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Wind direction observations are instrumental weather records

that hold promise for improving historical weather reanal-
yses and extending them deeper into the past. Two meth-
ods are developed for assimilating wind direction observa-
tions. The first uses a linear observation model with Gaus-
sian additive error, and is thus amenable to use in standard
EnKF and variational frameworks. The second is nonlinear
and non-Gaussian, and is based on a two-step approach
for sampling from the Bayesian posterior. Both methods

are tested in the context of an idealized two-dimensional

model of turbulent fluid dynamics. The nonlinear, non-Gaussian

method assimilating only wind direction observations per-
forms as well as an EnKF assimilating only pressure observa-
tions, whereas the first method based on the linear model

provides no benefit when assimilating only wind direction

observations. The method based on the linear model per-
forms well when paired with other observations, e.g. of pres-
sure, since it performs best when the forecast of wind direc-

tion is not far from correct.
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2 | I. Grooms

1 | INTRODUCTION

The study of how changing climate changes weather patterns, especially extreme weather, requires some knowledge
of historical weather patterns. Historical reanalyses like the Twentieth Century Reanalysis (20CR Compo et al., 2011;
Giese et al., 2016; Slivinski et al., 2019) and the European Centre for Medium-Range Weather Forecasts (ECMWF)
reanalyses ERA-20C (Poli et al., 2016) and CERA-20C (Laloyaux et al., 2018) attempt to reconstruct global weather
patterns as far back as the nineteenth century using data assimilation (DA) - a class of methods for combining obser-

vational data with a forecast model to estimate the state and parameters of a dynamical system.

The further back in time one goes, the fewer are the observations available for use in a reanalysis. One class
of weather observations that extends deeply into the historical record comes from the written reports of mariners.
Records from voyages of the English East India Company, for example, stretch back to the seventeenth century (Bro-
han et al., 2012). Many of these records have been digitized and are available through the International Comprehensive
Ocean-Atmosphere Data Set (ICOADS Freeman et al., 2017). Wind speed and direction are common observations,
but early wind speed measurements were reported using qualitative language. The introduction of the Beaufort scale
for wind speed in the early nineteenth century enables qualitative descriptions of wind speed to be converted to a
quantitative scale, but early wind speed records have significantly greater uncertainty than wind direction measure-
ments, and are not considered instrumental (Prieto et al., 2005; de Paula Gomez-Delgado et al., 2019). Wind direction
measurements were recorded with high precision using accurate magnetic compasses with as many as 64 points. Un-
fortunately, wind direction is a strongly nonlinear function of the wind field, which makes it difficult to assimilate
using standard ensemble Kalman filter (EnKF) data assimilation methods that work best for linear observations with
Gaussian errors (Evensen, 2009). The goals of this investigation are to develop ensemble methods that can assimi-
late wind direction measurements, and to demonstrate, at least in an idealized model, the value in assimilating such
measurements. These goals are in service of the larger goal of ultimately improving historical reanalyses and perhaps

motivating the digitization of more historical observations of wind direction.

The plan of the paper is as follows. Two ensemble-based approaches to assimilating wind direction are described
in section 2. The idealized dynamical model used in the tests is described in section 3. The data assimilation experi-
mental configuration is presented in section 4, and the results of those experiments are presented and discussed in 5.
Conclusions are offered in section 6. Figure data and simulation code are available (Grooms, 2023).

2 | WIND DIRECTION ENSEMBLE DATA ASSIMILATION

We begin by setting notation. The state of the dynamical system is denoted @, with a subscript j to denote the value
of x at time ¢;. Observational information at time ¢; is denoted y;. Our uncertainty about the state of the system
before taking observational information into account is described by a Bayesian prior distribution; the probability
density function (pdf) associated with this distribution is denoted [x] and a random variable with pdf [z] is denoted
X. The observation y is a draw from an observational distribution with pdf [y|x]. Viewed as a function of y this is
the pdf of the observational distribution; viewed as a function of « it is proportional to the Bayesian likelihood. The
goal of ensemble data assimilation is to draw samples (", which together form an ensemble {x(" }LV:V from some
distribution that approximates the Bayesian posterior [z|y].

Ensemble Kalman filters (EnKFs) approximate the joint distribution of X and Y as Gaussian, which implies that the

Bayesian posterior (which is simply a conditional of the joint distribution) is also Gaussian with well-known formulas
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for the posterior mean and covariance. To wit, if the parameters of the joint distribution are

E[X] = px (1a)
E[Y] = pny (1b)
Cov[X] = C4 (1c)
Cov[Y] = C, (1d)
Cov[X,Y] = Cy (1e)
then the posterior mean and covariance are
E[X|Y =yl = px+CyC,'(y-py) (2)
Cov[X|Y =y] = C,-C,C,'Cl,. 3)

The Kalman filter (KF) formulas on which EnKFs are commonly based make a further assumption about the relationship
between the state and observations, namely that

Y =HX +e¢ ()

where € is a centered Gaussian independent of X and with covariance R, and H is a matrix. This assumption, which

is necessary for the KF but not for EnKFs, implies

pny = Hpy (5)
C, = HCH+R (6)
ny = ch (7)

which allows the recovery of more familiar KF update formulas.

