

1 **Conscious awareness of a visuo-proprioceptive mismatch: Effect on**
2 **cross-sensory recalibration**

3 **Anna Hsiao¹, Trevor Lee-Miller¹, Hannah J. Block^{1*}**

4 ¹Sensorimotor Neurophysiology Laboratory, School of Public Health, Indiana University
5 Bloomington, Bloomington, IN, USA

6 *** Correspondence:**

7 Hannah J. Block
8 hjblock@indiana.edu

9 **Keywords: proprioception, recalibration, multisensory, peripersonal space, visuo-**
10 **proprioceptive conflict.**

11 **Abstract**

12 The brain estimates hand position using vision and position sense (proprioception). The
13 relationship between visual and proprioceptive estimates is somewhat flexible: visual information
14 about the index finger can be spatially displaced from proprioceptive information, resulting in cross-
15 sensory recalibration of the visual and proprioceptive unimodal position estimates. According to the
16 causal inference framework, recalibration occurs when the unimodal estimates are attributed to a
17 common cause and integrated. If separate causes are perceived, then recalibration should be reduced.
18 Here we assessed visuo-proprioceptive recalibration in response to a gradual visuo-proprioceptive
19 mismatch at the left index fingertip. Experiment 1 asked how frequently a 70 mm mismatch is
20 consciously perceived compared to when no mismatch is present, and whether awareness is linked to
21 reduced visuo-proprioceptive recalibration, consistent with causal inference predictions. However,
22 conscious offset awareness occurred rarely. Experiment 2 tested a larger displacement, 140 mm, and
23 asked participants about their perception more frequently, including at 70 mm. Experiment 3
24 confirmed that participants were unbiased at estimating distances in the 2D virtual reality display.
25 Results suggest that conscious awareness of the mismatch was indeed linked to reduced cross-
26 sensory recalibration as predicted by the causal inference framework, but this was clear only at
27 higher mismatch magnitudes (70 – 140 mm). At smaller offsets (up to 70 mm), conscious perception
28 of an offset may not override unconscious belief in a common cause, perhaps because the perceived
29 offset magnitude is in range of participants' natural sensory biases. These findings highlight the
30 interaction of conscious awareness with multisensory processes in hand perception.

31 **1 Introduction**

32 Where we perceive our hands in space has a substantial impact on how we carry out manual
33 tasks. For example, when hammering a nail steadied by the thumb and index finger, misjudging the
34 nail's position could result in injured fingers. Through proprioception, the brain can estimate hand or
35 finger position using signals from the muscles, joints, and skin even in the absence of vision (Proske
36 and Gandevia 2012). Visual and proprioceptive position estimates have different variances and biases
37 due to independent processing in the visual and proprioceptive systems, thus they are unlikely to
38 agree perfectly (Smeets et al. 2006). The brain is thought to weight and combine available unimodal
39 estimates, resulting in a single multisensory estimate that minimizes variance (Beauchamp et al.

40 2010; Ernst and Banks 2002; Ghahramani et al. 1997). This has been observed across several human
 41 behaviors and sensory modality combinations (van Beers et al. 1999; Blouin et al. 2014; Ernst and
 42 Banks 2002; Fetsch et al. 2013; Kording and Wolpert 2006; Sober and Sabes 2005).

43 When there is an externally-imposed spatial offset between available sensory cues, cross-sensory
 44 recalibration has been observed, where one or both unimodal estimates shifts toward the other
 45 (Noppeney 2021). For example, a person viewing a representation of their hand that is offset from
 46 true hand position is likely to shift their proprioceptive estimate of hand position toward the visual
 47 estimate. This has been observed in studies of rubber hand illusion (RHI) (Botvinick and Cohen
 48 1998; Fang et al. 2019; Samad et al. 2015) and visuomotor adaptation (Henriques and Cressman
 49 2012; Rossi et al. 2021; Salomonczyk et al. 2013), both of which involve a spatial visuo-
 50 proprioceptive mismatch. When both visual and proprioceptive estimates are assessed, evidence
 51 suggests that both estimates shift towards each other in the presence of a mismatch (van Beers et al.
 52 2002; Block and Bastian 2011; Mirdamadi et al. 2021; Munoz-Rubke et al. 2017).

53 While there is ample experimental evidence for cross-sensory recalibration, the principles by
 54 which it operates are unclear, and may depend on the task and context (Noppeney 2021). The
 55 framework of causal inference is likely relevant to many aspects of multisensory processing,
 56 including cross-sensory recalibration (Wei and Kording 2011). According to this framework, sensory
 57 cues that are perceived to have a common cause are more likely to be integrated, compared to cues
 58 that are perceived to belong to separate causes (French and DeAngelis 2020; Kording et al. 2007;
 59 Shams and Beierholm 2010). Studies with various paradigms have supported the idea that the smaller
 60 the spatial disparity between two stimuli, the more often people perceive them as having a common
 61 cause (French and DeAngelis 2020; Kording et al. 2007).

62 Some studies have suggested that perceiving a mismatch or conflict between cues affects cross-
 63 sensory recalibration in visual-auditory localization (Kording et al. 2007) as well as visuo-
 64 proprioceptive localization (Samad et al. 2015). Knowledge or awareness of a mismatch influences
 65 causal inference by serving as a Bayesian prior (Debats and Heuer 2018). Prior belief that two cues
 66 belong to separate causes, which may be influenced by directing attention towards a mismatch,
 67 reduces the likelihood of integration (Noppeney 2021). Within the model, the degree to which
 68 awareness of a separate cause affects cross-sensory recalibration is not fully known (Berger and
 69 Bülthoff 2009).

70 One open question concerns the role of the magnitude of the cue mismatch. Prism exposure
 71 studies, in which the visual field is offset from the proprioceptive cue of hand position, have
 72 suggested that cross-sensory recalibration is affected by knowledge of the offset only if the offset is
 73 relatively large (Welch and Warren 1980). This is not consistent with the causal inference framework
 74 (French and DeAngelis 2020). Even when the cue mismatch is large (20° of prismatic shift) and
 75 visuo-proprioceptive unity is no longer perceived, substantial recalibration of both visual and
 76 proprioceptive estimates still occur (Welch and Warren 1980). However, prism studies are somewhat
 77 limited in that prisms shift the whole visual field, not just the visual cue of the hand, and can cause
 78 visual distortions.

79 In the present study we build on this literature by assessing visuo-proprioceptive recalibration in
 80 response to a gradually imposed visuo-proprioceptive mismatch. Experiment 1 asked how frequently
 81 a gradually-imposed 70 mm visuo-proprioceptive mismatch (Mirdamadi et al. 2021; Munoz-Rubke et
 82 al. 2017) is consciously perceived, and whether such awareness was linked to reduced visuo-
 83 proprioception recalibration, as predicted by the causal inference model (French and DeAngelis

84 2020). Experiment 2 tested a larger displacement of 140 mm and asked participants about their
85 perception more frequently. We predicted that the participants who reported the greatest proportion
86 of the true offset would recalibrate the least, in line with the causal inference model. Finally,
87 Experiment 3 tested whether participants were biased at estimating the lengths of lines projected in
88 the 2D virtual reality display, to control for the possibility that participants under-report the
89 magnitude of the true offset because they tend to underestimate distances in general.

