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Abstract. The ability to constrain the mechanisms that trans-
port organic carbon into the deep ocean is complicated by the
multiple physical, chemical, and ecological processes that
intersect to create, transform, and transport particles in the
ocean. In this paper we develop and parameterize a data-
assimilative model of the multiple pathways of the biolog-
ical carbon pump (NEMUROgcp). The mechanistic model
is designed to represent sinking particle flux, active trans-
port by vertically migrating zooplankton, and passive trans-
port by subduction and vertical mixing, while also explic-
itly representing multiple biological and chemical proper-
ties measured directly in the field (including nutrients, phy-
toplankton and zooplankton taxa, carbon dioxide and oxy-
gen, nitrogen isotopes, and 2**Thorium). Using 30 different
data types (including standing stock and rate measurements
related to nutrients, phytoplankton, zooplankton, and non-
living organic matter) from Lagrangian experiments con-
ducted on 11 cruises from four ocean regions, we conduct
an objective statistical parameterization of the model and
generate 1 million different potential parameter sets that are
used for ensemble model simulations. The model simulates
in situ parameters that were assimilated (net primary pro-
duction and gravitational particle flux) and parameters that
were withheld (>**Thorium and nitrogen isotopes) with rea-
sonable accuracy. Model results show that gravitational flux
of sinking particles and vertical mixing of organic matter
from the euphotic zone are more important biological pump
pathways than active transport by vertically migrating zoo-
plankton. However, these processes are regionally variable,
with sinking particles most important in oligotrophic areas
of the Gulf of Mexico and California Current, sinking par-

ticles and vertical mixing roughly equivalent in productive
coastal upwelling regions and the subtropical front in the
Southern Ocean, and active transport an important contrib-
utor in the eastern tropical Pacific. We further find that mor-
tality at depth is an important component of active transport
when mesozooplankton biomass is high, but it is negligible in
regions with low mesozooplankton biomass. Our results also
highlight the high degree of uncertainty, particularly amongst
mesozooplankton functional groups, that is derived from un-
certainty in model parameters. Indeed, variability in BCP
pathways between simulations for a specific location using
different parameter sets (all with approximately equal misfit
relative to observations) is comparable to variability in BCP
pathways between regions. We discuss the implications of
these results for other data-assimilation approaches and for
studies that rely on non-ensemble model outputs.

1 Introduction

Marine phytoplankton in the surface ocean are responsible
for approximately half of the world’s photosynthesis (Field
et al., 1998). However, as a result of their short lifetimes and
active grazing by a diverse suite of zooplankton, most of the
carbon dioxide fixed by phytoplankton will be respired back
into the surface ocean on timescales of days to weeks (Stein-
berg and Landry, 2017). Long-term sequestration of this bio-
logically fixed carbon dioxide requires that the organic mat-
ter produced by marine autotrophs be transported into the
deep ocean through a suite of processes collectively referred
to as the biological carbon pump (BCP) (Boyd et al., 2019;
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Ducklow et al., 2001; Volk and Hoffert, 1985). The BCP is
estimated to transport 5-13PgCyr~! into the deep ocean
(Laws et al., 2000, 2011; Siegel et al., 2014; Henson et al.,
2011). Our ability to constrain the magnitude of this glob-
ally important process (and its response to anthropogenic
forcing) more accurately is hampered, however, by the di-
verse spatiotemporal scales over which these processes act
and difficulties in quantifying rates in a heterogeneous three-
dimensional ocean (Siegel et al., 2016; Burd et al., 2016;
Boyd, 2015).

