

Visuo-proprioceptive recalibration and the sensorimotor map

Hannah J. Block, Yang Liu

Indiana University Bloomington, School of Public Health, Department of Kinesiology

Indiana University Bloomington, Program in Neuroscience

ORCID

10 Hannah J. Block: 0000-0002-1561-2718

11

12 Address for correspondence:

13 Hannah J. Block

14 hjblock@indiana.edu

15 1025 E. 7th St., PH 112

16 Bloomington IN 47405

17

18 **Running title:** Visuo-proprioceptive recalibration and the sensorimotor map

19

21

22

23
24

25

26

27

20

30

31

32

34

35 **ABSTRACT**

36 Spatial perception of our hand is closely linked to our ability to move the hand accurately. We might
37 therefore expect that reach planning would take into account any changes in perceived hand position; in
38 other words, that perception and action relating to the hand should depend on a common sensorimotor
39 map. However, there is evidence to suggest that changes in perceived hand position affect a body
40 representation that functions separately from the body representation used to control movement. Here
41 we examined target-directed reaching before and after participants either did (Mismatch group) or did
42 not (Veridical group) experience a cue conflict known to elicit recalibration in perceived hand position.
43 For the reaching task, participants grasped a robotic manipulandum that positioned their unseen hand
44 for each trial. Participants then briskly moved the handle straight ahead to a visual target, receiving no
45 performance feedback. For the perceptual calibration task, participants estimated the locations of
46 visual, proprioceptive, or combined cues about their unseen hand. The Mismatch group experienced a
47 gradual 70 mm forward mismatch between visual and proprioceptive cues, resulting in forward
48 proprioceptive recalibration. Participants made significantly shorter reaches after this manipulation,
49 consistent with feeling their hand to be further forward than it was, but reaching performance returned
50 to baseline levels after only 10 reaches. The Veridical group, after exposure to veridically-aligned visual
51 and proprioceptive cues about the hand, showed no change in reach distance. These results suggest that
52 perceptual recalibration affects the same sensorimotor map that is used to plan target-directed reaches.

53

54 **KEYWORDS**

55 Reaching, sensorimotor map, recalibration, proprioception, hand

56

57

58 **NEW & NOTEWORTHY**

59 If perceived hand position changes, we might assume this affects the sensorimotor map and, in turn,
60 reaches made with that hand. However, there is evidence for separate body representations involved in

61 perception vs. action. After a cross-sensory conflict that results in proprioceptive recalibration in the
62 forward direction, participants made shorter reaches as predicted, but only briefly. This suggests
63 perceptual recalibration does affect the sensorimotor map used to plan reaches, but the interaction
64 may be short-lived.

65

66 1. INTRODUCTION

67 To plan and execute hand movements to interact efficiently with objects in the environment, the brain
68 must have an accurate representation of the hand's position. This representation is thought to be
69 multisensory, including both visual information from the eyes and proprioceptive information from the
70 muscles and joints of the upper limb (1). When both a visual estimate (h_V) and a proprioceptive estimate
71 (h_P) of true hand position (H) are available, these are weighted and combined to form a single integrated
72 estimate (h_{VP}):

$$73 \quad h_{VP} = w_V h_V + (1 - w_V) h_P \quad (1)$$

74 where w_V is the weight of vision relative to proprioception (i.e., $w_V = 0.7$ implies 70% reliance on vision
75 and 30% reliance on proprioception). Weighting may be determined by relative variance in the sensory
76 signals (1–3) as well as top-down influences such as attention or task demands (4,5).

77

78 h_V and h_P do not agree perfectly even in normal circumstances (6), but in the presence of an externally-
79 imposed conflict between these cues, visuo-proprioceptive recalibration occurs (7–9). This may involve
80 both a shift of the proprioceptive estimate closer to the visual estimate (Δh_P), and vice versa (Δh_V).

81 Proprioceptive recalibration can be conceptualized as perceiving the endpoint effector (hand) to be
82 closer to a visual cue than it is in reality; in other words, a high-level change in bodily perception. This
83 does not necessarily imply a change in the lower-level proprioceptive signals about arm configuration.
84 Indeed, we recently found evidence that proprioceptive recalibration is somatotopically focal (10): when

85 visual cues of fingertip position are shifted forward from proprioceptive cues, the fingertip feels as
86 though it has shifted further away from the body. The knuckle was also felt to be forward-shifted to a
87 lesser extent, but wrist and elbow perception did not show any evidence of a shift (10). In other words,
88 when induced this way, “proprioceptive recalibration” is really a localized distortion in the high-level
89 proprioceptively-derived representation of fingertip position that is evident when only somatosensory
90 cues are available.

91 We might expect that reach planning would take into account any such changes in perceived hand
92 position; in other words, that perception and action relating to the hand should depend on a common
93 sensorimotor map. We recently observed somatotopically-focal changes in the excitability of primary
94 motor cortex (M1) that were specifically related to visuo-proprioceptive recalibration, after controlling
95 for motor behavior (10,11); findings like these are suggestive of a close relationship between perception
96 of hand position and motor execution involving that hand. However, substantial work has suggested
97 that changes in perceived hand position may affect a body representation that functions separately
98 from the body representation used to control movement; these have been referred to as the body
99 image and body schema, respectively (12–14).

100
101 Literature addressing some form of visuo-proprioceptive recalibration is mixed as to whether movement
102 is affected. One challenge is the lack of research specifically focused on visuo-proprioceptive
103 recalibration, unconfounded by other processes that are often the primary focus. For example, there is
104 relevant literature using the Rubber Hand Illusion (RHI), a paradigm that creates illusory body ownership
105 over a fake arm through synchronous stroking of the seen fake arm and the hidden real arm (15). The
106 RHI in a sense involves a visuo-proprioceptive cue conflict, since the fake arm is meant to be a visual cue
107 related to the real arm, and proprioceptive recalibration (described as drift in this literature) is thought
108 to occur (16,17). Kammers et al. (2009) concluded that the RHI affected the body image but not the

109 body schema, after observing that perceptual judgments, but not ballistic motor responses, were
110 sensitive to the RHI. On the other hand, in the original RHI study by Botvinick and Cohen (1998), the
111 illusion was assessed by having participants point at the perceived location of their other hand, a motor
112 response that clearly *was* affected by the RHI (12,15). A complication is that in both studies, the pointing
113 movements (15) and ballistic movements (12) were directed toward the other hand, potentially causing
114 participants to access both body schema and body image.