90 **2 Method**

91 **2.1 Participants:**

92 A total of 96 healthy adults participated in this study, which consisted of three experiments.
93 Experiment 1 participants each completed two sessions on different days. Experiments 2 and 3
94 comprised a single session each. 62 (34 female, mean age 21.8 years, SD 4.2) participated in
95 Experiment 1. Twenty (17 female, mean age 20.9 years, SD 4.2) participated in Experiment 2.
96 Twenty (13 female, mean age 22 years, SD 4.3) participated in Experiment 3. Six participants
97 participated in both experiments 2 and 3. All participants reported being right-handed. All reported
98 normal or corrected-to-normal vision, and no known neurological or musculoskeletal conditions. The
99 study was approved by the Indiana University Institutional Review Board. All participants gave
100 written informed consent before participating in the study.

101 **2.2 Experiment 1**

102 Participants completed two sessions each, on different days at least 5 days apart: a Mismatch
103 session and a Veridical session. Session order was counterbalanced across participants. Time
104 between sessions was 14.4 ± 13.8 days (mean \pm SD).

105 **2.2.1 Apparatus**

106 Participants sat at a 2D reflected rear projection apparatus composed of two touchscreen frames
107 with a 3-mm-thick pane of glass in between. The touchscreens utilized infrared beams to detect touch
108 with <0.5 mm resolution. Participants viewed the task display in a horizontal mirror positioned just
109 below eye-level. This resulted in images that appeared to be in the plane of the touchscreens while
110 also preventing the participants from seeing their hands (Fig. 1A). The total display area was 75 x
111 100 cm. Black fabric draped around the participant's shoulders obscured their view of their upper
112 arms and the surrounding room. Participants kept their left hand (target) below the touchscreen
113 during the experiment and on their lap when not needed, while their right (indicator) hand remained
114 above the touchscreen and below the mirror.

115 **2.2.2 Targets**

116 Participants were asked to use their right index finger to indicate the perceived position of a
117 series of three different target types related to the left (target) index finger: proprioceptive (P), visual
118 (V), and visuo-proprioceptive (VP) targets. The V target was a projected image of a white box, and
119 the P target was the participant's target index finger placed on a tactile marker beneath the
120 touchscreen glass (Fig. 1B). There were two possible target positions, about 33 and 36 cm in front of
121 the participant's chest, 4 and 7 cm left of body midline. The VP target included both the target finger
122 and the white box and was used to create the visuo-proprioceptive mismatch. The V and P targets
123 were used to assess visual and proprioceptive recalibration, respectively: when the VP target has a
124 forward offset of the visual component, overshoot of P targets represents proprioceptive offset and
125 undershoot of visual targets represents visual recalibration.

126 **2.2.3 Single trial procedure**

127 Participants began each trial by placing their indicator finger in the starting position above the
 128 glass, as indicated by a 1 cm yellow box. To help the participant reach the start position, an 0.8 cm
 129 blue dot appeared when the indicator finger was in contact with the touchscreen glass and positioned
 130 near the yellow start box. The yellow start box could appear in any of 5 locations, arranged like a
 131 plus sign at the participant's midline, about 15 cm in front of the chest. The blue dot disappeared as
 132 soon as the indicator finger left the start box, preventing participants from having online or endpoint
 133 feedback about indicator finger position.

134 Once the indicator finger was correctly positioned, participants heard an audio cue instructing
 135 them to keep their eyes on a red cross that appeared at a random position within 10 cm of the target.
 136 However, eye movements were not recorded or enforced, and this was not intended to override
 137 subjects' instinctive saccades to target position. The red cross was included in this paradigm (Block
 138 et al. 2013; Block and Bastian 2011, 2012; Block and Sexton 2020; Liu et al. 2018; Mirdamadi et al.
 139 2021; Munoz-Rubke et al. 2017) to discourage conscious strategies involving gaze, particularly on P
 140 targets. In other words, we wanted to avoid having some subjects fixate where they think the P target
 141 is, and others staring off into space on P targets.

142 Next, participants were instructed to place their target finger on one of the tactile markers (P or
 143 VP target), or to rest their target hand in their lap (V target), and the white box appeared in the
 144 display (V or VP target). Finally, participants heard a beep, cueing them to begin the trial. For VP
 145 trials, participants were told during task training that the white box would appear directly over their
 146 target fingertip and that they should place their indicator finger at that location.

147 Participants were trained to lift their indicator finger off the glass from the starting position and
 148 place it down where they thought the target was positioned, without dragging their finger along the
 149 glass. Participants were notified that there were no speed requirements, and that adjustment was
 150 allowed. Once the participants had their indicator index finger on their estimated target position for 2
 151 seconds, this position was recorded as the final estimate and the trial concluded.

152 Certain aspects of the procedure were intended to prevent motor adaptation of the indicator
 153 hand, allowing us to assess changes in perception of the target hand. Multiple start and target
 154 positions were used and randomized to prevent memorization, and no performance feedback or
 155 knowledge of results was given. Thus, participants had no information about the accuracy of their
 156 indicator finger placements in relation to the target (for review see: (Shadmehr et al. 2010). In
 157 addition, participants were instructed to reach at a comfortable pace, to adjust if needed, and not to
 158 rush.

159 **2.2.4 Sessions**

160 Each session began with a baseline of veridical targets, followed by a single block of 21 V, 21
 161 P, and 42 VP trials in the order V, VP, P, VP. In the Mismatch session, visuo-proprioceptive offset
 162 was imposed gradually by shifting the white square 1.67 mm forward after each VP trial (every two
 163 trials), to a maximum offset of 70 mm at the end of the single block of 84 trials. In the Veridical
 164 session, no offset was imposed, and the white square remained over the target finger throughout. At
 165 the end of each session, participants were asked to rate their attention level, quality of sleep the prior
 166 night, and fatigue caused by the experiment on a scale of 1 to 10.

167 **2.2.5 Instructions**

168 At the end of each session, participants were asked "*Did it always feel like the white square*
 169 *was directly on top of your left finger, or did it feel off?*" If participants replied with "it felt off," they
 170 were then asked in what direction the white square felt offset from the left finger, and by how much

171 at most. Participants were permitted to estimate this magnitude in either centimeters or inches. This
 172 approach was chosen to be consistent with previous studies using the visuo-proprioceptive
 173 recalibration paradigm (Block and Bastian 2011; Mirdamadi et al. 2021; Munoz-Rubke et al. 2017).
 174

2.2.6 Data analysis

175 We used a χ^2 test to compare across sessions the proportion of participants that perceived a
 176 forward offset (compared to no offset or any offset direction other than forward). In the Mismatch
 177 session, visual and proprioceptive recalibration ($\Delta\hat{y}_V$ and $\Delta\hat{y}_P$) were calculated as we have done in
 178 previous studies with this task structure (Block et al. 2013; Block and Bastian 2011, 2012),
 179 subtracting indicator finger endpoint y-dimension positions on the first four V or P trials of the 84-
 180 trial block from the last four:

$$\Delta\hat{y}_V = 70 - (\text{last 4 V endpoints} - \text{first 4 V endpoints}) \quad (1)$$

$$\Delta\hat{y}_P = \text{last 4 P endpoints} - \text{first 4 P endpoints} \quad (2)$$

183 We computed these values for the Veridical session as well, but $\Delta\hat{y}_V$ did not include
 184 subtraction from 70, since there was no 70 mm forward offset of the V target in the Veridical session.

