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Winddirection observations are instrumentalweather records

that hold promise for improving historical weather reanal-

yses and extending them deeper into the past. Two meth-

ods are developed for assimilating wind direction observa-

tions. The first uses a linear observation model with Gaus-

sian additive error, and is thus amenable to use in standard

EnKF and variational frameworks. The second is nonlinear

and non-Gaussian, and is based on a two-step approach

for sampling from the Bayesian posterior. Both methods

are tested in the context of an idealized two-dimensional

model of turbulent fluid dynamics. The nonlinear, non-Gaussian

method assimilating only wind direction observations per-

forms aswell as an EnKF assimilating only pressure observa-

tions, whereas the first method based on the linear model

provides no benefit when assimilating only wind direction

observations. The method based on the linear model per-

formswell when pairedwith other observations, e.g. of pres-

sure, since it performs best when the forecast of wind direc-

tion is not far from correct.
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1 | INTRODUCTION6

The study of how changing climate changes weather patterns, especially extreme weather, requires some knowledge7

of historical weather patterns. Historical reanalyses like the Twentieth Century Reanalysis (20CR Compo et al., 2011;8

Giese et al., 2016; Slivinski et al., 2019) and the European Centre for Medium-Range Weather Forecasts (ECMWF)9

reanalyses ERA-20C (Poli et al., 2016) and CERA-20C (Laloyaux et al., 2018) attempt to reconstruct global weather10

patterns as far back as the nineteenth century using data assimilation (DA) – a class of methods for combining obser-11

vational data with a forecast model to estimate the state and parameters of a dynamical system.12

The further back in time one goes, the fewer are the observations available for use in a reanalysis. One class13

of weather observations that extends deeply into the historical record comes from the written reports of mariners.14

Records from voyages of the English East India Company, for example, stretch back to the seventeenth century (Bro-15

han et al., 2012). Many of these records have been digitized and are available through the International Comprehensive16

Ocean-Atmosphere Data Set (ICOADS Freeman et al., 2017). Wind speed and direction are common observations,17

but early wind speed measurements were reported using qualitative language. The introduction of the Beaufort scale18

for wind speed in the early nineteenth century enables qualitative descriptions of wind speed to be converted to a19

quantitative scale, but early wind speed records have significantly greater uncertainty than wind direction measure-20

ments, and are not considered instrumental (Prieto et al., 2005; de Paula Gomez-Delgado et al., 2019). Wind direction21

measurements were recorded with high precision using accurate magnetic compasses with as many as 64 points. Un-22

fortunately, wind direction is a strongly nonlinear function of the wind field, which makes it difficult to assimilate23

using standard ensemble Kalman filter (EnKF) data assimilation methods that work best for linear observations with24

Gaussian errors (Evensen, 2009). The goals of this investigation are to develop ensemble methods that can assimi-25

late wind direction measurements, and to demonstrate, at least in an idealized model, the value in assimilating such26

measurements. These goals are in service of the larger goal of ultimately improving historical reanalyses and perhaps27

motivating the digitization of more historical observations of wind direction.28

The plan of the paper is as follows. Two ensemble-based approaches to assimilating wind direction are described29

in section 2. The idealized dynamical model used in the tests is described in section 3. The data assimilation experi-30

mental configuration is presented in section 4, and the results of those experiments are presented and discussed in 5.31

Conclusions are offered in section 6. Figure data and simulation code are available (Grooms, 2023).32

2 | WIND DIRECTION ENSEMBLE DATA ASSIMILATION33

We begin by setting notation. The state of the dynamical system is denoted x, with a subscript j to denote the value34

of x at time t j . Observational information at time t j is denoted yj . Our uncertainty about the state of the system35

before taking observational information into account is described by a Bayesian prior distribution; the probability36

density function (pdf) associated with this distribution is denoted [x] and a random variable with pdf [x] is denoted37

X . The observation y is a draw from an observational distribution with pdf [y |x]. Viewed as a function of y this is38

the pdf of the observational distribution; viewed as a function of x it is proportional to the Bayesian likelihood. The39

goal of ensemble data assimilation is to draw samples x(n ) , which together form an ensemble {x(n ) }N
n=1

, from some40

distribution that approximates the Bayesian posterior [x |y].41

Ensemble Kalman filters (EnKFs) approximate the joint distribution ofX andY as Gaussian, which implies that the42

Bayesian posterior (which is simply a conditional of the joint distribution) is also Gaussian with well-known formulas43
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for the posterior mean and covariance. To wit, if the parameters of the joint distribution are44

Å[X ] = µx (1a)

Å[Y ] = µy (1b)

Cov[X ] = Cx (1c)

Cov[Y ] = Cy (1d)

Cov[X,Y ] = Cx y (1e)

then the posterior mean and covariance are45

Å[X |Y = y] = µx + Cx yC
−1
y (y − µy ) (2)

