
BeeGees: Stayin’ Alive in Chained BFT
Neil Giridharan

UC Berkeley
USA

giridhn@berkeley.edu

Florian Suri-Payer
Cornell University

USA
fsp@cs.cornell.edu

Matthew Ding
UC Berkeley

USA
matthewding@berkeley.edu

Heidi Howard
Microsoft Research

UK
heidi.howard@microsoft.com

Ittai Abraham
VMware Research

Israel
iabraham@vmware.com

Natacha Crooks
UC Berkeley

USA
ncrooks@berkeley.edu

ABSTRACT
Modern chained Byzantine Fault Tolerant (BFT) systems leverage
a combination of pipelining and leader rotation to obtain both ef-
�ciency and fairness. These protocols, however, require a sequence
of three or four consecutive honest leaders to commit operations.
Therefore, even simple leader failures such as crashes can weaken
liveness, resulting in high commit latency or lack of commit all
together. We show that, unfortunately, this vulnerability is inherent
to all existing BFT protocols that rotate leaders with pipelined agree-
ment. To resolve this liveness shortcoming we present BeeGees1,
a novel chained BFT protocol that successfully commits blocks
even with non-consecutive honest leaders. It does this while also
maintaining quadratic word complexity with threshold signatures,
linear word complexity with SNARKs, and responsiveness between
consecutive honest leaders. BeeGees reduces the expected com-
mit latency of HotStu� by a factor of three under failures, and the
worst-case latency by a factor of seven.

CCS CONCEPTS
• Theory of Computation; Distributed Algorithms;

KEYWORDS
Consensus, Blockchain, BFT

1 INTRODUCTION
Blockchain systems have emerged as a promising way for mutually
distrustful parties to compute over shared data. Byzantine Fault
Tolerant (BFT) state machine replication (SMR), the core protocol
in most blockchains, provides to applications the abstraction of a
centralized, trusted, and always available server. BFT SMR guar-
antees that a set of replicas will agree on a common sequence of
operations, even though some nodes may misbehave. Blockchain
systems add two additional constraints over prior work 1) oper-
ation ordering should be fair: it must closely follow the order in

1BeeGees stays (a-)live against the odds.

PODC ’23, June 19–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0121-4/23/06. . . $15.00
https://doi.org/10.1145/3583668.3594572

which operations are submitted, and o�er no single party undue
in�uence in the process. Protocols without fairness can be abused
by the application: participants may censor or front-run to gain
economic advantages 2) protocols should maintain low latency and
high throughput when scaling to large number of replicas.

To address these concerns, recent BFT protocols targeted at
blockchains, such as HotStu� [34], DiemBFT [32], Fast-Hotstu� [21]
as well as the largest Proof-of-Stake system, Ethereum (Casper
FFG [8]), are structured around two key building blocks:

Chaining. Every BFT protocol requires a (worst-case) minimum
of two voting rounds (henceforth phases). Each voting phase aims to
establish a quorum certi�cate (QC) by collecting a set of signed votes
from a majority of honest replicas. Blockchain systems pipeline the
voting phases of consecutive proposals to avoid redundant coordi-
nation and cryptography as well as to minimize the commit latency
of subsequent requests: the system can use the quorum certi�cate
of the second voting phase of block 8 to certify the �rst phase of
block 8+1. Each block then requires (on average) generating and
verifying the signatures of a single QC. This is especially important
for large participant sets as QC sizes grow linearly with the number
of replicas, increasing cryptographic costs.

Leader-Speaks-Once (LSO). To minimize fairness concerns asso-
ciated with leader-based solutions and to decrease the in�uence of
adaptive adversaries (who control the network), many BFT proto-
cols targeted at blockchains adopt a leader-speak-once (LSO) model.
In LSO, each leader proposes and certi�es a single block after which
the leader is immediately rotated out as part of a new view. Elect-
ing a di�erent leader per block limits the leader’s in�uence; it can
manipulate transactions in the proposed block only. Traditional
BFT protocols (such as PBFT [9]), in contrast, adopt a stable-leader
paradigm in which leaders are only replaced if they fail to make
progress through a fallback view change protocol. Failures are as-
sumed to be infrequent, and thus protocol complexities (and costs)
intentionally move into the view change, allowing for a simpler
and more e�cient failure-free steady case.

While a joint approach that is both chained and leader-speak-once
(CLSO) is desirable, the combination of these two properties also
introduces a new challenge: how to preserve safety when block
commitment is spread across leaders? This work observes that all
prior CLSO protocols solve this challenge by unintentionally relin-
quishing liveness – and proposes a novel protocol that manages to
avoid this trade-o� (without sacri�cing performance).

The problem. To maintain safety, block commitment in prior
CLSO protocols requires a sequence of : QCs in consecutive views

233

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3583668.3594572
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583668.3594572&domain=pdf&date_stamp=2023-06-16

PODC ’23, June 19–23, 2023, Orlando, FL, USA Neil Giridharan, Florian Suri-Payer, Ma�hew Ding, Heidi Howard, I�ai Abraham, and Natacha Crooks

(where : 2 {2,3} depending on protocol). Consequently, liveness is
only guaranteed in the presence of :+1 consecutive honest (non-
faulty) leaders. In the remainder of this paper, we refer to this
property as CHL (consecutive honest leaders).

De�nition 1.1. (CHL). After GST, if an honest leader in view E
proposes a value and views E +1,E +2, ...,E +: (contiguous views)
have honest leaders, then it is guaranteed to commit the value.

This guarantee introduces signi�cant performance penalties in
practice [27]. We show in Section 3 that in HotStu� [34] for example
– the protocol at the core of the former Diem blockchain [33] (now
Aptos [31]) – a single faulty leader may su�ce to prevent any block
from being committed for some system con�gurations. Further,
we show that even for arbitrary con�gurations, faulty leaders can
always greatly reduce protocol throughput. Worse, this attack does
not require any explicit equivocation; it su�ces for a faulty leader
to simply delay responding, making it hard to detect misbehavior
–, and thus represents a signi�cant exploit opportunity for a Byzan-
tine attacker. To the best of our knowledge, this liveness concern
is present in all existing CLSO protocols today. This paper asks: is
this fundamental or can we do better?

Our solution. We �nd that yes, it is possible to improve the
liveness guarantee o�ered by CLSO protocols. To this e�ect, we
propose BeeGees, a new consensus protocol that strengthens live-
ness and instead satis�es the following stronger property we call
AHL (any honest leader):

De�nition 1.2. (AHL). After GST, if an honest leader in view E
proposes a value and views E <E81 < ...<E8: (non-contiguous) have
honest leaders, then this value will necessarily be committed.

This property is not achievable in existing protocols. Intuitively,
when QCs are not contiguous, it becomes possible for con�icting
QCs to form unbeknownst to the current leader; these QCs can
trigger safety violations when committing a block. BeeGees’s core
insight lies in observing that Prepare messages (called �������
messages in Hotstu�, P���������� messages in PBFT), which are
traditionally discarded by BFT protocols, can in fact be leveraged
to side step this vulnerability. In the presence of omission faults
or asynchrony, BeeGees uses these messages to prevent con�ict-
ing QCs from forming. In the presence of equivocation, BeeGees
instead uses Prepare messages to reliably detect when a con�icting
QC could have formed and eagerly excludes this block from commit
consideration (abort). Prepare messages further allow BeeGees to
detect implicit QCs, QCs for blocks proposed by honest leaders that
would have formed but for a malicious leader failing to dissemi-
nate them. Together, these properties allow BeeGees to be the �rst
CLSO protocol that satis�es AHL. O�ering this stronger liveness
property drastically curbs the impact of a Byzantine leader on the
system: after GST, no node can delay the commitment of an honest
leader’s proposal by more than one view. Importantly, BeeGees
achieves this without sacri�cing performance: it has optimal la-
tency of two phases [2], quadratic word complexity when used
with threshold signatures [19], and linear word complexity with
SNARKs [4], matching the state of the art ([16, 21]).

Understanding the limits of existing protocols. BeeGees
is the �rst protocol to satisfy the stronger liveness property AHL

while also maintaining safety. While BeeGees use of Prepare mes-
sages may appear like a simple �x, it actually points to something
more fundamental. In particular, Prepare messages allow BeeGees
to satisfy a property called sequentiality, which we prove is a nec-
essary condition to satisfy AHL. Sequentiality, informally, requires
that (after GST) for any pair of honest leaders ! and !0 in views
E and E 0 > E respectively, !0 must extend the proposal of !. Put
di�erently, all honest proposals must be on the same chain. No
other existing CLSO protocol guarantees sequentiality, and thus
can fundamentally not satisfy AHL.