Attempts to predict future changes in the BCP are also
complicated by the diverse pathways of organic matter flux
into the deep ocean (Henson et al., 2022). Most research
of the BCP has focused on sinking particles (Turner, 2015;
Buesseler and Boyd, 2009; Martin et al., 1987; Honjo et al.,
2008), which include diverse biologically produced material
such as dead phytoplankton and zooplankton, fecal pellets,
crustacean molts, and mucous feeding structures (Smayda,
1970; Kirchner, 1995; Bruland and Silver, 1981; Fowler and
Small, 1972; Small et al., 1979; Alldredge, 1976; Hansen
et al., 1996; Lebrato et al., 2013). Slowly sinking and sus-
pended particles are also reshaped into rapidly sinking ma-
rine snow through abiotic aggregation processes (Passow
et al., 1994; Burd and Jackson, 2009; Jackson, 2001; All-
dredge, 1998). These sinking particles are continually trans-
formed, remineralized, and modified by a community of
particle-attached bacteria and protists and suspension- and
flux-feeding mesozooplankton (Stukel et al., 2019a; Poulsen
and Kiorboe, 2005; Steinberg et al., 2008; Simon et al., 2002;
Boeuf et al., 2019).

Organic matter is also transported into the deep ocean
through active transport by vertically migrating zooplankton
and nekton (Steinberg et al., 2000; Longhurst et al., 1990;
Archibald et al., 2019; Bianchi et al., 2013a) and by passive
transport of dissolved and particulate organic matter that is
subducted by ocean currents or mixed into the deep ocean
(Levy et al., 2013; Carlson et al., 1994). The global magni-
tudes of these processes are highly uncertain because they
are difficult to constrain from in situ measurements. Ac-
tive transport is commonly believed to be responsible for
a relatively small proportion (~ 10 %-20 %) of the biolog-
ical pump (Archibald et al., 2019; Hannides et al., 2009;
Steinberg et al., 2000). However, if mortality at depth is in-
cluded as part of active flux, it can be an important and at
times dominant source of export, although such estimates
are highly uncertain (Kelly et al., 2019; Kiko et al., 2020;
Hernidndez-Le6n et al., 2019). Similarly, investigations of the
importance of passive transport initially focused on the role
of refractory dissolved organic matter (Carlson et al., 1994;
Copin-Montégut and Avril, 1993). Recent studies, however,
highlight the importance and spatiotemporal variability of
passive transport of particles via subduction, eddy mixing,
mixed-layer shoaling, and vertical diffusion (Levy et al.,
2013; Omand et al., 2015; Stukel et al., 2018b; Stukel and
Ducklow, 2017; Resplandy et al., 2019). These passive trans-
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port processes can be driven both by large-scale flows and
by mesoscale and submesoscale circulation near fronts and
eddies (Resplandy et al., 2019; Llort et al., 2018; Omand et
al., 2015; Stukel et al., 2017).

