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Off-diagonal book Ramsey numbers

David Conlon* Jacob Fox! Yuval Wigderson?

Abstract

The book graph BT(Lk) consists of n copies of K1 joined along a common Kj. In
the prequel to this paper, we studied the diagonal Ramsey number r(BﬁLk), B,(Lk)). Here
we consider the natural off-diagonal variant T(Béﬁ), BT(Lk)) for fixed ¢ € (0,1]. In this
more general setting, we show that an interesting dichotomy emerges: for very small c,
a simple k-partite construction dictates the Ramsey function and all nearly-extremal
colorings are close to being k-partite, while, for ¢ bounded away from 0, random col-
orings of an appropriate density are asymptotically optimal and all nearly-extremal
colorings are quasirandom. Our investigations also open up a range of questions about
what happens for intermediate values of c.

1 Introduction

Given two graphs H; and Hy, their Ramsey number r(Hy, Hs) is the smallest positive integer
N such that every red/blue coloring of the edges of Ky is guaranteed to contain a red copy
of H; or a blue copy of Hy. One of the main open problems in Ramsey theory is to determine
the asymptotic order of r(K,, K,,). However, despite intense and longstanding interest, the
lower and upper bounds V2" < r(K,, K,) < 4™ for this problem have remained largely
unchanged since 1947 and 1935, respectively [11, 13].

Another major question in graph Ramsey theory, which has seen more progress, is to
determine the growth rate of the off-diagonal Ramsey number r(K,, K, ), where we think
of s as fixed and let n tend to infinity. The first non-trivial case is when s = 3, where it is

known that
n2
K3, K,) =0 ,
(k) =6 ()
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with the upper bound due to Ajtai, Komlés, and Szemerédi [1] and the lower bound to
Kim [17]. Subsequent work of Shearer [23], Bohman-Keevash [3], and Fiz Pontiveros-
Griffiths-Morris [14] has led to a better understanding of the implicit constant, which is
now known up to a factor of 4 + o(1). However, the successes in estimating (K3, K,,) have
not carried over to r(Kj, K,,) for any other fixed s and a polynomial gap persists between the
upper and lower bounds for all s > 4 (though see [18] for a promising approach to improving
the lower bound).

The book graph B is the graph obtained by gluing n copies of the clique K., along
a common K. The “book” terminology comes from the case k = 2, where BY consists
of n triangles glued along a common edge. Continuing the analogy, each Ky is called a
page of the book and the common K, is called the spine. Ramsey numbers of books arise
naturally in the study of r(K,, K,); indeed, Ramsey’s original proof [21] of the finiteness
of r(K,, K,) proceeds inductively by establishing the finiteness of certain book Ramsey
numbers, while the Erdds—Szekeres bound [13] and its improvements [8, 22| are also best
interpreted through the language of books. Because of this, Ramsey numbers of books have
attracted a great deal of attention over the years, starting with papers of Erdds, Faudree,
Rousseau, and Schelp [12] and of Thomason [25]. Both of these papers prove bounds of the
form 2¥n — o(n) < r(BY, B) < 4kn, where we think of k as fixed and n — oo, with
Thomason conjecturing that the lower bound is closer to the truth. This was confirmed in
a recent breakthrough result of the first author [9], who proved that, for every fixed k,

r(B® . BRY = 2Fp 4 o4 (n).

The original proof of this result relied heavily on an application of Szemerédi’s celebrated
regularity lemma, leading to rather poor control on the error term. In the prequel to this
paper [10], we gave two alternative proofs of this result, one a simplified version of the first
author’s original proof and the other a proof which avoids the use of the full regularity
lemma, allowing us to gain significantly better control over the error term (for a discussion
of how further improvements might ultimately impinge on the estimation of r(K,, K,), we
refer the reader to [10]). We also proved a stability result, saying that extremal colorings for
this Ramsey problem are quasirandom.

In this paper, we study a natural off-diagonal generalization of this problem. Specifically,
we fix some & € N and some ¢ € (0,1] and we wish to understand the asymptotics of the

Ramsey number r(BEI;)L J’ng)) as n — 00. Note that for ¢ = 1 this is precisely the question

considered above. Henceforth, we omit the floor signs and write BY instead of BEZ)L I

Our results reveal that the behavior of the function T(Bg?, Br(bk)) varies greatly as ¢ moves
from 0 to 1. As we shall see, for ¢ sufficiently small, the behavior of this Ramsey number is
determined by a simple block construction, while, for ¢ sufficiently far from 0, its behavior is
determined by a random coloring. There is also an intermediate range of ¢ where our results
say nothing, but where several interesting questions arise. We will say more about this in
the concluding remarks.

To describe our results in detail, we begin by observing that for any positive integers k,



m, and n with m < n, we have
r(BW BWY > k(n+k—1) + 1. (1)

Indeed, let N = k(n + k — 1). We partition the vertices of Ky into k blocks, each of size
n+k—1. We color all edges inside a block blue and all edges between blocks red. Then any
blue ng) must appear inside a block, which it cannot, since B,(Lk) has n + k vertices. On the
other hand, since the red graph is k-partite, it does not contain any red Kj; and so cannot
contain a red BY.

This simple inequality is a special case of a more general lower bound, usually attributed

to Chvatal and Harary [7], that r(Hy, H2) > (x(H1) — 1)(|V(Ha)| — 1) + 1 provided H, is
connected. In general, this lower bound is far from optimal,! but it is tight for certain sparse
graphs. The study of when it is tight goes under the name of Ramsey goodness, a term
introduced by Burr and Erdés [5] in their first systematic investigation of the concept. One
of the central results in the field of Ramsey goodness is due to Nikiforov and Rousseau [19],
who proved an extremely general theorem about when this lower bound is tight. As a very
special case of their theorem, one has the following result; see also [15] for a new proof with

better quantitative bounds.

Theorem 1.1 (Nikiforov—Rousseau [20, Theorem 2.12]). For every k > 2, there exists some
co € (0,1) such that, for any 0 < ¢ < ¢o and n sufficiently large,
r(B® B®) = k(n+k—1)+ 1.

cn )

Moreover, Nikiforov and Rousseau’s proof shows that the unique coloring on k(n+k —1)

vertices with no red B and no blue B is the coloring we described, where the red graph
is a balanced complete k-partite graph (meaning that all the parts have orders as equal as
possible). By adapting their proof, we are able to prove a corresponding structural stability
result, which says that any coloring on N = (k + o(1))n vertices is either “close” to being
balanced complete k-partite in red or contains monochromatic books with substantially
more pages than what is guaranteed by Theorem 1.1. Note that if V is sufficiently large
and congruent to 1 modulo k, then Theorem 1.1 says that any red/blue coloring of E(Ky)
contains a red Kj with at least £(IN — 1) — c¢(k — 1) extensions to a red Kj; or a blue K
with at least (N — 1) — (k — 1) extensions to a blue Kj 1.

Theorem 1.2. For every k > 2 and every 0 > 0, there exist ¢,y € (0,1) such that the
following holds for any sufficiently large N and any red/blue coloring of E(Ky). Either one
can recolor at most ON? edges to turn the red graph into a balanced complete k-partite graph
or else the coloring contains one of the following:

o at least YN* red Ky, each with at least (£ +7)N estensions to a red Kyy1, or

e at least YN* blue K}, each with at least (% + )N extensions to a blue K.

For example, for H; = Hy = K,, it gives a lower bound of r(K,, K,) = Q(n?), whereas the truth is
20(n),



Informally, this theorem says that either the coloring is close to complete k-partite in
red or else a constant fraction of the k-tuples induce a clique that forms the spine of a
monochromatic book with at least YN more pages than what is guaranteed by the Ramsey
bound alone.

However, once c is sufficiently far from 0, the deterministic construction that yields (1)
stops bem% optimal. Indeed, as in the diagonal case, we can get another lower bound on

Bgi , ) by considering random colorings. More precisely, let us fix £ € N and ¢ € (0, 1]

and deﬁne )

p= e e b1)
We set N = (p~* — o(1))n and independently color every edge of Ky blue with probability
p and red with probability 1 — p. Given a blue K} in this coloring, the expected number
of extensions to a blue Ky, is p*(N — k) = n — o(n). Similarly, the expected number of
extensions of a red K}, to ared Kyy1is (1 —p)¥(N — k) = ((1—p)/p)kn —o(n) = cn — o(n),
by our choice of p. A standard application of the Chernoff bound and the union bound then
implies that w.h.p.2 this coloring contains no blue B and no red B, assuming the o(n)
terms are chosen appropriately. This implies that for any £ € N and any ¢ € (0, 1],
r(BY.BY) > (¢ + 1) n— ou(n),

while the lower bound in (1) is that #(BY%, B&) > (k+o(1))n. If ¢ > ((1+0(1)) k)% then
the quantity (c'/* 4 1)¥ is larger than k + o(1), where the logarithm is to base e. Thus, once
c is sufficiently far from 0, the bound in (1) is smaller than the random bound.

Our next main result shows that the random bound actually becomes asymptotically
tight at this point.

Theorem 1.3. For every k > 2, there exists some ¢; = ¢1(k) € (0, 1] such that, for any fized
&1 S & S ]-7

r(B®, B0y = (cl/k + 1)kn + ox(n).

cn o n

Moreover, one may take ci(k) = ((1 + 0(1))1°,§k)k.

Our third main result is a corresponding structural stability theorem, which says that all
near-extremal Ramsey colorings (i.e., colorings on roughly (c'/* + 1)n vertices) must either
contain a monochromatic book substantially larger than what is guaranteed by Theorem 1.3
or be “random-like”. The latter possibility is captured by the notion of quasirandomness,
introduced by Chung, Graham, and Wilson [6]. For parameters p,6 € (0,1), a red/blue
coloring of F(Ky) is said to be (p, #)-quasirandom if, for every pair of disjoint sets X, Y C
V(Ky), we have that

es(X,Y) = plX[IY]| < ON?,

where ep(X,Y) denotes the number of blue edges between X and Y. Note that since
the colors are complementary, this is equivalent to the analogous condition requiring that

2 As usual, we say that an event E happens with high probability (w.h.p.) if Pr(E) — 1 as n — oo, where
the implicit parameter n will be clear from context.



er(X,Y) is within §N? of (1—p)|X||Y|. In their seminal paper, Chung, Graham, and Wilson,
building on previous results of Thomason [25], showed that this condition is essentially
equivalent to a large number of other conditions, all of which encapsulate some intuitive idea
of what it means for a coloring to be similar to a random coloring with blue density p. With
this notion in hand, we can state our structural stability result.

Theorem 1.4. For every p € [%, 1), there exists some ko € N such that the following holds
for every k > ko. For every 0 > 0, there exists some v > 0 such that if a red/blue coloring
of E(Ky) is not (p,0)-quasirandom, then it contains one of the following:

e at least YN* red Ky, each with at least ((1 — p)* + )N extensions to a red Ky, or

e at least YN* blue Ky, each with at least (p* + )N eatensions to a blue Ky .