185 To test whether perceiving a forward offset was linked to reduced recalibration in the
 186 Mismatch session, we compared the magnitudes of visual and proprioceptive recalibration between
 187 participants who reported perceiving a forward offset ($N = 10$) and those who did not ($N = 52$), in the
 188 Mismatch session. Recalibration was not normally distributed in these samples, so we used a non-
 189 parametric method (Wilcoxon rank-sum test, α of 0.05).

190 2.3 Experiment 2:

191 Apparatus, targets, and single trial procedure were identical to Experiment 1.

192 2.3.1 Trial Blocks

193 In total, the experiment included 8 blocks, with each block containing 21 trials. V, P, and VP
 194 targets were presented in a repeating order throughout the experiment: VP, V, VP, P. In total, the
 195 experiment thus included 42 V trials, 42 P trials, and 84 VP trials. Visuo-proprioceptive offset was
 196 imposed gradually by shifting the white square 1.67 mm forward after each VP trial (every two
 197 trials), to a maximum offset of 140 mm at the end of Block 8.

198 2.3.2 Instructions

199 To test the participant's awareness of the offset throughout the experiment, at the end of each
 200 block participants were first asked *"Did it always feel like the white square was directly on top of
 201 your left finger, or did it feel off?"* to screen out subjects who never noticed any offset. If participants
 202 replied with "it felt off", they were asked in what direction the white square felt displaced from the
 203 left finger, and by how much at most. Both inches and centimeters were acceptable units. Only
 204 perceived offset magnitudes in the forward direction (true offset direction) were analyzed. All
 205 reported magnitudes were converted to centimeters. To prepare participants for this question being
 206 asked repeatedly, participants viewed task instructions in the form of a slideshow before beginning
 207 the experiment. This included the slides depicted in Fig. 1C, which illustrate possible visuo-
 208 proprioceptive offsets people might perceive, without giving away that there would be a real offset
 209 and it would be in the forward direction (away from the participant).

210 2.3.3 Data analysis

211 Data consisted of the x,y coordinates of indicator finger endpoints and participants' responses
 212 to the perceived offset question at the end of each trial block. Because the visuo-proprioceptive offset

213 was imposed in the y (sagittal) direction, we computed participants' mean estimate of V and P target
 214 position in the y-dimension for each block ($\hat{y}_{V(1)}$... $\hat{y}_{V(8)}$, $\hat{y}_{P(1)}$... $\hat{y}_{P(8)}$). These estimates were computed
 215 by taking the average of the y-coordinate of indicator finger endpoints on V trials and P trials,
 216 respectively (10 or 11 trials, depending on block). Visual and proprioceptive realignment ($\Delta\hat{y}_V$, $\Delta\hat{y}_P$)
 217 were calculated as:

218
$$\Delta\hat{y}_V = 140 - (\hat{y}_{V(8)} - \hat{y}_{V(1)}) \quad (3)$$

219
$$\Delta\hat{y}_P = \hat{y}_{P(8)} - \hat{y}_{P(1)} \quad (4)$$

220 Realignment in the expected direction (i.e., overshoot for P targets and undershoot for V
 221 targets) comes out positive. Thus, a total realignment ($\Delta\hat{y}_V + \Delta\hat{y}_P$) of 140 mm would indicate that
 222 100% of the 140 mm offset was compensated for.

223 We analyzed perceived offset in the forward direction by converting all estimates to
 224 centimeters and computing the proportion of true offset that was perceived (i.e., at the end of block 4
 225 there was a true offset of 7 cm, so a 3.5 cm perceived offset would be 50%).

226 To test whether perceived forward offset was related to total realignment, we computed
 227 Pearson's correlation between maximum perceived forward offset and total realignment at both
 228 Block 4 and Block 8. When this was significant, we also computed Pearson's partial correlations
 229 between maximum perceived forward offset and each of visual and proprioceptive realignment, with
 230 α of 0.05.

231 **2.4 Experiment 3:**

232 **2.4.1 Procedure**

233 Participants were shown a series of thick white lines on a black background with the same
 234 apparatus as in the two prior experiments (Fig. 1A). The lines varied in length (3.2 cm, 6.2 cm, 10.2
 235 cm, 16.2 cm) and orientation (horizontal/lateral and vertical/sagittal) resulting in 8 combinations. In
 236 each trial, a random line combination was shown for 3 seconds. Visual noise was shown in between
 237 stimuli to reduce afterimage and make it difficult for participants to compare across trials. Each line
 238 combination was shown 6 times throughout the experiment, amassing a total of 48 trials. The
 239 appearance of a new line was prompted with an audio cue, and participants verbally reported their
 240 length estimate using either inches or centimeters. No performance feedback was given.

241 **2.4.2 Data analysis**

242 For each participant, we computed the mean estimated length of each of the eight line-
 243 orientation combinations and then converted it to a proportion by dividing estimated length by true
 244 length. At the group level, the Shapiro-Wilk test showed that the 3 cm and 6 cm estimated lengths
 245 were not normally distributed. To compare the proportion of each length perceived to 100%, the one
 246 sample Wilcoxon signed-rank test was used for the non-normally distributed lengths (3 and 6 cm),
 247 and one-sample t tests were used for the rest. All hypothesis tests were performed two-sided, with α
 248 of 0.05.

249 **3 Results**

250 **3.1 Experiment 1**

251 In the Mismatch session, when a forward offset was imposed, 16% of 62 subjects ($n = 10$)
 252 reported a forward offset (Fig. 2Ai). However, in the Veridical session, when no offset was imposed,
 253 11% of the same 62 subjects ($n = 7$) reported a forward offset (Fig. 2Aii). This between-session

254 difference in proportion of individuals perceiving a forward offset was not statistically significant (χ^2_1
 255 = 0.61, $p = 0.43$), which is inconsistent with the 70 mm forward offset in the Mismatch session being
 256 noticeable to subjects.

257 In the Mismatch session, subjects recalibrated vision 36.3 mm and proprioception 12.4 mm on
 258 average. This is 48.7 mm total, or 70% of the 70 mm offset (Fig. 2Bi). Averaged across all subjects,
 259 perceived forward offset magnitude was less than 1 mm in each session (Fig. 2B). Within the
 260 Mismatch session of Expt. 1, we also compared recalibration magnitude between subjects who
 261 reported a forward offset ($N=10$) and those who did not ($N=52$). These groups of participants did not
 262 differ significantly in visual recalibration ($W = 1651$, $p = 0.81$, Fig. 2Ci), proprioceptive recalibration
 263 ($W = 1619$, $p = 0.72$, Fig. 2Cii), or total recalibration ($W = 1638$, $p = 1.0$, Fig. 2Ciii). These results
 264 do not support the idea that participants who perceived a forward offset recalibrated differently than
 265 those who did not perceive a forward offset.

