,034 4,681 832.4 -88 -46.8 1.158

BlackParrot
NG45

CT 1,956,712 36,845 4627.4 -185 -1040.8 1.021
CMP 1,916,166 23,144 4428.7 -144 -356.2 1.022

RePlAce 1,957,915 32,970 4591.5 -252 -6723.2 1.346
SA 1,935,896 30,927 4523.7 -156 -1839.8 0.921

AutoDMP 1,920,024 23,376 4438.6 -190 -1183.1 1.007
Human 1,919.928 25,916 4469.6 -97 -321.9 1.275

MemPool
NG45

CT 4,890,644 123,330 2760.5 -69 -119.3 1.253
CMP 4,837,150 102,907 2586.6 -20 -1.0 1.571
SA 4,948,800 125,682 2805.8 -124 -11.7 1.489

AutoDMP 4,884,674 110,982 2658.8 -115 -43.4 1.782
Human 4,873,872 107,598 2640.0 -49 -11.9 1.733

Note: Data points (excluding proxy cost) for GF12 are normalized.

Ariane
GF12

CT 0.138 1.000 1.000 -0.145 -123.4 0.706
CMP 0.139 0.865 0.990 -0.159 -142.3 0.878

RePlAce 0.140 1.042 1.015 -0.168 -197.4 1.160
SA 0.139 0.925 0.995 -0.155 -178.0 0.664

AutoDMP 0.137 0.885 0.985 -0.130 -90.5 0.972
Human 0.137 1.064 0.981 -0.139 -106.6 1.125

BlackParrot
GF12

CT 0.179 1.000 1.000 0.001 0.000 0.789
CMP 0.178 0.593 0.918 0.001 0.000 0.844

RePlAce 0.178 0.798 0.959 0.000 0.000 1.121
SA 0.178 0.731 0.944 0.000 0.000 0.665

AutoDMP 0.178 0.587 0.917 0.000 0.000 0.816
Human 0.178 0.642 0.928 0.000 0.000 1.089

MemPool
GF12

CT 0.410 1.000 1.000 -0.195 -1849.4 0.984
CMP 0.405 0.821 0.895 -0.197 -1961.3 1.422
SA 0.412 0.991 1.000 -0.187 -2442.7 1.196

AutoDMP 0.402 0.843 0.895 -0.213 -1015.7 1.448
Human 0.406 0.888 0.920 -0.149 -1766.5 1.446

5.2.1 CT is helped by placement from physical synthesis. As noted
in Sec. 3.1,CT relies on placement locations in its input, though this
is not mentioned in Nature. To test the effect of initial placement
on the CT outcome, we generate three “vacuous” input placements
for the Ariane-NG45 design. Cases (1), (2) and (3) respectively have
all standard cells and macros located at (600, 600), at the lower-left
corner (0, 0), and at the upper-right corner (1347.1, 1346.8). For
each case, we generate the clustered netlist, run CT and collect Ta-
ble 1metrics, following the evaluation flow of Sec. 4.2. We find that
placement information in the input provides significant benefit to
CT: given locations from Cadence CMP and Genus iSpatial (Steps
2 and 3 of Figure 2), CT’s solution has rWL that is 10.32%, 7.24%
and 8.17% less than in Cases (1), (2) and (3), respectively. The Table
1 metrics of all three runs are given at [38] in MacroPlacement.

5.2.2 Both physical synthesis tools lead to similar CT outcomes.
The evaluation flow in Figure 2 uses Cadence CMP and Genus iS-
patial. We have also used Synopsys Design Compiler Topographi-
cal version R-2020.9 to run physical-aware synthesis and generate
standard-cell and macro placement locations, for the Ariane-NG45
design. We observe similar outcomes with either physical synthe-
sis tool; details of Nature Table 1 metrics are given at [48].

162







ISPD ’23, March 26–29, 2023, Virtual Event, USA Chung-Kuan Cheng, Andrew B. Kahng, Sayak Kundu, Yucheng Wang, and Zhiang Wang

Table 6: Proxy cost and HPWL of CT, SA and RePlAce for
ICCAD04 testcases.

Design CT SA RePlAce
Proxy
Cost HPWL Proxy

Cost HPWL Proxy
Cost HPWL

ibm01 1.6617 3,373,670 1.3166 2,546,110 0.9976 2,241,590
ibm02 2.2130 6,281,060 1.9072 5,118,090 1.8370 5,265,410
ibm03 2.0316 9,353,340 1.7401 7,456,430 1.3222 6,344,390
ibm04 1.7542 9,781,980 1.5037 8,445,470 1.3024 7,112,910
ibm06 2.9395 7,097,540 2.5057 6,334,540 1.6187 5,725,280
ibm07 2.2191 13,060,600 2.0229 11,956,000 1.4633 9,813,440
ibm08 2.3428 15,684,500 1.9239 14,093,200 1.4285 11,185,400
ibm09 1.6998 15,691,200 1.3875 13,222,300 1.1194 11,940,500
ibm10 2.5972 54,718,400 2.1108 37,128,500 1.5009 39,453,000
ibm11 1.8916 21,647,400 1.7111 20,723,300 1.1774 16,589,100
ibm12 3.1022 48,175,200 2.8261 40,259,300 1.7261 30,497,500
ibm13 1.9785 29,679,600 1.9141 27,099,500 1.3355 21,832,200
ibm14 2.4594 51,257,200 2.2750 43,863,600 1.5436 33,917,600
ibm15 2.7759 54,563,400 2.3000 50,491,900 1.5159 44,368,200
ibm16 2.3018 68,664,000 2.2337 65,699,600 1.4780 51,509,800
ibm17 4.0724 81,895,000 3.6726 76,482,600 1.6446 62,749,100
ibm18 3.2188 43,119,400 2.7755 43,784,200 1.7722 39,705,400

Table 7: CT and SA results for ibm09 and ibm15 using differ-
ent weight combinations in proxy cost (Eq. 2).