In the context of wind direction observations, y is an angle and Y is a circular random variable. The assumption
of joint Gaussianity at the heart of EnKFs is a severe limitation in this context, since circular random variables are
simply not Gaussian. Indeed, when the measured wind direction is recorded on a 16, 32, or 64 point compass, Y is

also a discrete random variable, which further underscores that it is not Gaussian.

In principle an EnKF assimilating wind direction can be implemented using a nonlinear observation model

y=h(z)+e (8)

where h is an arctangent that maps the wind vector to the wind direction. Though algorithmically straightforward,
this approach implicitly treats Y™ as a Gaussian variable, rather than a circular one, by relying on the usual formulas for
means and covariances of linear variables. The performance of this type of method is expected to be erratic at best.
For example, consider an ensemble of two directions: +7x/8 radians, i.e. west by northwest and west by southwest.
A standard EnKF approach to nonlinear observation operators will treat the mean wind direction as eastward when

it should be westward, and will consider the ensemble spread to be large when it is in fact small.

This section develops two ensemble data assimilation approaches for assimilating wind direction measurements.
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4 I. Grooms

FIGURE 1 The solid line emanating from the center of the circle indicates the observed wind direction, while the
dashed lines flanking the solid line indicate the uncertainty in the measurement of the wind direction. The dotted
lines indicate the linear observation model: The central dotted line is parallel to the observed wind direction, and the
flanking dotted lines represent the uncertainty in the magnitude of the wind perpendicular to the observed wind
direction. The magnitude of the uncertainty in the linear model is chosen so that it matches the magnitude of the
uncertainty in the wind direction at a particular wind speed; this wind speed where the uncertainties match is the
radius ||u|| of the circle. The red lines indicate the way in which a wind vector (solid circles) is adjusted by the EnKF
approach, while the blue lines indicate the way in which a wind vector is adjusted by the TSEF approach. The green
solid circle is adjusted similarly by the EnKF and TSEF approaches, while the red solid circle is adjusted correctly by
the TSEF and incorrectly by the EnKF.

The first, presented in section 2.1, is based on an observation model for wind direction that takes the form (4), which
allows the use of standard EnKF or variational methods. The second, presented in section 2.2, uses a two-step ap-
proach to ensemble data assimilation based on the seminal approach of Anderson (2003), as expanded recently by
Grooms (2022). The two approaches are fundamentally distinguished by the way in which they deal with the wind
direction observations. In the first approach, the wind direction observations are assimilated by constraining to zero
the component of wind perpendicular to the observed wind direction. In the second approach, the wind direction
observations are assimilated by rotating the wind direction towards the observed direction. The mathematical struc-
ture of the first approach makes it amenable to implementation via standard EnKF methods, while the structure of
the second approach requires a more sophisticated implementation via a two-step ensemble filter.

2.1 | EnKF for Wind Direction

The goal of this section is to develop an observation model that approximates the true likelihood associated with a
wind direction measurement, and that is amenable to incorporation into standard EnKF-type methods. Letw = (u, v)7

be a two-component horizontal wind vector with eastward component v and northward component v. If 8 € [-x, )
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is the direction of w measured in radians counterclockwise from east, then

w= ||u||( cos(®) ) )
sin(9)
If u points in the direction 6, then
w. ( —sin(6) ):o, (10)
cos(6)

although the converse is not true; (10) only guarantees that u has angle +6.

Equation (10) is reminiscent of the linear observation model (4) commonly used in EnKFs, where

y = 0 (11a)

I
1l

[-sin(8), cos(8)] (11b)

e = (”) (11c)
|4

It is interesting to note that this version of the observation model flips the usual paradigm upside down. In the usual
paradigm the observation matrix H is fixed and the value of the observation is y. In the version adopted here the
value of y is always zero, while the observation matrix H depends on the observed angle 6.

What's missing here is an additive observation error €. The choice of error variance is somewhat ad hoc, since
the observation model is only an approximation. The approach to specifying € developed here is illustrated in Figure
1. The true angular likelihood is illustrated schematically in Figure 1 as follows. A solid line emanating from the origin
indicates the observed wind direction; uncertainty in the true wind direction (as distinct from the observed wind
direction which may contain slight errors) is illustrated by dashed lines emanating from the origin and flanking the solid
line. The approximate likelihood associated with the linear observation model (11) says that the component of wind
perpendicular to the observed direction is zero, with some uncertainty. This is illustrated in Figure 1 as follows. The
central dotted line is parallel to the observed wind direction, while the flanking dash-dotted lines indicate uncertainty
in the magnitude of the component of the wind vector perpendicular to the observed wind direction. The uncertainty
in the two likelihoods intersects at a particular flow speed ||u||. In the figure this flow speed is the radius of the circle
that passes through the points where the dashed lines (uncertainty in the true likelihood) intersect the dash-dotted
lines (uncertainty in the linear model). Choosing an observation error variance in the linear model is thus equivalent
to choosing a flow speed such that the uncertainty in the linear model and angular model match.