266 3.2 Experiment 2

267 All participants used some combination of visual and proprioceptive recalibration to
 268 compensate for some portion of the 140 mm offset of the VP target. Three example participants
 269 (Figure 3 A-C) were chosen to illustrate the range of recalibration observed across the group. On
 270 average, visual and proprioceptive recalibration increased with increasing offset, continuing to occur
 271 even after 70 mm of offset (Block 4) (Fig. 3D).

272 We observed a wide range of patterns in participants' perceived offset. Some detected no
 273 forward offset in most, if not all, of the experimental blocks. For example, Participant 1 (Fig. 3A) did
 274 not report a perceived forward offset until the final block, and even then, they judged the forward
 275 offset to be a tenth of the actual value. Other participants reported an increasing offset magnitude
 276 across experiment blocks. For example, Participant 2 (Fig. 3B) did not report a forward offset in the
 277 first four blocks but perceived an increasing forward offset across the final four blocks. Finally, some
 278 participants did not show any clear pattern. For example, Participant 3 (Fig. 3C) increased and
 279 decreased their estimate of forward offset several times across blocks. At the group level, perceived
 280 offset was about 42% of actual offset across all 8 blocks (Fig. 3E).

281 In the first half of the experiment (Blocks 1-4), during which actual visuo-proprioceptive offset
 282 reached 70 mm, total recalibration was not significantly correlated with the maximum reported offset
 283 ($r_{18} = -0.37$, $p = 0.10$; Fig. 4A). However, by Block 8, total realignment was negatively correlated
 284 with max perceived offset ($r_{18} = -0.60$, $p = 0.006$), considered a large effect size (Cohen 1988),
 285 suggesting that the more offset people noticed, the less they realigned overall by the time
 286 misalignment reached 140 mm (Fig. 4B). To determine whether this association might be driven
 287 more by differences in visual vs. proprioceptive realignment, we also computed partial correlations
 288 between each of these variables and max perceived offset. After controlling for proprioceptive
 289 realignment, visual realignment was still negatively correlated with max perceived offset (partial r_{17}
 290 = -0.60, $p = 0.006$), and vice versa (partial $r_{17} = -0.48$, $p = 0.039$). This suggests that participants who
 291 perceived the greatest max offset had reduced realignment in both visual and proprioceptive
 292 modalities.

293

294 3.3 Experiment 3

295 In Experiment 3, participants' ability to judge line lengths was examined. Overall, for both
 296 horizontal and vertical lines, participants were able to judge the lengths fairly accurately (Fig. 5).
 297 One-sample Wilcoxon tests showed that line length estimates did not differ from true length for the

298 vertical 3 cm line ($z = -1.91, p = 0.056$, median = 0.79), vertical 6 cm line ($z = -0.64, p = 0.53$,
 299 median = 0.93), or horizontal 6 cm line ($z = -1.20, p = 0.23$, median = 0.83), with $N = 20$ in each
 300 case. Similarly, one-sample t-tests showed that line estimates did not differ from true length for the
 301 vertical 10 cm line ($t(19) = -0.005, p = 0.99$), horizontal 10 cm line ($t(19) = -0.95, p = 0.36$), vertical
 302 16 cm line ($t(19) = 0.74, p = 0.47$), or horizontal 16 cm line ($t(19) = -0.77, p = 0.45$). For all except
 303 for the horizontal 3 cm line, there was no difference between perceived and actual length. For the
 304 horizontal 3 cm line, participants underestimated the line length ($z = -2.63, p = 0.009$, median = 0.79,
 305 $N = 20$).

306 **4 Discussion**

307 Here we asked how frequently participants perceive a forward visuo-proprioceptive mismatch,
 308 both spontaneously and after being asked to attend to visuo-proprioceptive alignment, and whether
 309 such awareness is linked to reduced recalibration. The results suggest three main conclusions. First,
 310 at small offsets (< 70 mm), awareness of the offset does not often occur spontaneously (Fig 2A), but
 311 does occur after attention is directed to the possibility of an offset (Fig 3E). Second, when the offset
 312 is small, regardless of the perception, visuo-proprioceptive recalibration appears unaffected by
 313 awareness of the offset (Figs 2Bi, 3D). Third, when the offset is large (70 – 140 mm), greater
 314 awareness of the offset is associated with reduced recalibration (Fig 4B). We discuss these findings
 315 in relation to a causal inference framework.

316 **4.1 Conscious awareness of visuo-proprioceptive offset may require directed attention**

317 We did not find evidence of participants spontaneously becoming aware of a gradual 70 mm
 318 visuo-proprioceptive offset in Experiment 1. These participants each completed two sessions on
 319 different days, in random order: One session with veridical visuo-proprioceptive calibration, and one
 320 with a gradual 70 mm forward offset. When questioned at the end of each session, 5% of participants
 321 reported perceiving a forward offset of any magnitude in the Mismatch compared to the Veridical
 322 session. However, the proportions of individuals who reported a forward offset in the two sessions
 323 did not differ statistically, suggesting that spontaneous awareness of this visuo-proprioceptive offset
 324 was uncommon. This result is not necessarily surprising. The gradual 70 mm offset was originally
 325 designed to be subtle enough that most individuals would not notice, while inducing a visuo-
 326 proprioceptive mismatch large enough that the brain would respond by recalibrating visual and
 327 proprioceptive estimates of hand position to compensate (Block and Bastian 2011).

328 Experiment 2 was intended to make visuo-proprioceptive offset easier to perceive. Participants
 329 were instructed in advance that they would be asked about their perceived visuo-proprioceptive
 330 calibration, and they were asked to report their perceived offset at frequent intervals instead of only at
 331 the end. With these changes, most participants correctly reported a forward offset at some point in the
 332 session. In contrast with Experiment 1, 70% (14/20) of the subjects in Experiment 2 had reported a
 333 forward offset by Block 4. Thus, conscious awareness of a 70 mm visuo-proprioceptive offset may
 334 require directing participants' attention to the calibration of visual and proprioceptive stimuli. This
 335 finding is in line with a causal inference framework. Based on this framework, knowledge of a
 336 common cause acts as a Bayesian prior and instructions directing attention towards a common cause
 337 may influence its perception (Chen and Spence 2017). As such, asking the participants about their
 338 awareness leads to a larger probability that they would perceive a separate cause between the visual
 339 and proprioceptive cues.