115

116 A second relevant body of literature is the subset of visuomotor adaptation research that measures
117 proprioceptive recalibration. Visuomotor adaptation is a cerebellum-dependent process in which
118 participants experience a systematic perturbation of their movements and gradually compensate by
119 updating their sensorimotor map to reduce systematic errors (18,19). A common method of
120 perturbation is cursor rotation, where participants move their unseen hand to guide a cursor to a target
121 on a screen. The cursor can be rotated; e.g., a movement straight ahead results in the cursor moving
122 30° to the right. In addition to causing movement errors that lead to updating of motor commands, the
123 mismatch between hand and cursor creates a visuo-proprioceptive conflict. Indeed, proprioceptive
124 recalibration has now been documented extensively in this paradigm (8,20,21).

125

126 Several studies have used a modified cursor rotation paradigm to eliminate the motor adaptation
127 aspect: participants move their hand along a set channel that gradually deviates from the cursor, which
128 always moves to the target so that no movement error is apparent but the visuo-proprioceptive
129 mismatch is still created (22–24). Participants indeed recalibrate proprioception in these circumstances,
130 and additionally, target-directed reaches with no cursor show a shift in direction consistent with the
131 change in felt hand movement direction (22–24).

132

133 It makes sense that a visuo-proprioceptive mismatch created in the context of cursor rotation, with the
134 hand actively or passively moved in a direction rotated from the cursor and target, would alter the same
135 sensorimotor map used to plan target-directed reaches. However, it is difficult to generalize this finding
136 to visuo-proprioceptive recalibration in general, which does not require either active or passive
137 movement, or a movement target. In the cursor rotation paradigm, the cue conflict exists only in the
138 context of target-directed movement: the conflict changes from zero at the home position to some
139 maximum angular deviation at the target position.

140

141 Here we ask a slightly different question: Does visuo-proprioceptive recalibration, triggered with a cue
142 conflict at a static position, affect the same sensorimotor map used to make active target-directed
143 reaching movements? Or does it affect a separate body representation, as in the body image vs. body
144 schema concept? To answer this question, two groups of participants made straight-ahead target-
145 directed reaches, with no cursor, before and after experiencing either a visuo-proprioceptive conflict
146 (Mismatch group) or veridical visuo-proprioceptive cues (Veridical group) while the hand was stationary.
147 The cue conflict was introduced by gradually shifting the visual cue forward from the hand, to a
148 maximum of 70 mm (Fig. 1). Proprioceptive recalibration was thus expected in the forward direction
149 (Fig. 1Bii). We therefore predicted that the Mismatch group, feeling the hand to be further forward than
150 it really was after proprioceptive recalibration, would make shorter reaches after experiencing the
151 conflict (Fig. 1Ci-ii), while Veridical group reach distance would remain unchanged.

152

153

154

155

156 **2. METHODS**

157 **Participants**

158 32 healthy right-handed adults participated in the study, which consisted of one lab visit. Inclusion
159 criteria were: aged 18-45 and right handed with normal or corrected-to-normal vision. Exclusion criteria
160 were any muscular, orthopedic, or neurological disorders. All enrolled participants reported that they
161 met these inclusion and exclusion criteria. The study was approved by Indiana University Institutional
162 Review Board, and all participants gave written informed consent. Participants were randomly assigned
163 to the Mismatch group (N = 16, mean age $19.9 \pm SD 1.2$ years, 4 males) or the Veridical group (N = 16,
164 mean age 20.5 ± 1.8 years, 6 males) using a random sequence of ones and twos (16 of each) generated
165 in MATLAB 2021a (Mathworks). The study was single blind, with the experimenter knowing the
166 participant's group assignment but the participant not knowing.

167

168 **Apparatus**

169 Participants were seated at a reflected rear projection apparatus to perform a task with three parts (Fig.
170 1), grasping the handle of a KINARM Endpoint 2D robotic manipulandum (BKIN) with their right hand
171 throughout. Positional accuracy of the manipulandum, with high-resolution secondary encoders, is 3
172 microns; inertial load of the passive manipulandum is 0.8/1.0 kg (minor/major axes). Participants had no
173 direct vision of their hand, but viewed a task display that appeared to be in the plane of the
174 manipulandum (Fig. 1A).

175

176 **Procedures**

177 The experimental session consisted of three parts. First, pre-calibration straight-ahead right-hand
178 reaches to a visual target with no visual feedback about the right hand (Fig. 1A). Second, a visuo-
179 proprioceptive calibration task with either mismatched or veridical visual and proprioceptive cues about
180 the right hand, depending on group assignment (Fig. 1B). Third, post-calibration straight-ahead right-
181 handed reaches to a visual target with no visual feedback about the right hand (Fig. 1C). The experiment

182 was preceded by instructions about the two tasks (reaching and calibration) and practice of each task.

183 The whole session took about one hour.

184

185

186 Straight-ahead reaching. Before and after the visuo-proprioceptive calibration task (Fig. 1A and C),
187 participants were asked to grasp the manipulandum handle in their right hand and briskly move from
188 the starting position to the target. The hand was brought passively to the starting position for each trial,
189 as the starting position was not visible. No online or endpoint visual feedback about hand position was
190 given at any point in this task. Reach endpoint was defined as the position at which movement velocity
191 dropped below 5% of peak velocity.

192 In addition to practice trials, participants performed 20 reaches pre-calibration and 20 reaches post-
193 calibration. The starting position was located at the participant's body midline, about 20 cm in front of
194 their chest. The visual target was located 10 cm forward of the starting position.