Cov[X |Y = y] = Cx − Cx yC
−1
y CTxy . (3)

The Kalman filter (KF) formulas onwhich EnKFs are commonly basedmake a further assumption about the relationship46

between the state and observations, namely that47

Y = HX + ϵ (4)

where ϵ is a centered Gaussian independent of X and with covariance R, and H is a matrix. This assumption, which48

is necessary for the KF but not for EnKFs, implies49

µy = Hµx (5)

Cy = HCxH
T + R (6)

Cx y = HCx (7)

which allows the recovery of more familiar KF update formulas.50

In the context of wind direction observations, y is an angle and Y is a circular random variable. The assumption51

of joint Gaussianity at the heart of EnKFs is a severe limitation in this context, since circular random variables are52

simply not Gaussian. Indeed, when the measured wind direction is recorded on a 16, 32, or 64 point compass, Y is53

also a discrete random variable, which further underscores that it is not Gaussian.54

In principle an EnKF assimilating wind direction can be implemented using a nonlinear observation model55

y = h(x) + ϵ (8)

where h is an arctangent that maps the wind vector to the wind direction. Though algorithmically straightforward,56

this approach implicitly treats Y as a Gaussian variable, rather than a circular one, by relying on the usual formulas for57

means and covariances of linear variables. The performance of this type of method is expected to be erratic at best.58

For example, consider an ensemble of two directions: ±7π/8 radians, i.e. west by northwest and west by southwest.59

A standard EnKF approach to nonlinear observation operators will treat the mean wind direction as eastward when60

it should be westward, and will consider the ensemble spread to be large when it is in fact small.61

This section develops two ensemble data assimilation approaches for assimilating wind direction measurements.62
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F IGURE 1 The solid line emanating from the center of the circle indicates the observed wind direction, while the

dashed lines flanking the solid line indicate the uncertainty in the measurement of the wind direction. The dotted

lines indicate the linear observation model: The central dotted line is parallel to the observed wind direction, and the

flanking dotted lines represent the uncertainty in the magnitude of the wind perpendicular to the observed wind

direction. The magnitude of the uncertainty in the linear model is chosen so that it matches the magnitude of the

uncertainty in the wind direction at a particular wind speed; this wind speed where the uncertainties match is the

radius ∥u∥ of the circle. The red lines indicate the way in which a wind vector (solid circles) is adjusted by the EnKF

approach, while the blue lines indicate the way in which a wind vector is adjusted by the TSEF approach. The green

solid circle is adjusted similarly by the EnKF and TSEF approaches, while the red solid circle is adjusted correctly by

the TSEF and incorrectly by the EnKF.

The first, presented in section 2.1, is based on an observation model for wind direction that takes the form (4), which63

allows the use of standard EnKF or variational methods. The second, presented in section 2.2, uses a two-step ap-64

proach to ensemble data assimilation based on the seminal approach of Anderson (2003), as expanded recently by65

Grooms (2022). The two approaches are fundamentally distinguished by the way in which they deal with the wind66

direction observations. In the first approach, the wind direction observations are assimilated by constraining to zero67

the component of wind perpendicular to the observed wind direction. In the second approach, the wind direction68

observations are assimilated by rotating the wind direction towards the observed direction. The mathematical struc-69

ture of the first approach makes it amenable to implementation via standard EnKF methods, while the structure of70

the second approach requires a more sophisticated implementation via a two-step ensemble filter.71

2.1 | EnKF for Wind Direction72

The goal of this section is to develop an observation model that approximates the true likelihood associated with a73

wind directionmeasurement, and that is amenable to incorporation into standard EnKF-typemethods. Letu = (u,v )T74

be a two-component horizontal wind vector with eastward component u and northward component v . If θ ∈ [−π, π )75
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is the direction of u measured in radians counterclockwise from east, then76

u = ∥u∥

(

cos(θ )

sin(θ )

)

. (9)

If u points in the direction θ, then77

u ·

(

− sin(θ )

cos(θ )

)

= 0, (10)

although the converse is not true; (10) only guarantees that u has angle ±θ.78

Equation (10) is reminiscent of the linear observation model (4) commonly used in EnKFs, where79

y = 0 (11a)

H = [− sin(θ ), cos(θ ) ] (11b)

x =

(

u

v

)

. (11c)

It is interesting to note that this version of the observation model flips the usual paradigm upside down. In the usual80

paradigm the observation matrix H is fixed and the value of the observation is y. In the version adopted here the81

value of y is always zero, while the observation matrix H depends on the observed angle θ.82

What’s missing here is an additive observation error ϵ. The choice of error variance is somewhat ad hoc, since83

the observation model is only an approximation. The approach to specifying ϵ developed here is illustrated in Figure84