340 **4.2 Visuo-proprioceptive recalibration reduced by awareness of offset at large offset
 341 magnitudes**

342 An interesting finding is that when the offset was < 70 mm, even though directing attention led
 343 to increased perception of an offset in Experiment 2, visuo-proprioceptive recalibration appears
 344 unaffected by this perception. Even with reported awareness of an offset, in the first half of
 345 Experiment 2 (0 – 70 mm offset), we did not detect a significant association between their max
 346 perceived offset magnitude and their total recalibration. Of course, we cannot rule out that there is a
 347 relationship (of moderate effect size (Cohen 1988)) that is too weak or noisy to detect in the present
 348 study, and that such a relationship might be detectable in a larger study. However, the Experiment 1
 349 Mismatch session is consistent with a lack of relationship between perceived offset and recalibration.
 350 This also featured a 0 – 70 mm offset, and there was no indication that the individuals who reported
 351 any amount of offset in the correct direction recalibrated differently than the other participants.

352 Further support for the idea that perceived offset at 70 mm does not affect recalibration when
 353 the offset is < 70 mm comes from comparing the magnitude of recalibration in the Mismatch session
 354 of Experiment 1 with recalibration at Block 4 in Experiment 2. At the end of the 70 mm Mismatch
 355 session of Experiment 1, subjects had recalibrated vision 36.3 mm and proprioception 12.4 mm on
 356 average. This is 48.7 mm total, or 70% of the 70 mm offset. In Block 4 of Experiment 2, subjects had
 357 recalibrated vision 37.0 mm and proprioception 13.1 mm. This is 50.1 mm in total, or 72% of the 70
 358 mm offset. Thus, recalibration in the two experiments is almost identical, in total and in each
 359 modality, despite the greater awareness of the offset among Experiment 2 participants. Taken
 360 together, these results suggest that if offset is less than 70 mm, recalibration of vision and
 361 proprioception proceeds robustly even after the offset is recognized.

362 In contrast with smaller offsets (< 70 mm), we found that when the offset is larger, awareness
 363 of the offset is clearly associated with reduced recalibration, consistent with the causal inference
 364 framework. In Experiment 2, max perceived offset was negatively correlated with total realignment
 365 by Block 8, when offset had reached 140 mm. The effect size of this correlation is considered large
 366 (Cohen 1988). However, no association was evident at Block 4, when offset had reached 70 mm. It
 367 should also be noted that in Experiment 2, Block 8, visual realignment was 51.6 mm while
 368 proprioceptive realignment was 24.2 mm. This is 75.8 mm in total, or 54% of the 140 mm offset.
 369 Compared to the ~70% compensation we observed in the first four blocks, this supports the idea that
 370 at larger magnitudes of mismatch, inferring a separate cause leads to reduced integration and
 371 recalibration, consistent with the causal inference framework.

372 4.3 Linking these results with the causal inference framework

373 The causal inference literature makes clear predictions about cross-sensory recalibration in the
 374 context of offset awareness. In the case of visuo-proprioceptive recalibration, these predictions have
 375 been previously tested in experimental paradigms related to the rubber hand illusion (RHI) (Fang et
 376 al. 2019; Samad et al. 2015). The RHI involves a spatial discrepancy between the seen fake arm and
 377 the felt real arm that creates the illusion of body ownership over the fake arm when both arms are
 378 stroked synchronously (Botvinick and Cohen 1998). This paradigm is thought to involve
 379 proprioceptive recalibration, usually described as drift (Butler et al. 2017). There are important
 380 differences between the RHI and the present study: our paradigm lacked any synchronous tactile
 381 stimulation, reduced the visual stimulus to a disembodied white square, and assessed visual as well as
 382 proprioceptive recalibration. However, the RHI can occur in the absence of synchronous stroking
 383 (Samad et al. 2015), so it is reasonable to compare our results with the RHI literature.

384 Samad et al. (2015) described the RHI as a consequence of causal inference involving three
 385 sensory stimuli: visual, tactile, and proprioceptive. When temporal visual and tactile signals are

386 synchronous, and the distance between rubber and real hand is relatively small, a common cause is
 387 likely to be inferred (Samad et al. 2015). When a common cause is inferred, proprioceptive
 388 recalibration occurs in a predictable manner, and when separate causes are inferred, proprioceptive
 389 recalibration is reduced or eliminated (Fang et al. 2019; Samad et al. 2015). Our findings are thus
 390 somewhat contrary to the predictions of a causal inference framework. Recalibration was reduced at
 391 large visuo-proprioceptive offsets in Experiment 2 (up to 140 mm), and this reduction was indeed
 392 linked to perceived offset; however, at smaller offsets (< 70 mm), sensory recalibration was similar
 393 between participants who perceived a common cause and those who did not. This was evident in both
 394 Experiment 1 and in the first half of Experiment 2.

395 Similar recalibration regardless of offset awareness suggests that explicit declaration of a
 396 separate cause may not override the intrinsic belief in a common cause at offsets of this magnitude.
 397 Indeed, others have suggested that unconscious belief in a common cause may continue even when
 398 subjects explicitly know about the offset (Chen and Spence 2017; Welch and Warren 1980).
 399 Specifically, knowledge of a relatively small prism-induced offset (10 – 16°) does not appear to
 400 affect proprioceptive recalibration (Welch and Warren 1980). Thus, in our study, at offsets below 70
 401 mm, participants could report perceiving a forward offset but still have an unconscious belief that
 402 both stimuli have a common cause.

403 One possible explanation for the apparent boundary at 70 mm of offset is participants' own
 404 biased visual and proprioceptive estimates even in veridical conditions; even in the absence of
 405 perturbation, visual and proprioceptive finger estimates do not agree perfectly (Smeets et al. 2006).
 406 On average, these estimates are about 20 mm apart in healthy young adults (Liu et al. 2018).
 407 Interestingly, the average reported offset magnitude in people who perceived a forward offset in
 408 Experiment 2 was consistently less than half of the true magnitude. Thus, perceived offset was about
 409 30 mm after the first half of Experiment 2, when true offset was 70 mm. This perceived offset is a
 410 roughly similar magnitude to the natural mismatch in visual and proprioceptive estimates (Liu et al.
 411 2018). In other words, perhaps perceived offset must reach magnitudes substantially larger than a
 412 person's own natural mismatch between visual and proprioceptive estimates in order to override their
 413 unconscious belief in a common cause. This could be tested in future studies by assessing whether an
 414 individual's visuo-proprioceptive biases in veridical conditions (Liu et al. 2018) predict the offset
 415 magnitude at which awareness of the offset begins to reduce recalibration.

416 In addition, while visuo-proprioceptive recalibration differs in many respects from visuomotor
 417 adaptation – a process requiring feedback about movement errors – the concept of error attribution
 418 may be a relevant parallel (Berniker and Kording 2008). It is possible that in the present study, when
 419 visuo-proprioceptive mismatch reaches the larger magnitudes (70 – 140 mm), the brain begins to
 420 attribute the mismatch to external sources (e.g., features of the VR apparatus or a shift in tactile
 421 marker position) as opposed to a mismatch between sensory estimates, resulting in less recalibration.
 422 The question of internal vs. external attribution is beyond the scope of the present study, which did
 423 not ask subjects who perceived an offset to explain what they attributed the offset to. Further studies
 424 would be needed to determine if visuo-proprioceptive recalibration is affected by attribution, as
 425 motor adaptation is.