The remaining paper is structured as follows. We �rst de�ne the
system model (§2) before introducing the relevant background and
identifying liveness shortcomings (§3). We then present BeeGees, a
novel BFT protocol that overcomes the outlined liveness concerns
(§4). We empirically validate our claims in §5, and conclude in §6.

2 PRELIMINARIES
We adopt the standard BFT system model in which ==35 +1 repli-
cas communicate through a reliable, authenticated, point-to-point
network where at most 5 replicas are faulty. A strong but static
adversary can coordinate faulty replicas’ actions but cannot break
standard cryptographic primitives. We adopt the partially synchro-
nous model, where there exists a known upper bound � on the
communication delay, and an unknown Global Stabilization Time
(GST) after all messages will arrive within � [15]. We assume the
availability of standard digital signatures and a public-key infras-
tructure (PKI). We use h�iA to denote a message< signed by replica
A . A message is well-formed if all of its signatures are valid.

Byzantine fault-tolerant state machine replication (BFT SMR) is
formally de�ned as follows:

De�nition 2.1. (BFT SMR). A Byzantine fault tolerant state ma-
chine replication protocol commits client requests in a linearizable
chain, which satis�es the following properties [1] [2].

• Safety. Honest replicas commit the same values at the same
height (position in the chain).

• Liveness. All client requests eventually receive a response; all
requests are eventually committed by every honest replica.

• External Validity. If an honest replica commits a value, E ,
then E�V��(E) = CAD4 , where E�V��(E) is a predicate that
checks whether v upholds all application invariants.

We also formalize the notion of Chained-Leader-Speaks-Once
(CLSO) protocols (inspired from [3]).

De�nition 2.2. (CLSO). A CLSO protocol is a BFT-SMR protocol
that proceeds in a sequence of views and has two properties:

• Each view changes the leader, and there is an in�nite number
of views led by honest leaders.

• Block commitment cannot be guaranteed within a single
view.

3 RELATEDWORK
& LIVENESS ISSUES IN CLSO PROTOCOLS

All existing CLSO protocols follow the same general pattern. While
we focus on HotStu� here [34], our observations broadly apply to all
others. Most such protocols follow a common logical structure [7, 8,

234

BeeGees: Stayin’ Alive in Chained BFT PODC ’23, June 19–23, 2023, Orlando, FL, USA

16, 21, 32, 34]. They proceed in a sequence of views, each led by a des-
ignated leader. The view leader proposes a batch of client operations
(a block), and drives agreement to safely order and commit these op-
erations. Blocks contain a parent pointer to their predecessor block,
thereby forming a chain. The protocol is structured as follows:

Normal Case. The leader of view E begins by proposing a block
⌫ for log slot (henceforth height) 8 . Committing a proposal consists
of two logical phases: a non-equivocation phase and a durability
phase. The non-equivocation phase ensures that at most one block
proposal will reach agreement within a view. The durability phase
ensures that any (possibly) agreed-upon decision is preserved across
views and leader changes, thus guaranteeing that only one block
can be committed for height 8 . Each phase makes use of quorum
certi�cates (QC) to achieve the desired invariants. A QC, written
&⇠ = (⌫,E,f), refers to a set of unique signed replica votes f for
block ⌫ proposed in view E . A QC describes a threshold |f | of con-
�rmations that proves a super-majority of distinct replicas voted
for block ⌫ in view E . Upon committing a block, honest replicas
execute its transactions and enter the next view through a view
change (described below).

View Change. The view change is responsible for changing lead-
ers and preserving all decisions made durable by previous leaders.
View change protocols are notoriously tricky: they can be expensive
and hard to get right [5]. The primary challenge stems from rec-
onciling di�erent participants’ beliefs about what could have been
committed, as asynchrony and malicious leaders may cause replicas
to consider di�erent sets of blocks as potentially committed.

To understand the liveness challenges associated with CLSO
protocols, we �rst describe in more detail how stable non-chained
(basic) Hotstu� works (§3.1), before introducing the re�nements of
chaining/pipelining and leader-speaks-once (§3.2). We then demon-
strate the resulting liveness pitfall (§3.3), and show that it is non-
trivial to address (§3.4).

3.1 Basic HotStu�
Hotstu� proceeds in a sequence of views and consists of three
voting rounds, one for the non-equivocation phase, and two for the
persistence phase. In the Prepare round, the leader proposes a block
� in view E for height 8 and each replica votes to prepare if it has not
already prepared a block at height 8 with a higher view. If the leader
successfully obtains a QC (=� 5 distinct replica votes) in the Prepare
round, a prepareQC forms, and the leader moves on to the Pre-
Commit round. The existence of a prepareQC ensures agreement
on ⌫ within the view: no other block could have been certi�ed in
view E as any two prepareQCs must overlap in at least one honest
replica — a contradiction, as honest replicas will not vote twice.

In the Pre-Commit round, the leader broadcasts the prepareQC to
all replicas via a Pre-commit(B) request. The replicas locally record
the prepareQC with the highest observed view, and echo their ac-
ceptance of the Pre-commit(B). The leader waits to receive =� 5
Pre-Commit replies, and assembles a precommitQC. We note that
the use of a precommitQC is only necessary for Hotstu� to achieve
linear view change complexity, and not for safety per se — we defer
discussion to [34]).

In the �nal Commit round, the leader broadcasts the precom-
mitQC to all replicas. Replicas become locked on this QC: they will

View 1

A A

B

A

B

C

B

C

A

D

prepareQC for A precommitQC for A
prepareQC for B

commitQC for A
precommitQC for B
prepareQC for C

Figure 1: Chained Hotstu�

never vote for a con�icting block unless they receive a prepareQC
in a higher view. The existence of a higher con�icting prepareQC
is evidence that the locked QC could not have committed (honest
replicas would not vote to support two con�icting blocks). Finally,
the leader forms a commitQC upon receiving =� 5 Commit votes.
It attaches the commitQC in a Decide round to inform replicas that
the block committed, at which point they can execute the block’s
operations and move to the next view.

Recent BFT protocols manage to avoid the Pre-Commit round
of Hotstu� (thus achieving optimal two-round commit) by, respec-
tively, eschewing linear world complexity [16, 21], elongating view
changes [29], or introducing novel cryptography [17].

3.2 Chaining and LSO
Chaining. The aforementioned protocols require : 2 {2,3} rounds
to commit a block: each commitment thus requires forming : in-
dividual QCs. Prior work [16, 17, 21, 34] observes that, while each
step serves a di�erent purpose, all have identical structure: the
leader proposes a block, collects votes and forms a QC. To amortize
cryptographic costs and minimize latency, one may pipeline com-
mands such that a single QC simultaneously serves as ?A4?0A4&⇠ ,
?A42><<8C&⇠ (if applicable), and 2><<8C&⇠ for consecutive block
commitments.

Consider for example a scenario in which a chained protocol with
: =3 (e.g. Hotstu�) is attempting to commit four blocks�, ⌫,⇠ , and
⇡ (Figure 1). The view leader �rst proposes �, collects =� 5 votes
for�, and forms its �rst QC (&⇠�).&⇠� functions as prepareQC for
�. Next, the leader proposes ⌫, and indicates that (i) � is the parent
block of ⌫, and (ii) that � has been certi�ed by QC &⇠� . It once
again collects =� 5 votes, forming &⇠⌫ . This QC acts as both the
precommitQC for � and the prepareQC for ⌫. Likewise, the leader
proposes and obtains a &⇠⇠ for block ⇠ with parent ⌫.&⇠⇠ acts as
a commitQC for �, precommitQC for ⌫, and prepareQC for ⇠ . � is
committed once : consecutive QCs attest to A. In the next round
the leaderforwards &⇠⇠ (and proposes block ⇡ as extension to ⇠).
Upon receiving &⇠⇠ , all replicas learn that � has been committed
and can thus safely execute the operations in the block.

LSO. In the previous example, a single leader drives the full pro-
tocol (a stable leader). It is responsible for deciding which block to
include next in the chain, for collecting replica votes, for creating
the corresponding QC and broadcasting it to all replicas.

Stable leader protocols [9, 10, 19, 24] only rotate leaders when
there is a failure. This raises fairness concerns: malicious leader can

235

PODC ’23, June 19–23, 2023, Orlando, FL, USA Neil Giridharan, Florian Suri-Payer, Ma�hew Ding, Heidi Howard, I�ai Abraham, and Natacha Crooks

censor operations, penalize speci�c users or in�uence operation
ordering [12, 20]. Leader-Speak-Once (LSO) protocols [16, 17, 21, 29],
instead, try to minimize the in�uence of a leader on a new proposal.
To do so, they bound the duration of each view (and thus the reign
of a leader) to a single protocol phase. A leader receives votes, forms
a QC, proposes the next block, and is immediately rotated out. Upon
receiving the block proposal, replicas directly increment their view
and send their votes to the next leader in the rotation. For instance,
in the example of Figure 1, &⇠� will be assembled by a new leader,
which proposes ⌫ in view E+1. The commit rule remains unchanged:
� commits as soon as : QC’s in consecutive views attest to �.