Remark. As stated, this theorem does not mention the “off-diagonalness” parameter ¢ from
the previous theorem. But ¢ can easily be recovered as ((1 — p)/p)* and the theorem can
then be restated to be about blue books with slightly more than n pages or red books with
slightly more than cn pages. However, since p is what matters while ¢ plays no real role in
the argument, we instead choose to use this language and avoid ¢ entirely.

In Theorem 5.7, we also prove a converse to Theorem 1.4, which implies that for p fixed
and k sufficiently large in terms of p, a coloring of K (or, more accurately, a sequence of
colorings with N tending to infinity) is (p, o(1))-quasirandom if and only if all but o( N*)
red K}, have at most ((1 — p)* 4+ o(1))N extensions to a red Kj,; and all but o(N*) blue
K}, have at most (p* 4+ o(1))N extensions to a blue K. Thus, we derive a new equivalent
formulation for (p, o(1))-quasirandomness.

The rest of the paper is organized as follows. In Section 2, we quote (mostly without
proof) a number of key results that we will use repeatedly. In Section 3, we establish
Theorem 1.2, the stability result for small ¢. We prove Theorem 1.3, that the random bound
is asymptotically tight once ¢ is not too small, in Section 4 and Theorem 1.4, that extremal
colorings are quasirandom in this range, in Section 5. We end with some concluding remarks
and open problems.

1.1 Notation and Terminology

If X and Y are two vertex subsets of a graph, let e(X,Y) denote the number of pairs in
X x Y that are edges. We will often normalize this and consider the edge density

e(X,Y)

d(X.Y) = .
Y) =137

If we consider a red/blue coloring of the edges of a graph, then eg(X,Y) and eg(X,Y) will
denote the number of pairs in X x Y that are blue and red edges, respectively. Similarly, dg
and dgr will denote the blue and red edge densities, respectively. Finally, for a vertex v and
a set Y, we will sometimes abuse notation and write d(v,Y’) for d({v},Y’) and similarly for
dB and dR.



An equitable partition of a graph G is a partition of the vertex set V/(G) =V, U---UV,,
with [|[V;| — |V;]| < 1forall 1 <i4,j < m. A pair of vertex subsets (X,Y) is said to be
e-reqular if, for every X' C X, Y’ CY with |X'| > ¢|X|, |Y’'| > €]V, we have

d(X,Y) — d(X',Y")| < e.

Note that we do not require X and Y to be disjoint. In particular, we say that a single
vertex subset X is e-reqular if the pair (X, X) is e-regular. We will often need a simple
fact, known as the hereditary property of regularity, which asserts that for any 0 < o < 1, if
(X,Y) is e-regular and X' C X, Y’ C Y satisty |X'| > «o|X|, |Y'| > «a|Y], then (X', Y’) is
(max{e/a, 2})-regular.

For real numbers a,b, we denote by a £+ b any quantity in the interval [a — b, a + 0].
All logarithms are base e unless otherwise specified. For the sake of clarity of presentation,
we systematically omit floor and ceiling signs whenever they are not crucial. In this vein,
whenever we have an equitable partition of a vertex set, we will always assume that all of
the parts have exactly the same size, rather than being off by at most one. Because the
number of vertices in our graphs will always be “sufficiently large”, this has no effect on our
final results.

2 Results from earlier work

In this section, we collect some useful tools for the study of book Ramsey numbers, all
of which have appeared in previous works. We begin with several results from the theory
around Szemerédi’s regularity lemma and then quote two simple analytic inequalities.

2.1 Tools from regularity

We begin with a strengthened form of Szemerédi’s regularity lemma taken from our first
paper [10, Lemma 2.1].

Lemma 2.1. For everye > 0 and My € N, there is some M = M (e, My) > My such that, for
every graph G with at least My vertices, there is an equitable partition V(G) =V U---UV,,
into My < m < M parts such that the following hold:

1. FEach part V; is e-reqular and

2. For every 1 <i < m, there are at most em values 1 < j < m such that the pair (V;, V;)
s not e-regular.

To complement the regularity lemma, we will also need a standard counting lemma (see,
e.g., [26, Theorems 2.6.2 and 4.5.1]).



Lemma 2.2. Suppose that Vi, ..., Vi are (not necessarily distinct) subsets of a graph G such
that all pairs (V;,V;) are e-reqular. Then the number of labeled copies of Ky, whose i-th vertex

1s in V; for all v is
1 k
( 11 d(%%)ie(z)) EIWI-

1<i<j<k

We will frequently use the following consequence of the counting lemma, proved in [10,
Corollary 2.6], designed to count monochromatic extensions of cliques and thus estimate the
size of monochromatic books.

Lemma 2.3. Fiz k > 2 and let n,a € (0,1) be parameters with n < o3/k?*. Suppose
Ui, ..., Uy are (not necessarily distinct) vertex sets in a graph G and suppose that all pairs
(Ui, U;) are n-regular with H1§i<j§k d(U;,Uj) > «. Let Q be a uniformly random copy of Ky
with one vertex in each U;, for 1 <1 <k, and say that a vertexr u extends Q) if u is adjacent
to every vertex of Q. Then, for any u € V(G),

k
Pr(u extends Q) > Hd(u, U;) — 4a.
i=1

The final result in this subsection is actually a simple consequence of Markov’s inequality
and so does not require any regularity tools to prove. Nonetheless, we will always use it in
conjunction with Lemmas 2.2 and 2.3, which is why we include it here. Both the statement
and proof are very similar to [10, Lemma 5.2].

Lemma 2.4. Let 5,6 € (0,1), let 0 < v < &, and suppose that Q is a set of at least kKN*
copies of K in an N-vertex graph. Suppose that a uniformly random @) € Q has at least EN
extensions to a Ky, in expectation. Then the graph contains at least (€ — v)kN® copies of
K., each with at least vIN extensions.

Proof. Let X be the random variable counting the number of extensions of a random @) € Q
and let Y = N — X. Then Y is a non-negative random variable with E[Y] = N — E[X] <
(1 —&)N. By Markov’s inequality,

Pr(X <vN)=Pr(Y > (1—-v)N) <

Thus,
1— _
Pr(X >vN)>1- 5:5 Vzg_,/’
1—v 1—v
which implies that the number of ) € Q with at least v /N extensions is at least (£ —v)|Q| >
(€ — v)kN*, as desired. 0



2.2 Analytic inequalities

The following lemma is a multiplicative form of Jensen’s inequality and is a simple conse-
quence of the standard version. For a proof, see [10, Lemma A.1].

Lemma 2.5 (Multiplicative Jensen inequality). Suppose 0 < a < b are real numbers and
T1,..., o € (a,b). Let f:(a,b) = R be a function such that y — f(e¥) is strictly convex on
the interval (loga,logb). Then, for any z € (a*,b*), subject to the constraint Hle €T, = 2,

Z f(x)

is minimized when all the x; are equal (and thus equal to z'/*).

| =

The following theorem is the well-known “defect” or “stability” version of Jensen’s in-
equality. For a proof, see [24, Problem 6.5].

Theorem 2.6 (Holder’s Defect Formula). Suppose ¢ : [a,b] — R is a twice-differentiable
function with " (y) > m >0 for ally € (a,b). For any y1,...,yx € [a,b], let

k k
1 21 2
M:E;yi and o :E;(%—M)

be the empirical mean and variance of {y1,...,yx}. Then

mo?

Z oY) — o(p) > ——.

| =

2

3 The k-partite regime

In this section, we analyze what happens when c is very small. Recall, from the introduction,
that a simple k-partite construction yields a lower bound for T(Bg?, B,(Lk)) and, by a result
of Nikiforov and Rousseau [20], this construction is tight for ¢ sufficiently small.

Theorem 1.1 (Nikiforov—Rousseau, [20, Theorem 2.12]). For every k > 2, there exists some
co € (0,1) such that, for any 0 < ¢ < ¢o and n sufficiently large,

r(B® B®) = k(n+k—1)+ 1.

cn )

Our aim here is to adapt the methods of [20] to prove a stability version of this theorem,
our Theorem 1.2. We first make the following definition.

Definition 3.1. For ¢,y > 0, we say that a red/blue coloring of E(K ) contains (c,y)-many
books if it contains



e at least YN* red K, each with at least (£ +7)N extensions to a red Ky, or
e at least YN* blue K}, each with at least (+ + )N extensions to a blue Kj;.
With this definition in place, we may restate Theorem 1.2 as follows.

Theorem 1.2°. For every k > 2 and every 0 > 0, there exist ¢,y € (0,1) such that the
following holds. If a red/blue coloring of E(Ky) does not have (c,7y)-many books, then one
can recolor at most ON? edges to turn the red graph into a balanced complete k-partite graph.

As well as referring to Section 2, we will need the following classical result of Andrasfai,
Erdés, and Sés [2] (see also [4] for a simpler proof).

Theorem 3.2 (Andrasfai-Erd6s—Sés [2]). For every k > 2, there exists p > 0 such that if
G is a Kyi1-free graph on m vertices with minimum degree greater than (1 — ¢ — p)m, then
G is k-partite. Moreover, one may take p=1/(3k*> — k).

This is a stability version of Turan’s theorem. Indeed, Turan’s theorem implies that if a
graph on m vertices has minimum degree at least (1 — %)m, then it contains a copy of Ky,1,
while the Andrasfai-Erdos—So6s theorem says that as long as the minimum degree is not too
far below (1 — %)m, every such graph must be k-partite.

Before proceeding to the technical details, let us briefly sketch the proof of Theorem 1.2.
We are given a red/blue coloring of F(Ky) and we wish to prove that either the coloring
is close to complete k-partite in red or it contains (c,7)-many books for some ¢,y > 0.
We begin by applying Lemma 2.1 to the red graph of the coloring to obtain an equitable
partition V(Ky) = ViU---UV,,, where each part V; and most pairs (V;, V;) are n-regular for
some small 7 > 0. We now wish to improve our understanding of the coloring with respect
to this partition.

First, we show that all the parts V; must have very low internal red density. Indeed, if
some part V; has dg(V;) > 4, for some fixed 6 > 0, then the counting lemma, Lemma 2.2,
implies that V; contains many red Kj,;. By a simple averaging argument, this implies that
some k-tuple of vertices in V; lies in many red Ky, yielding a red book with 7 N pages. In
fact, by using Lemma 2.4 in place of the averaging argument, we find (¢, y)-many books if
dr(V;) > §, so we may assume that dg(V;) < ¢ for all 7.