Based on this geometrical motivation, the observational uncertainty in the linear model is set as follows. In the
context of an EnKF, an ensemble of prior (forecast) wind vectors {u (" },’:’:1 is available; in order to make the linear

observation model accurate for a typical wind speed, the effective wind speed is set to

/2

1
2
) . (12)

1 N
. (n)
llull = (N ZH“

To get the observation error standard deviation in the linear observation model, we need the observational uncertainty
in the angular measurement of wind direction. Naturally, historical observations of wind direction do not come with

built-in quantification of their uncertainty, i.e. the true likelihood is unknown. The approach taken here, which can
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6 I. Grooms

easily be modified, is to say that the standard error in measurements recorded on a compass with Ny points is equal
to half of a compass increment, i.e. 7/ Ny. The arc length of a circular segment from the true wind direction to the
true wind direction plus one standard error at a wind speed of ||u]| is ||u|| X 7/Ng. The observational error variance
in the linear model is thus set to the square of this arc length

1 (Z VS e
Varle] = e leu 2. (13)
n=1

With this linear observation model, the wind direction observation can be assimilated by any one of the wide va-
riety of EnKF methods available in the literature, or even using variational methods. The EnKF experiments reported
here use the serial square root assimilation scheme of Whitaker and Hamill (2002). To distinguish this specific EnKF
algorithm from other EnKFs, the serial square root assimilation will hereafter be denoted ESRF (Ensemble Square
Root Filter). In a situation where wind speed measurements are available but with a much lower precision than wind
direction, e.g. because the wind speed observation is simply the phrase ‘light wind’ (Brohan et al., 2012), the compo-
nent of wind in the observed direction could be assimilated using an appropriately large error variance; this would be
equivalent to observing both components of wind, but with a non-diagonal 2 x 2 observation error covariance matrix.
Some historical observations of wind direction are unclear about whether the recorded direction is the direction from
which the wind blows or to which the wind blows (Freeman et al., 2017); since the linear observation model is exactly

the same for angles 8 + x, this method can still use wind direction observations that are subject to this ambiguity.

2.2 | A Two-Step Ensemble Filter

Anderson (2003) developed a two-step approach to assimilating scalar observations that are nonlinearly related to

the state by a relation similar to the linear observation model (4), namely
Y =h(X)+e. (14)

The first step of this two-step approach consists of a Bayesian estimation of h(X'), while the second step consists of
a simple linear regression from h(X) back to X. In the original implementation, the first step used the ensemble ad-
justment Kalman filter (EAKF Anderson, 2001); more recently, methods like the Rank Histogram Filter (RHF Anderson,
2010) and the GIGG-EnKF (Bishop, 2016) have been developed for the first step to relax the Gaussian approximation
of the original EAKF. The second step typically uses simple linear regression, although generalized regression methods
have been developed (e.g. Anderson, 2019). A key aspect of these methods is that they are algorithmically similar to
EnKFs, and can be used efficiently with large-scale geophysical models (Anderson et al., 2009).

Grooms (2022) showed how two-step ensemble filters (TSEFs) are related to Bayesian estimation. A new random
variable Z is introduced that has the property

lyle, z] = [y|=]. (15)

In the context of the observation model (14), Anderson (2003) chose to use Z = h(X), but this is not the only possible
choice of Z that satisfies the property (15). An illustrative but impractical alternative is to set Z = X; another choice

is made below in the specific context of observations of wind direction. The introduction of this new variable allows



132

133

134

143

144

145

146

157

158

159

160

I. Grooms 7

the pdf of the Bayesian posterior to be written as
[ely] = [ [=ly]lal=1dz. (16)

Two-step ensemble filters sample from this distribution by first sampling an ensemble {z(" },’,":1 from [ z|y], and then

sampling an ensemble {=("}N . where (") is a sample from [z|z("].

In the context of wind direction assimilation, let z = w and y = 6. It is convenient to change to polar coordinates
for the wind vector, (u, v) — (p, ) where the notation ¢ has been adopted to distinguish a general angle ¢ from the
observed value 8. Note that in the context of the first step of the two-step filter, which is being described here, the
choices z = u and z = ¢ work equally well; the choice z = u is made here because it leads to a better second step,

which is described at the end of section 4. The posterior in polar coordinates is

[6lp. 9]
(6]

[p.®10] = [p.®]. (17)
While in general there is no reason to assume that p and ¢ are independent in the prior distribution [p,¢] = [¢][p],
it is a highly convenient approximation, which is adopted here. Further assuming that the likelihood of observing the

wind direction 6 does not depend on the wind speed p, the posterior simplifies to

[
lp.$16] = (%m) o] = [#1011p]. (18)
The assumption that p and ¢ are independent in the prior implies that the observation of wind direction has no impact
on the distribution of wind speed. This assumption could potentially be relaxed by using the methods of Murphy et al.
(2022), who, in a context different from data assimilation, model the conditional distribution of wind speed given wind

direction [p|¢] as a Weibull distribution whose parameters depend on ¢.