Other approaches to fairness LSO mitigates concerns over
long-tenured leaders in chained BFT protocols – but, like any leader
based system, cannot fully side-step all possible order-fairness re-
lated concerns. There exists a plethora of recent work that explores
(LSO-) alternative approaches in BFT systems: [11, 35] optimize
leader-selection processes using reputation schemes, [22, 23, 36]
leverage voting to democratize order in leader-based settings, and
[13, 25, 28, 30] explore fully leaderless approaches.

3.3 Liveness Concerns
Existing Chained-Leader-Speaks-Once (CLSO) protocols commit a
block once : consecutive QC’s attest to the block’s validity. Hotstu�
requires : =3, while other CLSO protocols reduce the number of
consecutive QCs to : =2 [21, 33]. Since CLSO rotates leaders, this
implies that :+1 consecutive honest leaders are necessary to guar-
antee commitment: one honest leader to propose the block, and
: consecutive leaders to assemble and forward &⇠s, and propose
child blocks of their own. Only honest leaders guarantee a QC will
be formed (no equivocation). Unfortunately, we �nd that the need
for :+1 consecutive honest leaders to commit a block introduces a
signi�cant liveness vulnerability that can delay block commitment
for long periods of time. We submit that all existing CLSO protocols
su�er from this limitation. To illustrate this claim, consider the fol-
lowing Hotstu� run. Hotstu� requires :+1=4 consecutive honest
leaders to commit. Consider replicas '1, '2, '3 and '4, with '4 be-
ing faulty (Figure 3). Leaders are elected round-robin. '1 proposes
block �, yet '4 might never assemble and broadcast the �nal &⇠
(acting as commitQC) necessary for replicas to execute �. Likewise,
if '2 and '3 propose blocks ⌫ and⇠ respectively, '4 may fail to form
the corresponding precommitQC (for ⌫) and prepareQC(for ⇠). In
fact, with ==4 replicas, a single faulty leader can prevent Hotstu�
from committing any block! More generally, requiring : +1 con-
secutive honest leaders can create signi�cant latency spikes, even
for large participant sets, as blocks must be re-proposed until they
�nd a sequence of n consecutive leaders. We measure this danger
through simulation in Figure 2, where we calculate the number of
phases necessary to commit a block given a random assignment of
faulty nodes and random leader election policy. In our experiment,
Hotstu� requires an average of 12 phases to commit (a three-fold
increase over the failure-free case), and has an observed worst-case
latency of 129 rounds. We note that, in the absolute worst case
(e.g. an unfavorable round-robin schedule), Hotstu� (or any CLSO
protocol with : =3) may never commit a block.

3.4 It’s Not Easy to Relax
So far, we have illustrated that existing CLSO protocols’ safety rules
– namely, requiring : consecutive QCs to commit – can expose a
signi�cant liveness vulnerability. This begs the question: can we
can relax the commit requirement in order to strengthen liveness?
The answer is unfortunately no. There is no trivial way to do so
without simultaneously compromising safety; past attempts to do
so resulted in safety violations [5]. To illustrate, consider the fol-
lowing hypothetical run. Note that for simplicity, we will adopt the
more e�cient "two-QC" rule of Jolteon [16] or Fast Hotstu� [21],
i.e. : =2, although the same reasoning holds for Hotstu�’s three-
consecutive QC rule (: =3). As reminder, we say a &⇠ := (⌫0,E,f)
ceriti�es block ⌫ if ⌫==⌫0 or ⌫0 extends ⌫.

Let leaders be elected round-robin where '8 is leader for view
E where E (mod 8) ==0. We require that – akin to Hotstu� (§3.1)
– replicas vote to certify a block as long as they are not locked
on a higher con�icting block. This is true for all existing CLSO
protocols with : =2. We write ⌫8 to indicate block ⌫ is proposed for
height 8 . Now let us assume that any two (possibly non-contiguous)
QCs certifying block ⌫ would su�ce to commit ⌫. We show with a
simple counterexample that temporary periods of asynchrony can
cause con�icting blocks to commit, violating safety. Consider the
following sequence of views:

• Views 1-2.'1 proposes�1. AQC forms for�1 at'2.'2’s broadcast
messages are delayed. Asynchrony leads to a view change.

• View 3-5. '3 receives responses from all replicas except from '2.
All responses are empty (recall that replicas only include QCs
in view changes, not votes). '3 proposes ⌫1. A &⇠ forms for ⌫1
at '4. '4’s broadcast messages are delayed. Asynchrony leads to
view change.

• View 6-8. '1 receives responses from all replicas expect for '4
and learns about &⇠�1 . It proposes �2, which extends �1. A QC
forms at '2. '2 sees that two QCs certify �1 and thus commits
�1. Asynchrony leads to a view change.

• View 9-11. '3 receives responses from all except '2 and learns
about&⇠⌫1 . It proposes ⌫2, which extends ⌫1. A QC forms at '4.
'4 sees that two QCs certify ⌫1 and thus commits ⌫1.

'2 and '4 commit con�icting blocks (�1 and ⌫1 respectively), vio-
lating safety. The root cause here is simple: committing a proposal
after observing QCs in non-contiguous views is dangerous because
there may exist a higher con�icting QC that formed in between
(e.g. a QC for ⌫2 formed with a greater view than the QC for�2). In
contrast, requiring QCs to be in contiguous views ensures that, for
any committing proposal ? , a QC that extends p will be preserved
across view changes: since at least two QC’s are required to commit
? (three for HotStu�), existence of the latest &⇠;0C implies that at
least 5 +1 honest replicas have observed (at least) the preceding
&⇠?A4 . Since &⇠?A4 (by assumption of being contiguous) has the
highest view (bar &;0C), it follows that every view change (a quo-
rum of =� 5) must observe &⇠?A4 at least once. Thus, all future
proposals must extend ? .

This paper thus asks: can we strengthen liveness to commit with
non-consecutive honest leaders (AHL) without violating safety?
We answer in the a�rmative. We introduce BeeGees, CLSO proto-
col that, after GST, will commit all blocks proposed by an honest

236

BeeGees: Stayin’ Alive in Chained BFT PODC ’23, June 19–23, 2023, Orlando, FL, USA

Figure 2: # number of views needed for commit

View 1 View 2 View 3 View 4

A

A

B

A

B

C

prepareQC for A precommitQC for A
prepareQC for B

Figure 3: Liveness issue with CLSO protocols

leader in view E after at most two more honest-led (possibly non-
contiguous) views E 0 and E 00.

4 BEEGEES
BeeGees achieves optimal phase complexity (two phases to commit
a block), and can be engineered to have quadratic word complexity
with threshold signatures, or linear word complexity with SNARKs.
BeeGees is responsive with consecutive honest leaders and satis�es
the following property.

T������ 4.1. (AHL). After GST, if an honest leader in view E
proposes a value and views E <E81 < ...<E8: (non-contiguous views)
have honest leaders, then it is guaranteed to commit the value.

This property has consequences for both safety and liveness. For
safety, BeeGeesmust ensure that, in the presence of an honest leader
! that proposes⌫, the existence of twoQCs in non-contiguous views
for ⌫ be su�cient to guarantee that no con�icting block ⌫’ can com-
mit. This theorem also places stringent liveness requirements on
BeeGees: after GST, all blocks proposed by an honest leader must
be committed. Note that this is not a property that is traditionally
guaranteed by CLSO protocols. In the rest of this section, we �rst
describe the core intuition behind BeeGees before describing the
protocol in more detail.

4.1 BeeGees Overview
The case of the con�icting QC. As shown in §3.4, committing
a block requires ensuring that no higher con�icting QC can exist.
Committing with consecutive QCs guarantees precisely that (§3.4).
To satisfy AHL, a protocol must instead commit blocks even when
the QCs certifying them are not consecutive. We thus require al-
ternative mechanisms to prevent con�icting QCs from forming. In
an ideal world, one would design a clever algorithm that prevents
all such QCs from forming. Unfortunately, we cannot ensure this
guarantee when there is equivocation. Instead, BeeGees proceeds
in two ways: under asynchrony and omission faults, BeeGees does
indeed preclude all con�icting QCs. In the presence of equivocation,
BeeGees instead reliably detects when a con�icting QC could have
formed and immediately excludes this block from commit consid-
eration (abort). Together, these mechanisms ensure that, after GST,
all blocks proposed by honest leaders will eventually commit.