195 Reaches were binned into sets of 5. To determine if reach endpoints were closer or further from the
196 participant after the calibration task, the y-coordinates of each set of 5 reach endpoints were averaged
197 within participants.

198 Visuo-proprioceptive calibration task. Visuo-proprioceptive estimates of hand position are most
199 commonly measured and/or perturbed with a bimanual task, using an "indicator" (left) hand to indicate
200 the participant's perception of the "target" (right) hand's position when visual, proprioceptive, or both
201 types of information about the target are available (2,6,25–27). Participants were therefore asked to use
202 their *unseen left index finger* to indicate on a 32 inch touchscreen (PQLabs) where they perceived a
203 series of targets (Table 1) related to the *right (target) hand* (Fig. 1B), which grasped a stationary
204 manipulandum handle at the target position beneath the touchscreen. It was not physically possible to
205 place the touchscreen in the horizontal plane of the visual task display at the top of the manipulandum

206 handle, due to the design of the manipulandum. Therefore for this task we moved the actual
207 manipulandum out of the workspace and placed a replica manipulandum handle under the touchscreen
208 for participants to grasp on P and VP targets. The replica was the same height and diameter as the real
209 handle, and covered with an identical rubber grip.

Table 1. Targets in visuo-proprioceptive calibration task.

Visuo-proprio (VP) target	Participant grasped stationary manipulandum handle in the <u>right hand</u> beneath the touchscreen. A white disc appeared to be at the top of the handle. Participant was signaled to move the <i>unseen</i> left indicator finger, on the upper side of the touchscreen, from one of five start positions to where he perceived the VP target to be.
Proprioceptive (P) target	Identical to the VP target except no white disc. Participant was asked to indicate where he perceived the center of the handle as accurately as possible by placing the <i>unseen</i> indicator finger at that position.
Visual (V) target	The white disc was displayed at the target position, but the right hand was down at the participant's side. Participant was asked to move his <i>unseen</i> indicator finger to where he perceived the white disc.

210
211 Both groups performed 84 trials: 42 VP, 21 V, and 21 P, in repeating order (VP-V-VP-P). For the Veridical
212 group, the white disc was always displayed veridically at the top of the replica manipulandum handle.
213 For the Mismatch group, the white disc moved 1.67mm forward on each VP trial. Participants do not
214 generally notice this perturbation, which results in a 70mm visuo-proprioceptive mismatch by the end of
215 the 84 trials (Fig. 1Bii) (7,28–30). Indicator finger start position was jittered to prevent participants from
216 being influenced by indicator finger movements on the previous trial. Importantly, there was no speed
217 requirement and no performance feedback or knowledge of results, to preclude motor adaptation.

218
219 If the proprioceptive estimate of the right hand, as shown by left indicator finger endpoints, moves
220 forward to close the visuo-proprioceptive gap (Δh_p), then we observe overshoot on P targets. Similarly, if
221 perceived position of the white disc moves closer to the right hand (Δh_v), then we observe undershoot
222 on V targets. *VP trials are used to create the mismatch while V and P trials are used to assess visual and*
223 *proprioceptive recalibration.* Thus, outcome measures are based on V and P trials. We quantified visual
224 and proprioceptive recalibration (Δh_v and Δh_p) as previously (28–30): after calculating mean indicator

225 finger endpoint positions in the y-dimension on the first and last 4 V and P trials, respectively, we
226 computed the difference relative to actual target position, which was constant for P targets but shifts
227 70mm for V targets (Mismatch group only):

228

$$\Delta h_P = \text{last 4 P endpoints} - \text{first 4 P endpoints} \quad (2)$$

230

$$\Delta h_V = 70 - (\text{last 4 V endpoints} - \text{first 4 V endpoints}) \quad (3)$$

232

233

234 **Statistical analysis**

235 Data were processed using MATLAB 2021a (MathWorks Inc., Natick, MA, United States). A mixed model
236 ANOVA was performed on the straight-ahead reaching endpoints, with within-participant factor “reach
237 set” (the last set of 5 pre-calibration reach endpoints and the four sets of 5 post-calibration reach
238 endpoints) and between-participant factor “group” (Mismatch and Veridical). For a significant
239 interaction, paired-sample t-tests were performed within each group, comparing the last set of pre-
240 calibration reaches with each set of post-calibration reaches.

241

242 For the Mismatch group only, the magnitude of change in reach endpoint (first set of post-calibration
243 reaches minus last set of pre-calibration reaches) was compared to the magnitude of proprioceptive
244 recalibration (Δh_P) and the magnitude of total recalibration ($\Delta h_P + \Delta h_V$) in a one-way repeated measures
245 ANOVA. For a significant effect, change in reach endpoint was compared to the other two magnitudes
246 with a paired-sample t-test.

247

248 For the post-hoc t-tests, false discovery rate was controlled by the Benjamini-Hochberg procedure (31)
249 with α set to 0.05. In the text, adjusted p-values are indicated as p_{adj} . Data and analysis code are publicly
250 available at <https://osf.io/zy49x/>.

251

252 **3. RESULTS**

253

254 On average, participants in the Mismatch group recalibrated proprioception 17.4 ± 4.0 mm and vision
255 38.1 ± 6.1 mm (mean \pm SE) in response to a gradually-imposed 70 mm mismatch between visual and
256 proprioceptive cues. The example participant in Fig. 2 recalibrated to a degree consistent with the group
257 behavior. After exposure to the cue conflict, this participant reached shorter distances with the
258 recalibrated hand, consistent with predictions (Fig. 1C); however, this was only evident in the first set of
259 5 trials post-mismatch (Fig. 2C).

260 Participants' average reach distances on the four sets of five right-handed reaches (Fig. 3i and iii) were
261 analyzed with a mixed-model ANOVA with factors Group (Mismatch, Veridical) and Reach Set (5 sets)
262 (Fig. 4). There was a significant Reach Set x Group interaction ($F_{4,120} = 2.81$, $p = 0.028$, $\eta_p^2 = 0.008$),
263 suggesting that the two groups differed in reach distance across the five reach sets. There was also an
264 effect of Reach Set on reach distance ($F_{4,120} = 3.97$, $p = 0.0046$, $\eta_p^2 = 0.01$), but no main effect of Group
265 ($F_{1,120} = 0.19$, $p = 0.66$, $\eta_p^2 = 0.006$).