426 4.4 Neural overlap between multisensory spatial perception and attention systems

427 Attention is known to interact extensively with both sensory processing and behavioral
 428 performance. This includes regions known to be involved in multisensory integration, peripersonal
 429 space perception, and body ownership systems. Multisensory integration of visual and proprioceptive

430 signals is largely associated with posterior parietal cortex (PPC). In monkeys, multimodal neurons
 431 responding to both “seen” and “felt” position of the limb exist in regions of posterior parietal cortex
 432 (PPC) (Graziano 1999; Graziano et al. 2000). Neuroimaging studies of the RHI have linked
 433 proprioceptive recalibration to PPC activity (Brozzoli et al. 2012). Recent human fMRI data indicates
 434 that visuo-proprioceptive congruence, a computation likely important for visuo-proprioceptive
 435 recalibration, modulates activity in several posterior parietal regions, such as anterior superior
 436 parietal lobule (Limanowski and Blankenburg 2016), which corresponds to monkey area 5.

437 Human neuroimaging work has revealed distinct frontoparietal networks for PPS perception,
 438 which is often associated with sensorimotor tasks, and for the subjective sensation of body
 439 ownership, which is linked to attention and awareness tasks (Grivaz et al. 2017). Functionally, the
 440 two networks mediate individual-environment interactions through their interactions within a more
 441 extended multisensory-motor frontoparietal network (Grivaz et al. 2017). For example, human
 442 neuroimaging studies have linked the feeling of hand ownership in the RHI with activity in premotor
 443 cortex (Ehrsson et al. 2004, 2005; Gentile et al. 2013). Recent work by Fang et al. (2019) has
 444 specifically linked neural activity in premotor cortex to RHI strength in monkeys. The study
 445 developed a linear probabilistic model that successfully predicted whether the fake arm would be
 446 integrated or segregated (suggesting inference of common cause vs. separate cause) at the level of
 447 single neurons in premotor cortex (Fang et al. 2019).

448 Attention allows the completion of behavioral goals through the flexible selection and
 449 enhancement of a set of sensory inputs, thereby increasing the strength of the neuronal signals within
 450 that sensory area (Clark et al. 2015). This is indicated by an increase in synaptic efficacy, decreases
 451 in neuronal response latency, and alterations to the neuronal receptive fields which may allow for
 452 more resources to be dedicated to the area of concern (Clark et al. 2015). Attention also increases
 453 motor performance outcomes. Dual-task studies suggest that divided attention results in the
 454 impairment of motor performance as attentional resources are being depleted (Song 2019). We can
 455 assume that the repeated questioning about the participant’s perception after every block increased
 456 their attention to the possibility of an offset, which consequently allowed for more resources to be
 457 dedicated to the task, increasing their performance and perception of the offset.

458 4.5 Limitations and future directions

459 When we found that participants consistently underestimated the magnitude of visuo-
 460 proprioceptive offset in Experiment 2, we wondered if this could be explained by participants being
 461 biased at estimating distances in general. For example, perhaps a participant actually perceives a 10
 462 cm offset, but when asked to report that distance, estimates it to be only 4 cm. However, in
 463 Experiment 3, we found that participants were unbiased on average when asked to report the length
 464 of a series of white lines presented in the task display. This suggests that the under-reporting of
 465 perceived offset magnitude was not due to a systematic bias in estimating distances in general.

466 The conclusions of the present study are based on subjects’ verbal assessment of perceived
 467 offset, along with visuo-proprioceptive recalibration assessed by pointing with the other hand. One
 468 downside of relying on participants’ self-report of perceived offset is that participants may not be
 469 able to assess their perceptions accurately. Another could be a difference in the interpretation of
 470 questions, specifically the question “*did it always feel like the white square was directly on top of
 471 your left finger, or did it feel off?*”. This question was asked of every participant the same way, but
 472 some needed clarification before they could answer it. When necessary, we clarified that we were not
 473 asking about V or P trials or their right hand, but rather about their perception of their left hand
 474 during VP trials. Importantly, this was simply the first question, intended to screen out subjects who

475 never noticed any offset. For those who responded that they did feel an offset, we then asked them to
 476 estimate the direction and magnitude, which is what was analyzed. It may be advantageous for future
 477 studies to assess these parameters by alternative methods such as gaze tracking, given the importance
 478 of eye movements in attention.

479 It should be noted that, although participants were asked to gaze at a red cross during each trial,
 480 the lack of eye tracking assessment in the present study means that we have no way to know where
 481 they were looking. Although participants heard a recording of this instruction at the beginning of
 482 every trial, we acknowledge it would not likely be sufficient to override a participant's natural
 483 instinct to look toward the pointing target, at least initially. We must also offer the strong caveat that
 484 subjects may have employed different gaze strategies (e.g., gazing at the perceived P target location),
 485 which could explain substantial variations in offset detection or recalibration across participants.

486 We chose this method of assessing perceived offset in order for the results to be comparable
 487 with our previous investigations using this task (Mirdamadi et al. 2021; Munoz-Rubke et al. 2017).
 488 There are undoubtedly other methods that may yield interesting results in future studies. For
 489 example, if participants are asked to choose from an array of visual markers the one that best
 490 represents where the visual target was presented during the task, it might show that participants
 491 actually perceive more of the offset than they are consciously aware of. Taking a psychometric
 492 approach could also yield more precise estimates of participants' perceptions with less chance of
 493 them misunderstanding a question. However, such procedures are more time consuming and would
 494 be difficult to repeat 8 times during a single-session experiment, as we did in Experiment 2.

495 Another manipulation that might affect awareness of offset would be to make the visuo-
 496 proprioceptive mismatch occur abruptly. In the present study, visuo-proprioceptive offset increased
 497 gradually, 1.67 mm per VP trial. If the 70 mm or 140 mm full offset were reached in one or just a
 498 few trials, we might suppose that most participants would become aware of the perturbation. On the
 499 other hand, an abrupt shift may seem more natural and requiring of fewer cognitive resources; in real
 500 life, when we experience such an offset by viewing our hand under water, the visuo-proprioceptive
 501 offset occurs abruptly, not gradually.

502 In a Bayesian causal inference framework (Ghahramani et al. 1997; Samad et al. 2015), we
 503 would expect participants with more precise visual and proprioceptive estimates to more easily detect
 504 an offset between visual and proprioceptive cues. In theory, we could test this prediction in a future
 505 study with a large baseline block of veridical visual and proprioceptive targets, which would allow us
 506 to estimate participants' visual and proprioceptive variance (Block and Bastian 2010). In practice,
 507 this prediction could be complicated by the presence of participants' naturally-occurring biases in
 508 visual and proprioceptive target estimation (Liu et al. 2018; Smeets et al. 2006), as discussed above.
 509 In other words, a participant may have low variance in their visual and proprioceptive estimates, but
 510 perceive these stimuli as several centimeters apart even when presented veridically. This person may
 511 be worse at detecting a true offset, because they are already accustomed to their own biased
 512 perception. Or it may depend on the spatial orientation of their natural biases. In any case, this would
 513 be an interesting question for future study.