Key Idea. BeeGees’s key insight is simple. It explicitly makes use
of information that all other CLSO protocols (and most other BFT
protocols) traditionally discard after processing. Prepare messages
(Pre-prepare messages in PBFT)2. These messages have until now
only been used to achieve an optimistic fast path ([19, 24, 30]) in
which a superquorum containing all = replicas informs the client
that the block has been persisted. In non-fast path protocols, these
messages were thought to convey no useful information as they pre-
cede the protocol’s non-equivocation phase, and thus hold no bear-
ing to maintaining safety. BeeGees instead uses them to improve
liveness by reliably distinguishing between asynchrony/omission
faults and equivocation.

Technical Intuition. By quorum intersection, if a QC forms for
a block ⌫, all subsequent view change leaders will receive at least
one Prepare message for ⌫ or a block that extends ⌫. By extend-
ing this block, subsequent leaders will never propose con�icting
blocks. If two con�icting QCs do form as a result of equivocation,
subsequent leaders will necessarily observe the existence of two
Prepare messages in the same view, and thus abort block commit-
ment. These con�icting messages further create explicit evidence
of misbehavior, allowing the o�ending faulty leader to be removed.

While the above approach elegantly guarantees safety without
requiring consecutive QCs, it does not yet fully satisfy AHL (The-
orem 4.1). For example, consider the following scenario with a
sequence of �ve leaders: !1 (honest), !2 (faulty), !3 (honest), !4
(faulty), and !5 (honest). !1 could propose a block ⌫ (after GST),
and all honest replicas vote for it, implicitly forming a QC for ⌫. !2
could, however, fail to assemble and disseminate this QC. !3 would
not observe a QC for ⌫ and instead propose a new block ⌫0 that
extends ⌫. Similarly, !4 would fail to generate and disseminate a QC,
and !5 would fail to observe a QC for ⌫0. To satisfy Theorem 4.1 we
must commit ⌫ since there were three honest leaders; however, in
this scenario we fail to do so. To address this issue, BeeGees devel-
ops a novel technique, QCmaterialization, that makes these implicit
QCs explicit, allowing replicas to commit the relevant blocks. QC
materialization hinges on two observations: after GST, if an honest
leader broadcasts a Prepare message, all honest replicas will receive
it and send a reply. Second, an honest leader is guaranteed to receive
replies from all honest replicas in � time (after GST).

2to avoid naming con�icts, we will refer to these messages as Prepare messages

237

PODC ’23, June 19–23, 2023, Orlando, FL, USA Neil Giridharan, Florian Suri-Payer, Ma�hew Ding, Heidi Howard, I�ai Abraham, and Natacha Crooks

Protocol Structure. BeeGees shares the same structure as other
CLSO protocols. It consists of four components: a fast view change,
a slow view change, a commit procedure, and a view synchronizer.
Fast view changes occur in the absence of delayed messages or
failures. Slow view changes are triggered by lack of progress (view
timeouts). For each view, the leader runs a commit procedure to
determine which blocks in the chain can safely be committed. The
view synchronizer ensures all honest replicas remain in the same
view for su�cient amount of time. BeeGees is compatible with any
view synchronizer ([6, 26]); we focus on other components here.

4.2 BeeGees Data Structures
Blocks and Block Format. As is standard, BeeGees batches client
requests into blocks, with each block containing a hash pointer
to its parent block (or to null in the case of the genesis block).
A block’s position in the chain is known as its height. A block
⌫ B hE,?,&⇠0=2 ,1,#+B4C i contains the following information: E ,
the view the block was proposed in; ? , its parent block; &⇠0=2 ,
the quorum certi�cate certifying an ancestor block of ⌫; and 1, a
batch of client transactions (Alg. 1 lines 2-5). Additionally, blocks
proposed in the slow view change must contain #+B4C (Alg. 1 line
6), the set of N������� messages (more detail later). A block ⌫ is
valid if 1) its parent block is valid (or ⌫ is genesis), 2) all included
client transactions 1 satisfy all application level validity predicates,
and 3) all included signatures are valid. Honest replicas only accept
valid blocks – we omit validation checks from the pseudocode.

Block extension and con�icts. Parent pointers link blocks
into a chain. We de�ne a block ancestor of ⌫ to be any block ⌫0=2
for which a path (of parent links) exists from ⌫ to ⌫0=2 . We say a
block ⌫0 extends (or is descendant of) a block ⌫ (⌫ �⌫0) if ⌫ is an
ancestor of ⌫0. We say that ⌫0 con�icts with ⌫ if neither extends
the other (¬(⌫ �⌫0_⌫0 �⌫)). Informally, if ⌫0 con�icts with ⌫,
these blocks are on separate forks of the chain and only one of them
can commit. By convention, we say that blocks extend themselves.

Equivocation. Honest leaders may propose only a single block
per view. We label con�icting blocks with the same view as equiv-
ocating. An equivocation proof (more details later) constitutes ev-
idence of leader equivocation.

Message Types. In BeeGees there are three types of messages:
V�������, V��������, and N�������. hV�������, ⌫i messages
are the Proposal messages in BeeGees and contain ⌫, the leader’s
proposed block. Replicas send hV��������, ⌫i messages to vote on
a proposal for ⌫. Since blocks are chained together, a V��������
message for a block counts also as V�������� for all of its ancestors.
Each replica stores its current view, EA , the latest accepted (highest
view) V�������, EAA , and V��������, E?A (Alg 2. lines 1-3). hN���
����, E,EAA ,E?A i messages are used by the slow view change to
maintain progress despite failures or asynchrony. They contain the
view E that the replica is advancing to, the replica’s latest V�������,
EAA , and its latest V�������� E?A .

Quorum Certi�cates. A &⇠B h&,⌫i consists of a set &B=� 5
V�������� messages and a certi�ed block ⌫. We say a block ⌫ is
certi�ed if there exists a quorum& of =� 5 V�������� messages for
⌫ itself (direct) or a descendant block ⌫0 (indirect). Given a set of any
=� 5 V�������� messages, we can thus determine which block was
certi�ed by identifying the highest (w.r.t view) common ancestor

(Alg. 1 line 11). A QC contains & and ⌫B⌫0=2 , the highest block
that & certi�es. (Alg. 1 lines 12-13). We say that two QCs con�ict if
they certify blocks that con�ict. In the rest of the paper, we, denote
a QC as implicit as soon as the necessary V��������s to form& are
cast, but theQC has not yet been assembled. A leadermaterializes an
implicit QC into an explicit QC by assembling the necessary votes.

Ranking.We introduce a notion of ranking rules for both blocks
and QCs. Blocks with higher views have higher ranks; ties are bro-
ken by the rank of their contained QCs (Alg. 1 line 9). These rules
are used to determine whether a block is safe to accept in the slow
view change.

Algorithm 1 Data Structure Utilities

1: procedure C�����B����(E,⌫? ,&⇠,#+B4C)
2: ⌫.E E ù The view the block ⌫ is proposed in
3: ⌫.? ⌫? ù The parent block ⌫ extends
4: ⌫.&⇠0=2 &⇠ ù The QC for an ancestor block that ⌫

contains
5: ⌫.1 a batch of client transactions
6: ⌫.#+B4C #+B4C ù The set of N��V��� messages for slow

blocks
7: return ⌫
8: procedure B����R���(⌫1,⌫2) ù Blocks are ranked by view,

ties are broken by the higher QC
9: return ⌫1 .E �⌫2 .E^QCR���(⌫1 .&⇠0=2 ,⌫2 .&⇠0=2)
10: procedure C�����QC(&) ù &B=� 5 V�������� messages
11: ⌫0=2 highest common ancestor block of &
12: &⇠ .⌫ ⌫0=2 ù The block the QC certi�es
13: &⇠ .& &
14: return &⇠

15: procedure QCR���(&⇠1,&⇠2) ù QCs are ranked by view of
the block they certify

16: return &⇠1 .⌫.E >&⇠2 .⌫.E

4.3 Protocol Details
Fast View Change (FVC). We �rst focus on the steady state. Suc-
cessive leaders transmit state through a fast view change. The
structure of BeeGees’s is identical to existing CLSO protocols in
that there are two steps: 1) the leader proposes a valid block to all
replicas (sending step) and 2) replicas accept the block and forward
their vote to the leader of the next view (receiving step).

Sending step.The leader of view EA + 1 forms a valid QC for a
block ⌫ in view EA when it receives receives =� 5 matching votes
for ⌫ (Alg. 2 lines 5-6). The leader can then safely propose a new
block ⌫0, which has ⌫ as its parent block (Alg. 2 lines 7-8).