266 Within each group, paired-sample t-tests were used to compare each set of post-calibration reaches
267 (Fig. 3iii) with the pre-calibration reach set (Fig. 3i). For the Mismatch group, the first and second set of
268 post-calibration task reaches were significantly different from the pre-calibration set ($t_{15} = 3.47$, $p_{adj} =$
269 0.014 ; $t_{15} = 2.86$, $p_{adj} = 0.024$). The third and fourth set were not significantly different from the pre-
270 calibration reaches ($t_{15} = 1.52$, $p_{adj} = 0.20$; $t_{15} = 0.76$, $p_{adj} = 0.46$), suggesting any effect of mismatch on
271 reach distance did not last beyond the first two sets of 5 reaches. For the Veridical group, none of the
272 post-calibration task sets of reaches differed significantly from the pre-calibration set (all $p > 0.5$).
273 Finally, comparing the pre-calibration reaches across groups did not yield any evidence that the two
274 groups reached different distances prior to the calibration task ($t_{30} = 0.26$, $p = 0.80$).

275 For the mismatch group, we compared participants' change in right-hand reach undershoot from the
276 last 5 pre-calibration reaches to the first 5 post-calibration reaches with total recalibration magnitude
277 (visual plus proprioceptive) and with proprioceptive recalibration (Fig. 5). Change in reach undershoot
278 was significantly smaller than total recalibration ($t_{15} = -4.32$ $p_{adj} = 0.0012$), but not significantly different
279 from proprioceptive recalibration ($t_{15} = 0.46$, $p = 0.65$). This could indicate that change in reach
280 performance does not reflect the sum of visual and proprioceptive recalibration (Fig. 1C), although other
281 interpretations are possible.

282
283 Participants were questioned about their experience at the conclusion of the session. Most participants
284 did not perceive any forward mismatch between the visual and proprioceptive targets during the
285 calibration task. Two participants in each group reported perceiving such a mismatch, which is
286 consistent with our previous work (7). Participants were also asked to rate their quality of sleep the
287 previous night, their level of attention during the task, and how fatigued they felt after the task, on a
288 scale of 1 to 10. We found no indication that these might differ across groups. Sleep was rated 6.9 ± 1.0
289 (mean \pm 95% CI) by the Mismatch group and 6.6 ± 0.8 by the veridical group. Attention was rated $7.2 \pm$
290 0.5 by the Mismatch group and 7.8 ± 0.6 by the veridical group. Fatigue was rated 4.1 ± 1.4 by the
291 Mismatch group and 3.8 ± 0.8 by the veridical group.

292
293
294 **4. DISCUSSION**
295
296 Here we asked whether reaching movements show evidence of change after visuo-proprioceptive
297 recalibration in hand position estimates. The Mismatch group, after exposure to a gradual 70 mm visuo-
298 proprioceptive mismatch, made significantly shorter reaching movements. The magnitude of change in
299 reach distance was similar to the magnitude of proprioceptive recalibration. However, reaching
300 performance returned to baseline levels after only 10 reaches. The Veridical group, after exposure to

301 veridically-aligned visual and proprioceptive cues about the hand, showed no evidence of a change in
302 reach distance. Taken together, these results suggest that visuo-proprioceptive recalibration of hand
303 estimates does affect reaching movements, but only briefly.

304

305 **Reach distance affected by visuo-proprioceptive recalibration**

306 We predicted that reach distance would shorten after exposure to a 70 mm forward displacement of
307 visual cues from proprioceptive cues about the hand. We reasoned that with this direction of cue
308 conflict, proprioceptive recalibration would be expected in the forward direction. In other words,
309 participants would come to feel that their target hand was further forward than it actually was. They
310 would then execute reaches of smaller magnitudes, feeling there was less distance to travel from their
311 proprioceptively-perceived hand position to the visual target. Results of the present study support this
312 prediction. The Mismatch group reached shorter distances after exposure to the visuo-proprioceptive
313 mismatch, compared to baseline. Importantly, the Veridical group showed no change in reaching after
314 exposure to veridical visuo-proprioceptive cues, indicating that the reach distance change was specific
315 to the experience of a visuo-proprioceptive cue conflict. Subjects tended to overshoot the reaching
316 target in both groups. This may be related to the lack of visual feedback about hand position at reach
317 initiation, which is known to bias reaching (32,33).

318 There may be more than one mechanism by which recalibration could alter reaching movements. Sober
319 and Sabes (2003, 2005) demonstrated that visual cues predominate for planning a movement vector in
320 extrinsic space, but proprioceptive cues dominate in converting the movement vector to a motor
321 command in joint space (34,35). However, this assumes that visual cues of the hand's starting position
322 are available for planning the movement vector. In the present study there was no visual cue about the
323 hand's starting position in the reaching trials, so coordinate transformations could not be avoided and
324 proprioceptive cues had to be used in computing the movement vector: With the unseen hand

325 positioned at the unseen starting position, subjects had to use their (forward-shifted) proprioceptive
326 estimate of hand position to plan the movement vector to the visual target. In other words, the present
327 results are consistent with perceptual recalibration causing a change in movement vector planning. We
328 have no reason to think anything changed about how the muscle/joint level commands were
329 determined, although we did not test this explicitly.

330

331 An important question to consider is whether it is possible that the reaching hand experienced motor
332 adaptation during the calibration task, or any other motor learning process that could affect reach
333 distance; this would confound our interpretation of the role of proprioceptive recalibration in the
334 change in reach distance. Importantly, the calibration task was designed to preclude any such confound:
335 participants never received any information about where their indicator finger landed in relation to the
336 target, so there was no error signal that could drive motor adaptation. In addition, participants were
337 explicitly instructed to place their indicator finger at the perceived target location, with no time
338 constraints. The one form of motor learning that should be possible in these conditions is for the
339 indicator finger's pointing movements to become less variable across the calibration task. In other
340 words, if the participant executes a movement of their indicator finger and proprioceptive feedback
341 from the indicator hand suggests the finger did not land in the planned position, the brain could fine-
342 tune the motor command to make more accurate predictions. However, this form of learning should not
343 be considered a confound, as it would occur similarly in both the Misaligned and Veridical groups.