1. The true angular likelihood is illustrated schematically in Figure 1 as follows. A solid line emanating from the origin85

indicates the observed wind direction; uncertainty in the true wind direction (as distinct from the observed wind86

direction whichmay contain slight errors) is illustrated by dashed lines emanating from the origin and flanking the solid87

line. The approximate likelihood associated with the linear observation model (11) says that the component of wind88

perpendicular to the observed direction is zero, with some uncertainty. This is illustrated in Figure 1 as follows. The89

central dotted line is parallel to the observed wind direction, while the flanking dash-dotted lines indicate uncertainty90

in the magnitude of the component of the wind vector perpendicular to the observed wind direction. The uncertainty91

in the two likelihoods intersects at a particular flow speed ∥u∥ . In the figure this flow speed is the radius of the circle92

that passes through the points where the dashed lines (uncertainty in the true likelihood) intersect the dash-dotted93

lines (uncertainty in the linear model). Choosing an observation error variance in the linear model is thus equivalent94

to choosing a flow speed such that the uncertainty in the linear model and angular model match.95

Based on this geometrical motivation, the observational uncertainty in the linear model is set as follows. In the96

context of an EnKF, an ensemble of prior (forecast) wind vectors {u(n ) }N
n=1

is available; in order to make the linear97

observation model accurate for a typical wind speed, the effective wind speed is set to98

∥u∥ =

(

1

N

N
∑

n=1








u
(n )










2

)1/2

. (12)

To get the observation error standard deviation in the linear observationmodel, we need the observational uncertainty99

in the angular measurement of wind direction. Naturally, historical observations of wind direction do not come with100

built-in quantification of their uncertainty, i.e. the true likelihood is unknown. The approach taken here, which can101
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easily be modified, is to say that the standard error in measurements recorded on a compass with Nθ points is equal102

to half of a compass increment, i.e. π/Nθ . The arc length of a circular segment from the true wind direction to the103

true wind direction plus one standard error at a wind speed of ∥u∥ is ∥u∥ × π/Nθ . The observational error variance104

in the linear model is thus set to the square of this arc length105

Var[ϵ ] =
1

N

(

π

Nθ

)2 N
∑

n=1

∥u(n ) ∥2 . (13)

With this linear observation model, the wind direction observation can be assimilated by any one of the wide va-106

riety of EnKF methods available in the literature, or even using variational methods. The EnKF experiments reported107

here use the serial square root assimilation scheme of Whitaker and Hamill (2002). To distinguish this specific EnKF108

algorithm from other EnKFs, the serial square root assimilation will hereafter be denoted ESRF (Ensemble Square109

Root Filter). In a situation where wind speed measurements are available but with a much lower precision than wind110

direction, e.g. because the wind speed observation is simply the phrase ‘light wind’ (Brohan et al., 2012), the compo-111

nent of wind in the observed direction could be assimilated using an appropriately large error variance; this would be112

equivalent to observing both components of wind, but with a non-diagonal 2 × 2 observation error covariance matrix.113

Some historical observations of wind direction are unclear about whether the recorded direction is the direction from114

which the wind blows or to which the wind blows (Freeman et al., 2017); since the linear observation model is exactly115

the same for angles θ ± π , this method can still use wind direction observations that are subject to this ambiguity.116

2.2 | A Two-Step Ensemble Filter117

Anderson (2003) developed a two-step approach to assimilating scalar observations that are nonlinearly related to118

the state by a relation similar to the linear observation model (4), namely119

Y = h (X ) + ϵ. (14)

The first step of this two-step approach consists of a Bayesian estimation of h(X ) , while the second step consists of120

a simple linear regression from h(X ) back toX . In the original implementation, the first step used the ensemble ad-121

justment Kalman filter (EAKF Anderson, 2001); more recently, methods like the Rank Histogram Filter (RHF Anderson,122

2010) and the GIGG-EnKF (Bishop, 2016) have been developed for the first step to relax the Gaussian approximation123

of the original EAKF. The second step typically uses simple linear regression, although generalized regression methods124

have been developed (e.g. Anderson, 2019). A key aspect of these methods is that they are algorithmically similar to125

EnKFs, and can be used efficiently with large-scale geophysical models (Anderson et al., 2009).126

Grooms (2022) showed how two-step ensemble filters (TSEFs) are related to Bayesian estimation. A new random127

variable Z is introduced that has the property128

[y |x,z ] = [y |z ] . (15)

In the context of the observationmodel (14), Anderson (2003) chose to useZ = h(X ) , but this is not the only possible129

choice ofZ that satisfies the property (15). An illustrative but impractical alternative is to setZ = X; another choice130

is made below in the specific context of observations of wind direction. The introduction of this new variable allows131
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the pdf of the Bayesian posterior to be written as132

[x |y] =

∫

[z |y] [x |z ]dz. (16)