Receiving step. Replicas deem a proposal for ⌫0 valid if the asso-
ciated QC is for EA (i.e. contiguous), and ⌫0 extends ⌫ (Alg. 2 line
14). It updates its current view EA BEA +1, its latest received EAA B
hV�������, ⌫0i and its latest sent E?A BhV��������, ⌫0i, indicating
its support for block ⌫0 (Alg. 2 lines 15-17). It then sends E?A to the
leader of the next view (EA +1) (Alg. 2 line 18).

The FVC in BeeGees is simple: as views are contiguous, the new
leader is guaranteed to see the latest possible QC. It can then easily

238

BeeGees: Stayin’ Alive in Chained BFT PODC ’23, June 19–23, 2023, Orlando, FL, USA

Algorithm 2 Fast View Change (Steady State)
1: EA 1 ù Current view of replica A
2: EAA ? ù Latest V������� received
3: E?A ? ù Latest V�������� sent
4: // only the leader of view EA +1
5: upon receiving (25 +1 matching hV��������, ⌫i messages

while in view EA do
6: &⇠⌫ C�����QC(() ù Certify ⌫ since it has 25 +1 votes
7: ⌫0 C�����B����(EA +1,⌫,&⇠⌫,?) ù Propose ⌫0 which

has ⌫ as its parent
8: send hV�������, ⌫0i to all
9:
10: upon receiving a valid hV�������, ⌫0i from !EA+1 do
11: &⇠⌫ ⌫0 .&⇠0=2
12: ⌫ &⇠⌫ .⌫ ù Gets the certi�ed block that ⌫0 extends
13: // in the normal case the QC will be from the previous view
14: if ⌫0 .#+B4C =?^⌫.E+1=⌫0 .E^⌫=⌫0 .? then
15: EA ⌫0 .E ù Move to the next view
16: EAA hV�������, ⌫0i ù Update latest V�������
17: E?A hV��������, ⌫0i ù Update latest V��������
18: send E?A to !EA+1 ù Send vote to the next leader
19:

extend the chain without any risking of a con�icting QC forming.
There is no such continuity in the slow view change (SVC), which
requires more care.

Slow View Change (SVC). The SVC has two main objectives: 1)
maintain consistency across views and 2) continue making progress
on honest proposed blocks.

Local State. Each replica maintains a view timer VT that resets
every time it advances to a new view. This timer is used to detect
a lack of progress in a view. For reliable progress, BeeGees must
ensure that (after GST) all honest replicas enter a common view
within a bounded period, and remain in it long enough to form a
QC. This problem is orthogonal to agreement, and can be delegated
to an external View Synchronizer component—in the remainder of
this section we assume such synchronization as given, and defer to
§4.4 for details.

The leader of the new view additionally maintains 1) #+B4C , the
set of N������� messages received, 2) ⌫?0A4=C , the parent block
of the new leader’s next proposal, 3) &⇠0=2 , the highest ranked
explicit QC that ⌫ extends, and 4) a materialization timer MAT
(more detail follows).

Trigger Conditions.A slow view change is triggered when enough
replicas fail to make progress in the current view (when their view
timer VT expires). A replica initiates a view change by invoking
����_��_������� (Alg.3 line 8). It enters view E 0 >EA upon receiv-
ing a �������_����(�’) signal. Upon entering E 0 a replica sends a
N������� message containing all its local state (Alg. 3 lines 10-12
to the leader of view E 0. When the leader receives a hN�������,
EA ,EAA ,E?A i message, it adds it to the set of N������� messages
received so far for view EA . A slow view change is triggered when
su�ciently many (=� 5) N������� messages have been received
(Alg. 3 line 18). Before proposing a new block, the leader must
identify a parent block for its proposal to extend. The key challenge

is ensuring that the parent block it selects preserves safety and
liveness.

Parent Block Selection. The new leader �rst selects a parent block
⌫?0A4=C to extend. Recall that in BeeGees, unlike in other CLSO
protocols, N������� messages include a replica’s last seen V����
��� message. The leader then always selects the highest ranked
block among these V������� messages (Alg. 3 line 19). In doing
so, the leader guarantees that it always extends the latest block for
which a QC could have formed (but that the leader did not nec-
essarily receive). By the quorum intersection property, if forming
a QC requires at least =� 5 replicas receiving the corresponding
V������� messages, at least one of these messages would have
been included in the =� 5 N������� messages. In the absence of
explicit equivocation, using V������� messages in this way pre-
cludes the leader from extending a block that con�icts with a QC in
a higher view. If a previous leader does equivocate, there may exist
V������� messages for equivocating blocks that have the same
(highest) rank.

We remark that – in order to prevent the formation of a con�ict-
ing QC – the leader must not propose a block that con�icts with a
potentially certi�ed block. In this case, however, the leader does not
have enough information to knowwhich, if any, of the equivocating
blocks has been certi�ed, and thus cannot proceed. To nonethe-
less make progress, BeeGees temporarily relaxes the proposal rule:
BeeGees allows the leader to arbitrarily select and extend one of
the equivocating blocks, but later aborts commitment if an unlucky
choice results in the formation of a con�icting QC. We discuss in
detail how BeeGees safely resolves this scenario in the commit rule.

Implicit QC Materialization. Next, the new view leader must
ensure that, after GST, any block proposed by an honest leader
will eventually be committed. In order to do so, it must ensure
that, if the leader was honest and we are after GST, a QC must
eventually form. Otherwise, it may take more than : + 1 honest
leaders to commit this block, violating AHL. BeeGees leverages
V������� messages to enforce this invariant through a novel QC
materialization technique. BeeGees makes three observations: 1)
after GST, all honest replicas are guaranteed to vote in favor of an
honest leader’s proposal. 2) after GST, the next leader is guaranteed
to receive responses from all honest nodes within a materialization
timeout (MAT) 3) before GST, AHL does not require that blocks
proposed by honest leaders be committed. It follows that, after GST,
if an honest leader proposed a block ⌫, an implicit QC formed and
subsequent leaders will necessarily receive =� 5 hV��������, ⌫i (or
descendants of ⌫). As such, any time a leader sees =� 5 hV��������,
⌫0i messages for some block ⌫0, such that ⌫ �⌫0, it could have
been proposed by an honest leader and must therefore be certi�ed.
Note that BeeGees enforces this guarantee for liveness, not safety.
Before GST, honest leaders’ proposals may - as is the case in existing
CLSO protocols – fail to generate a QC.

We now describe the precise materialization protocol. Recall that
⌫?0A4=C is the highest ranked block among the V������� messages
in #+B4C , and the block that the leader must extend. The leader
identi�es the highest ranked &⇠0=2 (Alg. 3 line 20) on the chain
that certi�es an ancestor of ⌫?0A4=C , ⌫0=2 , just as one would in tra-
ditional CLSO protocols. Note that there can be many intermediate
blocks between ⌫0=2 and ⌫?0A4=C for which no QC formed. Next,
the leader tries to materialize any higher ranked implicit QCs on

239

PODC ’23, June 19–23, 2023, Orlando, FL, USA Neil Giridharan, Florian Suri-Payer, Ma�hew Ding, Heidi Howard, I�ai Abraham, and Natacha Crooks

the chain. If there are enough V�������� messages to materialize a
QC for ⌫?0A4=C (Alg. 3 lines 26-27), the leader materializes this QC.
Since ⌫?0A4=C is the highest ranking block on the chain, the leader
immediately proposes a new block that extends ⌫?0A4=C . This is
safe as ⌫?0A4=C is, by construction, necessarily the highest ranked
block on the chain; no con�icting higher-ranked QC can exist. If,
instead, there are insu�cient V��������messages, the leader starts
a materialization timer (MAT) during which it waits for additional
N�������messages in order to materialize implicit QCs for descen-
dants of&⇠0=2 .⌫. If the leader eventually receives =� 5 hV��������,
⌫34B2 i where ⌫34B2 is a descendant of &⇠0=2 .⌫, ⌫34B2 could have
been proposed by an honest node. The leader thus materializes
an explicit QC for ⌫34B2 and updates its local knowledge of the
highest ranked known &⇠0=2 (Alg. 3 lines 23-24). If, while waiting,
the leader receives =� 5 hV��������, ⌫?0A4=C i, the leader instead
updates&⇠0=2 to certify ⌫?0A4=C , and the materialization timer can
be canceled. Finally, the leader proposes a new block ⌫ with parent
block ⌫.? B ⌫?0A4=C , quorum certi�cate ⌫.&⇠0=2 B &⇠0=2 , and
⌫.#+B4C B#+B4C [E] the set of N������� messages received (Alg.
3 lines 28-29, 32-33).

View Change Validation. When a replica receives a valid h�����
���, ⌫0i proposal from the leader, the replica checks that the leader
did in fact perform the view change correctly (Alg. 3 line 39). It
con�rms that 1) the leader obtained =� 5 N������� messages 2)
that the proposed block’s parent was in fact the highest ranked
blocks among V������� messages 3) that the proposal extends the
highest QC received by the leader. When con�rmed, the replica
updates its state (Alg. 3 lines 40-42), and sends a V�������� to the
next leader (Alg. 3 line 43).