344

345 We hypothesized that in the absence of visual feedback about the hand during reaching, only the
346 proprioceptive recalibration would contribute to target undershoot. However, we also considered the
347 possibility that recalibration of visual estimates of the hand could include everything in the visual scene.
348 In other words, it is possible that when visual recalibration occurs, people interpret that as the visual

349 scene being closer than it looks, rather than specifically visual information about the hand. If that were
350 the case, we would expect change in reach undershoot to be larger than proprioceptive recalibration,
351 and more similar to total recalibration, which it was not. On the other hand, given the present study
352 design of shifting cue forward for the Misaligned group, one may wonder if some part of visual target
353 undershoot can be attributed to participant “laziness” or disinclination to point further away with their
354 indicator hand. If so, it would inflate our estimate of total recalibration. If this were the case, we would
355 expect greater undershoot at the smooth target position, which was 40 mm forward of the rough target
356 position, but we previously found that undershoot was nearly identical at the two target positions (36).
357 Regardless, our primary conclusion that perceptual recalibration affects the (same or different)
358 sensorimotor map used for reaching does not depend on the exact quantitative values of perceptual
359 shift or reach shortening. Rather, it is based on the shortened distance of no-feedback reaches that
360 developed in the Mismatch but not the Veridical group; reach shortening is the predicted direction of
361 change whether caused by proprioceptive recalibration, visual recalibration, or both.

362

363 **Reach distance reduction was transient**

364 It is interesting to note that the reduction in reach distance was no longer detectable after only 10
365 reaches. Motor adaptation, in contrast, can be retained even after a year (37). Proprioceptive
366 recalibration that results from motor adaptation can, itself, still be evident after 24 hours (38,39). There
367 are several possible interpretations of this difference. First, more exposure to a visuo-proprioceptive
368 mismatch might result in longer-lasting reduction in reach distance; there were only 42 visuo-
369 proprioceptive exposure trials in the present study, while motor adaptation studies frequently involve
370 hundreds of trials. Second, perhaps the active movement stimulates proprioceptors in a way that
371 overrides proprioceptive recalibration generated at a static position. This possibility could be considered

372 consistent with RHI studies that found the illusion is reduced by active movement of the stimulated
373 hand (12).

374 It is also possible that proprioceptive recalibration, induced with only a cue conflict and not motor
375 adaptation, is itself transient, so effects on reach distance are also transient. However, evidence
376 suggests that proprioceptive recalibration induced with a cue conflict is robustly retained 24 hours later
377 (36). In an experiment where visuo-proprioceptive recalibration was elicited similarly to the present
378 study, short-term retention of proprioceptive recalibration was partially disrupted after one minute of
379 circle tracing (one circle per second) with the recalibrated finger and 4 minutes of rest; on average,
380 proprioceptive recalibration was reduced 38% by this intervention (36). In the present study, if the
381 transience of reach undershoot is due to proprioceptive recalibration being equally transient, it would
382 mean that proprioceptive recalibration was 100% lost within 10 no-feedback reaches. Given the findings
383 of Wali et al. (2023), we consider it more likely that substantial proprioceptive recalibration remains
384 even after reach undershoot has worn off. If indeed proprioceptive recalibration lasts longer than 10
385 reach trials, it is possible the effect on reach distance does not. This would be consistent with the
386 involvement of multiple body representations: proprioceptive recalibration might occur in the body
387 image, which only briefly interacts with the body schema used to plan reaches. Indeed, different body
388 representations have been associated with different dynamics and timescales (14). Of course, these
389 possible interpretations are not mutually exclusive. Further studies are needed to better understand
390 what factors influence the time course of visuo-proprioceptive recalibration effects on movement.

391

392 **Implications for the sensorimotor map and other body representations**

393 Our prediction of shortened reach distance after visuo-proprioceptive recalibration was based on the
394 idea that perception of body parts is closely linked to motor control, and that reach planning would
395 therefore take into account any changes in perceived hand position in order to maintain movement

396 accuracy. Consistent with this idea, we have previously observed changes in the excitability of primary
397 motor cortex (M1) that were specifically related to visuo-proprioceptive recalibration, after controlling
398 for motor behavior (11). Furthermore, M1 changes were somatotopically focal, limited to the M1
399 representation of the finger that experienced visuo-proprioceptive cue conflict (10). Findings like these
400 are suggestive of a close relationship between perception of hand position and motor execution
401 involving that hand.

402

403 On the other hand, there is evidence to suggest that changes in perceived hand position may affect a
404 body representation that functions separately from the body representation used to control movement.
405 Paillard (1999) refers to these representations as the body image and the body schema, respectively,
406 based on a double dissociation observed in neuropsychological patients (13). In other words, some
407 patients can correctly use information about their body positioning to move (intact body schema), but
408 do not correctly perceive their body positioning (disrupted body image), while others have the opposite
409 problem (13). This allows us to infer that there are at least two dissociable body representations,
410 although some have suggested that body image should be further divided (12,14).