With these simplifying assumptions, the first step of the two-step process updates the direction of the wind vec-
tors at the location of the observation while the second step uses regression to push the local changes in the wind
vector back to all the other state variables. In this paper, the second step of the two-step process uses linear regres-
sion, as in the two-step EnKF of Anderson (2003). The first step is accomplished using a probability integral transform,
which is the same idea that underlies the RHF and the Quantile-Conserving Ensemble Filter Framework (QCEFF; An-
derson, 2022). If F_ and F, are the cumulative distribution functions (cdfs) of the prior and posterior, respectively,
then the random variable X, = F;T(F_(X_)) is the probability integral transform of X_ (which is distributed ac-
cording to the prior), and X, is distributed according to the posterior. To build a scalar filter for the first step of a
two-step ensemble filter based on the probability integral transform, one uses the prior ensemble and the likelihood

to approximate the cdfs, and then applies the resulting approximate transform F;1 o F_ to the prior ensemble.

In the context of wind direction, which is a circular random variable, the probability integral transform can still be
used, though the definition of the cdf requires a small amount of care. For a random variable X taking values in R, the
cdf is defined to be

Fx(x) = / [X = £]de (19)

)

where ¢ is a dummy integration variable and [ X = ¢] is the pdf of X evaluated at £. For a circular random variable ¢,
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one can define the cdf as
¢
Fol9) = [ 1o = e1c (20)
L)

for any ¢o. The choice of ¢ determines the domain of Fy, which is [¢o, ¢o +27].

To approximate the prior pdf [¢], we use kernel density estimation with a von Mises kernel (Mardia, 1975)

exp(k cos(¢))

21 I (k) (21)

K(®) =

where Ij is the modified Bessel function of the first kind and order 0. The parameter k controls the width of the

kernel; for large « and for ¢ € (-, 7) the kernel approximates a normal distribution with mean zero and variance «~'.

The prior pdf is thus approximated from the prior ensemble as

[¢] ~ iK(q&—qb(")) (22)

n=1

z2| -

where {¢ (" },’,"=1 is the ensemble of prior wind directions. The kernel bandwidth parameter « is set using a standard

bandwidth selection scheme for Gaussian kernels (Silverman, 1998), adapted to the von Mises context:

N2/5
- _ 23
« 2 x 1.062In(R) (23)

where

7). (24)

==
M=

n=1

Improved bandwidth selection schemes for von Mises kernel density estimation are discussed by Tenreiro (2022).

The domain of the prior cdf F_ that is required for the probability integral transform is chosen to be [6 — 7,6 + ]
where 6 is the observed wind direction. The prior cdf F_ is approximated using trapezoid rule quadrature on an
equispaced grid of 257 points in [6 — x,6 + x]. Linear interpolation is used to approximate F_ between these 257
points. To obtain the posterior cdf F, that is required for the probability integral transform, the posterior pdf is first
evaluated as the product of the prior pdf and the likelihood on the same set of 257 points in [6 — n, 0 + ' ]. Trapezoid
rule quadrature is then used to obtain an approximation to F, on the grid, and linear interpolation is used to fill in
the intermediate values. The cdf is inverted by simply swapping the role of the ordinate and abscissa in the linear
interpolation scheme used to evaluate F.. The form of the likelihood used in the experiments is discussed in section
4.

2.3 | Example

This section presents a simple example to illustrate the differences in the first step of the EnKF and TSEF methods. In
practice there would be many observations of wind direction at different locations, each of which would be serially
assimilated into the state vector. The example presented here illustrates only the first step of the assimilation for a

single observation of wind direction, and in this example the observed wind direction is very different from the wind
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FIGURE 2 Left: The prior (blue) and posterior (green) pdfs of angle ¢. Both are normalized to have unit maximum
height so their shapes can be compared more easily. Right: A prior ensemble of wind vectors (blue), together with
the posterior ensemble of wind vectors produced by the probability integral transform approach (green) and the
EnKF approach (red). The solid black line is in the direction of the observed wind; the dotted black line is opposite to
the direction of the observed wind; the dashed lines enclose the directions with nonzero likelihood; and the
dash-dotted lines enclose the 95% confidence interval associated with the EnKF observation model.

directions in the forecast ensemble. An ensemble of N = 72 wind vectors are drawn from a random distribution -
specifically, from randomly-chosen spatial location in the initial distribution of the experiments described in section
4. This initial ensemble is shown as blue dots in the right panel of Figure 2. The estimate of the prior pdf produced
by the von Mises kernel density estimation is shown as a blue line in the left panel of Figure 2. For ease of visual

comparison with the posterior, the prior pdf has been scaled to have a maximum height of 1.