Numerical models are essential tools for investigating such
processes that act across multiple spatiotemporal scales and
integrate multiple physical, chemical, and biological drivers.
Such models have, for instance, been crucial in elucidating
spatial and temporal decoupling of phytoplankton produc-
tion and sinking particle export (Plattner et al., 2005; Hen-
son et al., 2015); quantifying spatial variability in the rela-
tive importance of different BCP pathways (Nowicki et al.,
2022); determining the temporal horizon over which anthro-
pogenic signals appear in the world ocean (Schlunegger et
al., 2019); quantifying regional variability in subduction of
organic matter (Levy et al., 2013); inverting oxygen, nutrient,
and carbon standing stock measurements to estimate global
carbon export rates (Schlitzer, 2000, 2002); and predicting
climate change impacts on plankton communities and the
BCP (Dutkiewicz et al., 2013; Hauck et al., 2015; Bopp et al.,
2005; Oschlies et al., 2008; Yamamoto et al., 2018). Mod-
els have also been used to investigate the role of vertically
migrating zooplankton in strengthening oxygen minimum
zones (Bianchi et al., 2013a), mesoscale and submesoscale
hotspots of particle subduction (Resplandy et al., 2019), and
the impact of glacial/interglacial changes in iron deposition
on the BCP (Parekh et al., 2006). Such investigations would
be difficult or even impossible to undertake without models.
Nevertheless, the models for varying processes differ sub-
stantially, and few are able to investigate the full potential
parameter space or quantify the accuracy of simulated en-
ergy flows through multiple trophic levels. While accurate
simulation of physical circulation is critical for simulating
marine biogeochemistry (Doney et al., 2004), objective pa-
rameterization of biogeochemical models lags substantially
behind similar approaches for physics. Indeed, the inability
to constrain biogeochemical relationships accurately may be
the primary limitation on our ability to objectively evaluate
biogeochemical models (Anderson, 2005; Franks, 2009; Fol-
lows and Dutkiewicz, 2011; Ward et al., 2013). Recent ad-
vances in formal assimilation of biogeochemical properties
into ocean models are beginning to allow objective model
parameterization, a crucial first step for treating models as
testable hypotheses (Xiao and Friedrichs, 2014a; Mattern and
Edwards, 2019; Kaufman et al., 2018; Ford et al., 2018; Kri-
est et al., 2017; Shen et al., 2016; Oschlies, 2006; DeVries
and Weber, 2017; Nowicki et al., 2022). Nevertheless, most
of these approaches rely only on the assimilation of surface
chlorophyll and/or other phytoplankton properties, thus lead-
ing to potentially high inaccuracies in parameterizing zoo-
plankton dynamics (Shropshire et al., 2020; Loptien and Di-
etze, 2015). This is particularly important, because inaccu-
rate parameterizations of mesozooplankton may lead to qual-
itatively and quantitatively inaccurate export dynamics (Ca-
van et al., 2017; Anderson et al., 2013). Accurate simula-
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tion of the BCP likely requires a focus on assimilation of
data types crossing multiple trophic levels and both ecologi-
cal and biogeochemical parameters.

In this study, we modify an existing, widely used bio-
geochemical model (NEMURO, Kishi et al., 2007) to fo-
cus specifically on the multiple pathways of the biological
carbon pump. We refer to the new model as NEMUROgcp.
We have three distinct goals in creating NEMUROgcp. The
first is to mechanistically model the multiple BCP pathways
(sinking particles, active transport by vertical migrants, and
passive transport of organic matter by ocean circulation and
mixing). Our second goal is to enable direct comparability
between model results and field measurements of standing
stocks and rates. This allows the model to act as a synthetic
tool using diverse measured variables to enhance investiga-
tion of underlying and unmeasured processes (Dietze et al.,
2013). Our third goal is a model that can be run efficiently in
multiple physical configurations to allow extensive data as-
similation and hypothesis testing. NEMUROgcp is designed
with a core nitrogen-based module (including all biological
components, nutrients, detritus, dissolved organic matter, and
oxygen) that includes all three pathways of the BCP, along
with submodules (that can be turned on or off) that model
the carbon system, 23*Th dynamics, and nitrogen isotopes.
Here, we perform a Markov chain Monte Carlo statistical
data assimilation to develop ensemble parameterizations of
NEMUROgp using 30 distinct types of field measurements
from 49 Lagrangian experiments. We then investigate the
model’s ability to predict withheld measurements, conduct
sensitivity analyses, and use the model to investigate the BCP
in four ocean regions.

2 Methods
2.1 Core NEMUROgcp model

NEMUROgcp was developed from the NEMURO class of
models originally developed for the North Pacific (Kishi et
al., 2007, 2011; Yoshie et al., 2007) and includes several
modifications adapted by Shropshire et al. (2020) that allow
the model to be compared more directly to common field
measurements. It also includes three optional modules that
can be toggled on and off (the carbon system, nitrogen iso-
topes, and 234Th).