411

412 The literature includes examples where a perceptual manipulation clearly does not affects motor
413 performance (12), examples where it clearly does (8,22), and also gray areas (15). Some of this literature
414 uses the Rubber Hand Illusion (RHI), in which synchronous stroking of a seen fake arm and the felt real
415 arm creates the illusion of body ownership over the fake arm (15). Kammers et al. (2009) found that
416 perceptual bodily judgments were sensitive to the RHI, but ballistic motor responses were not. The
417 authors thus concluded that the illusion affected the body image, but not the body schema (12).
418 However, while the RHI entails a visuo-proprioceptive discrepancy like the present study, there are also
419 important differences to be considered. Our paradigm lacks synchronous tactile stimulation, and the

420 visual stimulus is reduced to a disembodied white disc. The RHI is associated with “visual capture”,
421 where the visual signal is so much stronger than the proprioceptive signal that most recalibration is
422 likely proprioceptive rather than visual. In contrast, our paradigm is associated with a slightly stronger
423 weight of proprioception compared to vision, and greater visual recalibration than proprioceptive
424 (40,41). Indeed, Kammers et al. (2009) suggested that weighting of vision vs. proprioception in
425 multisensory integration could explain their results, with perceptual judgments relying heavily on vision
426 and ballistic movements relying on proprioception.

427

428 Even within the RHI literature, there are grey areas in terms of which body representation appears
429 affected. Kammers et al. (2009) noted that the classic RHI study by Botvinick and Cohen (1998) assessed
430 illusion strength by asking participants to make pointing movements to where they perceived their other
431 hand. The pointing movements were clearly sensitive to the illusion (15), unlike the ballistic movements
432 used by Kammers et al. (2009). However, the pointing movements may have accessed a perceptual
433 judgment in a way that ballistic movements do not (12).

434

435 On the other end of the spectrum, there is evidence that exposure to a visuo-proprioceptive mismatch
436 in a cursor rotation task robustly affects reaching movement (8,22). The cursor rotation paradigm is
437 often used to elicit visuomotor adaptation: participants move to a visual target while the corresponding
438 cursor deviates by some angular magnitude. This results in systematic movement errors, which are
439 reduced by trial-and-error adaptation of the motor command. Proprioceptive recalibration also occurs,
440 due to both sensory prediction errors and the cross-sensory mismatch created by the deviation of the
441 cursor from true hand position (21). Salomonczyk et al. (2013) modified the cursor rotation paradigm to
442 remove the movement errors that could drive visuomotor adaptation; instead, participants moved their
443 hand actively or passively along a set channel that was gradually deviated from the cursor, which always

444 went straight to the target. After this exposure, participants made self-guided reaches with no cursor.
445 These no-cursor reaches showed a directional change after exposure to the visuo-proprioceptive
446 mismatch, and the change in reach direction was correlated with participants' magnitude of
447 proprioceptive recalibration (8). In fact, Tsay et al. (2022) recently suggested that these types of results
448 support the idea of implicit motor adaptation being driven by proprioceptive recalibration, not the other
449 way around (42). We checked our Mismatch group for a correlation between proprioceptive
450 recalibration and change in reach distance, as an exploratory analysis, but there was no association ($r <$
451 0.1). A sample of 16 is too small to definitively answer this question (43), but it would be valuable to
452 examine such individual differences in a larger study.

453

454 While a visuo-proprioceptive mismatch created in the context of cursor rotation seems to clearly alter
455 the body schema, it is difficult to generalize such findings to visuo-proprioceptive recalibration in
456 general, which does not require either active or passive movement, or even a reaching target. The
457 nature of a cursor rotation is that it exists in the context of target-directed movement: there is no visuo-
458 proprioceptive mismatch at the home position, and the mismatch linearly increases as the person
459 approaches the target. In addition, the mismatch is applied in body-centered coordinates; moving the
460 hand to the right would result in a mismatch of the opposite direction in extrinsic space compared to
461 moving the hand to the left. In contrast, the present study imposed the mismatch with the hand
462 positioned in a static location, and that hand made no movements toward a target while the mismatch
463 was imposed.

464

465 In sum, the present paradigm has features in common with both the RHI and the cursor rotation task,
466 but also features that differ. Based on the above studies, we would suggest that our visuo-
467 proprioceptive mismatch task affected primarily the body image, as participants were explicitly asked to

468 indicate their perceived positions of static hand targets as accurately as possible without regard to
469 speed (12,15). The straight-ahead reaches presumably accessed the body schema, which makes it
470 surprising that we observed a shortening of reaches. However, it should be noted that the body schema
471 and body image likely interact with each other (14), making it challenging to draw more specific
472 conclusions.

473

474 **Conclusions**

475 We predicted that straight-ahead reach distance would shorten after exposure to a forward
476 displacement of visual cues from proprioceptive cues about the hand, which leads to proprioceptive
477 recalibration in the forward direction. Results support this prediction, but the reduction of reach
478 distance was transient. This is consistent with some degree of separation between body representations
479 for perception and action.

480

481
482 **CRediT author statement**

483 HJB: Conceptualization, Methodology, Software, Formal analysis, Writing – Review & Editing,
484 Visualization, Supervision, Funding acquisition.

485 YL: Software, Formal analysis, Investigation, Writing – Original Draft, Visualization.

486

487 **Funding**

488 This study was supported by NSF grant 1753915 to HJB.

489

490 **Endnote**

491 At the request of the authors, readers are herein alerted to the fact that additional materials related to
492 this manuscript may be found at <https://osf.io/zy49x/>. These materials are not a part of this manuscript
493 and have not undergone peer review by the American Physiological Society (APS). APS and the journal
494 editors take no responsibility for these materials, for the website address, or for any links to or from it.