Two-step ensemble filters sample from this distribution by first sampling an ensemble {z (n ) }N
n=1

from [z |y], and then133

sampling an ensemble {x(n ) }N
n=1

where x(n ) is a sample from [x |z (n ) ].134

In the context of wind direction assimilation, let z = u and y = θ. It is convenient to change to polar coordinates135

for the wind vector, (u,v ) ↦→ (ρ,φ ) where the notation φ has been adopted to distinguish a general angle φ from the136

observed value θ. Note that in the context of the first step of the two-step filter, which is being described here, the137

choices z = u and z = φ work equally well; the choice z = u is made here because it leads to a better second step,138

which is described at the end of section 4. The posterior in polar coordinates is139

[ρ,φ |θ ] =
[θ |ρ,φ ]

[θ ]
[ρ,φ ] . (17)

While in general there is no reason to assume that ρ and φ are independent in the prior distribution [ρ,φ ] = [φ ] [ρ ],140

it is a highly convenient approximation, which is adopted here. Further assuming that the likelihood of observing the141

wind direction θ does not depend on the wind speed ρ, the posterior simplifies to142

[ρ,φ |θ ] =

(

[θ |φ ]

[θ ]
[φ ]

)

[ρ ] = [φ |θ ] [ρ ] . (18)

The assumption that ρ andφ are independent in the prior implies that the observation of wind direction has no impact143

on the distribution of wind speed. This assumption could potentially be relaxed by using the methods of Murphy et al.144

(2022), who, in a context different from data assimilation, model the conditional distribution of wind speed given wind145

direction [ρ |φ ] as a Weibull distribution whose parameters depend on φ.146

With these simplifying assumptions, the first step of the two-step process updates the direction of the wind vec-147

tors at the location of the observation while the second step uses regression to push the local changes in the wind148

vector back to all the other state variables. In this paper, the second step of the two-step process uses linear regres-149

sion, as in the two-step EnKF of Anderson (2003). The first step is accomplished using a probability integral transform,150

which is the same idea that underlies the RHF and the Quantile-Conserving Ensemble Filter Framework (QCEFF; An-151

derson, 2022). If F− and F+ are the cumulative distribution functions (cdfs) of the prior and posterior, respectively,152

then the random variable X+ = F −1
+ (F− (X− ) ) is the probability integral transform of X− (which is distributed ac-153

cording to the prior), and X+ is distributed according to the posterior. To build a scalar filter for the first step of a154

two-step ensemble filter based on the probability integral transform, one uses the prior ensemble and the likelihood155

to approximate the cdfs, and then applies the resulting approximate transform F −1
+ ◦ F− to the prior ensemble.156

In the context of wind direction, which is a circular random variable, the probability integral transform can still be157

used, though the definition of the cdf requires a small amount of care. For a random variable X taking values inÒ, the158

cdf is defined to be159

FX (x ) =

∫ x

−∞
[X = ξ ]dξ (19)

where ξ is a dummy integration variable and [X = ξ ] is the pdf of X evaluated at ξ. For a circular random variable φ,160
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one can define the cdf as161

Fφ (φ ) =

∫ φ

φ0

[φ = ξ ]dξ (20)

for any φ0. The choice of φ0 determines the domain of Fφ , which is [φ0,φ0 + 2π ].162

To approximate the prior pdf [φ ], we use kernel density estimation with a von Mises kernel (Mardia, 1975)163

K (φ ) =
exp(κ cos(φ ) )

2πI0 (κ )
(21)

where I0 is the modified Bessel function of the first kind and order 0. The parameter κ controls the width of the164

kernel; for large κ and for φ ∈ (−π, π ) the kernel approximates a normal distribution with mean zero and variance κ−1.165

The prior pdf is thus approximated from the prior ensemble as166

[φ ] ≈
1

N

N
∑

n=1

K
(

φ − φ (n )
)

(22)

where {φ (n ) }N
n=1

is the ensemble of prior wind directions. The kernel bandwidth parameter κ is set using a standard167

bandwidth selection scheme for Gaussian kernels (Silverman, 1998), adapted to the von Mises context:168

κ = −
N 2/5

2 × 1.062 ln(R )
(23)

where169

R =

�

�

�

�

�

1

N

N
∑

n=1

e iφ
(n )

�

�

�

�

�

. (24)

Improved bandwidth selection schemes for von Mises kernel density estimation are discussed by Tenreiro (2022).170

The domain of the prior cdf F− that is required for the probability integral transform is chosen to be [θ − π, θ +π ]171

where θ is the observed wind direction. The prior cdf F− is approximated using trapezoid rule quadrature on an172

equispaced grid of 257 points in [θ − π, θ + π ]. Linear interpolation is used to approximate F− between these 257173

points. To obtain the posterior cdf F+ that is required for the probability integral transform, the posterior pdf is first174

evaluated as the product of the prior pdf and the likelihood on the same set of 257 points in [θ − π, θ + π ]. Trapezoid175

rule quadrature is then used to obtain an approximation to F+ on the grid, and linear interpolation is used to fill in176

the intermediate values. The cdf is inverted by simply swapping the role of the ordinate and abscissa in the linear177

interpolation scheme used to evaluate F+. The form of the likelihood used in the experiments is discussed in section178