Design
(CT/SA) (𝛾 , 𝜆) WL

Cost
Den.
Cost

Cong.
Cost

Proxy
Cost HPWL

ibm09
(CT)

(0.5, 0.5) 0.098 0.873 2.331 1.700 15,691,200
(1, 0.5) 0.100 0.818 2.407 2.122 15,508,600

(0.01, 0.01) 0.095 0.904 2.679 0.1304 15,129,200

ibm09
(SA)

(0.5, 0.5) 0.091 0.749 1.845 1.387 13,222,300
(1, 0.5) 0.100 0.737 1.981 1.828 14,119,400

(0.01, 0.01) 0.079 0.934 2.233 0.111 14,713,400

ibm15
(CT)

(0.5, 0.5) 0.103 1.022 4.323 2.776 54,563,400
(1, 0.5) 0.101 0.932 3.572 2.819 52,283,200

(0.01, 0.01) 0.093 1.049 4.229 0.146 53,496,800

ibm15
(SA)

(0.5, 0.5) 0.093 0.971 3.443 2.300 50,491,900
(1, 0.5) 0.094 0.977 3.448 2.795 50,235,500

(0.01, 0.01) 0.086 1.146 3.927 0.136 51,834,900

from [31], we explore alternative proxy cost weighting to poten-
tially improve final CT outcomes for ICCAD04 testcases. We study
three weight combinations (see Sec. 3.2.2): (1) 𝛾 = 0.5, 𝜆 = 0.5 (sug-
gested by Google Brain [27]); (2) 𝛾 = 1.0, 𝜆 = 0.5 (default setting of
CT); and (3) 𝛾 = 0.01, 𝜆 = 0.01 (default setting of Nature). Table 7
shows that SA consistently achieves lower proxy cost than CT for
ibm09 and ibm15 across the different weight combinations.

7 CONCLUSION
Google’s Nature paper [9] and the subsequent release of Circuit
Training in GitHub [23] have drawn broad attention throughout
the EDA and IC design communities. The work presents a novel
orchestration of multiple elements: (i) a proxy cost function that
captures wirelength, density and congestion and is efficiently eval-
uated with FD placement; (ii) a sequential framework for macro
placement; (iii) gridding of the layout canvas whereby macros can
be placed on centers of grid cells, thus reducing the solution space

for macro locations; and (iv) clustering of standard cells based on
an initial physical-synthesis placement, which reduces both the
size of the graph input to GNN and the runtime of proxy cost
evaluation. The “News and Views” commentary [5] that accompa-
nied theNature paper noted, “We can therefore expect the semicon-
ductor industry to redouble its interest in replicating the authors’
work” – and this is indeed what has transpired since June 2021.

To date, the bulk of data used by Nature authors has not been
released, and key portions of source code remain hidden behind
APIs. This has motivated our efforts toward open, transparent im-
plementation and assessment of Nature and CT. MacroPlacement
provides open testcases, design enablements, commercial and aca-
demic evaluation flows, and experimental evaluations to clarify
inconsistencies and gaps seen in Nature and CT. Throughout our
work, Google engineers have provided guidance and clarifications.

Our experiments show the following. (i) Poor quality of initial
placement in the CT input can degrade rWL by up to 10%. The use
of initial placement locations from physical synthesis is an impor-
tant element of CT. (ii) SA produces better proxy cost than CT for
modern testcases (4/6) and ICCAD04 testcases (17/17), as well as
across varying weight combinations that we study. (iii) For large
macro-heavy designs such as BlackParrot and MemPool, human
experts outperform CT in terms of Nature Table 1 metrics. This be-
ing said, developing a proxy cost with higher correlation to Na-
ture Table 1 metrics will likely improve the “ground truth” perfor-
mance of CT. (iv) Analytical macro placers (e.g., DREAMPlace in
AutoDMP) produce better routed wirelength compared to CT and
SA. Replacing the force-directed placement used in Nature with
analytical mixed-size placement is likely to improve wirelength.11

The difficulty of reproducing methods and results of [9], and
the effort spent onMacroPlacement, highlight potential benefits of
a “papers with code” culture change in the academic EDA field.
Recent policy changes of EDA vendors are a laudable step forward;
they enable us to include Tcl scripts for commercial SP&R flows in
theMacroPlacement GitHub. Contributions of benchmarks, design
enablements, implementation flows and additional studies to the
MacroPlacement effort are warmly welcomed.
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