495

496

497 REFERENCES

498

- 499 1. Ghahramani Z, Wolpert DM, Jordan MI. Computational models for sensorimotor integration. In: 500 Morasso PG, Sanguineti V, editors. *Self-Organization, Computational Maps and Motor Control*. 501 Amsterdam: North-Holland; 1997. p. 117–47.
- 502 2. van Beers RJ, Sittig AC, Denier van der Gon JJ. Localization of a seen finger is based exclusively on 503 proprioception and on vision of the finger. *Exp Brain Res*. 1999 Mar;125(1):43–9.
- 504 3. Ernst MO, Banks MS. Humans integrate visual and haptic information in a statistically optimal 505 fashion. *Nature*. 2002 Jan 24;415(6870):429–33.
- 506 4. Limanowski J. Precision control for a flexible body representation. *Neurosci Biobehav Rev*. 2022 507 Mar;134:104401.
- 508 5. Limanowski J, Friston K. Attentional Modulation of Vision Versus Proprioception During Action. 509 *Cerebral Cortex*. 2020 Mar 14;30(3):1637–48.
- 510 6. Smeets JB, van den Dobbelaer JJ, de Grave DD, van Beers RJ, Brenner E. Sensory integration does 511 not lead to sensory calibration. *Proc Natl Acad Sci USA*. 2006 Dec 5;103(49):18781–6.
- 512 7. Hsiao A, Lee-Miller T, Block HJ. Conscious awareness of a visuo-proprioceptive mismatch: Effect on 513 cross-sensory recalibration. *Frontiers in Neuroscience* [Internet]. 2022 [cited 2022 Sep 8];16. 514 Available from: <https://www.frontiersin.org/articles/10.3389/fnins.2022.958513>
- 515 8. Salomonczyk D, Cressman EK, Henriques DYP. The role of the cross-sensory error signal in 516 visuomotor adaptation. *Exp Brain Res*. 2013 Jul;228(3):313–25.
- 517 9. Welch RB. *Perceptual Modification*. New York: Academic Press; 1978.
- 518 10. Mirdamadi JL, Seigel CR, Husch SD, Block HJ. Somatotopic Specificity of Perceptual and 519 Neurophysiological Changes Associated with Visuo-proprioceptive Realignment. *Cereb Cortex*. 2022 520 Mar 4;32(6):1184–99.
- 521 11. Munoz-Rubke F, Mirdamadi JL, Lynch AK, Block HJ. Modality-specific Changes in Motor Cortex 522 Excitability After Visuo-proprioceptive Realignment. *J Cogn Neurosci*. 2017 Dec;29(12):2054–67.

523 12. Kammers MPM, de Vignemont F, Verhagen L, Dijkerman HC. The rubber hand illusion in action.
524 *Neuropsychologia*. 2009 Jan 1;47(1):204–11.

525 13. Paillard J. Body Schema and body image-a double dissociation. In: Motor control, today and
526 tomorrow. 1999. p. 197–214.

527 14. de Vignemont F. Body schema and body image--pros and cons. *Neuropsychologia*. 2010
528 Feb;48(3):669–80.

529 15. Botvinick M, Cohen J. Rubber hands “feel” touch that eyes see. *Nature*. 1998 Feb 19;391(6669):756.

530 16. Abdulkarim Z, Hayatou Z, Ehrsson HH. Sustained rubber hand illusion after the end of visuotactile
531 stimulation with a similar time course for the reduction of subjective ownership and proprioceptive
532 drift. *Exp Brain Res*. 2021 Dec;239(12):3471–86.

533 17. Abdulkarim Z, Ehrsson HH. Recalibration of hand position sense during unconscious active and
534 passive movement. *Exp Brain Res*. 2018 Feb 1;236(2):551–61.

535 18. Robertson EM, Miall RC. Visuomotor adaptation during inactivation of the dentate nucleus.
536 *Neuroreport*. 1999 Apr 6;10(5):1029–34.

537 19. Seidler RD, Noll DC. Neuroanatomical correlates of motor acquisition and motor transfer. *J*
538 *Neurophysiol*. 2008 Apr;99(4):1836–45.

539 20. Ostry DJ, Gribble PL. Sensory Plasticity in Human Motor Learning. *Trends in Neurosciences*. 2016
540 Feb;39(2):114–23.

541 21. Rossi C, Bastian AJ, Therrien AS. Mechanisms of proprioceptive realignment in human motor
542 learning. *Current Opinion in Physiology*. 2021 Apr 1;20:186–97.

543 22. Cressman EK, Henriques DYP. Reach Adaptation and Proprioceptive Recalibration Following
544 Exposure to Misaligned Sensory Input. *Journal of Neurophysiology*. 2010 Apr;103(4):1888–95.

545 23. Mostafa AA, ’t Hart BM, Henriques DYP. Motor learning without moving: Proprioceptive and
546 predictive hand localization after passive visuoproprioceptive discrepancy training. *PLoS One*.
547 2019;14(8):e0221861.

548 24. Ruttle JE, ’t Hart BM, Henriques DYP. The fast contribution of visual-proprioceptive discrepancy to
549 reach aftereffects and proprioceptive recalibration. *PLoS One*. 2018;13(7):e0200621.

550 25. van Beers RJ, Sittig AC, Denier van der Gon JJ. The precision of proprioceptive position sense.
551 *Exp Brain Res*. 1998 Oct;122(4):367–77.

552 26. van Beers RJ, Sittig AC, Denier van der Gon JJ. How humans combine simultaneous proprioceptive
553 and visual position information. *Exp Brain Res*. 1996;111(2):253–61.

554 27. van Beers RJ, Wolpert DM, Haggard P. When feeling is more important than seeing in sensorimotor
555 adaptation. *Curr Biol*. 2002 May 14;12(10):834–7.

556 28. Block H, Bastian A, Celnik P. Virtual lesion of angular gyrus disrupts the relationship between
557 visuoproprioceptive weighting and realignment. *J Cogn Neurosci*. 2013 Apr;25(4):636–48.

558 29. Block HJ, Bastian AJ. Sensory weighting and realignment: independent compensatory processes.
559 *JNeurophysiol*. 2011 Jul;106(1):59–70.

560 30. Block HJ, Bastian AJ. Cerebellar involvement in motor but not sensory adaptation.
561 *Neuropsychologia*. 2012 Jul;50(8):1766–75.

562 31. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to
563 Multiple Testing. *Journal of the Royal Statistical Society Series B (Methodological)*. 1995;57(1):289–
564 300.

565 32. Vindras P, Desmurget M, Prablanc C, Viviani P. Pointing errors reflect biases in the perception of the
566 initial hand position. *J Neurophysiol*. 1998 Jun;79(6):3290–4.

567 33. Vindras P, Desmurget M, Viviani P. Error parsing in visuomotor pointing reveals independent
568 processing of amplitude and direction. *J Neurophysiol*. 2005 Aug;94(2):1212–24.