The observed wind direction is set to 8 = n/4, i.e. towards the northeast. This is shown in the right panel of
Figure 2 by a solid black line emanating from the origin, while the dotted black line points in the opposite direction
5 /4. The posterior pdf, normalized to a maximum height of 1, is shown in green in the left panel of Figure 2; the
likelihood used to form the posterior is given by Equation (31). The example uses a Ny = 32 point compass so that the
likelihood is nonzero only over an interval of directions of width 3x/16. The posterior is nearly equal to the likelihood

in this example because the prior is so widely spread compared to the likelihood.

The probability integral transform rotates the prior wind ensemble members into posterior wind ensemble mem-
bers, shown in green in the right panel of Figure 2, which is concentrated around the observed wind direction. The
likelihood is identically zero for directions far from the observed value of /4. The range of directions with nonzero
likelihood is shown by a pair of dashed lines emanating from the origin in the right panel of Figure 2: The likelihood is

zero outside these lines, and all of the posterior wind ensemble members lie between these lines.

The EnKF approach instead reduces the component of wind that is orthogonal to the observed wind direction; in
this example the result is a posterior ensemble, shown in red in the right panel of Figure 2, whose members mostly
point in the direction opposite to the observed direction. The EnKF uses an approximate observation model with an
additive observation error set by Equation (13). The dash-dotted lines in the right panel of Figure 2 are located two

standard deviations of the observation error above and below the observed direction, and most of the EnKF posterior
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ensemble members lie between these lines. This example illustrates that the EnKF approach does not work well for
prior ensemble members that are pointing in the wrong direction.

To understand this result, Figure 1 illustrates how the ESRF and TSEF approaches update the wind direction
vector in the first step of the two-step process. For a prior wind vector that is already close to the true observed
wind direction (green dot) the TSEF rotates the wind vector without changing its amplitude (blue arc), while the ESRF
projects the wind vector towards the right direction while minimally changing its amplitude (red arrow). The difference
between the two methods is small when the prior wind vector is already close to the right direction. For a prior wind
vector that is far from the observed direction (red dot), the TSEF again rotates the wind vector towards the observed
direction without changing its amplitude (blue arc). The ESRF instead projects the wind vector in the wrong direction

(red arrow).

3 | IDEALIZED MODEL CONFIGURATION

The wind direction data assimilation methods developed in the preceding section are applied here in the context of
nondimensional two-dimensional incompressible vorticity dynamics on a -plane. The vorticity w evolves according

to
w+ [y, w] + POy = F — rqw + vVWw. (25)

The streamfunction y is proportional to a geostrophic pressure anomaly and will henceforth be referred to as pressure;
it is related to vorticity by w = V2y. Vorticity advection is represented via the Jacobian J[y,w] = u - Vw where
(u,v) = (=9yy, oxy). The coefficient B = 10 is the nondimensional meridional gradient of planetary vorticity. The
domain is a periodic square with a nondimensional width of 2x. To convert the model state, i.e. vorticity, to wind
direction at a given location requires a sequence of steps. First the Poisson equation V2y = w is solved to find the
streamfunction; then the components of velocity are obtained from the gradient of y via (u, v) = (=9, ocy); finally,
the wind direction is obtained as the argument (sometimes called the phase or angle) of the complex number v +iv.

The forcing F is stochastic. It is Gaussian and white in time. Its spatial Fourier coefficients are nonzero only for
wavenumbers with 10 < /kZ + kf < 12. On these wavenumbers the amplitude of forcing is constant; the value
is chosen so that the net enstrophy injection rate is unity (nondimensional). Energy and enstrophy injected by the

forcing are dissipated by a linear drag term with coefficient ry = 0.01 and viscosity with coefficient v = 4 x 1074

The spatial discretization is a Fourier spectral method with 256 Fourier modes in each direction; the Jacobian is
dealiased using the 3/2-rule, i.e. 384 Fourier modes in each direction are used in the computation of the Jacobian. The
spatial discretization uses the fourth-order adaptive Runge-Kutta method ARK4(3)6L[2]SA of Kennedy and Carpenter
(2003). All terms except the Jacobian are treated implicitly, while the stochastic forcing is added explicitly at the end
of each Runge-Kutta step. The stepsize is adjusted using a P1.3.4 control (Soderlind, 2002) with a tolerance of 1073.
The code is publicly available (Grooms, 2023).

Figure 3(a) shows a snapshot of vorticity from the reference simulation. Eddies are mingled with zonal bands that
correspond to zonal jets; the time- and zonal-mean velocity is shown in Figure 3(b). The energy spectrum is shown in
Figure 3(c); a short inverse cascade produces a shallow spectrum between the range of forcing wavenumbers (shaded)
and the peak of the energy spectrum at wavenumber 3, while the combination of linear drag and viscosity conspires

to create a steep spectrum falling off from the forcing wavenumbers to the viscous dissipation range.
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FIGURE 3 Properties of the reference experiment. (a) A snapshot of vorticity w. (b) The time-mean and
zonal-mean velocity profile. (c) The kinetic energy spectrum; the range of forcing wavenumbers is shaded. All
variables are nondimensional.