4.179

2.3 | Example180

This section presents a simple example to illustrate the differences in the first step of the EnKF and TSEF methods. In181

practice there would be many observations of wind direction at different locations, each of which would be serially182

assimilated into the state vector. The example presented here illustrates only the first step of the assimilation for a183

single observation of wind direction, and in this example the observed wind direction is very different from the wind184
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F IGURE 2 Left: The prior (blue) and posterior (green) pdfs of angle φ. Both are normalized to have unit maximum

height so their shapes can be compared more easily. Right: A prior ensemble of wind vectors (blue), together with

the posterior ensemble of wind vectors produced by the probability integral transform approach (green) and the

EnKF approach (red). The solid black line is in the direction of the observed wind; the dotted black line is opposite to

the direction of the observed wind; the dashed lines enclose the directions with nonzero likelihood; and the

dash-dotted lines enclose the 95% confidence interval associated with the EnKF observation model.

directions in the forecast ensemble. An ensemble of N = 72 wind vectors are drawn from a random distribution –185

specifically, from randomly-chosen spatial location in the initial distribution of the experiments described in section186

4. This initial ensemble is shown as blue dots in the right panel of Figure 2. The estimate of the prior pdf produced187

by the von Mises kernel density estimation is shown as a blue line in the left panel of Figure 2. For ease of visual188

comparison with the posterior, the prior pdf has been scaled to have a maximum height of 1.189

The observed wind direction is set to θ = π/4, i.e. towards the northeast. This is shown in the right panel of190

Figure 2 by a solid black line emanating from the origin, while the dotted black line points in the opposite direction191

5π/4. The posterior pdf, normalized to a maximum height of 1, is shown in green in the left panel of Figure 2; the192

likelihood used to form the posterior is given by Equation (31). The example uses a Nθ = 32 point compass so that the193

likelihood is nonzero only over an interval of directions of width 3π/16. The posterior is nearly equal to the likelihood194

in this example because the prior is so widely spread compared to the likelihood.195

The probability integral transform rotates the prior wind ensemble members into posterior wind ensemble mem-196

bers, shown in green in the right panel of Figure 2, which is concentrated around the observed wind direction. The197

likelihood is identically zero for directions far from the observed value of π/4. The range of directions with nonzero198

likelihood is shown by a pair of dashed lines emanating from the origin in the right panel of Figure 2: The likelihood is199

zero outside these lines, and all of the posterior wind ensemble members lie between these lines.200

The EnKF approach instead reduces the component of wind that is orthogonal to the observed wind direction; in201

this example the result is a posterior ensemble, shown in red in the right panel of Figure 2, whose members mostly202

point in the direction opposite to the observed direction. The EnKF uses an approximate observation model with an203

additive observation error set by Equation (13). The dash-dotted lines in the right panel of Figure 2 are located two204

standard deviations of the observation error above and below the observed direction, and most of the EnKF posterior205
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ensemble members lie between these lines. This example illustrates that the EnKF approach does not work well for206

prior ensemble members that are pointing in the wrong direction.207

To understand this result, Figure 1 illustrates how the ESRF and TSEF approaches update the wind direction208

vector in the first step of the two-step process. For a prior wind vector that is already close to the true observed209

wind direction (green dot) the TSEF rotates the wind vector without changing its amplitude (blue arc), while the ESRF210

projects the wind vector towards the right direction while minimally changing its amplitude (red arrow). The difference211

between the two methods is small when the prior wind vector is already close to the right direction. For a prior wind212

vector that is far from the observed direction (red dot), the TSEF again rotates the wind vector towards the observed213

direction without changing its amplitude (blue arc). The ESRF instead projects the wind vector in the wrong direction214

(red arrow).215

3 | IDEALIZED MODEL CONFIGURATION216

The wind direction data assimilation methods developed in the preceding section are applied here in the context of217

nondimensional two-dimensional incompressible vorticity dynamics on a β -plane. The vorticity ω evolves according218

to219

∂tω + J[ψ,ω ] + β∂xψ = F − rdω + ν+2ω. (25)

The streamfunctionψ is proportional to a geostrophic pressure anomaly andwill henceforth be referred to as pressure;220

it is related to vorticity by ω = +
2ψ . Vorticity advection is represented via the Jacobian J[ψ,ω ] = u · +ω where221