We next build a reduced graph G with vertex set vy, ..., v,,, where we make v;v; an edge
if and only if (V;, V) is n-regular and dg(V;,V;) > 6. We claim that every vertex of G has
degree at least (1 — % — o)m for some small o > 0. Indeed, if some vertex v; of G has degree
smaller than this, then we find that V; has very high blue density to roughly (% + o)m of
the remaining parts V. Since V; also has very high internal blue density, we can use this to
find many blue books with spines in V; and (% + )N pages for some 0 < v < ¢. This again
yields (¢, ~y)-many books in the coloring.

So we may assume that the graph GG has high minimum degree. By applying Theorem 3.2,
we find that either G is k-partite or it contains a copy of Kj,1. In the former case, we can
show that the coloring itself is close to k-partite in red. In the latter case, this Ky, yields
k + 1 parts, say Vi,..., Vii1, such that all pairs are n-regular and have red density at least

9



0. By another application of the counting lemma and an averaging argument, we can then
show that this structure again yields (¢, y)-many red books.

We now turn to the details of the proof. We will need the following fact about bipartite
graphs, which is a simple consequence of a double-counting technique first introduced by
K6vari, Sés, and Turan [16].

Lemma 3.3. Let k > 2 and d € (0,1) and let ¢ = (d/4)*. Let H be a bipartite graph with
parts A, B, where |B| > 2k/d, and suppose that H has at least d|A||B| edges. Let H be a
k-uniform hypergraph with vertex set B and at least (1 — C)(‘f‘) edges. Then there are at

least (('f') edges of H such that the vertices of each such edge have at least C|A| common
neighbors in A.

Proof. For a k-tuple Q) € (f), let ext(()) denote the number of common neighbors of @ in
A. We double-count the number of stars K in H whose central vertex is in A to find that

> ext@ =3 (M5) 2 14 (ﬁ Zect deg(a)) - (121),

Q<(%) oed

where the first inequality follows from convexity. If we split the left-hand side into a sum
over tuples () which are non-edges of H, a sum over tuples () that are edges of H with fewer
than (| A| extensions, and the remainder, we find that

\A|(d|kB‘)§ doext(@Q+ Y ext(@+ > ext(Q)

QZE(H) QEE(H) QEE(H)
ext(Q)<(C|A] ext(Q)>(¢| Al

< (") + (") + 4@ € B00 - exv@) = clapy.

Therefore, the number of edges of H with at least (|A| common neighbors is at least (d‘kB ‘) —
2((‘5‘). We note that

(") _dB| dB|~1 dB|-(k-1) (d) s

(o) " 1B TBI-1 B (-1 2

where we used our assumption that |B| > 2k/d. Thus, the number of edges of H with at
least (|A| common neighbors in A is at least

(171 - 2c(121) > 20 (1) 5 (1), -

With these preliminaries in place, we are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Fix some k > 2, 6 € (0,1), and a red/blue coloring of E(Ky). Let
o= (0/(12k*))k, My = k, 6 = o2, and n = 6*. Let M = M(n, M) be the parameter

10



from Lemma 2.1 and let ¢ = 6*/M* and v = 6*°/M?*. We apply Lemma 2.1 to the

red graph in our coloring with parameters M, and n. This yields an equitable partition

V(Ky) =WV U---UV, with My < m < M such that each part V; is n-regular in red and,

for each i, there are at most nm values of j # i for which (V;,V;) is not n-regular in red.
First suppose that some part, say Vi, has internal red density at least 9. By the counting

lemma, Lemma 2.2, we see that V; contains at least (k+1) (5(%1) - n(k'gl))\vl\k“ red Kjyq.

Since each red Kj; contains exactly k& + 1 red K}, this implies that an average k-tuple of

vertices in V] lies in at least

kel (s(*5Y) (k1 k+1

iy (0 |V7T( A > (5(@1) B n<k+ 1)) Vil = €MV

(%) 2

red Kiy1. That is, if we pick a uniformly random k-tuple of vertices from Vi, then the

expected number of red K}, containing it is at least EM|V;|. If we also define k = (§ (5) -
n(g))/(k'Mk), then Lemma 2.2 implies that V; contains at least kN* red K}, with an average
one having at least ¢ N extensions to a red Ky, i, where we use the fact that |V;| > N/M
since the partition is equitable and has m < M parts. If we now set v = £/2 and apply
Lemma 2.4, we conclude that Vi contains at least (£x/2)N* red K}, each with at least
(£/2)N extensions to a red Kjyq. By our choice of parameters,

1 k1 k+1 L
)

and, therefore, £/2 > ¢/k + ~. Similarly, x > 5k2/Mk and, therefore, £k/2 > . Thus, we
find that in this case the coloring contains (¢, y)-many books.

Therefore, we may assume that all V; have dr(V;) < J. We build a reduced graph G with
vertex set vy, ..., v, and declare {v;,v;} € E(G) if (V;,V;) is n-regular and dg(V;,V;) > 0.
Suppose that some vertex of G, say vy, has degree less than (1 — % — o)m. Since at most
nm non-neighbors of v; can come from irregular pairs, we find that dg(V;,V;) > 1 — 4 for at
least (3 + o —n)m choices of i € [m]. Let I C [m] be the set of such 4. Since d(Vi) >1—46

and § < 1/k?, we see that, for a = kd /4,
;) (2) — 5 _ (¥
dp(Vi)\2) > (1—=9)\2) >1 252&.

Moreover, we have that 7 < a3/k? by our choice of . Therefore, we may apply Lemma 2.3,
which implies that if () is a randomly chosen blue K} in V; and u is some vertex in Ky, then
Pr(u extends Q) > d(u, V1)¥ — 4a. In particular, if we sum this up over all u € | J., Vi, we
find that the expected number of blue extensions of () is at least

SO (d(w, i) —4a)2|[\%((1—5)k—4a)2 (%—i—a—n) (1 - 6)" — 4a) N,

iel ueV;

iel
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where the first inequality follows from the convexity of the function x — z*. Using n < /2,
we have that

1 o

1 i 1 o
_ — — — > | — — — > R
(k+a n) (1—94) 4a)_(k+2)(1 2k6)_k+2 2k,
where the last step follows from the bound 1/k 4+ ¢ < 1/k+ 1/k < 1. By our choice of

6 = 0* < 0/(8k), we see that the expected number of blue extensions of Q) is at least (++2)N.

Moreover, by Lemma 2.2, the number of choices for () is at least %((1—5)(5) —n(g))(N/M)k >
xN*. Therefore, if we apply Lemma 2.4 with parameters &, £ = % + 4, and v = % + 7, then
we find that the coloring contains (¢, y)-many books.

Therefore, we may assume that every vertex in G has degree greater than (1 — % —o)m,
s0, by Theorem 3.2 and the fact that o < 1/(3k* — k), we see that either G contains a K},
or GG is k-partite. Assume first that there is a K1 in G. By relabeling the vertices, we may
assume that vy, ..., vpyq form a clique. By the counting lemma, Lemma 2.2, we have that
Vi,..., Vi span at least (5(5) — n(g))(N/m)k > kN* red K;, and Vi,..., Vi, span at least

k+1

(5( 2 n(k'gl))(]\f/m)’”l red K. Every such red K contains exactly one red K} with

one vertex in each of Vi, ..., V4, so an average k-tuple (vy,...,v;) € Vi X --+ X Vj lies in at
least .
GU) = n(SI@fm) ey (RN
- > —-n — =¢&N.
(N/m) 2 M

Thus, we have a set of at least kK N* red K}, with at least £ N extensions on average and so,
applying Lemma 2.4 as before, our coloring has (¢, y)-many books.

Thus, we may assume that G is k-partite. Let this k-partition of V/(G) be A U+ LI Ay.
Note that [A,| < (1 +0)m for every ¢, since the minimum degree of G is at least (1— 1 —o)m
and each A, is an independent set in G. This in turn implies that [A,] > (3 — ko)m for
every {, since |Ag| = m — 32, |Av| > (+ — ko)m. We lift this partition to a partition
of the vertices of Ky into k parts Xi,..., Xy by letting X, = UvieAl V;, noting that our
observations above imply that |X,| = (1 + ko)N for all . We claim that each X, contains
at most 3—2‘5(%“) red edges. Indeed, observe that if v;,v; are two (not necessarily distinct)
vertices of G that are in the same part Ay, then they must be non-adjacent in G. This means
that either (V;, V) is an irregular pair or dg(Vi,V;) < 0. There are at most nm? irregular
pairs, so the irregular pairs can contribute at most nN? < 4k%n| X,|? < 101{;27](');") red edges
inside X, where we used that |X,| > (+ — ko)N > N/(2k). All other pairs of parts inside
each X, have red density at most d, so the total number of red edges inside X, is at most
5 (15N 4+ 10k2n (K1) < 32 (1X0) since i < §/(20k?). This implies that the number of ordered
pairs of (not necessarily distinct) vertices in X, which do not form a blue edge is at most
26| X%

This already implies that the red graph can be made k-partite by recoloring at most
20N? edges, so it only remains to show that by recoloring a small number of additional
edges, we can make the red graph balanced complete k-partite. For this, suppose that

dp(X1,Xs) > 0/k?. If we sample (with repetition) a random k-tuple @ of vertices from
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Xy, then the probability that it does not form a blue clique is at most (’;) <26 < k26,
since each random pair of vertices does not span a blue edge with probability at most
20. Moreover, the expected number of common blue neighbors of () inside X5 is at least
(1 —20)%| Xy — k > (1 — 2k6)| X3|, by convexity. By applying Markov’s inequality as in
the proof of Lemma 2.4, the probability that Q has fewer than (1 — v/8)|X3| common blue
neighbors in X, is at most 2kv/d. Therefore, the probability that @ is a blue clique with at
least (1 — v/6)|X3| common blue neighbors in X5 is at least 1 — k25 — 2kv/6 > 1 — 3kV/0,
since V& < 1/k. Let H be the k-uniform hypergraph with vertex set X, whose edges are
all blue K} in X, with at least (1 — v/0)|X;| common blue neighbors in X,. Then # has at
least (1 — 31{:\/5)(‘)]?‘) edges.

We now apply Lemma 3.3 to the hypergraph H and to the bipartite graph of blue
edges between X; and X,, which has edge density d > 6/k* by assumption. We have
that (d/4)* > (0/(4k*)* > 3ko = 3kv/§ by our choice of o and ¢, so we may indeed
apply Lemma 3.3 to conclude that at least (6/ (41{;2))1“(‘)22‘) of the edges of H have at least
(6/(4k*))*|X;| common blue neighbors in X;. This yields at least

0 \" (X, 01X\ " 0 \" i k
v > (A220) 5 (2 >
() ()= () = (gm) w2

blue K}, each of which has at least

(1—\/5)|X2|+<4%)k|xl|z 1—\/5+<4%)k> <%—kU)N
> %+<i)k—\/5—2ka>N

1 0 \*
> | - R —
> k:+ <4k3) 31{:0) N

1
> (= N
= <k+7)

extensions to a blue Kjq, where in both computations we used the fact that | X[, |Xz| >
(1 —ko)N > N/(2k), as well as our choices of V§ = o = (6/(12k*))*. Thus, in this case, we
have again found (c,y)-many books, a contradiction.