The core of NEMURORgcp is nitrogen-based and includes
19 state variables (Table 1): three nutrients (nitrate, am-
monium, and silicic acid), two phytoplankton (small phy-
toplankton and diatoms), five zooplankton (protistan zoo-
plankton, small non-vertically migrating mesozooplankton,
small vertically migrating mesozooplankton, large non-
vertically migrating mesozooplankton, large vertically mi-
grating mesozooplankton), two dissolved organic pools (la-
bile dissolved organic nitrogen and refractory dissolved or-
ganic nitrogen), four non-living particulate pools (small par-
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ticulate nitrogen, large particulate nitrogen, small opal, and
large opal), two chlorophyll state variables (one associated
with small phytoplankton, the other with diatoms), and oxy-
gen. As in Shropshire et al. (2020), the small and large meso-
zooplankton are defined based on size (< 1 and > 1 mm, re-
spectively) rather than trophic status to allow direct compar-
ison to common size-fractionated measurements. Relative to
the original NEMURO model, key changes include (1) an
explicit chlorophyll module (based on Li et al., 2010) that al-
lows direct comparison to in situ chlorophyll measurements
and gut pigment measurements made with herbivorous zoo-
plankton; (2) division of dissolved organic matter into refrac-
tory and labile dissolved organic nitrogen to simulate sub-
duction of refractory molecules; (3) division of detrital pools
into slowly and rapidly sinking particles to simulate more
accurately the gravitational pump; (4) division of mesozoo-
plankton into epipelagic-resident taxa and vertical migrants
to simulate active transport by diel vertical migrators; and
(5) addition of a dissolved oxygen state variable that poten-
tially limits heterotrophic growth in the mesopelagic ocean.
NEMUROgcp also modifies key transfer functions by, for in-
stance, allowing protists to feed on diatoms, since protistan
grazers are often important diatom grazers (e.g., Landry et
al., 2011). The transfer functions linking state variables in
NEMUROgcp are shown in Fig. 1 and explained in detail
in the Supplement. The 103 parameters in NEMUROgcp are
explained in Supplement Table S1.

Diel vertical migration is incorporated into NEMUROgcp
via two alternate formulations (only the first one is
used in this study). The first formulation is designed
for computational efficiency when the model is run in a
euphotic-zone-only configuration (NEMUROgcp EUPONLY)-
In NEMUROsgcp guronLy diel vertically migrating taxa
(LZpym and PZpym) only feed at night. During the day,
their mortality and respiration do not contribute to detri-
tus and dissolved nutrient pools but rather are treated as a
loss of nitrogen from the model. The second formulation
includes a true diel vertical migration model based on the
model of Bianchi et al. (2013a) for use when the model
explicitly represents mesopelagic layers. In this formula-
tion (NEMUROgcp,pvm), vertically migrating zooplankton
swim toward a target depth with a swimming speed of
3ems™! (speed decreases as zooplankton approach the tar-
get depth). During the day, the target depth is defined as
the depth of the 1073 W m~2 isolume. At night, the target
depth is defined as the mean depth of phytoplankton biomass.
NEMUROgcp,pym also includes a biological diffusion term
that ensures that LZpyy and PZpyy are dispersed around the
target depth rather than accumulating within a single model
layer.

2.1.1 Optional carbon system submodule

The carbon system in NEMUROgcp includes dissolved inor-
ganic carbon (DIC) and alkalinity as state variables. DIC is
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Table 1. State variables in NEMUROgcp.

Abbreviation  Description Units

Core model

SP Small (non-diatom) phytoplankton mmol Nm~3
LP Large phytoplankton (diatoms) mmol N m~3
SZ Small (protistan) zooplankton mmol Nm—3
LZREs < 1 mm epipelagic-resident mesozooplankton mmol Nm~3
LZpyMm < 1 mm diel vertically migrating mesozooplankton =~ mmol N m™3
PZRrEs > 1 mm epipelagic-resident mesozooplankton mmol N m~3
PZpvm > 1 mm diel vertically migrating mesozooplankton =~ mmol N m~3
NO3 Nitrate mmol N m—3
NHy Ammonium mmolNm™3
PON Slowly sinking detritus mmol N m~3
LPON Rapidly sinking detritus mmol N m—3
DON Labile dissolved organic nitrogen mmolNm™3
DONTref Refractory dissolved organic nitrogen mmol N m—3
SI Silicic acid mmol Sim ™3
op Slowly sinking opal (biogenic silica) mmol Sim~3
LOP Rapidly sinking opal (biogenic silica) mmol Sim™3
CHLpg Chlorophyll associated with small phytoplankton mg Chl a m—3
CHLpL Chlorophyll associated with large phytoplankton mg Chl a m3
oxXY Dissolved oxygen mmol O m—3
Carbon submodule

DIC Dissolved inorganic carbon mmol Cm™~3
ALK Alkalinity mmol m—3
234Thorium submodule

dTh Dissolved 234Th dpmL~!