(u,v ) = (−∂yψ, ∂xψ ) . The coefficient β = 10 is the nondimensional meridional gradient of planetary vorticity. The222

domain is a periodic square with a nondimensional width of 2π . To convert the model state, i.e. vorticity, to wind223

direction at a given location requires a sequence of steps. First the Poisson equation +
2ψ = ω is solved to find the224

streamfunction; then the components of velocity are obtained from the gradient ofψ via (u,v ) = (−∂yψ, ∂xψ ) ; finally,225

the wind direction is obtained as the argument (sometimes called the phase or angle) of the complex number u + iv .226

The forcing F is stochastic. It is Gaussian and white in time. Its spatial Fourier coefficients are nonzero only for227

wavenumbers with 10 ≤

√

k 2x + k
2
y ≤ 12. On these wavenumbers the amplitude of forcing is constant; the value228

is chosen so that the net enstrophy injection rate is unity (nondimensional). Energy and enstrophy injected by the229

forcing are dissipated by a linear drag term with coefficient rd = 0.01 and viscosity with coefficient ν = 4 × 10
−4.230

The spatial discretization is a Fourier spectral method with 256 Fourier modes in each direction; the Jacobian is231

dealiased using the 3/2-rule, i.e. 384 Fourier modes in each direction are used in the computation of the Jacobian. The232

spatial discretization uses the fourth-order adaptive Runge-Kutta method ARK4(3)6L[2]SA of Kennedy and Carpenter233

(2003). All terms except the Jacobian are treated implicitly, while the stochastic forcing is added explicitly at the end234

of each Runge-Kutta step. The stepsize is adjusted using a PI.3.4 control (Soderlind, 2002) with a tolerance of 10−3.235

The code is publicly available (Grooms, 2023).236

Figure 3(a) shows a snapshot of vorticity from the reference simulation. Eddies are mingled with zonal bands that237

correspond to zonal jets; the time- and zonal-mean velocity is shown in Figure 3(b). The energy spectrum is shown in238

Figure 3(c); a short inverse cascade produces a shallow spectrum between the range of forcing wavenumbers (shaded)239

and the peak of the energy spectrum at wavenumber 3, while the combination of linear drag and viscosity conspires240

to create a steep spectrum falling off from the forcing wavenumbers to the viscous dissipation range.241
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produce large gradients and consequently dynamical instability. In the experiments developed here, the localization269

radius is set using270

L = L0
ρ + 0.0064

ρ + 0.0256
(26)

where271

ρ = max
n

|ψ
(n )
+ − ψ (n )

− | (27)

is the maximal increment to the pressure (subscripts − and + denoting prior and posterior, respectively). The small-272

est possible localization radius is four times smaller than the largest possible localization radius. Some initial tuning273

suggested that the localization radius should not be larger than 16 grid points, i.e. π/8 nondimensional units, so the274

maximal radius was set to275

L0 =
π

8
. (28)

This maximal localization radius is half the shortest distance between the observation locations in the grid configura-276

tion. To standardize the different experiments, all experiments use the same formula for localization radius based only277

on observations of ψ . In experiments where observations of ψ are not assimilated, the increments to ψ that would278

result from observations of ψ are still computed solely for the purpose of setting the localization radius.279

Also following 20CR, inflation used the ‘relaxation to prior spread’ (RTPS) inflation scheme ofWhitaker and Hamill280

(2012). In this scheme the multiplicative inflation coefficient r inf is set to281

r inf = (1 − α ) + α
σb

σa
(29)

where α is the RTPS parameter and σb and σa are the background (prior) and analysis (posterior) spreads, respectively.282

The relaxation coefficient α was manually tuned in each configuration to achieve optimal results. Inflation is applied283

to the analysis ensemble at each cycle.284

285

Since historical observations do not come with a likelihood, we assume that the observation θ is obtained from286

θ = Ð [φ + ϵ ] (30)

where Ð denotes projection onto a compass with Nθ = 32 points and ϵ is the observation error, which is independent287

of u. This is clearly not in the form (14), but the TSEF framework of Grooms (2022) does not require (14), it only288

requires the likelihood [θ |φ ]/[φ ]. This is obtained, up to a normalization constant, by convolution of an indicator289

function I (φ ) with the pdf of ϵ:290

[θ |φ ] =
Nθ

2π
[I ∗ πϵ ] (θ − φ ) (31)

where πϵ denotes the pdf of ϵ and ∗ indicates convolution. The indicator function I (φ ) is zero for |φ | > π/Nθ and291

one for |φ | ≤ π/Nθ . The observation errors ϵ are here drawn from a symmetric triangular distribution peaked at zero292

and with a radius of π/16, i.e. the radius equals the precision of the 32-point compass. With this configuration of ϵ293
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and a 32-point compass the likelihood is a quadratic B spline. The likelihood associated with this observation model294

could potentially be used to assimilate wind direction observations with local particle filters Penny andMiyoshi (2016);295