Hence, we may assume that dp(X;, X3) < 6/k* By the same argument, all the blue
densities between different parts X, can be assumed to be at most §/k?. Since we have
already argued that the red density inside each part is at most 20, we see that, by recoloring
at most ((g) 0/k* + 2k5)N? edges, we can make the red graph complete k-partite. Finally,
we recall that each part X, has size | X,| = (% + ko)N. Therefore, by moving at most
k20N arbitrary vertices into another part, we see that we can make our partition equitable.
We then recolor the edges incident with any moved vertex to obtain a balanced complete
k-partite red graph. Doing so entails recoloring at most k20 N? additional edges. Thus, in

13



total, we recolor at most

kY 60 2 2 0 2 2
R < — <
<<2)k2+2k6+ka>1\f _<2+3ko—>_91\f

edges, where we used that § < o and o < (6/(12k*))* < 0/(6k?). O

4 An upper bound matching the random bound

In this section, we prove Theorem 1.3, which says that when ¢ is not too small, the random
lower bound for T(Bg?, B,(Lk)) is asymptotically tight. To prove this theorem, we will mimic
our simplified proof of the diagonal result from [10, Section 3], though it needs to be adapted
to the off-diagonal setting in several ways. Before proceeding with the details, we sketch the
proof at a high level, indicating which parts require new ideas beyond those already present
in [10].

A key notion used in the proof is that of a red-blocked configuration. Informally, a red-
blocked configuration consists of &k disjoint vertex sets such that each set and all pairs are
n-regular for some small 7, every set has red density at least § for some small §, and every pair
has blue density at least 4. A blue-blocked configuration is defined similarly, except with the
roles of red and blue interchanged. Like the good and great configurations defined in [10], we
care about such configurations because their existence automatically implies the existence
of large monochromatic books. The precise statement is given in Lemma 4.3, but, roughly,
it says that if we have a red/blue coloring of the complete graph on (c'/* + 1)*n + o(n)
vertices which contains a red-blocked or a blue-blocked configuration and £ is sufficiently
large with respect to ¢, then the coloring contains a red BY or a blue BY”. This is the key
lemma which underlies the entire proof. Its proof is similar to that of [10, Lemma 3.3], but
requires a few modifications. First, the analytic inequality which yields the result is more
complicated in the off-diagonal setting and this is where the (necessary) assumption that k
is large with respect to ¢ comes from. Second, the averaging arguments used in the proof
of Lemma 4.3 require a little more care than those used in the proof of [10, Lemma 3.3],
because we must take (p, 1 —p)-weighted averages here. Finally, though in principle one needs
separate arguments to deal with red-blocked configurations and blue-blocked configurations,
it turns out that the same proof works for both cases, simply by interchanging the roles of
red and blue and of p and 1 — p.

The remainder of the proof now comes down to finding a red-blocked or blue-blocked
configuration or else finding a large monochromatic book directly. To do this, we begin by
applying Lemma 2.1 to the red graph of the coloring, obtaining a regular equitable partition
V(Ky) =ViU---UV,,. Call a part red if it contains more red edges than blue edges and
blue otherwise. We assume for now that at least pm of the parts are blue; the case where
at least (1 — p)m of the parts are red runs similarly. We build a reduced graph G whose
vertices are in bijection with the blue parts and where edges represent pairs of parts that
are regular and have red density at least ¢ for some small § > 0. By defining GG in this way,
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we see that a K} in GG corresponds to a blue-blocked configuration in the original coloring,
so it suffices to find a K}, in G.

To do this, we first show that every vertex in G must have degree at least roughly
(1 — p*=H|V(G)|. Indeed, if this is not the case, since |V (G)| > pm, we find that there is
some blue part V; which has very high blue density to at least roughly p*m other parts.
This can then be used to find a blue B,Sk), where n ~ p*N. So we may conclude that every
vertex in G has high degree. But, by Turdn’s theorem, plus the fact that p*~! < 1/(k — 1)
for sufficiently large k, this implies that G contains a copy of K}, as desired.

We now begin the detailed proof of Theorem 1.3. The following result generalizes a key
analytic inequality from the diagonal case [10, Lemma 3.4].

Lemma 4.1. For every p € (0,1), there exists some ki € N such that if k > ki and
x1,..., 2, € [0,1], then

1kk

1’“]_[ Z+ S —z)f > 1

=1
Moreover, one may take
6 if p>1—>5/(4e)

k’l (p) = 5—log log ﬁ+log(—loglog ﬁ)
og E

otherwise.

Proof. First suppose that z; < ¢ for some j € [k]. Then we have that

)lk

(1—p)'* po (L—p)* p o (1—p)* 1\ (1-p)t
T;(l_‘”) > =) ZT(“E) T

= f(p. k),
where we used the inequality 1—z > e™2* for z € [0, 3]. If p > 1—5/(4e), then 1—p < 5/(4e),
so f(p, k) > (4/5)* k=3 /k. Once k > 6, this last expression is at least 1, so in the case
where p > 1 — 5/(4e), we may take ki(p) =

For p <1—5/(4e), let A= A(p) =lo gli nd

5-logA+loglogy 5~ loglog i, + log(~loglog )

ki (p) = 1
ip) =1+ ) 1ogfp

We now claim that
flp,k)>1 i k> k(p). (2)
By differentiating, we see that f(p, k) is monotonically increasing in k for k > 1/log 1%17 =

1/X. Since p < 1 —5/(4e), we have that 5 — log A + loglog+ > 1 and so we are in the
monotonicity regime. It therefore suffices to prove the statement for & = ki(p). Note now
that

e’ log L
1— 1-ki(p) — 1 — (5—log)\+loglog%)/bg(l—p) — A
(1-p) (1-p) —
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and let g(p) =1+ A/log+ + 5/log 5 + loglog +/log +. Then we have

e’ log + 1 e3log L e3
f(p, ki(p)) = A — = 2 T = :
A eki(p)  A+5+1logt +loglog:  g(p)

Thus, to prove that f(p, k1(p)) > 1, it suffices to prove that g(p) < €3 for all p < 1 —5/(4e).
By differentiating, one can check that ¢g(p) is monotonically increasing in p € [0,1 —5/(4e)].
Thus, it suffices to check that g(1 — 5/(4e)) < e3. But g(1 — 5/(4e)) ~ 18.4 < €3, so
f(p,k1(p)) > 1, as claimed. Hence, from now on, we may assume that all the z; are in (%, 1].

For the moment, let’s assume that all the x; are in (%, 1). Note that the function ¢ : y —
(1 —e¥)* is strictly convex on the interval (log £,0). By the multiplicative Jensen inequality,
Lemma 2.5, this implies that, subject to the constraint [[F_, z; = z, the term X S (1 —z)*
is minimized when all the z; are equal to z*/*. Therefore,

k k
1— 1-k
pl—k sz + ( kp> Z(l . LL’Z)k > pl—kz + (1 _p>1—k(1 . zl/k)k'
i=1

i=1

So it suffices to minimize this expression as a function of z. Changing variables to w = z'/*

it suffices to minimize
P(w) =pFw + (1 —p)' (1 —w)*

as a function of w. By differentiating, we find that 1 is minimized at w = p, where ¥ (p) = 1.
This proves the desired result as long as all the z; are in [0, 1). By continuity, the result then
extends to all x; € [0, 1]. O

Definition 4.2. Fix parameters £ € N and 7, € (0,1) and suppose that we are given a
red/blue coloring of F(Ky). Then a k-tuple of pairwise disjoint vertex sets Cy,...,Cj C
V(Ky) is called a (k,n,d)-red-blocked configuration if the following properties are satisfied:

1. Each Cj is np-regular with itself,
2. Each C; has internal red density at least §, and
3. For all i # j, the pair (C;, C;) is n-regular and has blue density at least o.

Similarly, we say that Ci,...,C is a (k,n,9)-blue-blocked configuration if properties (1-3)
hold, but with the roles of red and blue interchanged.

The reason we care about these configurations is that, for appropriate choices of the
parameters 7 and J, their existence yields the existence of the required monochromatic
books. This idea (or, rather, the version of it when red and blue play symmetric roles)
already appears implicitly in the work of the first author [9], but was made much more
explicit in the prequel to this paper [10]. The precise statement we will need here is given
by the next lemma.
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Lemma 4.3. For every p € [%, 1), there is ko € N such that the following holds. Let k > ko,

= ((1 = p)/p)*, and 0 < & < % and suppose 0 < § < (1 —p)e and 0 < n < 6% Suppose
that the edges of Ky with N = (p~* + e)n are red/blue colored and this coloring contains
either a (k,n,0)-red-blocked configuration or a (k,n,d)-blue-blocked configuration. Then, in
either case, the coloring contains either a red BY or a blue B, Moreover, one may take
ka(p) = k1(1 — p), where ky is the constant from Lemma 4.1.

Proof. We tackle the two cases separately: suppose first that the coloring has a (k,n, §)-red-
blocked configuration, say Ci,...,Cy. By the counting lemma, Lemma 2.2, we know that
the number of blue K}, with one vertex in each C; is at least

<Hd 0 <)>H'C'>( ())ch|>o

so there is at least one blue K with one vertex in each of C,...,C). By a similar compu-
tation, we see that each C; contains at least one red Kj.

For a vertex v and ¢ € [k], let x;(v) = dp(v,C;) € [0,1]. We observe that from the
definition in Lemma 4.1, we have that ki (1 —p) > ky(p) for all p > 1. Therefore, Lemma 4.1
implies that since k > ko > k1 (p), we have that

( ’fH:cz ) (1- >(%Z<1—xi<v>>k>zl

i=1

forall v e V. Summlng thls fact up over all v, we find that

p<p_k2ﬁxi(v))—l—(l— < ZZ 1— (v >>N (3)

veV =1 =1 veV

This says that a (p, 1 — p)-weighted average of two numbers is at least N, which means that
at least one of them is at least N. Suppose first that the first term is at least IV, i.e., that

ZHL >pkN

veV 1=1

Let @@ be a uniformly random blue K} spanning C4, ..., C}, which must exist by our com-
putations above. Let o = 0¥ < [1.-,; d5(Ci, Cj) and observe that n < o = ot < /K2
Thus, for any v, we can apply Lemma 2.3 to conclude that the probability v extends @ to a
blue K1 is at least [ [, z;(v) — 4a. Therefore, the expected number of extensions of @) to a
blue Ky, is at least

k
Z (H x;(v) — 4a> > (p* — 4a)N

veV
(" —4a)(p" +e)n
(14 p'e —8ap™)n

vV IV Vv
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where (4) uses that o = 6% < ((1 — p)e)* < (pe)* < p**e/8. Therefore, Q has at least n
extensions in expectation, so there must exist some blue K with at least n extensions, i.e.,
a blue B,

Now assume that the other term in the weighted average in (3) is at least N, i.e., that

EY S0 m ) 2 (- )N

i=1 veV

Then there must exist some 7 for which
S0 - m() > (1= pfN.
veV

Therefore, if () is a random red K, inside this C}, then, by Lemma 2.3, the expected number
of extensions of @ is at least?