Commit Rule. The commit rule determines which blocks in the
chain can be safely marked as committed; it is invoked each time
a replica receives a valid hV�������, ⌫0i message from the leader.
The test considers the last two QCs and their associated blocks (Alg.
4 lines 2-5). Informally, a block is safe to commit when no possible
con�icting block can also be committed, in other words when no
con�icting QC could have formed. More speci�cally, the commit
test considers two cases. We write&⇠2⌘8;3 and&⇠?0A4=C to denote
respectively the last and second to last QCs in the chain.
Consecutive QCs. If the blocks certi�ed by &⇠?0A4=C (⌫?0A4=C) and
&⇠2⌘8;3 (⌫2⌘8;3) were proposed in consecutive views (Alg. 4 line
6), it safe to commit ⌫?0A4=C . As shown in §3.4, no higher ranked
(than ⌫?0A4=C) con�icting QC will form.
Non-consecutive QCs. The use of Prepare messages precludes con-
�icting QCs from forming in the presence of omission faults or
asynchrony. It does not, however, prevent con�icting QCs from
forming when the leader equivocates. Thus, the �rst step is to
identify whether a con�icting QC could have formed as a result of
equivocation. This is done by iterating through all of the ancestor
blocks in between ⌫?0A4=C and ⌫2⌘8;3 and looking for evidence of
equivocation for a con�icting block (Alg. 4 lines 10-12). As men-
tioned in §4.1, equivocating blocks are di�erent blocks proposed in
the same view. Thus, evidence of equivocation (equivocation proof)
consists of V������� proposal messages for equivocating blocks in
the same view. It is important that this equivocation proof contains
a V������� for a con�icting block. Otherwise, this equivocation
proof indicates that a non-con�icting QC could have formed, which

Algorithm 3 Slow View Change

1: #+B4C {} ù Stores N������� ��������
2: ⌫?0A4=C ? ù Highest ranked V������� block
3: &⇠0=2 ? ù The highest ranked explicit QC
4: ⌫0=2 ? ù The block &⇠0=2 certi�es
5:
6: upon view timer (VT) for EA expiring do
7: //call into external Synchronizer-Module
8: S�����������.����_��_�������()
9:
10: upon S�����������.�������_����(v’), where E 0 >EA do
11: EA E 0

12: send hN�������, EA ,EAA ,E?A i to !EA
13: if A == !EA then start materialization timer (MAT)
14:
15: // only the leader of view EA
16: upon receiving hN�������, EA ,EAA ,E?A i for view EA do
17: #+B4C [EA] #+B4C [EA][hN�������, EA ,EAA ,E?A i
18: if |#+B4C [EA] |==� 5 then ù Trigger Slow VC
19: ⌫?0A4=C H���V���R��(() ù Finds the highest

ranked block to extend
20: &⇠0=2 ⌫?0A4=C .&⇠0=2 ù Gets the QC contained

within ⌫?0A4=C
21: ⌫0=2 &⇠0=2 .⌫

22: // while waiting for materialization timer (MAT), continually
check to see if &⇠0=2 can be updated

23: if #+B4C [E] contains =� 5 hV��������, ⌫34B2 i where ⌫34B2
extends ⌫0=2 then

24: &⇠0=2 C�����QC(#+B4C [E]) ù Update &⇠0=2 to be
newly formed QC

25: ⌫0=2 &⇠0=2 .⌫

26: if ⌫0=2 =⌫?0A4=C then ù &⇠0=2 has highest possible rank,
propose a new block

27: cancel materialization timer (MAT)
28: ⌫0 C�����B����(E,⌫?0A4=C ,&⇠0=2 ,#+B4C [E])
29: send hV�������, ⌫0i to all ù Propose ⌫0

30:
31: upon materialization timer (MAT) expiring do
32: ⌫0 C�����B����(E,⌫?0A4=C ,&⇠0=2 ,#+B4C [E])
33: send hV�������, ⌫0i to all ù Propose ⌫0, with parent ⌫
34:
35: upon receiving a valid hV�������, ⌫0i from !EA+1 do
36: &⇠⌫ ⌫0 .&⇠0=2
37: ⌫ &⇠⌫ .⌫
38: // verify that !EA+1 did the view change correctly
39: if |⌫0 .#+B4C | � 25 +1^H���V���R��(⌫0 .#+B4C) = ⌫0 .? ^

⌫0 extends ⌫ then
40: EA ⌫0 .E ù Move to the next view
41: EAA hV�������, ⌫0i ù Update latest V�������
42: E?A hV��������, ⌫0i ù Update latest V��������
43: send E?A to !EA+1 ù Send vote to the next leader
44:
45: procedure H���V���R��(#+B4C)
46: ⌫⌘86⌘ ?
47: for B 2(do ù Iterate through all V�������s in the VC
48: parse B as hN�������, EA ,EAA ,E?A i
49: parse EAA as hV�������, ⌫i
50: if B����R���(⌫,⌫⌘86⌘) then
51: ⌫⌘86⌘ ⌫ ù Update the highest ranked block

52: return ⌫⌘86⌘ ù Return highest ranked block in the VC
240

BeeGees: Stayin’ Alive in Chained BFT PODC ’23, June 19–23, 2023, Orlando, FL, USA

does not violate safety. Upon detecting equivocation, replicas must
explicitly abort committing ⌫?0A4=C (Alg. 4 lines 13-14). Note that
aborting in this case does not violate Theorem 4.1: we show in our
proofs that the existence of an equivocation proof for a con�icting
block guarantees that the leader who proposed ⌫?0A4=C must have
equivocated, and thus is Byzantine faulty. Otherwise, if no equivoca-
tion proof is found, the replica can safely commit⌫?0A4=C (Alg. 4 line
15). Our full correctness proofs can be found in [18, Appendix C].

Algorithm 4 Commit Rule

1: upon receiving a valid EAA hV�������, ⌫i do
2: &⇠2⌘8;3 ⌫.&⇠0=2 ù last QC in chain
3: ⌫2⌘8;3 &⇠2⌘8;3 .⌫
4: &⇠?0A4=C ⌫2⌘8;3 .&⇠0=2 ù second to last QC in chain
5: ⌫?0A4=C &⇠?0A4=C .⌫
6: if A��C����������QC�(&⇠?0A4=C ,&⇠2⌘8;3) then
7: commit ⌫?0A4=C
8: else
9: ⇠ ;
10: for ⌫0=2 2G��A��������(⌫?0A4=C ,⌫2⌘8;3) do
11: // look for possible con�icting QCs
12: ⇠ F���E���P����(⌫?0A4=C ,⌫0=2 .?,⌫0=2 .#+B4C)
13: if ⇠<; then
14: return ù Not safe to commit
15: commit ⌫?0A4=C
16:
17: procedure A��C����������QC�(&⇠?0A4=C ,&⇠2⌘8;3)
18: return &⇠?0A4=C .⌫.E+1=&⇠2⌘8;3 .⌫.E
19: procedure G��A��������(⌫?0A4=C ,⌫2⌘8;3)
20: � ;
21: ⌫0=2 ⌫2⌘8;3
22: while ⌫0=2 .E >⌫?0A4=C .E do
23: � �[⌫0=2
24: ⌫0=2 =⌫0=2 .?
25: return �
26: procedure F���E���P����(⌫?0A4=C ,⌫C0A64C ,()
27: ⇠ ; ù Keep track of con�icting blocks
28: for B 2(do ù Iterate through all blocks
29: parse B as hV�������, ⌫0i
30: // Di�erent vote-reqs with the same view
31: if ⌫0 .E = ⌫C0A64C .E ^ ⌫0 < ⌫C0A64C ^ ⌫0 con�icts with

⌫?0A4=C then
32: ⇠ ⇠[⌫0
33: return ⇠ ù Otherwise, no equivocation

4.4 View Synchronization
To ensure the reliable formation of a QC, BeeGees must ensure
that all honest replicas enter – and remain in – a common view E
for a su�ciently long period. Solving this problem is orthogonal
to most BFT protocols, including BeeGees, and can be delegated
to a blackbox View Synchronizer sub-module. To the best of our
knowledge, BeeGees is compatible with most (if not all) existing
view synchronizers [6, 16, 26]. For the purpose of this discussion, we
adopt the Cogsworth API [26], which exposes two methods: honest

Figure 4: CDF of the number of views needed to commit an
operation n = 100.

replicas invoke ����_��_������� to request a view change, and
receive �������_����(�’) to con�rm they may advance to view E 0.