Poterjoy (2016).296

The TSEF assimilates the observations serially, i.e. one at a time. For each observation there are two steps. The297

first step of the TSEF produces an analysis ensemble of wind vectors u
(n )
+ at the observation location. The second298

produces an analysis ensemble of vorticity fields ω
(n )
+ . The update to the vorticity is accomplished using linear re-299

gression, following the approach of Anderson (2003), and explained in the Bayesian context by Grooms (2022). Let300

the vorticity values on the computational grid be unrolled into a vector x. A simple linear model is posited for the301

relationship between the vorticity vector x and the components u and v of the velocity vector u at the observation302

location303

x = a0 + auu + avv + η (32)

where a0,u,v are regression coefficients and η is the regression residual. The regression coefficients are obtained304

by plugging the prior ensemble into the simple linear model, and solving for the unknown regression coefficients305

using ordinary least squares. The estimates of the regression coefficients produced in this way are denoted â0,u,v , to306

distinguish them from the true regression coefficients. An ensemble of regression residuals can be defined using the307

estimated regression coefficients and the prior ensemble308

η (n )
= x(n )

− − â0 − âuu
(n )
− − âvv

(n )
− (33)

where the subscript − serves to indicate that these values come from the prior ensemble. The analysis vorticity309

ensemble is then defined using the analysis velocity ensemble and the regression residuals as follows310

x
(n )
+ = â0 + âuu

(n )
+ + âvv

(n )
+ + η (n )

. (34)

This update can be written in incremental form as311

x
(n )
+ = x(n )

− + ∆x(n ) (35)

where the increment is312

∆x(n )
= âu

(

u
(n )
+ − u (n )−

)

+ âv

(

v
(n )
+ − v (n )

−

)

. (36)

Localization is accomplished by multiplying the increments by a localization function so that vorticity values far from313

the observation location are not updated.314

Note that the choice z = u implies a regression problem in this second stepwhereu is used as a predictor variable315

in the regression. The alternative choice z = φ, which works equally well in the first step, would require a second316

step where φ is used as a predictor variable in the regression. A first-order trignonometric polynomial model for the317

relationship between φ and x would take the form318

x = a0 + ac cos(φ ) + as sin(φ ) + η. (37)
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This is similar but not equivalent to the model (32). The model (32) posits a linear relationship between the vorticity319

field x and the wind field u at a single point, whereas the model (37) posits a linear relationship between the vorticity320

field x and a unit vector (cos(φ ), sin(φ ) ) in the same direction as the wind fieldu at a single point. The former model321

is more realistic (vorticity is related to wind speed and direction, not just wind direction), so the choice z = u is better322

than z = φ.323

5 | RESULTS324

The data assimilation results presented here are all given in terms of the root mean squared error (RMSE) in the325

vorticity posterior ensemble mean. Denoting the posterior ensemble in vorticity by {ω (n ) }N
n=1

, the posterior mean is326

ω̄ =
1

N

N
∑

n=1

ω (n ) (38)

and the RMSE is327

RMSE =

[〈

(ω − ω̄ )2
〉]1/2

(39)

where the ⟨·⟩ denotes an average in space or time and ω is the reference state from the nature run. Results showing328

the spatial pattern of RMSE use a time average, and results showing time series of RMSE use a spatial average. The329

analysis spread is defined to be330

Spread =

[

1

N

〈

N
∑

n=1

(

ω (n ) − ω̄
)2

〉]1/2

. (40)

In all experiments the RMSE was only weakly sensitive to the RTPS parameter α , so it was tuned such that the spread331

matched the RMSE. Presenting results in terms of vorticity is convenient, but also somewhat more stringent of a332

test than considering alternatives like the pressure ψ or velocity u, since the latter are smoother fields than vorticity.333

Below we present results first for the grid observations, and then for the random observations.334

5.1 | Grid Observations335

Results for the experiments with gridded observations are shown in Figure 4. The upper left panel shows the standard336

deviation of climatological variability in the reference simulation vorticity, with white crosses marking the locations at337

which observations are taken. The time- and space-mean standard deviation for the climatological variability is 2.17,338

but the variability is distributed non-uniformly through the domain in patterns associated with the zonal jets shown339

in Figure 3(b).340

The results for the ESRF and TSEF filters assimilating only pressure observations are essentially identical, and are341

not shown. Their RMSE is 1.85 at an RTPS value of α = 0.1. When assimilating only pressure observations, the TSEF342

is effectively a two-step EnKF, though not identical to the ESRF used in the other experiment, so it is not surprising343

that they yield indistinguishable results.344

The lower panels of Figure 4 show the RMSE for the ESRF (left) and TSEF (right) filters assimilating both pressure345

and wind direction. Optimal results for both filters are obtained at an RTPS value of α = 0.3. The ESRF performs no346
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observations in the early centuries of a historical reanalysis.358

5.2 | Random observations359

F IGURE 5 Time series of RMSE for the ESRF (left) and TSEF (right) filters with random observation locations. In

the legend, P denotes experiments assimilating only observations of pressure, PUV denotes experiments

assimilating observations of pressure and wind direction, and UV denotes experiments assimilating only

observations of wind direction. The climatological standard deviation of vorticity is 2.17, for reference.