> (=) —4a] > [(1-p)* —4a] (p* +e)n

veV
1\
> ((Tp) + (1 — p)ke — 8ap_k> n

> cn, (5)
where we use the fact that ¢ = ((1 — p)/p)* and that
a=0" = ((1=pe)* <p(1-p)e/s,

since 1 — p < p. Thus, the expected number of red extensions of a red K;, in C; is at least
cn, so there must exist a red B® . This concludes the proof under the assumption that the
coloring contains a (k,n, §)-red-blocked configuration.

Now, we instead assume that the coloring contains a (k, 7, d)-blue-blocked configuration
and aim to conclude the same result; the proof is more or less identical, but with the role of
p now played by ¢ = 1 — p. As before, we find that there is at least one red K} spanning
(4, ...,C and that each C; contains at least one blue K. For a vertex v and i € [k], let
y;(v) = dgr(v, C;) € [0,1] and write ¢ = 1 — p. Since k > ky = k;1(q), we can sum the result
of applying Lemma 4.1 over all v € V' to find that

q (q"“ZHW)) +(1-q) (% Y- yz-<v>>k> > N.

veV i=1 i=1 veV

As before, this is a (¢, 1 — q)-weighted average of two terms, which means that one of the
terms must be at least N. Suppose first that the first term is at least NV, i.e., that

Z H y;(v) > ¢"N.

veV i=1

3Strictly speaking, if v € C;, then dg(v,C;) # 1 — x;(v), as v has no edge to itself. However, this tiny
loss can be absorbed into the error terms and the result does not change.
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If @ is a uniformly random red K} spanning C,...,Cy and a = 5k2, then, as before, we find
that the expected number of extensions of @) to a red Ky, is at least

> <H i) 4&) > (" —4a)N > (1= p)* —4a)(p~* + ) = en,

veV \i=1

by the computation in (5). Therefore, in this case, there must exist some red Kj with at
least cn red extensions, giving the desired red BY. So we may assume instead that

IS w@) > (1 )N,

i=1 veV

which implies that for some i € [k],

> (1 —yi(v)* = prN.

veV

Thus, if ) is a random blue K}, inside this C;, we find that the expected number of blue
extensions of () is at least

> [0 —w)F —4a] > (0" —4a)N > (p* —da)(p~* +e)n > n,

o

by the same computation as in (4). This gives us our blue By ’, completing the proof. [

With this result in hand, we can now prove Theorem 1.3.

Proof of Theorem 1.3. Given an integer k > 2, let ¢;(k) be the infimum of ¢ € (0, 1] such
that ky((c'/* + 1)) < k, where k; is the constant from Lemma 4.3. Note that we declare
this infimum to equal 1 if no ¢ € (0, 1] satisfies this condition (as happens for £ = 2). In this
case, there is nothing to prove, since Theorem 1.3 for ¢ = 1 is already known [9]. We now
fix c € [e1,1] and p = 1/(c/* 4+ 1) € (3, 1], noting that we have k > ka(p).

Fix 0 < ¢ < 3 and suppose we are given a red/blue coloring of E(Ky) where N =
(p~* 4 ¢)n. Our goal is to prove that if n is sufficiently large in terms of €, then this coloring
contains a red B% or a blue BY¥. To do this, we fix parameters § = (1 — p)®e/(4k) and
n = min{0**, (1 — p)/(4k)} depending on ¢, k, and ¢.

We apply Lemma 2.1 to the red graph from our coloring with parameters n and My = 1/
to obtain an equitable partition V(Ky) = Vi U ---UV,,, where each V; is n-regular and, for
each 7, there are at most nm values 1 < j < m such that the pair (V;,V}) is not n-regular.
Moreover, My < m < M = M(n, My). Note that since the colors are complementary, the
same properties also hold for the blue graph. Call a part V; blue if dg(V;) > % and red
otherwise.

Suppose first that at least m’ > pm of the parts are blue and rename the parts so that

Vi,..., V. are these blue parts. We build a reduced graph G whose vertex set is vy, ..., Uy
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by making {v;,v;} an edge if and only if (V;,V}) is n-regular and dg(V;,V;) > 6. Suppose
that some vertex in G, say v;, has degree at most (1 — p*~* — n/p)m’ — 1. Since v; has at
most nm < nm'/p non-neighbors coming from irregular pairs (V;,V}), this means that there
are at least p*~'m’ parts V; such that (V4,V}) is n-regular and dg(Vi,V;) > 1 — 6. Let J be
the set of all these indices j and U = (J;.; V; be the union of all of these Vj. We then have
es(Vi,U) = ep(Vi, V) = > (1= 08)|[Wi|[V;] = (1= §)[Va[|U]. (6)
jeJ jeJ
Let V/ C Vi denote the set of vertices v € Vj with eg(v,U) > (1 — 20)|U|. Then we may
write

ep(Vi,U) = ep(w,U)+ D ep(o,U) < |[V{||U[+ (1 =28)Vi\ V[[U].  (T)

veVvy veVi\V/

Combining inequalities (6) and (7), we find that |V/| > %|V4|, where every vertex in V/ has
blue density at least 1 — 26 into U. Moreover, since n < ¢, we may apply the n-regularity of
V1 to conclude that the internal blue density of V/ is at least % —-n > %, while the hereditary
property of regularity implies that V] is 2n-regular. Then the counting lemma, Lemma 2.2,
implies that V] contains at least

& (as0® —2a (D) Y= o (370 20 (5) Y e > o

blue K}, so that V[ contains at least one blue K. Every vertex of this blue K}, has at least
(1 —20)|U| blue neighbors in U, so the blue K} has at least (1 —2kd)|U| blue extensions into
U. Moreover, since we assumed that |.J| > p*~tm/ > p*m and the partition is equitable, we
find that |U| > p*N. Therefore,
(1 —2k)|U| > (1 —2kd)p*(p~* +e)n
= (1 —2k8)(1 +p*e)n
1+ pFe — 4ké)n

n,

AVARLY,

since our choice of § yields 4ké = (1 — p)?*¢ < p*e. Thus, we find that any blue K inside
V{ must have at least n blue extensions, giving us our blue BY.

So we may assume that every vertex in G has degree at least (1 — p*~* —n/p)m/. Recall
from (2) that f(1 — p,k) = p*=%/(e*k) > 1 for k > ki(1 — p). Since we assume that
k > ko(p) = k1(1 — p), this implies that
1 1
ok S 3h—1) ®)

3
Additionally, by our choice of n < (1 — p)/(4k) < p/(4k), we know that

PPl — <




The previous two inequalities imply that

1
1opt Doy 2
b P k—1
so that G contains a K by Turdn’s theorem. Let v;,,...,v;, be the vertices of this Kj

and let C; = V;, for 1 < j < k. Then we claim that Ci,...,C} is a (k,n,§)-blue-blocked
configuration. The fact that each C; is n-regular follows immediately from our application of
Lemma 2.1 and the fact that dg(C;) > 6 follows from the fact that we assumed dg(C;) > %
Finally, the definition of edges in G implies that (C;, C;) is n-regular with dg(C;, C;) > § for
all i # j. Thus, our coloring contains a (k, 7, d)-blue-blocked configuration with 5 < (1-p)e
artg) n < 6% so Lemma 4.3 implies that the coloring contains either a red BY or a blue
By’

We have now finished the proof if at least pm of the parts V; are blue. Therefore, we
may assume instead that at least m” > (1 — p)m of the parts are red and again rename the
parts so that these red parts are Vi,...,V,,». We construct a reduced graph G on vertices
U1, ..., Uy by connecting v; to v; if (V;, V) is n-regular with dg(V;, V;) > 6. Suppose that
some vertex in G, say vy, has degree at most (1 — (1 —p)*~! —n/(1 —p))m” — 1. As before,
v1 has at most nm < nm” /(1 — p) non-neighbors coming from irregular pairs. Thus, if we

let J denote the set of indices j for which (V4,V}) is p-regular with dg(V3,V;) > 1 — 6, then
we find that [J| > (1 —p)*'m” > (1 — p)*m. Thus, if U = [J,c,V}, then we see that

|U| > (1 — p)* N, since the partition is equitable. Next, as above, we let V/ C Vi denote the
set of vertices v € V; with eg(v,U) > (1 —20)|U| and find that [V{| > $[V;|. Therefore, as
above, we know that V' contains at least one red K} and this red K} has at least (1—2k6)|U|
red extensions in U. Moreover,

(1 —2k0)|U| > (1 —2kd)(1 —p)*N
= (1=2kO)(1=p)*(pF +e)n
= (1= 2kd)(c+ (1 —p)re)n (9)
> (c+ (1 —p)Fe — 4kd)n
> cn, (10)

where in (9) we used the definition of p, which implies that ((1 — p)/p)*¥ = ¢, and in (10) wi
used our choice of § to see that § < (1 — p)ke/(4k). Thus, in this case, we can find a red
Bl

We may therefore assume that every vertex in G has degree at least (1 — (1 — p)*~! —
n/(1 —p))m”. As before, we know that, since k > ka(p),

1-prt<pt<

and our choice of n < (1 — p)/(4k) implies that

i 1
< .
1—p = 3(k—1)

21



Thus, by Turan’s theorem, G must contain a Ky, with vertices v;,, ..., v;. If welet C; =V;,
then C, ..., Cy will be a (k,n,d)-red-blocked configuration, by the definition of edges in G
and the assumption that N is sufficiently large in terms of €. Thus, by Lemma 4.3, we can
again conclude that the coloring contains either a red BY or a blue BY.

To finish, we note that, as claimed, we may take ¢; (k) < ((1+0(1))* %)%, Indeed, for any
cand k, let p(c, k) = (c"/*+1)"' and y = y(c, k) = 1/ log[1/p(c, k)]. Then, from Lemmas 4.1
and 4.3, we see that ko(p(c, k)) = 1+ y(5+1logy + loglogy). Thus, if y < (14 0(1))k/logk,
then k > ky(p(c,k)). Since y = 1/log(1 + ¢'/*), this condition is equivalent to c'/* >

exp((1 4 0(1))*8E) — 1 = (1 + o(1))*2%, which yields the desired bound. 0O

5 Quasirandomness

In the previous section, we showed that for a certain range of ¢ and k, the Ramsey number
r(B(gfL),B,(Lk)) is, as n — oo, asymptotically equal to the lower bound coming from a p-
random construction. In this section, we strengthen this result, showing that all colorings
whose number of vertices is close to the Ramsey number must either be quasirandom or else
contain substantially larger books than the Ramsey property implies. We make the following
definition.