4 | EXPERIMENTAL CONFIGURATION

The data assimilation experiments reported here are designed to extrapolate, as far as possible for such an idealized
model, to the setting of historical reanalysis. To that end, the observing system is spatially sparse: Observations are
only available at 64 locations in the domain. In one set of experiments called ‘grid’ the observations are available
on an equispaced 8 x 8 grid of points. The Nyquist wavenumber for this observing grid is wavenumber 4, which is
between the forcing scale at wavenumbers 10-12 and the peak of the energy spectrum at wavenumber 3. In another
set of experiments called ‘random’ the observations are taken at 64 randomly drawn locations throughout the domain,
where the locations are drawn independently at every assimilation cycle.

The reference simulation was spun up from rest to a statistically steady state, at which point 1,024 reference states
separated by 0.01 nondimensional time units were saved. Observations are assimilated every 0.01 nondimensional
time units for the entire sequence of 1,024 reference states. These reference states constitute the ‘nature run’ used
to make the synthetic observations and to evaluate the accuracy of the analyses. A fixed ensemble size of N = 72 was
used, and the ensemble members were initialized as random draws from the time series of the reference state. The
initial ensemble was the same for all experiments.

We perform a baseline set of experiments that assimilate only observations of pressure y. The observational
error variance for y is 0.002, which is small compared to the climatological variance of 0.03. To assess the value of
assimilating wind direction, we perform a set of experiments assimilating observations of wind direction in addition to
observations of y, and another set of experiments assimilating only observations of wind direction. All experiments
in the ‘grid’ configuration use exactly the same observations, and all experiments in the ‘random’ configuration share
the same observation locations and values. For all configurations we assimilate wind direction using both the EnKF
and TSEF schemes described in sections 2.1 and 2.2.

Localization is accomplished by multiplying the ensemble increments with a Gaussian localization function having
a radius (i.e. standard deviation) of L. The radius L is chosen adaptively in a manner motivated by the approach taken
in the third version of 20CR (Slivinski et al., 2019). Slivinski et al. (2019) argued that if an observation leads to a large
increment of the state variable, then one might want to allow the increments to be spread over a wide region, whereas
if an observation leads to a small increment of the state variable, then one might prefer to confine the increments to
a small region. One motivation for such an approach is that a large increment confined to a small location is likely to
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produce large gradients and consequently dynamical instability. In the experiments developed here, the localization
radius is set using

| p+0.0064

pr-—= 2
05 +0.0256 (26)

where
p = max |y -y (27)

is the maximal increment to the pressure (subscripts — and + denoting prior and posterior, respectively). The small-
est possible localization radius is four times smaller than the largest possible localization radius. Some initial tuning
suggested that the localization radius should not be larger than 16 grid points, i.e. 7/8 nondimensional units, so the

maximal radius was set to
T
Lo==. 28
0=7g (28)

This maximal localization radius is half the shortest distance between the observation locations in the grid configura-
tion. To standardize the different experiments, all experiments use the same formula for localization radius based only
on observations of y. In experiments where observations of y are not assimilated, the increments to y that would

result from observations of y are still computed solely for the purpose of setting the localization radius.

Also following 20CR, inflation used the ‘relaxation to prior spread’ (RTPS) inflation scheme of Whitaker and Hamill
(2012). In this scheme the multiplicative inflation coefficient r, is set to

ru=(1-a)+at (29)
Oa
where a is the RTPS parameter and o, and o, are the background (prior) and analysis (posterior) spreads, respectively.
The relaxation coefficient @ was manually tuned in each configuration to achieve optimal results. Inflation is applied

to the analysis ensemble at each cycle.

Since historical observations do not come with a likelihood, we assume that the observation 6 is obtained from
0=P[¢p+e] (30)

where P denotes projection onto a compass with Ny = 32 points and € is the observation error, which is independent
of u. This is clearly not in the form (14), but the TSEF framework of Grooms (2022) does not require (14), it only
requires the likelihood [8|@]/[¢]. This is obtained, up to a normalization constant, by convolution of an indicator
function I(¢) with the pdf of e:

N,
[01¢] = 5711 7e1(6 ~ ¢) (31)
T
where . denotes the pdf of € and = indicates convolution. The indicator function I(¢) is zero for |¢| > n/Ny and

one for |¢| < m/Ng. The observation errors e are here drawn from a symmetric triangular distribution peaked at zero

and with a radius of x/16, i.e. the radius equals the precision of the 32-point compass. With this configuration of e
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and a 32-point compass the likelihood is a quadratic B spline. The likelihood associated with this observation model
could potentially be used to assimilate wind direction observations with local particle filters Penny and Miyoshi (2016);
Poterjoy (2016).