SPth 234Th adsorbed to small phytoplankton dpm L1

LPth 2347Th adsorbed to large phytoplankton dpm L!

SZth 234Th adsorbed to small zooplankton dpm L!
LZRESTy, 234Th adsorbed to LZRES dpmL~!
LZDVMry, 234Th adsorbed to LZDVM dpmL~!
PZRESTH, 234Th adsorbed to PZRES dpmL~!
PZDVMry, 234Th adsorbed to PZDVM dpmL~!
PONTH 234Th adsorbed to slowly sinking detritus dpm L}
LPONTH 234Th adsorbed to rapidly sinking detritus dpm L!
Nitrogen isotope submodule

SPN1s 15N in small phytoplankton mmol PN m—3
LPN1s 15N in large phytoplankton mmol SNm—3
SZN15 5N in small zooplankton mmol PN m—3
LZRESN|5 15N in LZRES mmol ’Nm—3
LZDVMy;5s  Nin LZDVM mmol SN'm—3
PZRESN;5 I5N in PZRES mmol PN m—3
PZDVMy;5  °Nin PZDVM mmol PNm—3
NOni15 I5N in nitrate mmol SN'm—3
NHys I5N in ammonium mmol PN m—3
PONN15 5N in slowly sinking detritus mmol PN m—3
LPONN15 N in rapidly sinking detritus mmol SNm—3
DON;5 15N in labile DON mmol PN m—3
DONREFy5 3N in refractory DON mmol PN m—3

Biogeosciences, 19, 3595-3624, 2022 https://doi.org/10.5194/bg-19-3595-2022



M. R. Stukel et al.: Quantifying biological carbon pump pathways

Al

|
Opallarge

3599

Si(OH), |[«———| Opalyy,
Al

NO, [ DTM

I—

A 4

NH, [ ) PS

0
<

4

2 A 4 \A4

PONsmall PONIarge

v v

Figure 1. Schematic depiction of the core NEMUROpcp model. Arrows show transfer functions (orange: Si flux; blue: N flux). Rectangles
show state variables (SiOH3: silicic acid; NO3: nitrate; NHy: ammonium; Opalgya)y: small biogenic silica; Opaljarge: large biogenic silica;
DONqef: refractory dissolved organic nitrogen; DONigpjle: labile dissolved organic nitrogen; PONgmg): small detritus; PONjyrge: large de-
tritus; DTM: diatoms; PS: small phytoplankton; Chl;: diatom chlorophyll; chls: small phytoplankton chlorophyll; ZS: protistan zooplankton;
ZLres: < 1 mm metazoan zooplankton that are resident in the euphotic zone; ZL gy, < 1 mm diel vertically migrating metazoan zooplankton;
ZPres: > 1 mm metazoan zooplankton that are resident in the euphotic zone; ZPgyp,: > 1 mm diel vertically migrating metazoan zooplankton).

Oxygen is also a state variable but is not shown in this figure.

produced whenever there is net biological utilization of or-
ganic carbon and consumed whenever there is net biological
production of organic carbon at fixed stoichiometric ratios of
C:N=106: 16 (mol : mol). Calculation of other carbon sys-
tem parameters (pH and partial pressure of CO,) and air—sea
CO, gas exchange is performed using procedures described
in Follows et al. (2006).