We de�ne two parameters:)✓ and)A , whose values are dependent
on the speci�c view synchronizer that is used.)✓ is the maximum
amount of time (after GST) between when the �rst honest replica
enters a view E , and when the leader of view E , !E , enters view E .
)A is the maximum amount of time (after GST) between when the
leader of a view E , !E , enters view E , and when all honest replicas
enter view E . In total, the maximum amount of time between when
the �rst honest replica enters a view E , and when all honest replicas
enter view E is)✓ +)A . A common instantiation is for)✓ =)A = �,
thereby)✓ +)A =2�. Accordingly, BeeGees sets its view timer delay
to +) :=)✓ +)A +4� to ensure that all honest replicas spend enough
time in a view for a QC to form. Similarly, BeeGees sets its mate-
rialization timer to"�) �)A +� [16] to guarantee that (after GST
and view synchronization) the leader receives messages from all
honest nodes, and thus succeeds in materializing implicit QCs.

4.5 Re�ecting on AHL
BeeGees is the �rst Chained-Leader-Speaks-Once (CLSO) protocol
to safely satisfy AHL, i.e. commit honest leader’s proposals as soon
as any other : honest leaders exist in some higher views (after
GST). To better understand why existing CLSO protocols fall short,
and more easily analyze future designs, we identify a necessary
condition for satisfying AHL. In particular, we adopt as condition
a partial synchrony equivalent of sequentiality [3]:

De�nition 4.2. (Sequentiality). Let !8 and !9 be a pair of honest
leaders, and wlog 8 < 9 . After GST, if !8 sends a proposal ⌫8 , then
!09B proposal ⌫ 9 must extend ⌫8 .

Intuitively, sequentially states that, after GST, all proposals issued
by honest leaders must extend each other. Clearly, AHL relies on
sequentiality to be true. Otherwise, two honest leader’s proposals
can extend divergent chains, which breaks safety as eventually both
con�icting chains will be committed. We prove in [18, Appendix
B.2] that:

T������ 4.3. AHL is achievable only if sequentiality is satis�ed.

BeeGees guarantees sequentiality via the use of Prepare mes-
sages and implicit QC materialization, ensuring that if a honest

241

PODC ’23, June 19–23, 2023, Orlando, FL, USA Neil Giridharan, Florian Suri-Payer, Ma�hew Ding, Heidi Howard, I�ai Abraham, and Natacha Crooks

Table 1: Comparison of CLSO BFT protocols (excluding view synchronizer)

Protocol Complexity
(thresh)

Complexity
(SNARKs)

of
phases

Responsive
(consec.) AHL

Casper FFG [8] $ (=) $ (=) 2 No No
HotStu� [34] $ (=) $ (=) 3 Yes No

Fast-HotStu� [21] $ (=2) $ (=) 2 Yes No
Jolteon [16] $ (=2) $ (=) 2 Yes No
BeeGees O(n2) O(n) 2 Yes Yes

leader issued a proposal ⌫ (after GST), every future leader must
extend ⌫. We prove in [18, Appendix D.3] that:

T������ 4.4. BeeGees satis�es sequentiality.

In contrast, other CLSO protocols only consider QCs rather than
Prepare messages in their slow view change. A Byzantine leader
can thus intentionally fail to certify an honest block proposed after
GST, by just crashing. This will preclude this block from appearing
in future view changes as it was not certi�ed. We prove in [18,
Appendix B.1] that:

T������ 4.5. Prior partially synchronous CLSO protocols do not
satisfy sequentiality.

5 PERFORMANCE ANALYSIS
BeeGees is the �rst CLSO protocol to satisfy AHL. We next quantify
the theoretical and practical bene�ts of our approach.

Theoretical PropertiesWe �rst summarize the main theoret-
ical properties of BeeGees as compared to the state of the art CLSO
protocols in Table 1. Speci�cally, we measure the word communica-
tion complexity of each protocol excluding the view synchronizer,
where aword contains a constant amount of signatures or bits.Word
complexity measures the amount of words sent by honest parties
over all possible executions and adversarial strategies. We say a
protocol is responsive if after GST the latency between consecutive
honest leaders is$ (X), where X is the actual network delay. BeeGees
satis�es AHL while maintaining quadratic word complexity with
threshold signatures, linear word complexity with SNARKs, opti-
mal phase complexity, and responsiveness with consecutive honest
leaders. The formal analysis can be found in [18, Appendix E].

Performance Simulation Next, we formally quantify the per-
formance gains made possible by strengthening the liveness condi-
tion from CHL to AHL. BeeGees will commit blocks in the presence
of any:+1 honest leaders after GST and no longer requires:+1 con-
secutive leaders. In Figure 4 we compare BeeGees to 1) two-phase
CLSO protocols (DiemBFTv4 [32], Fast-Hotstu� [21], Jolteon [16]),
2) three-phase CLSO protocols (Hotstu� [34]). We calculate the
expected number of rounds necessary to commit an operation un-
der AHL and CHL; leaders are choosen leaders at random. We
additionally simulate commit latency when electing leaders in a
round-robin fashion.

T������ 5.1. With a random leader election scheme, after GST,
the expected number of rounds necessary to commit a block under

the CHL is != (1�?:)
(1�?)?: [14] where ? = =�5

= and : is the number of
consecutive honest leaders needed.

We prove in [18, Appendix A] that:

T������ 5.2. With a random leader election scheme, after GST
with only omission faults, the expected number of rounds necessary
to commit a block in BeeGees is 3=

=�5

Next, we simulate a scenario in which leaders are elected round-
robin; wemark an operation as committed when there is su�ciently
many honest leaders to satisfy the protocol’s commit rule. In CLSO
protocols, the number of rounds directly in�uences both latency
and throughput. If a round has latency G , then commit latency for
an operation will be G ⇤A>D=3B while throughput is calculated by
dividing the batch size by the expected commit latency. We write
CHL(4) for Hotstu� (requires four consecutive leaders), CHL(3)
for Fast-Hotstu�, Jolteon and DiemBFTv4, and �nally AHL for our
own protocol BeeGees. Figure 4 shows the resulting commit latency
CDF. As expected, BeeGees achieves an expected commit latency
of 4.5; CHL(3) requires ⇡ 7 rounds. CHL(4) has worst expected
performance, taking 12 rounds to commit. Worst-case observed
commit latency is especially interesting: BeeGees has relatively
low worst-case latency, with 18 rounds, while CHL(3) protocols
have a worst-case commit time of 76. CHL(4) has seven times worst
latency, with a worst-case commit time of 129 rounds.

6 CONCLUSION
This paper introduces BeeGees, the �rst CLSO protocol to guarantee
that, after GST, the proposal of an honest leader will be committed
after two honest views. In contrast, all other CLSO protocols re-
quire three (or four) consecutive honest leaders to commit a block.
BeeGees observes that, to o�er AHL, a protocol must guarantee
sequentiality, and that sequentiality can only be enforced through
careful use of Prepare messages. These are messages that are in-
stead traditionally discarded during view changes by prior work.
BeeGees’s stronger liveness guarantee allows it to outperform other
CLSO protocols by up to 4x. The full version of the paper [18] con-
tains all appendices and proofs.

REFERENCES
[1] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. 2021. Brief

Note: Fast Authenticated Byzantine Consensus. CoRR abs/2102.07932 (2021).
https://doi.org/10.48550/ARXIV.2102.07932

[2] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. 2021. Good-Case
Latency of Byzantine Broadcast: A Complete Categorization. In Proceedings of
the 2021 ACM Symposium on Principles of Distributed Computing (Virtual Event,

242

https://doi.org/10.48550/ARXIV.2102.07932

BeeGees: Stayin’ Alive in Chained BFT PODC ’23, June 19–23, 2023, Orlando, FL, USA

Italy) (PODC’21). Association for Computing Machinery, New York, NY, USA,
331–341. https://doi.org/10.1145/3465084.3467899

[3] Ittai Abraham, Kartik Nayak, and Nibesh Shrestha. 2022. Optimal Good-Case
Latency for Rotating Leader Synchronous BFT. In 25th International Conference
on Principles of Distributed Systems (OPODIS 2021) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 217), Quentin Bramas, Vincent Gramoli,
and Alessia Milani (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 27:1–27:19. https://doi.org/10.4230/LIPIcs.OPODIS.2021.27

[4] Mark Abspoel, Thomas Attema, and Matthieu Rambaud. 2020. Malicious
Security Comes for Free in Consensus with Leaders. Cryptology ePrint Archive,
Report 2020/1480. https://ia.cr/2020/1480.