569 34. Sober SJ, Sabes PN. Multisensory integration during motor planning. *J Neurosci*. 2003;23(18):6982–
570 92.

571 35. Sober SJ, Sabes PN. Flexible strategies for sensory integration during motor planning. *Nat Neurosci*.
572 2005 Apr;8(4):490–7.

573 36. Wali M, Lee-Miller T, Babu R, Block HJ. Retention of visuo-proprioceptive recalibration in estimating
574 hand position. *Sci Rep*. 2023 Apr 13;13(1):6097.

575 37. Yamamoto K, Hoffman DS, Strick PL. Rapid and long-lasting plasticity of input-output mapping. *J
576 Neurophysiol*. 2006 Nov;96(5):2797–801.

577 38. Maksimovic S, Cressman EK. Long-term retention of proprioceptive recalibration. *Neuropsychologia*.
578 2018 Jun;114:65–76.

579 39. Nourouzpour N, Salomonczyk D, Cressman EK, Henriques DYP. Retention of proprioceptive
580 recalibration following visuomotor adaptation. *Exp Brain Res*. 2015 Mar 1;233(3):1019–29.

581 40. Block HJ, Sexton BM. Visuo-Proprioceptive Control of the Hand in Older Adults. *Multisensory
582 Research*. 2020 Jul 20;34(1):93–111.

583 41. Liu Y, Sexton BM, Block HJ. Spatial bias in estimating the position of visual and proprioceptive
584 targets. *J Neurophysiol*. 2018 Feb 21;

585 42. Tsay JS, Kim H, Haith AM, Ivry RB. Understanding implicit sensorimotor adaptation as a process of
586 proprioceptive re-alignment. Pruszynski JA, Behrens TE, editors. *eLife*. 2022 Aug 15;11:e76639.

587 43. Makin TR, Orban de Xivry JJ. Ten common statistical mistakes to watch out for when writing or
588 reviewing a manuscript. Rodgers P, Parsons N, Holmes N, editors. *eLife*. 2019 Oct 9;8:e48175.

589
590
591

592 **Figure captions**

593
594

Figure 1. Top row: Participant holds handle of robotic manipulandum in right hand. Images viewed in
595 mirror of 2D VR display appear to be in line with top of manipulandum handle. Not pictured: fabric
596 preventing vision of the upper arms. No direct vision of hands is possible. **A. Pre-calibration reaches.**
597 Participant performs straight-ahead reaching with no visual feedback about hand position, stopping at
598 perceived position of visual target. The hand was brought passively back to the invisible starting position
599 after each trial. **B. Visuo-proprioceptive calibration.** **i.** Participants use their left index finger on a
600 touchscreen to indicate the perceived position of visual (V), proprioceptive (P), and combined (VP)
601 targets. No performance feedback or knowledge of results was available at any time. For the Veridical
602 group, VP targets remained veridical throughout. **ii.** For the Mismatch group, the visual component
603 (white disc) gradually shifted forward to a maximum of 70 mm. This generally results in both
604 proprioceptive recalibration toward the visual target (Δh_P) and the visual recalibration toward the
605 proprioceptive target (Δh_V). Transparent hands and writing were not visible to participants. **C. Post-**
606 **calibration reaches.** Same procedure as pre-calibration reaches. **i-ii.** For the Mismatch group, if Δh_P
607 affects reaching, we predict participants will stop short of the visual target because they feel their hand
608 is further from them (closer to the target) than it is. With only proprioceptive information about hand
609 position, planned movements (red dashed lines) should be shorter relative to pre-perturbation (black
610 arrow) for the Mismatch group but not the Veridical group.

611

612 **Figure 2.** Example participant in the Mismatch group. **A. Pre-mismatch reaches.** Movement paths of the
613 5 right-handed reaches immediately preceding mismatch task. With no performance feedback or
614 knowledge of results, this participant consistently overshot the reach target (grey bar). **B. The mismatch**
615 task gradually imposed 70 mm of visuo-proprioceptive mismatch by shifting the white disc (V target)

616 forward from the stationary right hand (P target). This participant recalibrated both proprioception (Δh_p
617 = 29.6 mm) and vision (Δh_v = 28.9 mm). **C.** Four sets of 5 right-handed reaches following mismatch task.
618 The first set of 5 reaches undershot the pre-mismatch mean (dashed line) by 16.4 mm.

619 **Figure 3.** Group reaching distances pre- and post-calibration task. **A. Mismatch group (N=16).** i. Mean
620 distance of the 5 right-handed reaches immediately preceding calibration task. Dots represent individual
621 participants. Reaches started at 0 mm and the target was at 100 mm. ii. Mismatch task. Participants
622 pointed with their left indicator finger to P targets (right hand, dashed grey line), V targets (white disc,
623 solid grey line), and VP targets (combined), with a 70 mm mismatch gradually imposed. On average,
624 participants recalibrated both vision and proprioception (Δh_v = 38.1 mm, Δh_p = 17.4 mm). iii. Mean
625 distance of the five sets of 5 right-handed reaches immediately following the calibration task. *First and
626 second sets of 5 reaches were significantly different from the pre-calibration task reaches ($p_{adj} < 0.05$). **B.**
627 **Veridical group (N=16).** Post-calibration reaches did not differ significantly from pre-calibration task
628 reaches. All error bars and shaded regions represent standard error.

629

630 **Figure 4.** Interaction plot of reach distance across reach sets in the Mismatch vs. Veridical groups. Reach
631 set 1 corresponds to the 5 pre-calibration task reaches. Reach sets 2-5 correspond to the four sets of 5
632 post-calibration reaches.

633

634 **Figure 5.** In the Mismatch group, reach undershoot changed by an average magnitude of 20.9 mm in the
635 predicted direction. This magnitude was significantly smaller than the total magnitude of recalibration
636 (visual plus proprioceptive), which averaged 55.5mm (* $p_{adj} < 0.05$). Change in reach undershoot did not
637 differ significantly from the magnitude of proprioceptive recalibration, which averaged 17.4 mm.

638