2.1.2  Optional >34Th submodule

The 2**Th submodule is based on the model of Resplandy et
al. (2012). It adds a dissolved 234T state variable (units are
dpm: decays per minute), as well as state variables associ-
ated with 23*Th bound to each of the nitrogen-containing par-
ticulate state variables (i.e., each phytoplankton, zooplank-
ton, and detritus state variable). Dissolved 23#Th is produced
from the decay of 28U (which is assumed to be proportional
to salinity, Owens et al., 2011). Dissolved 2347 adsorbs onto
the aforementioned particulate pools following second-order
rate kinetics. Particulate 234Th is returned to the dissolved
pool through both desorption and destruction of particulate
matter. 23*Th is also lost from the dissolved and particulate
phases through radioactive decay.

2.1.3 Optional 5N submodule
The nitrogen isotopes submodule is based on the

NEMURO+ SN model of Stukel et al. (2018a), following an
earlier isotope model by Yoshikawa et al. (2005). The N
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submodule adds an additional 13 state variables that simulate
the concentration of N in each nitrogen-containing state
variable (nitrate, ammonium, all phytoplankton and zoo-
plankton groups, both detritus classes, and both dissolved
organic nitrogen pools). Isotopic fractionation occurs with
most biological processes including nitrate uptake, ammo-
nium uptake, exudation of organic matter by phytoplankton,
excretion and egestion by zooplankton, remineralization of
detritus and dissolved organic nitrogen, and nitrification.

2.2 Physical framework for model simulations

NEMUROgcp was developed so that it can be implemented
in any physical framework. In this study, we used a simple
one-dimensional physical framework to simulate the water
column associated with Lagrangian experiments from which
we derived our field data (see below). While this oversim-
plifies a system in which advection and diffusion play im-
portant roles in redistributing biological and chemical prop-
erties, we believe it is a reasonable short-term approxima-
tion, especially because we are explicitly simulating results
from in situ Lagrangian experiments. In Lagrangian exper-
iments, advection should play a reduced-to-negligible role
in reshaping plankton time series, although we note that La-
grangian drifters (see below) explicitly track only the mixed
layer, which may not be transported by the same currents
as deeper layers. The use of a one-dimensional model does,
however, allow us to perform more than 1 million simula-
tions for each of the 49 Lagrangian experiments, something
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that would not be possible with a three-dimensional model
grid. Our physical model framework simulates the euphotic
zone with variable vertical spacing that increases with depth,
chosen to match sampling depths from the field programs.
Vertical layers are centered at 2, 5, 8, 12, 20, 25, 30, 35,
40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150,
and 160 m, although for each Lagrangian experiment we only
model depths above the 0.1 % light level (which varied from
27 to 150 m). We simulate vertical mixing as a simple diffu-
sive process using vertical eddy diffusivity coefficients that
vary with depth and are estimated for each Lagrangian ex-
periment using Thorpe-scale analyses from field measure-
ments (Gargett and Garner, 2008). Initial and boundary con-
ditions were determined from field measurements, although
we sometimes had to estimate initial conditions from rela-
tionships with other measured parameters because all state
variables were not measured for all experiments (e.g., if di-
atom biomass was not determined, we estimated it from a re-
lationship between diatom biomass and total phytoplankton
biomass). We ran the model for 30d with constant vertical
diffusion rates. While 30d is an arbitrary model run time,
it was chosen for multiple reasons: (1) it is long enough to
reduce sensitivity to initial conditions, (2) it is the longest
time period for which we would expect quasi-steady state
conditions to be maintained in our study regions, and (3) it
allows sufficient time for parameter sets to potentially drive
some taxa to near extinction (i.e., it allows time for unrea-
sonable parameter sets to, for instance, lead to competitive
dominance of small phytoplankton and drive diatoms to ex-
tinction). We recognize that maintaining constant physical
forcing introduces inaccuracy to our simulations and hence
expect model—data mismatches, particularly during dynamic
conditions (e.g., upwelling) when the system changes more
rapidly. Model outputs were evaluated on the 30th day of the
model simulation, and fluxes associated with different BCP
pathways were quantified at the base of the euphotic zone
(0.1 % light level), which varied between study sites. Since
we only simulate the euphotic zone, the model was run in
NEMUROBCP,EUPONLY conﬁguration.