Figure 5 shows time series of the RMSE for both ESRF (left) and TSEF (right) filters with all three sets of obser-360

vations (pressure only, pressure and wind direction, or only wind direction) with the random observation locations.361

As with the gridded observations, ESRF and TSEF perform indistinguishably when assimilating only pressure observa-362

tions. Unlike the gridded observations, the ESRF and TSEF perform indistinguishably when assimilating observations363

of pressure and wind direction; for both filters, assimilating wind direction improves performance compared to just364

assimilating pressure. The big difference comes when assimilating only observations of wind direction. In this case,365

the ESRF diverges with RMSE above climatology, as it did with gridded observations, but the TSEF performs as well366

with only wind direction as it does with only pressure.367

The results presented in Figure 5 use the following values of the RTPS parameter α : ESRF and TSEF assimilating368

only pressure α = 0.3; ESRF and TSEF assimilating pressure and wind direction α = 0.1; ESRF assimilating only wind369

direction α = 0.8; TSEF assimilating only wind direction α = 0.1.370

5.3 | Discussion371

The main conclusion is that the TSEF performs as well using only wind direction observations as the ESRF does using372

only pressure. 20CR relies heavily on surface pressure observations since they are available deeply into the historical373

record; the results here suggest that similar performance might be possible using only wind direction observations. In374

contrast, the EnKF approach to wind direction provides no benefit when wind direction is the only observation.375

To understand why the EnKF approach diverges when using only wind direction observations, assume that the376

prior uncertainty in the wind direction is high, as it would be in the early stages of a historical reanalysis. Figure 2377

illustrates that the EnKF approach simply removes the component of wind orthogonal to the observed direction; for378

some ensemble members this is an improvement, while for others it is the opposite. With only this kind of observation,379

the EnKF approach is unable to reduce the uncertainty in wind direction, and remains diverged.380

When other observation types are also available (e.g. pressure), these other observations can indirectly improve381
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the accuracy of the prior wind direction. Then, with a reasonably-accurate prior, the EnKF approach can extract382

further value from the wind direction observations; this is most evident in the random-location configuration, where383

the EnKF performs better with wind direction and pressure than with pressure alone. Of course the TSEF approach384

is also able to perform better with wind direction and pressure than with wind direction alone.385

The gridded observing system does not produce large differences in performance between the methods because386

none of the methods are able to perform very well. The limitation of that configuration is that the observations387

are sparse in the domain, and while the methods are able to accurately estimate the state close to the observation388

locations, the spatial correlations are not sufficient to spread the accuracy to the entire domain. The random observing389

system still has sparsely-spaced observations, but over time the observations cover the spatial domain uniformly,390

which leads to improved overall accuracy as well as a greater difference in the performance of the different methods.391

As a result of this overall improved accuracy using randomly located observations, the prior ensemble in wind392

directions is more accurate than using gridded observations. This explains why the TSEF is slightly better than the393

ESRF with gridded observations while the methods perform similarly with randomly located observations: The prior394

wind ensemble is far more accurate with the randomly located observations, and the ESRF approach to assimilating395

wind direction works well with an accurate prior ensemble.396

6 | CONCLUSIONS397

Two methods for assimilating wind direction observations have been developed for the purpose of enabling future398

historical reanalyses to make use of historical observations of wind direction. The first method uses a linear obser-399

vation model and can be used with EnKF or variational approaches, while the second method is inherently nonlinear400

and non-Gaussian and requires an ensemble approach. The first step of the nonlinear TSEF approach uses a nonpara-401

metric ensemble approximation of a probability integral transform, and is thus an example of a Quantile Conserving402

Ensemble Filter (QCEF; Anderson, 2022). The nonlinear TSEF approach is amenable to implementation within the403

Data Assimilation Research Testbed software suite (DART; Anderson et al., 2009).404

The two methods were tested in the context of an idealized two-dimensional fluid model. The main result is that405

the TSEF approach using only wind direction observations performs as well as an EnKF method using only pressure406

observations. Although the performance parity seen here depends on the details of the observing system, this is a407

clear demonstration that the new method can unlock latent value in historical measurements of wind direction. In408

contrast, the linear observation model provides no benefit at all when assimilating only wind direction observations.409

The linear observation model is primarily valuable when used in concert with other observation types, e.g. pres-410

sure observations. If enough observational data is available to produce a reasonably-accurate forecast of wind direc-411

tion, then the linear observation model for wind direction observations can be used to further improve the accuracy412

of the posterior estimate.413
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