Definition 5.1. For p € [, 1) and v > 0, we say that a red/blue coloring of E(K ) contains
(p,~v)-many books if it contains

e at least YN* red K, each with at least ((1 — p)* + )N extensions to a red K, or
e at least YN* blue K}, each with at least (p* + )N extensions to a blue K.
Here is the restatement of Theorem 1.4 in terms of (p,y)-many books that we will prove.

Theorem 1.4°. For every p € [%, 1), there exists some kg € N such that the following holds
for every k > ko. For every 0 > 0, there exists some v > 0 such that if a red/blue coloring
of E(Ky) is not (p,0)-quasirandom, then it contains (p,~)-many books.

To prove Theorem 1.4, we will need a few technical lemmas. At a high level, the proof
closely follows the proof of the main quasirandomness theorem in [10, Section 5], as follows.
First, we prove a strengthening of Lemma 4.1, which can be thought of as a stability version of
that result; it says that if our vector (z1,...,xx) is bounded in /., away from the minimizing
point (p,...,p), then the value of the function in Lemma 4.1 is bounded away from its
minimum of 1. Using this, we can strengthen Lemma 4.3 to say that not only does a blocked
configuration imply the existence of the desired monochromatic book, but in fact it implies
the existence of a larger book unless every part of the blocked configuration is e-regular to

the entire vertex set. Therefore, assuming our coloring does not contain many blue B((Zz LN

or red B((zgl)_p)k LN We will be able to repeatedly pull out vertex subsets that are e-regular
to the entire vertex set until we have almost partitioned all the vertices into such subsets. At
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that point, we can use the structure coming from this partition to deduce that the coloring
s (p,0)-quasirandom, as desired.
We begin with the strengthening of Lemma 4.1.

Lemma 5.2. For p € (0,1), let ky = ki(p) be as in Lemma 4.1. Then, for every integer
k > ki and any g > 0, there exists some dg > 0 such that if xq, ...,z € [0,1] are numbers
with |x; — p| > eo for some j, then

1-k _k

k
1—k (1-p) k
D gx+ 2 Z( ;) =+ 0o

i=1

Proof. Let
p)L* k

F(xy,...,o) =p'~ kHL Z(l—xi)k

=1

and o(y) = (1 — e¥)*. The goal is to apply Holder’s defect formula, Theorem 2.6, using the
strict convexity of the function ¢. However, ¢ is only strictly convex on the interval (log %, 0)
and, in order to apply Theorem 2.6, we in fact need a positive lower bound on ¢”, but no
such bound exists for the whole interval (log %, 0). Because of this, we need to separately
analyze the cases where all the variables are inside a large subinterval of (%, 1) and when one
of them is outside such a subinterval.

First, suppose that one of the variables, say 1, is in the interval [0,
constant £; > 0. Then we have that

F(ay, ... Ik)ZM(l—xl)’“zM(l_lJrﬁ)k

1+51

|, for some small

k k k

From the proof of Lemma 4.1, we see that this quantity is strictly larger than 1 for all
k > k1(p), so, by choosing dy appropriately, we see that F(xy,...,x;) > 14 dy in this case.
We may therefore assume from now on that all the variables are at least lt%

Next, suppose that there exist values x1, ..., 251 € [lfl , 1] such that F(zy,...,25-1,1) =
1. We observe that

8:@

=1

k—1 k—1
= [pl_k H;UZ — (1 — p)l_k(l — xk)k_l] = pl_k HQE‘Z > 0.
i=1 i=1

ZBkZI

This implies that if we move from z, = 1 to x;, = 1 — g9 for some sufficiently small e,

the value of F' will decrease. Therefore, there will exist a vector (zi,...,xy) for which
F(xy,...,2,) < 1, contradicting Lemma 4.1 as long as k > k;(p). Thus, for every choice of
T1, ..., xp—1 € [HE1, 1], we have that F(zy, ..., z5-1,1) > 1. Since the space [221, 1] x {1}

is compact, we in fact find that F(zq,...,25-1,1) > 14+ 9] for all z1,..., 241 € [1+€1 1],
for some sufficiently small 6] depending on p and k. Finally, by continu1ty of F', we have
that F(zq,...,z5) > 1 4+ §; whenever x;, > 1 — g9 for some other d;,e5 > 0. Since Fisa
symmetric function of its variables, the same conclusion holds if z; > 1 — ¢, for any . Thus,
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as long as we take the dy in the lemma statement to be smaller than ¢;, we can assume from
now on that z; € [H£L, 1 — &,] for all i.
By Lemma 2.5, subject to the constraint [[f_,z; = 2, the term %Zle(l — x;)F is

minimized when x; = 2% for all i. As in the proof of Lemma 4.1, this shows that
F(xy,...,25) > ¥(2¥F), where ¢(w) = p'~*w* + (1 — p)'=*(1 — w)*. The function 1
has a global minimum at w = p, where its value is 1. This shows that F'(xy,...,x;) > 1+

if [21/% — p| > &3, for some 3 > 0 depending on p, k, and d;. Moreover, by picking dg
sufficiently small, we can make €3 as small as we wish. Therefore, we may now assume that
2% = p & e3, which implies that log(z'/*) = (logp) & &4 for some £, > 0, which can also be
made arbitrarily small by picking d, appropriately.

We are now ready to apply Holder’s defect formula. First, we observe that for y €

[log 1= log(1 — £5)], we have

1—|—€1 _
2 '5152'8123m,

0" (y) = ke’ (1 — ey)k_z(k:ey -1 >k-

where m is a fixed, strictly positive constant. Let y; = logx; for 1 < i < k, so that
%Zle y; = log(2'/%). We assumed that |v; — p| > &y for some j, which implies that
ly; —logp| > o as well, since the derivative of log z is bounded below by 1 on the interval
(0,1). Therefore, choosing dy small enough that 4 < g9, we see that

(50 - 54)2,

| =

(y; — log(21/%))* =

| =
| =

k
> (v —log(='))* >
i=1

since log(2'/%) = (log p) 4 and |y; — logp| > &o. Hence, by Theorem 2.6, we have that

1— 1-k _k
F(xy,...,x,) = pl_kz + % ;(1 — xl)k

k
1
=" e (=)' 2D )
i=1

m
> p'Fz + p(log(2'*)) + o (g0 — €4)?

2k
m
= (%) + YA e4)’
> 1+ do,
where we use the fact that ¢ (w) > 1 for all w € [0, 1] and take Jy sufficiently small. O

Using Lemma 5.2, we can now prove the following strengthening of Lemma 4.3, which
says that if we have a blocked configuration C}, . .., C) and many vertices whose blue density
into C; is far from p, then we can find a substantially larger monochromatic book than what
is guaranteed by Lemma 4.3.
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Lemma 5.3. Fiz p € [%, 1) and let k > ky(p), where ky is the constant from Lemma 4.3.
Suppose 0 < gy < i and let 09 = 0o(gg) be the parameter from Lemma 5.2. Let 0 < § <
(1 — p)dogo and 0 < 1 < 6% and suppose that Cy,...,Cy is either a (k,n,d)-red-blocked

configuration or a (k,n,0)-blue-blocked configuration in a red/blue coloring of Ky. Define
B ={ve Ky :|dg(v,C;) —p| > eo}.
Then the following hold:

(a) If|B;| > eoN for some 1, then the coloring contains a blue B% or ared B(

(P*+B)N (1=p)*+B)N’
where 5 = ( - )k(SOEO/Q.

(b) If, in addition, |C;| > TN for all i and some T > 0, then there exists some 0 < v < 3
depending on €o, T, and § such that the coloring contains (p,~y)-many books.

Proof. We may assume without loss of generality that |B;| > €o/N. As in the proof of
Lemma 4.3, we need to split into two cases, depending on whether C1, ..., C} is blue-blocked
or red-blocked. We begin by assuming that it is (k,n, §)-red-blocked.

First, as in the proof of Lemma 4.3, observe that each C; contains at least one red K} and
there is at least one blue K} spanning C, ..., Ck. Moreover, if we assume that |C;] > 7N
for all ¢, then Lemma 2.2 shows that the number of blue K} spanning C',...,C} is at least

(1<g<kd3 CiC)) < )) [Tl > < : <§)) (TN)* > (6@2)#) N

and similarly, with an additional factor of 1/k!, for the number of red K}, inside each Cj.
For a vertex v and ¢ € [k], let x;(v) = dg(v, C;). Lemma 4.1 implies that, for any v € V,

P <p_k Hm&v)) +(1—p) (% Z(l — xl(v))k> > 1.

i=1

Additionally, if v € By, then |z1(v) — p| > ¢, so Lemma 5.2 implies that, for v € By,

k .k
p(p_kllxi(v))jt(l— < Zl—xlv k)21+60.

Adding these two equations up over all v € V' shows that

p <P_kZHIi(U>) +(1-p) (% S Y- xi(v))k) > N6/ > (14 o)V

veV i=1 i=1 veV

That is, a (p, 1 — p)-weighted average of two quantities is at least (1 4 dpeg)/V, which implies
that one of the quantities must itself be at least (1 4 doeg)N. Suppose first that

_kZHZ'z ) > (14 6ogo) N

veV i=1
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Let @ be a uniformly random blue K with one vertex in each of C,...,Cy. Let a = 5k <
[L;-,; ds(Ci, Cj), so that n < 6% = ot < a®/k2. Therefore, applying Lemma 2.3 to each v
and summing up the result, we find that the expected number of blue extensions of () is at
least

Z < xi(v) — 4a> > (p* + p"dpeg — 4a)N.

veV \i=

Next, observe that

k _ k )k k
dor — 48F° < % < (( 172)5060) < (1 ]92) d0€0 < p (;050’ (11)

which implies that the expected number of blue extensions of () is at least (p* + 3)N, where

B = (1 —p)*Syeo/2. Thus, there exists a blue B((;;,Z LN Proving (a) in this case. Moreover,

if we assume that |C;| > 7N for all 4, then our earlier computation shows that @) is chosen
uniformly at random from a set of at least K N* monochromatic cliques, where k = § (5) 7k /2.
We may therefore apply Lemma 2.4 with & = p* + 3 and v = p* + v, for some appropriately
chosen 0 < v < B, to conclude that in this case our coloring contains at least vN* blue
cliques, each with at least (p* + )N blue extensions, proving (b).