The TSEF assimilates the observations serially, i.e. one at a time. For each observation there are two steps. The

first step of the TSEF produces an analysis ensemble of wind vectors ui") at the observation location. The second

produces an analysis ensemble of vorticity fields wi"). The update to the vorticity is accomplished using linear re-
gression, following the approach of Anderson (2003), and explained in the Bayesian context by Grooms (2022). Let
the vorticity values on the computational grid be unrolled into a vector x. A simple linear model is posited for the
relationship between the vorticity vector « and the components v and v of the velocity vector u at the observation

location
T=ag+asu+a,v+n (32)

where aq,,, are regression coefficients and 7 is the regression residual. The regression coefficients are obtained
by plugging the prior ensemble into the simple linear model, and solving for the unknown regression coefficients
using ordinary least squares. The estimates of the regression coefficients produced in this way are denoted aq .y, to
distinguish them from the true regression coefficients. An ensemble of regression residuals can be defined using the
estimated regression coefficients and the prior ensemble

'™ =2 —ag - a,u™ - a,v" (33)

where the subscript — serves to indicate that these values come from the prior ensemble. The analysis vorticity

ensemble is then defined using the analysis velocity ensemble and the regression residuals as follows
min) =ag+ &uuin) +ay V_f_n) +n. (34)
This update can be written in incremental form as
mi") =z + Az (35)
where the increment is

Az = 4, (uin) - u(,")) +a, (vi") - Vf")) . (36)

Localization is accomplished by multiplying the increments by a localization function so that vorticity values far from

the observation location are not updated.

Note that the choice z = w implies a regression problem in this second step where u is used as a predictor variable
in the regression. The alternative choice z = ¢, which works equally well in the first step, would require a second
step where ¢ is used as a predictor variable in the regression. A first-order trignonometric polynomial model for the

relationship between ¢ and = would take the form

T = ag+acCcos(¢) +assin(p) +mn. (37)
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This is similar but not equivalent to the model (32). The model (32) posits a linear relationship between the vorticity
field = and the wind field « at a single point, whereas the model (37) posits a linear relationship between the vorticity
field & and a unit vector (cos(¢), sin(¢)) in the same direction as the wind field w at a single point. The former model
is more realistic (vorticity is related to wind speed and direction, not just wind direction), so the choice z = w is better
than z = ¢.

5 | RESULTS

The data assimilation results presented here are all given in terms of the root mean squared error (RMSE) in the
vorticity posterior ensemble mean. Denoting the posterior ensemble in vorticity by {w (™ },’7‘/:1, the posterior mean is

1S
= n (38)
and the RMSE is
RMSE = [<(a)—a‘))2>]1/2 (39)

where the (-) denotes an average in space or time and w is the reference state from the nature run. Results showing
the spatial pattern of RMSE use a time average, and results showing time series of RMSE use a spatial average. The
analysis spread is defined to be

" 7172
Spread = [N <Z (w(") - a?)) > (40)

n=1

In all experiments the RMSE was only weakly sensitive to the RTPS parameter a, so it was tuned such that the spread
matched the RMSE. Presenting results in terms of vorticity is convenient, but also somewhat more stringent of a
test than considering alternatives like the pressure y or velocity u, since the latter are smoother fields than vorticity.

Below we present results first for the grid observations, and then for the random observations.

5.1 | Grid Observations

Results for the experiments with gridded observations are shown in Figure 4. The upper left panel shows the standard
deviation of climatological variability in the reference simulation vorticity, with white crosses marking the locations at
which observations are taken. The time- and space-mean standard deviation for the climatological variability is 2.17,
but the variability is distributed non-uniformly through the domain in patterns associated with the zonal jets shown
in Figure 3(b).

The results for the ESRF and TSEF filters assimilating only pressure observations are essentially identical, and are
not shown. Their RMSE is 1.85 at an RTPS value of o = 0.1. When assimilating only pressure observations, the TSEF
is effectively a two-step EnKF, though not identical to the ESRF used in the other experiment, so it is not surprising
that they yield indistinguishable results.

The lower panels of Figure 4 show the RMSE for the ESRF (left) and TSEF (right) filters assimilating both pressure

and wind direction. Optimal results for both filters are obtained at an RTPS value of a = 0.3. The ESRF performs no
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FIGURE 4 Upper left: Local standard deviation of climatological variability in the reference simulation vorticity.
Upper Right: RMSE for the TSEF filter assimilating only wind direction. Lower Left: RMSE for the ESRF filter
assimilating geostrophic streamfunction and wind direction. Lower Right: RMSE for the TSEF filter assimilating
geostrophic streamfunction and wind direction. The white crosses in each figure are the locations of the
observations.

better in this example than the ESRF that assimilates only pressure: they both have RMSE of 1.85. In contrast, the
TSEF performs slightly better than the ESRF, with an RMSE of 1.7; this slight improvement is visible in the spatial
pattern of RMSE shown in the lower right panel of Figure 4.

When assimilating only wind direction, the ESRF filter remains diverged (not shown). Across a range of RTPS
parameters a from 0.1 to 0.9 the RMSE remains high, with an optimal RMSE of 2.34 at an RTPS value of 0.9. In
contrast, the TSEF filter is able to perform nearly as well with only wind observations as it does with only pressure
observations; the optimal RMSE of 1.9 is obtained at an RTPS value of a = 0.2. The spatial pattern of RMSE for
the TSEF filter with only wind observations, shown in the upper right panel of Figure 4, is slightly better than the
climatological pattern shown in the upper left panel.