514 4.6 Conclusions

515 Here we found that when a 70 mm mismatch is gradually imposed between visual and
 516 proprioceptive estimates of hand position, individuals are unlikely to become aware of this
 517 spontaneously. When directed to attend to visuo-proprioceptive alignment by repeated questioning,
 518 conscious awareness of the mismatch was linked to reduced compensation only at higher mismatch

519 magnitudes (70 – 140 mm). These results are consistent with causal inference predictions at larger
 520 offsets. At smaller offsets, conscious perception of an offset may not override unconscious belief in a
 521 common cause, perhaps because the perceived offset magnitude is in range of subjects' natural
 522 sensory biases.

523 **5 References**

524 **Beauchamp MS, Pasalar S, Ro T.** Neural substrates of reliability-weighted visual-tactile
 525 multisensory integration. *Front SystNeurosci* 4: 25, 2010.

526 **van Beers RJ, Sittig AC, Gon JJ.** Integration of proprioceptive and visual position-information: An
 527 experimentally supported model. *J Neurophysiol* 81: 1355–1364, 1999.

528 **van Beers RJ, Wolpert DM, Haggard P.** When feeling is more important than seeing in
 529 sensorimotor adaptation. *CurrBiol* 12: 834–837, 2002.

530 **Berger DR, Bülthoff HH.** The role of attention on the integration of visual and inertial cues. *Exp*
 531 *Brain Res* 198: 287–300, 2009.

532 **Berniker M, Kording K.** Estimating the sources of motor errors for adaptation and generalization.
 533 *Nat Neurosci* 11: 1454–1461, 2008.

534 **Block H, Bastian A, Celnik P.** Virtual lesion of angular gyrus disrupts the relationship between
 535 visuoproprioceptive weighting and realignment. *J Cogn Neurosci* 25: 636–648, 2013.

536 **Block HJ, Bastian AJ.** Sensory reweighting in targeted reaching: effects of conscious effort, error
 537 history, and target salience. *JNeurophysiol* 103: 206–217, 2010.

538 **Block HJ, Bastian AJ.** Sensory weighting and realignment: independent compensatory processes.
 539 *JNeurophysiol* 106: 59–70, 2011.

540 **Block HJ, Bastian AJ.** Cerebellar involvement in motor but not sensory adaptation.
 541 *Neuropsychologia* 50: 1766–1775, 2012.

542 **Block HJ, Sexton BM.** Visuo-Proprioceptive Control of the Hand in Older Adults. *Multisensory*
 543 *Research* 34: 93–111, 2020.

544 **Blouin J, Saradjian AH, Lebar N, Guillaume A, Mouchnino L.** Opposed optimal strategies of
 545 weighting somatosensory inputs for planning reaching movements toward visual and proprioceptive
 546 targets. *Journal of Neurophysiology* 112: 2290–2301, 2014.

547 **Botvinick M, Cohen J.** Rubber hands “feel” touch that eyes see. *Nature* 391: 756, 1998.

548 **Brozzoli C, Gentile G, Ehrsson HH.** That's near my hand! Parietal and premotor coding of hand-
 549 centered space contributes to localization and self-attribution of the hand. *J Neurosci* 32: 14573–
 550 14582, 2012.

551 **Butler AA, Héroux ME, Gandevia SC.** Body ownership and a new proprioceptive role for muscle
 552 spindles. *Acta Physiol (Oxf)* 220: 19–27, 2017.

553 **Chen Y-C, Spence C.** Assessing the Role of the ‘Unity Assumption’ on Multisensory Integration: A
554 Review. *Front Psychol* 8: 445, 2017.

555 **Clark K, Squire RF, Merrikhi Y, Noudoost B.** Visual attention: Linking prefrontal sources to
556 neuronal and behavioral correlates. *Progress in Neurobiology* 132: 59–80, 2015.

557 **Cohen J.** *Statistical Power Analysis for the Behavioral Sciences*. 2 edition. Hillsdale, N.J: Routledge,
558 1988.

559 **Debats NB, Heuer H.** Optimal integration of actions and their visual effects is based on both online
560 and prior causality evidence. *Sci Rep* 8: 9796, 2018.

561 **Ehrsson HH, Holmes NP, Passingham RE.** Touching a rubber hand: feeling of body ownership is
562 associated with activity in multisensory brain areas. *J Neurosci* 25: 10564–10573, 2005.

563 **Ehrsson HH, Spence C, Passingham RE.** That’s my hand! Activity in premotor cortex reflects
564 feeling of ownership of a limb. *Science* 305: 875–877, 2004.

565 **Ernst MO, Banks MS.** Humans integrate visual and haptic information in a statistically optimal
566 fashion. *Nature* 415: 429–433, 2002.

567 **Fang W, Li J, Qi G, Li S, Sigman M, Wang L.** Statistical inference of body representation in the
568 macaque brain. *Proc Natl Acad Sci U S A* 116: 20151–20157, 2019.

569 **Fetsch CR, DeAngelis GC, Angelaki DE.** Bridging the gap between theories of sensory cue
570 integration and the physiology of multisensory neurons. *Nat Rev Neurosci* 14, 2013.

571 **French RL, DeAngelis GC.** Multisensory neural processing: from cue integration to causal
572 inference. *Current Opinion in Physiology* 16: 8–13, 2020.

573 **Gentile G, Guterstam A, Brozzoli C, Ehrsson HH.** Disintegration of multisensory signals from the
574 real hand reduces default limb self-attribution: an fMRI study. *J Neurosci* 33: 13350–13366, 2013.

575 **Ghahramani Z, Wolpert DM, Jordan MI.** Computational models for sensorimotor integration. In:
576 *Self-Organization, Computational Maps and Motor Control*, edited by Morasso PG, Sanguineti V.
577 Amsterdam: North-Holland, 1997, p. 117–147.

578 **Graziano MS.** Where is my arm? The relative role of vision and proprioception in the neuronal
579 representation of limb position. *Proc Natl Acad Sci USA* 96: 10418–10421, 1999.

580 **Graziano MS, Cooke DF, Taylor CS.** Coding the location of the arm by sight. *Science* 290: 1782–
581 1786, 2000.

582 **Grivaz P, Blanke O, Serino A.** Common and distinct brain regions processing multisensory bodily
583 signals for peripersonal space and body ownership. *NeuroImage* 147: 602–618, 2017.

584 **Henriques DYP, Cressman EK.** Visuomotor adaptation and proprioceptive recalibration. *J Mot
585 Behav* 44: 435–444, 2012.

586 **Kording KP, Beierholm UR, Ma WJ, Quartz S, Tenenbaum JB, Shams L.** Causal Inference in
587 Multisensory Perception. *PLoS ONE*, 2007. doi:10.1371/journal.pone.0000943.

588 **Kording KP, Wolpert DM.** Bayesian decision theory in sensorimotor control. *Trends Cogn Sci* 10: 589 319–326, 2006.

590 **Liu Y, Sexton BM, Block HJ.** Spatial bias in estimating the position of visual and proprioceptive 591 targets. *J Neurophysiol* , 2018. doi:10.1152/jn.00633.2017.