Therefore, we may assume that the second term in the weighted average is the large one,
i.e., that

% Z Z(l — 2;(v))" > (1 4 Sp0) N,

i=1 veV
which implies that, for some i,

D (1= z;(0))* = (1= p)* (1 + bogo) N

veV

Therefore, if () is now a random red K} inside this C;, Lemma 2.3 implies that the expected
number of red extensions of () is at least

S [ = () —4a] > [(1 = p)* + (1 = p)*doze — 4a] N.

veV

But, by (11), 4o < (1 —p)¥6pe0/2, which implies that the expected number of red extensions
of Q is at least ((1 —p)*+ B)N, proving (a). As before, if we also assume that |C;| > 7N for
all 7, then we may apply Lemma 2.4 with x = 5(5)7k/2k!, E=(1-p)k+p,and v = (1—p)F+~
to find that our coloring contains at least yN* red K}, each with at least ((1—p)*+~)N red
extensions for some appropriately chosen v € (0, 8), yielding (b). This concludes the proof
of the lemma in the case where Ci,...,Cy is a (k, 7, §)-red-blocked configuration.

As in the proof of Lemma 4.3, the other case, where C, ..., Cy is a (k,n, d)-blue-blocked
configuration, follows in an almost identical fashion. We define y;(v) = dg(v,C;) for all
v € Vandi € [k] and let ¢ = 1 — p. We then apply Lemmas 4.1 and 5.2 with these y
variables and with ¢ instead of p. The remaining details are exactly the same. O
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Next, we strengthen Lemma 5.3 by showing that not only does every part of a blocked
configuration have density roughly p to most vertices, but it is in fact (p,e)-regular to the
entire vertex set. Here, by saying that a pair of vertex subsets (X,Y) is (p, e)-regular, we
mean that |d(X',Y") —p| < e forevery X' C X, Y’ CY with | X'| > ¢|X]|, |Y’'| > ¢|Y]|. Note
that (p,e)-regularity is equivalent, up to a linear change in the parameters, to e-regularity
with density p €.

Lemma 5.4. Fizp € [%, 1) and let k > ky(p). Suppose 0 < g1 < i, g0 = €2/2, and let &y =
do(0) be the parameter from Lemma 5.2. Let0 < § < (1—p)dogo and 0 < n < £12-%°§%* and

suppose that C1, . .., Cy, is either a (k,n, d)-red-blocked or a (k,n, §)-blue-blocked configuration
in a red/blue coloring of Ky. Then the following hold:

(a) If, for some i, the pair (C;, V') is not (p,e1)-reqular in blue, then the coloring contains

a blue B®) where B = (1 — p)*oen/2.

(k)
(prpn OT @ red B((l_

p)F+B)N’
(b) If, in addition, |C;| > TN for all i and some T > 0, then the coloring contains (p,~y)-
many books for some 0 < vy < [ depending on 1,0, and T.

Proof. Without loss of generality, suppose that (C, V) is not (p, e;)-regular in blue. Then
there exist C] C C}, D C V with |C}| > &1|C],|D| > 1N such that |dg(C}, D) — p| > €.
Assume first that dg(C1, D) > p+¢e;. Let D; C D denote the set of vertices v € D with
dp(v,C]) <p+ 5 and let Dy = D\ D;. Then we have that

€ !
(p+2) [CHIDI < Y en(w.C) + Y es(v,C1) < (p+5 ) ICHIDI + [CIDa),

veDq vED2

which implies that |Dy| > 5-|D| > ?N = g0V, where each v € D; has dp(v,C]) > p+ 5.
Now, consider the k-tuple of sets C7, Cs,...,Cy; by the hereditary property of regularity,
we see that this is a (k, 7, d')-blocked configuration, where ' = n/e; and 6’ =6 —n > §/2.
This implies that ¢’ < (1 — p)doeg and ' < (¢’ )4k2. Therefore, we may apply Lemma 5.3(a)
to the (k,n’,d")-blocked configuration C}, Cs, ..., C} to conclude that the coloring contains
a blue B((;;ZJFB)N or a red B((?l)_p)k""ﬁ)N. Moreover, if we assume that |C;| > 7N for all 4, then
|C!| > e17N for all i, where C! = C; if i > 2. Thus, Lemma 5.3(b) implies that in this case
the coloring contains (p,y)-many books for some 0 < v < 8 depending on 1,4, and 7.

To complete the proof of the lemma, we also need to check the case where dg(C], D) <
p — 1. However, the proof is essentially identical: we find a subset Dy C D such that every
vertex v € Dy has dp(v,C]) < p — 5 and such that |D,| > 5-[D] and then the rest of the
proof is as above. O

Our next technical lemma gives the inductive step for our proof of Theorem 1.4. The
proof mimics that of Theorem 1.3, except that the vertex set is split into parts that were
already pulled out as regular and a part that has not yet been touched. Inside the untouched
part, we build a reduced graph and use it to find either many large monochromatic books or
a blocked configuration, at which point Lemma 5.4 implies that the induction can continue.
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Lemma 5.5. Fiz p € [1,1) and let k > ko(p). Fiz 0 < ¢ < p/(20k) and suppose that
the edges of the complete graph Ky with vertex set V' have been red/blue colored. Suppose
that Ay, ..., A are disjoint subsets of V such that (A;, V') is (p,e%)-reqular for all i. Let
W =V\ (A U---UA) and suppose that |W| > eN. Then either there is some Apy CW
such that (Agy1, V) is (p, e2)-regular or else the coloring contains (p,~y)-many books for some

v > 0 depending on ¢, p, and k.

Proof. Let €, = €2, g9 = €2/2, and & = dp(gg) be the parameter from Lemma 5.2 and set
6 = (1 —p)doeo, n = 227 5% 3 = kp+~1e2 and f' = 4e. We apply Lemma 2.1 to the
subgraph induced on W, with parameters n and My = 1/7, to obtain an equitable partition
W =WiU---UW,, where My < m < M = M(n, My). Call a part W; blue if dg(W;) > %
and red otherwise. As in the proof of Theorem 1.3, we first assume that at least m’ > pm
of the parts are blue and rename them so that Wy, ..., W, are the blue parts.

We build a reduced graph G on vertex set w, ..., w,,, connecting w;, and w;, by an
edge if (W;,,W,,) is n-regular and dg(W;,,W;,) > 6. Suppose that w; has at most (1 —
pF=t — B'/p —n/p)m’ — 1 neighbors in G. Since w; has at most nm < nm’/p non-neighbors
coming from irregular pairs, this means that there are at least (p*~!+ §'/p)m’ parts W; with
2 < j < m’ such that (Wy, W;) is p-regular and dg(W;,W;) > 1 —4§. Let J be the set of
these indices j and set U = | ies Wj. By the counting lemma, Lemma 2.2, W contains at

least (2_(5) — 77(5)) |W1|* blue copies of K; and

1 K k 27K W\ " eN \*

—(276) - B2 (D)

X ( : ”(2)) Wiz = ( M ) = (ksz) ’
where we use that n < 5K < 5(5)/(5) and that 2_(5) - 5(5) > 2_k2, along with our
assumption that |[W| > eN. If we set k = (¢/k2*M)*, then this implies that W, contains
at least kKN* blue K. If we pick a uniformly random such blue K}, then Lemma 2.3 with

k k

a = ¥ < 2_(2) < dB(Wl)(2) implies that its expected number of blue extensions inside U
is at least

> (dplu, W)k = da) > [(1 - 6)F = 6*] |U| > (1 - 2k0)|U],

uelU

where we first use Jensen’s inequality applied to the convex function = — z* to lower bound
S, dp(u, W)F by (1—6)¥|U| and then use that (1 —8)* > 1 —k§ and 46" < §¥ < kd. Since
we assumed that J was large and the partition is equitable, we find that

Ul = (0" + 8/ /o) W] = (0" + B [W].

Thus, a random blue K}, inside W, has at least (1 — 2k6&)(p* + 8')|W| blue extensions in W.

Now, suppose that instead of just w; having low degree in G, we have a set of at least
em vertices w; € V(G), each with at most (1 —p*~' —3'/p—n/p)m’ — 1 neighbors in G. Let
S be the set of these 7 and T = UjeS W;. By the above argument, for every j € S, we have
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that W, contains at least kKN* blue K} such that a uniformly average one among them has
at least (1 — 2k&)(p* + B')|W| blue extensions into W. Moreover, we have that

|44
7] = I11W;| 2 el | = e > v

We may therefore apply the (p, e?) regularity of (A;, V) to conclude that dg(A;, T) = p £ 2
for all 7. Thus, if we pick j € S randomly, then E[dg(W;, A;)] = p+e?. Therefore, if we first
sample j € S randomly and then pick a random blue K}, inside W}, then Lemma 2.3 implies
that this random blue K will have in expectation at least

S (dsla, W)t = 455) > [(p— ) - 6*] 4

a€A;
2
> {p’“ (1 - ki) —6‘”} A
p
2
> (1 _ @) Ay
p

blue extensions into A;, again by Jensen’s inequality. This implies that this random K} has in
expectation at least (1 —2ke?/p)p*|A; U- - -UAy| extensions into A;U---UA,. Adding up the
extensions into this set and into W, its complement, shows that this random blue K} has in
expectation at least EN blue extensions, where ¢ is a weighted average of (1 —2ke?/p)p* and
(1 —2k3)(p* + B'), and where the latter quantity receives weight at least ¢, since |W| > eN.
Thus,

e2 (-2 (1-22) ke 200t + )

2ke?
> (1 - 78 — a) PP el —2k8)(1 +p*p)p"

2ke? k
2(1——8 —a)pk+£<1+§)pk
p p

2
:pk(l—l-ki)
p

=p" + 5,

where we used the definition of 3, the fact that 2ké < p~*3'/4, that (1—x/4)(1+x) > 14+2/2
for all x € [0,1], and that p=*3’ > 6ke/p, which follows since 3 = 4¢ and, as in the proof of
Lemma 4.1, p'~* > e2k > 3k for k > ky(p). Therefore, by Lemma 2.4, we can find at least
yN* blue K}, each with at least (p* 4 )N blue extensions, for some v < 3 depending on &
and  and, thus, only on ¢, p, and k.

Therefore, we may assume that in G, all but em < em’/p of the vertices have degree at
least (1 — p*~t — B'/p — n/p)m’. Hence, the average degree in G is at least

!
(1_5) (1_pk—1_é_ﬁ)m/2(1_pk—1_@)m/2(l_pk—1_i)m/’
D P P P 3k
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since /= 4e, n < g, and ¢ < p/(20k). By (8), the fact that k& > ky(p) implies that
pF~1 < 1/(3k). Therefore, the average degree in G is greater than (1 — 1/(k — 1))m’, so,
by Turan’s theorem, G will contain a Kj. Let w;,,...,w;, be the vertices of this K} and
let C5 = W, for 1 < j < k. Then, by the definition of G, we see that Ci,...,C} is a
(k,m, d)-blue-blocked configuration with |C;| > 7N for all i, where 7 = ¢/M depends only
on g, p, and k. Thus, by Lemma 5.4(b), we see that either the coloring contains (p, v)-many
books for some « depending on ¢, p, and k or else (C;,V) is (p,e?)-regular for all j. In the
latter case, we can set A,y = C; (or any other C;) and get the desired result.