[5] Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman, Zekun
Li, Avery Ching, and Dahlia Malkhi. 2022. Twins: BFT Systems Made
Robust. In 25th International Conference on Principles of Distributed Systems
(OPODIS 2021) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 217), Quentin Bramas, Vincent Gramoli, and Alessia Milani (Eds.). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 7:1–7:29.
https://doi.org/10.4230/LIPIcs.OPODIS.2021.7

[6] Manuel Bravo, Gregory Chockler, and Alexey Gotsman. 2020. Making Byzantine
Consensus Live. In 34th International Symposium on Distributed Computing
(DISC 2020) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 179),
Hagit Attiya (Ed.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 23:1–23:17. https://doi.org/10.4230/LIPIcs.DISC.2020.23

[7] Ethan Buchman. 2016. Tendermint: Byzantine fault tolerance in
the age of blockchains. Ph. D. Dissertation. University of Guelph.
http://hdl.handle.net/10214/9769

[8] Vitalik Buterin and Virgil Gri�th. 2017. Casper the friendly �nality gadget.
arXiv preprint arXiv:1710.09437 abs/1710.09437 (2017).

[9] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance.
In Proceedings of the Third Symposium on Operating Systems Design and
Implementation (New Orleans, Louisiana, USA) (OSDI ’99). USENIX Association,
USA, 173–186.

[10] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and Mirco
Marchetti. 2009. Making Byzantine Fault Tolerant Systems Tolerate Byzantine
Faults. In Proceedings of the 6th USENIX Symposium on Networked Systems Design
and Implementation (Boston, Massachusetts) (NSDI’09). USENIX Association,
USA, 153–168.

[11] Shir Cohen, Rati Gelashvili, Lefteris Kokoris Kogias, Zekun Li, Dahlia
Malkhi, Alberto Sonnino, and Alexander Spiegelman. 2022. Be Aware
of Your Leaders. In Financial Cryptography and Data Security: 26th In-
ternational Conference, FC 2022, Grenada, May 2–6, 2022, Revised Selected
Papers (Grenada, Grenada). Springer-Verlag, Berlin, Heidelberg, 279–295.
https://doi.org/10.1007/978-3-031-18283-9_13

[12] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo
Bentov, Lorenz Breidenbach, and Ari Juels. 2019. Flash boys 2.0: Frontrunning,
transaction reordering, and consensus instability in decentralized exchanges.
arXiv preprint arXiv:1904.05234 (2019).

[13] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander
Spiegelman. 2022. Narwhal and Tusk: a DAG-based mempool and e�cient BFT
consensus. In Proceedings of the Seventeenth European Conference on Computer
Systems. 34–50.

[14] Steve Drekic and Michael Z. Spivey. 2021. On the number of trials needed to
obtain k consecutive successes. Statistics & Probability Letters 176, C (2021).
https://doi.org/10.1016/j.spl.2021.109132

[15] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM) 35, 2 (1988), 288–323.

[16] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman,
and Zhuolun Xiang. 2022. Jolteon and Ditto: Network-Adaptive E�cient
Consensus with Asynchronous Fallback. In Financial Cryptography and Data
Security: 26th International Conference, FC 2022, Grenada, May 2–6, 2022, Revised
Selected Papers (Grenada, Grenada). Springer-Verlag, Berlin, Heidelberg, 296–315.
https://doi.org/10.1007/978-3-031-18283-9_14

[17] Neil Giridharan, Heidi Howard, Ittai Abraham, Natacha Crooks, and Alin
Tomescu. 2021. No-commit proofs: Defeating livelock in bft. Cryptology ePrint
Archive (2021).

[18] Neil Giridharan, Florian Suri-Payer, Matthew Ding, Heidi Howard, Ittai
Abraham, and Natacha Crooks. 2023. BeeGees: stayin’ alive in chained BFT.
arXiv:2205.11652 [cs.DC]

[19] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019.
SBFT: A Scalable and Decentralized Trust Infrastructure. In 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
IEEE, USA, 568–580. https://doi.org/10.1109/DSN.2019.00063

[20] Lioba Heimbach and Roger Wattenhofer. 2022. SoK: Preventing Transaction Re-
ordering Manipulations in Decentralized Finance. arXiv preprint arXiv:2203.11520
(2022).

[21] Mohammad M. Jalalzai, Jianyu Niu, and Chen Feng. 2020. Fast-HotStu�: A Fast
and Resilient HotStu� Protocol. CoRR abs/2010.11454 (2020). arXiv:2010.11454

https://arxiv.org/abs/2010.11454
[22] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan.

2021. Themis: Fast, strong order-fairness in byzantine consensus. Cryptology
ePrint Archive (2021).

[23] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. 2020. Order-
fairness for byzantine consensus. In Annual International Cryptology Conference.
Springer, 451–480.

[24] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Ed-
mund Wong. 2010. Zyzzyva: Speculative Byzantine Fault Tolerance. ACM
Transactions on Computer Systems (TOCS) 27, 4, Article 7 (Jan. 2010), 39 pages.
https://doi.org/10.1145/1658357.1658358

[25] Dahlia Malkhi and Pawel Szalachowski. 2022. Maximal Extractable Value (MEV)
Protection on a DAG. arXiv preprint arXiv:2208.00940 (2022).

[26] Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman. 2021.
Cogsworth: Byzantine View Synchronization. Cryptoeconomic Systems 1, 2
(Oct 2021). https://cryptoeconomicsystems.pubpub.org/pub/naor-cogsworth-
synchronization.

[27] Jianyu Niu, Fangyu Gai, Mohammad M Jalalzai, and Chen Feng. 2021. On the
performance of pipelined hotstu�. In IEEE INFOCOM 2021-IEEE Conference on
Computer Communications. IEEE, 1–10.

[28] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-
Kogias. 2022. Bullshark: DAG BFT Protocols Made Practical. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security
(Los Angeles, CA, USA) (CCS ’22). Association for Computing Machinery, New
York, NY, USA, 2705–2718. https://doi.org/10.1145/3548606.3559361

[29] Xiao Sui, Sisi Duan, and Haibin Zhang. 2022. Marlin: Two-Phase BFT with
Linearity. Cryptology ePrint Archive (2022).

[30] Florian Suri-Payer, Matthew Burke, Zheng Wang, Yunhao Zhang, Lorenzo Alvisi,
and Natacha Crooks. 2021. Basil: Breaking up BFT with ACID (transactions). In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles.
1–17.

[31] Aptos Team. [n.d.]. Aptos homepage. https://aptoslabs.com.
[32] Diem Team. 2021. DiemBFT v4: State Machine Replication in the Diem Blockchain.

Technical Report. Diem. https://developers.diem.com/papers/diem-consensus-
state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf.

[33] Diem Team. [n.d.]. Diem homepage. https://www.diem.com.
[34] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai

Abraham. 2019. HotStu�: BFT Consensus with Linearity and Responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing
(Toronto ON, Canada) (PODC ’19). Association for Computing Machinery, New
York, NY, USA, 347–356. https://doi.org/10.1145/3293611.3331591

[35] Gengrui Zhang and Hans-Arno Jacobsen. 2021. Prosecutor: An e�cient BFT
consensus algorithm with behavior-aware penalization against Byzantine
attacks. In Proceedings of the 22nd International Middleware Conference. 52–63.

[36] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. 2020.
Byzantine Ordered Consensus without Byzantine Oligarchy. (Nov. 2020), 633–649.
https://www.usenix.org/conference/osdi20/presentation/zhang-yunhao

243

https://doi.org/10.1145/3465084.3467899
https://doi.org/10.4230/LIPIcs.OPODIS.2021.27
https://ia.cr/2020/1480
https://doi.org/10.4230/LIPIcs.OPODIS.2021.7
https://doi.org/10.4230/LIPIcs.DISC.2020.23
http://hdl.handle.net/10214/9769
https://doi.org/10.1007/978-3-031-18283-9_13
https://doi.org/10.1016/j.spl.2021.109132
https://doi.org/10.1007/978-3-031-18283-9_14
https://arxiv.org/abs/2205.11652
https://doi.org/10.1109/DSN.2019.00063
https://arxiv.org/abs/2010.11454
https://arxiv.org/abs/2010.11454
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/3548606.3559361
https://aptoslabs.com
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://www.diem.com
https://doi.org/10.1145/3293611.3331591
https://www.usenix.org/conference/osdi20/presentation/zhang-yunhao

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work & Liveness issues in CLSO protocols
	3.1 Basic HotStuff
	3.2 Chaining and LSO
	3.3 Liveness Concerns
	3.4 It's Not Easy to Relax

	4 BeeGees
	4.1 BeeGees Overview
	4.2 BeeGees Data Structures
	4.3 Protocol Details
	4.4 View Synchronization
	4.5 Reflecting on AHL

	5 Performance Analysis
	6 Conclusion
	References
	A Performance Analysis
	B Sequentiality
	C Safety
	D Liveness
	E Communication Complexity
	F Responsiveness