592 **Mirdamadi JL, Seigel CR, Husch SD, Block HJ.** Somatotopic Specificity of Perceptual and 593 Neurophysiological Changes Associated with Visuo-proprioceptive Realignment. *Cerebral Cortex* , 594 2021. doi:10.1093/cercor/bhab280.

595 **Munoz-Rubke F, Mirdamadi JL, Lynch AK, Block HJ.** Modality-specific Changes in Motor 596 Cortex Excitability After Visuo-proprioceptive Realignment. *J Cogn Neurosci* 29: 2054–2067, 2017.

597 **Noppeney U.** Perceptual Inference, Learning, and Attention in a Multisensory World. *Annu Rev 598 Neurosci* 44: 449–473, 2021.

599 **Proske U, Gandevia SC.** The Proprioceptive Senses: Their Roles in Signaling Body Shape, Body 600 Position and Movement, and Muscle Force. *Physiol Rev* 92: 1651–1697, 2012.

601 **Rossi C, Bastian AJ, Therrien AS.** Mechanisms of proprioceptive realignment in human motor 602 learning. *Current Opinion in Physiology* 20: 186–197, 2021.

603 **Salomonczyk D, Cressman EK, Henriques DYP.** The role of the cross-sensory error signal in 604 visuomotor adaptation. *Exp Brain Res* 228: 313–325, 2013.

605 **Samad M, Chung AJ, Shams L.** Perception of Body Ownership Is Driven by Bayesian Sensory 606 Inference. *PLOS ONE* 10: e0117178, 2015.

607 **Shadmehr R, Smith MA, Krakauer JW.** Error correction, sensory prediction, and adaptation in 608 motor control. *Annu Rev Neurosci* 33: 89–108, 2010.

609 **Shams L, Beierholm UR.** Causal inference in perception. *Trends in Cognitive Sciences* 14: 425– 610 432, 2010.

611 **Smeets JB, van den Dobbelaer JJ, de Grave DD, van Beers RJ, Brenner E.** Sensory integration 612 does not lead to sensory calibration. *Proc Natl Acad Sci USA* 103: 18781–18786, 2006.

613 **Sober SJ, Sabes PN.** Flexible strategies for sensory integration during motor planning. *Nat Neurosci* 8: 490–497, 2005.

615 **Song J-H.** The role of attention in motor control and learning. *Current Opinion in Psychology* 29: 616 261–265, 2019.

617 **Wei K, Kording KP.** Causal Inference in Sensorimotor Learning and Control. In: *Sensory Cue 618 Integration*. Oxford University Press.

619 **Welch RB, Warren DH.** Immediate perceptual response to intersensory discrepancy. *Psychol Bull* 620 88: 638–667, 1980.

621

622 **6 Conflict of Interest**

623 The authors declare that the research was conducted in the absence of any commercial or financial
 624 relationships that could be construed as a potential conflict of interest.

625 **7 Author Contributions**

626 AH: Conceptualization, Investigation, Formal analysis, Writing - original draft. TLM: Formal
 627 analysis, Software, Visualization, Writing - review and editing. HB: Conceptualization,
 628 Methodology, Software, Writing - review and editing, Funding acquisition, Supervision.

629 **8 Funding**

630 Experiment 1 was supported by the National Science Foundation, grant 1753915. Experiments 2 and
 631 3 were supported by the National Institute of Neurological Disorders and Stroke, grant
 632 R01NS112367.

633 **9 Data Availability Statement**

634 The raw data supporting the conclusions of this article will be made available by the authors, without
 635 undue reservation.

636 **10 Figure captions**

637 **Figure 1. A.** Apparatus for all three experiments. Task display (top) was viewed in a mirror (middle),
 638 making it appear that images in the mirror were in the plane of the touchscreens (bottom). For Expt. 1
 639 and 2, the right index finger served as the indicator finger, always remaining above the glass, and the
 640 left as the target finger, always remaining below the glass. Participants had no direct vision of either
 641 hand. **B.** Targets in Expt. 1 and 2. Participants moved their indicator finger from the yellow start box
 642 to the perceived VP, P, or V target position. No performance feedback was given. Top row: Early in
 643 the session, VP targets were veridical, with the white square projected directly over the target
 644 fingertip. Bottom row: The white square gradually shifted forward from the target fingertip to create
 645 visuo-proprioceptive offset in Expt. 2 and the Mismatch session of Expt. 1. Dashed lines not visible
 646 to participants. **C.** Experiment 2 participants received specific instructions in a slide presentation
 647 before beginning the task. This sequence was intended to prepare participants to report their
 648 perceived visuo-proprioceptive offset after each block of 21 trials, without revealing that there would
 649 be an externally imposed offset.

650 **Figure 2. Experiment 1 results.** **A.** Percentage of 62 participants who reported perceiving an offset
 651 in various directions after the Mismatch (i) and Veridical session (ii). **B.** Group visual and
 652 proprioceptive estimates (mean and standard error) across trials in the Mismatch (i) and Veridical (ii)
 653 session (N=62). Shaded arrows reflect visual (blue) and proprioceptive (red) recalibration magnitude
 654 in the Mismatch session. Perceived forward offset magnitude, averaged across all 62 subjects, was
 655 less than 1 mm in both sessions (open circle). **C.i-iii.** Visual, proprioceptive, and total recalibration in
 656 the Mismatch session, compared across subjects who did (N=10) and did not (N=52) report a forward
 657 offset at the end of the session. The central mark in each box indicates the median. Bottom and top
 658 edges of box represent 25th and 75th percentile, respectively. Dashed lines extend to most extreme
 659 data points not considered outliers, and crosses represent outliers.

660 **Figure 3. Experiment 2 results.** Each block contained 21 trials: 10 VP and 5-6 each of V and P
661 targets. **A-C.** Three example participants. Red arrow represents proprioceptive recalibration (change
662 in P target overshoot). Blue arrow represents visual recalibration (change in V target undershoot).
663 Open circles represent forward offset reported after each block. **D.** Group (N=20) visual and
664 proprioceptive estimates (mean and standard error) across blocks, relative to actual V targets (solid
665 grey line) and actual P targets (dashed grey line). Shaded arrows reflect visual (blue) and
666 proprioceptive (red) recalibration magnitude. **E.** Group (N=20) reported forward offset (mean and
667 standard error) across blocks, relative to actual offset (solid grey line). Thin lines depict individual
668 participants.

669 **Figure 4.** Experiment 2 total recalibration magnitude (visual plus proprioceptive) vs. the maximum
670 visuo-proprioceptive offset reported. N=20. **A.** Between Block 1 and Block 4, there was no
671 correlation between total recalibration and max noticed offset. At the end of Block 4, actual offset
672 was 70 mm. **B.** At the end of Block 8, total recalibration was negatively correlated with the
673 maximum offset perceived.

674 **Figure 5.** Group (N=20) level estimates of line lengths. Grey dots represent the average length
675 estimate per orientation for each subject. 1:1 proportion of guessed length is represented by the
676 horizontal dotted line. For all except for the Horizontal 3 cm line, there was no significant difference
677 between guessed length and actual length. Error bars represent standard deviation.