Now, we need to assume instead that at least m” > (1 — p)m of the parts W; are red.
However, just as in the proof of Theorem 1.3, the argument is essentially identical: we first
rule out the existence of too many low-degree vertices in the reduced graph by counting
extensions to W and to A; U---U A, and then apply Turdn’s theorem to find a K}, in the
reduced graph, which completes the proof by Lemma 5.4(b). O

By repeatedly applying Lemma 5.5 until W has fewer than e N vertices, we can partition
Ky into a collection of subsets A; such that (A;, V) is (p, €?)-regular, plus a small remainder
set Ayyr1 about which we have no such information. Our final technical lemma shows that
such a structural decomposition suffices to conclude that the coloring is (p, #)-quasirandom.

Lemma 5.6. Let ¢ < 0/3. Suppose we have a partition
V(Ky)=A U---UA U A,

where (A;, V') is (p,e)-reqular for each 1 < i < { and |Ay1| < eN. Then the coloring is
(p, 0)-quasirandom.

Proof. Fix disjoint X,Y C V(K ). We need to check that
les(X,Y) = p|X[|Y]| < ON*.
First, observe that if |Y| < eN, then
les(X,Y) — p|X||Y]| < |X|[Y] < eN? <ON?

Therefore, from now on, we may assume that |Y|>eN. For 1 <i</+41,1let X; = A;,NX
and define Iy = {1 <i < /:|X;| > ¢|A;|}. Then we have that

)4
> IXi| < Al +2 > A < 2¢eN.

i¢lx i=1

We now write
41

ep(X,Y) = plX|IY] =) (en(X:,Y) = plXil[Y]).

i=1
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We will split this sum into two parts, depending on whether ¢ € Iy or not. First, suppose
that i € Ix. Then |X;| > ¢|A;| and |Y| > €|V, so we may apply the (p,e)-regularity of
(A;, V) to conclude that

D len(XnY) = plXllYIl = D 1ds(Xe,Y) = pl [Xi[Y] < Y el Xil|V] < el X[[Y] < eN®.

i€lx i€lx ielx

On the other hand, since ., [X;| < 2eN, we have that

D les(X0,Y) = pIXilIY|| < Y] ) 1Xi| < |Y|(2eN) < 26N,
i¢1X ing

Adding these together, we conclude that
lep(X,Y) — p|X|[Y]] < 3:N? < ON?,
as desired. O
With all these pieces in place, the proof of Theorem 1.4 becomes quite straightforward.

Proof of Theorem 1.4. Fix p € [%,1) and suppose k > ko = ko(p). Fix > 0 and set
e = min{0/3,p/(20k)}. Let v = v(0,p, k) be the parameter from Lemma 5.5. Suppose we
are given a coloring of Ky without (p,~y)-many books. We wish to prove that the coloring
is (p,0)-quasirandom. We inductively apply Lemma 5.5 to find a sequence A, ..., A, of
vertex subsets such that (A;, V) is (p,e?)-regular for all i and, therefore, (p,e)-regular for
all 2. We continue until the remainder set W = V \ (4; U--- U Ay) satisfies |W| < eN,
at which point the assumptions of Lemma 5.5 are no longer met, so we set A, 1 = W.
However, at this point, we can apply Lemma 5.6 to conclude that our coloring is indeed

(p, §)-quasirandom. <

5.1 The converse

In this section, we prove a converse to Theorem 1.4, which implies that not containing
(p,y)-many books is an equivalent characterization of p-quasirandomness.

Theorem 5.7. Fixk > 2 and p € (0,1). Then, for every~y > 0, there exists some 6 > 0 such
that the following holds for every (p, 8)-quasirandom coloring of E(Ky) with N sufficiently
large. Apart from fewer than yN* exceptions, every red K, has ((1 —p)¥ £ )N extensions
to a red Ky, and every blue Ky has (p* £~)N eatensions to a blue Ky ,. In particular, the
coloring does not contain (p,~y)-many books.

Remark. In this direction, there is no dependence between p and the range of k for which
the result holds. As we know from the fact that the k-partite structure is the extremal
structure for small ¢, such a dependence is necessary in the forward direction. However,
here, all we are saying is that almost all monochromatic books in a quasirandom coloring
are of essentially the correct size, that is, asymptotic to what they would be in a random
coloring.
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Proof. We will use the well-known result of Chung, Graham, and Wilson [6], that a quasir-
andom coloring contains roughly the correct count of any fixed monochromatic subgraph.
Specifically, for every § > 0, there is some 6 > 0, such that, in any (p,#)-quasirandom
coloring of F(Ky),

N

B(K}) = #(blue K;) = p(®) (k

) + SN*,
o B (k+1) N ftl
B(Kk41) = #(blue Kiy1) =p' 2 Ea1 £ ONTT,

e N\ (k+2
B(Kpso — ¢) == #(blue Ky o —¢) = pl'2)1 (k ) 2) ( ;r ) £ SN2,

where Kj,o — e is the graph formed by deleting one edge from Kj.o; note that for this
count we have an extra factor of (k;r2) to account for the fact that this graph is not vertex-
transitive. On the other hand, we can observe that every blue copy of Ky o — e corresponds
to two distinct extensions of a single blue K} to a blue K. ,. Therefore,

<#(blue extensions of Q))

B(Kk+2—6)zz 9

Q

where the sum is over all blue Kj. Let extp(Q) denote the number of blue extensions of ().
Then we can also observe that ), extp(Q) counts the total number of ways of extending a
blue K} into a blue K}, which is precisely (k+1)B(K41), since each blue K contributes
exactly £+ 1 terms to this sum.

Now, we consider the quantity

E= ) (extp(Q) —p'N)”

Q a blue Ky,

On the one hand, we have that if § > 1/N, then

E = X:extB(Q)2 — kaNZextB(Q) + Z:p%N2
Q Q Q

— (2 ZQ: (eth; (Q)) + %:extB(Q)> — 20" N(k +1)B(Kj11) + p** N?B(K})

= 2B(Kpyo —e) + (1 — 2" N)(k + 1) B(Kyy1) + p** N?B(K},)

2y _ N k+2 k41 N w (N
< op("37)-1 — N (k+ 1)p(3) 2 N2y, (3) O NF+2
. k+2)\ 2 p Nk +1p po1) TPNTPE )

k2 43k

N
=p 2 (k)(—N+k2+k)+5k5Nk+2

< 5kONF+2,
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On the other hand, suppose there were at least YN*/2 blue K}, with at least (p* + v)N or
at most (p® — )N blue extensions. Then, by only keeping these cliques in the sum defining
E| we would have that

3
E= ZQ:(extB(Q) — PPN > VT(VNV - %N’““.

Therefore, if we pick § < v3/10k, we get a contradiction. The same argument with p replaced
by 1 — p and blue replaced by red shows that there are also fewer than yN*/2 red K}, with
at least ((1—p)*+~)N or at most ((1—p)* —~)N red extensions. This proves the theorem,
since the total number of exceptional cliques is at most y/N*. O

6 Concluding remarks

Putting together the main results of this paper, we obtain the following picture. For ev-
ery k > 2, there exist two numbers co(k),c;(k) € (0,1] such that if 0 < ¢ < ¢, then
r(BE B = k(n+k—1)+1, while if 1 > ¢ > ¢y, then r(B%, B{) = (¢'/% + 1)*n+ o4(n).
Moreover, in both these regimes, there are stability results: there exist ¢(k) < ¢o(k) and
) (k) > c1(k) such that for 0 < ¢ < ¢}, all the near-extremal colorings are close to k-partite,?
while for all 1 > ¢ > ¢}, all near-extremal colorings are quasirandom. Of course, the most
natural question remaining is to understand what happens in the interval (¢, ¢}), where our
results say nothing. Note that this gap is real, since below ¢ all extremal colorings must
be k-partite, whereas above ¢ all extremal colorings must be quasirandom. On the other
hand, it is possible that there is no gap between cy and c;, since it is conceivable that at
the point where the random and k-partite constructions yield comparable lower bounds on
r(Bgi), B,gk)), both are tight.

This question about the gap really comprises at least two separate questions: what
happens for fixed £ and what happens as £ — oo? To address the second question first, our
results give some indication. Indeed, we have shown that both ¢y(k) and ¢;(k) tend to 0 as
k — oo and thus the gap interval shrinks as k& — oo. More precisely, we have that

ot = (10 %28) < 9 < (1400 2

Moreover, the results of [15] show that 1/cq is at most single-exponential in a power of k.
On the other hand, because we used the regularity lemma, our upper bound for 1/¢j is only
of tower-type. However, it seems likely that the methods of [15] could also be adapted to
improve this.

The other question is what happens for fixed k. Here, our understanding is much more
limited, even for the simplest case k = 2. In this case, Nikiforov and Rousseau [19] proved

that co(2) = 1/6, in the sense that, for all ¢ < 1/6 and all n sufficiently large, r(Bé?L), B,(f)) =

4For concreteness, we can fix cf(k) as coming from an application of Theorem 1.2 with 6 = 1/k3.
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2n + 3, whereas, for any ¢ > 1/6 and all n sufficiently large, there is a construction showing
that r(BgL),Bg)) > 2n + 3. Curiously, our results do not say anything non-trivial about
c1(2), other than the fact that the random bound is correct for ¢ = 1; in other words, we
cannot prove that ¢;(2) < 1 and in fact believe this to not be the case.

Conjecture 6.1. For every ¢ < 1, the random bound for r(Bgi), By(?)) is not tight. In other
words, there exists some B = B(c) > 0 such that r(BY), BY) > (/e + 1)2 + B)n for all n
sufficiently large.

Of course, this conjecture is really only the tip of an iceberg, with the general open
question being to understand r(BgL), B,(f)) for ¢ € (1/6,1) and n — oo. There are many
conjectures one could make about the behavior of this quantity as a function of ¢; for
instance, perhaps there are a number of thresholds in the interval (1/6,1) at which new
extremal structures emerge, each dictating the value of r(Bﬁ?), B£L2)) until the next threshold.
Because we know that the random bound is correct for ¢ = 1 and that quasirandom colorings
are the only extremal ones, such a sequence of extremal examples would need to converge,
in some appropriate sense, to the quasirandom coloring as ¢ — 1. However, at the moment
we are not even able to conjecture a single such extremal structure or threshold.

Acknowledgments. We are grateful to the anonymous referee for helpful comments which
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