In all cases the moderate performance of the filters, insofar as they improve only slightly over climatology, is
because the observing system has been deliberately chosen to be sparse so as to be reminiscent of the sparsity of
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observations in the early centuries of a historical reanalysis.

5.2 | Random observations
ESRF TSEF
—p
2.5} 1 2.5} __ puvh
uv
g 2 1 22 .
—_ =
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FIGURE 5 Time series of RMSE for the ESRF (left) and TSEF (right) filters with random observation locations. In
the legend, P denotes experiments assimilating only observations of pressure, PUV denotes experiments
assimilating observations of pressure and wind direction, and UV denotes experiments assimilating only
observations of wind direction. The climatological standard deviation of vorticity is 2.17, for reference.

Figure 5 shows time series of the RMSE for both ESRF (left) and TSEF (right) filters with all three sets of obser-
vations (pressure only, pressure and wind direction, or only wind direction) with the random observation locations.
As with the gridded observations, ESRF and TSEF perform indistinguishably when assimilating only pressure observa-
tions. Unlike the gridded observations, the ESRF and TSEF perform indistinguishably when assimilating observations
of pressure and wind direction; for both filters, assimilating wind direction improves performance compared to just
assimilating pressure. The big difference comes when assimilating only observations of wind direction. In this case,
the ESRF diverges with RMSE above climatology, as it did with gridded observations, but the TSEF performs as well

with only wind direction as it does with only pressure.

The results presented in Figure 5 use the following values of the RTPS parameter a: ESRF and TSEF assimilating
only pressure a = 0.3; ESRF and TSEF assimilating pressure and wind direction a = 0.1; ESRF assimilating only wind
direction o = 0.8; TSEF assimilating only wind direction a = 0.1.

5.3 | Discussion

The main conclusion is that the TSEF performs as well using only wind direction observations as the ESRF does using
only pressure. 20CR relies heavily on surface pressure observations since they are available deeply into the historical
record; the results here suggest that similar performance might be possible using only wind direction observations. In
contrast, the EnKF approach to wind direction provides no benefit when wind direction is the only observation.

To understand why the EnKF approach diverges when using only wind direction observations, assume that the
prior uncertainty in the wind direction is high, as it would be in the early stages of a historical reanalysis. Figure 2
illustrates that the EnKF approach simply removes the component of wind orthogonal to the observed direction; for
some ensemble members this is an improvement, while for others it is the opposite. With only this kind of observation,

the EnKF approach is unable to reduce the uncertainty in wind direction, and remains diverged.

When other observation types are also available (e.g. pressure), these other observations can indirectly improve
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the accuracy of the prior wind direction. Then, with a reasonably-accurate prior, the EnKF approach can extract
further value from the wind direction observations; this is most evident in the random-location configuration, where
the EnKF performs better with wind direction and pressure than with pressure alone. Of course the TSEF approach
is also able to perform better with wind direction and pressure than with wind direction alone.

The gridded observing system does not produce large differences in performance between the methods because
none of the methods are able to perform very well. The limitation of that configuration is that the observations
are sparse in the domain, and while the methods are able to accurately estimate the state close to the observation
locations, the spatial correlations are not sufficient to spread the accuracy to the entire domain. The random observing
system still has sparsely-spaced observations, but over time the observations cover the spatial domain uniformly,

which leads to improved overall accuracy as well as a greater difference in the performance of the different methods.

As a result of this overall improved accuracy using randomly located observations, the prior ensemble in wind
directions is more accurate than using gridded observations. This explains why the TSEF is slightly better than the
ESRF with gridded observations while the methods perform similarly with randomly located observations: The prior
wind ensemble is far more accurate with the randomly located observations, and the ESRF approach to assimilating

wind direction works well with an accurate prior ensemble.

6 | CONCLUSIONS

Two methods for assimilating wind direction observations have been developed for the purpose of enabling future
historical reanalyses to make use of historical observations of wind direction. The first method uses a linear obser-
vation model and can be used with EnKF or variational approaches, while the second method is inherently nonlinear
and non-Gaussian and requires an ensemble approach. The first step of the nonlinear TSEF approach uses a nonpara-
metric ensemble approximation of a probability integral transform, and is thus an example of a Quantile Conserving
Ensemble Filter (QCEF; Anderson, 2022). The nonlinear TSEF approach is amenable to implementation within the
Data Assimilation Research Testbed software suite (DART; Anderson et al., 2009).

The two methods were tested in the context of an idealized two-dimensional fluid model. The main result is that
the TSEF approach using only wind direction observations performs as well as an EnKF method using only pressure
observations. Although the performance parity seen here depends on the details of the observing system, this is a
clear demonstration that the new method can unlock latent value in historical measurements of wind direction. In

contrast, the linear observation model provides no benefit at all when assimilating only wind direction observations.

The linear observation model is primarily valuable when used in concert with other observation types, e.g. pres-
sure observations. If enough observational data is available to produce a reasonably-accurate forecast of wind direc-
tion, then the linear observation model for wind direction observations can be used to further improve the accuracy

of the posterior estimate.
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