2.3 Field data

Field data come from 49 short-term (~ 4 d) Lagrangian ex-
periments conducted on 11 different cruises (Fig. 2) in the
California Current Ecosystem (CCE) (Ohman et al., 2013),
in the Costa Rica Dome (CRD) in the eastern tropical Pacific
(Landry et al., 2016a), in the Gulf of Mexico (GoM) (Gerard
et al., 2022), and at the Chatham Rise near the subtropical
front in the Southern Ocean as part of the Salp Particle ex-
port and Oceanic Production (SalpPOOP) cruise (Décima et
al., 2022). On these cruises a consistent sampling strategy in-
volved utilization of an in situ incubation array with satellite-
enabled surface drifter and 1 x 3 m “holey-sock” drogue cen-
tered at 15 m depth in the mixed layer (Landry et al., 2009).
Samples for rate measurement experiments (see below) were
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Figure 2. Locations of our in situ Lagrangian experiments (blue:
California Current Ecosystem; brown: Gulf of Mexico; green: Costa
Rica Dome; magenta: Chatham Rise).

incubated in polycarbonate bottles placed in mesh bags at six
to eight depths spanning the euphotic zone on the incubation
array (Landry et al., 2009). On 10 of the cruises, an identi-
cally drogued sediment trap array was deployed to capture
sinking particles (Stukel et al., 2015).

We assimilated a broad suite of standing stock and rate
measurements across multiple trophic levels that included
466 measurements of NO3 concentration and 423 measure-
ments of NHI concentration (Knapp et al., 2021), 422 mea-
surements each of silicic acid and 84 measurements of bio-
genic silica (Krause et al., 2015, 2016), 455 chlorophyll a
measurements (Goericke, 2011), 193 measurements of small
phytoplankton biomass by a combination of epifluorescence
microscopy and flow cytometry (Taylor et al., 2012; Selph et
al., 2021), 193 measurements of diatom biomass by epiflu-
orescence microscopy (Taylor et al., 2012, 2016), 193 mea-
surements of protistan zooplankton biomass by epifluores-
cence microscopy and/or light microscopy of Lugol’s stained
samples (Freibott et al., 2016), 44 measurements each of ver-
tically integrated < 1 and > 1 mm epipelagic-resident meso-
zooplankton biomass, 43 measurements each of vertically in-
tegrated < 1 and > 1 mm diel vertically migrating mesozoo-
plankton biomass, 413 measurements of particulate organic
nitrogen and 28 measurements of dissolved organic nitrogen
(Stephens et al., 2018), 342 measurements of net primary
productivity by either H13CO; or H14CO; uptake methods
(Morrow et al., 2018; Yingling et al., 2021), 149 measure-
ments of nitrate uptake by incorporation of 15NO3_ (Kranz
et al., 2020; Stukel et al., 2016), 50 measurements of silicic
acid uptake by incorporation of 32Si (Krause et al., 2015),
248 measurements each of whole phytoplankton community
growth rates and whole phytoplankton community mortal-
ity rates due to protistan grazing determined by chlorophyll
analyses of microzooplankton dilution experiments (Landry
et al., 2009, 2021), 53 measurements each of small phy-
toplankton growth rates and small phytoplankton mortality
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rates due to protistan grazing determined by high-pressure
liquid chromatography pigment analyses of microzooplank-
ton dilution experiments combined with flow cytometry and
epifluorescence microscopy (Landry et al., 2016b, 2021),
53 measurements each of diatom growth rates and diatom
mortality rates due to protistan grazing determined by high-
pressure liquid chromatography pigment analyses of mi-
crozooplankton dilution experiments combined with flow
cytometry and epifluorescence microscopy (Landry et al.,
2016b, 2021), 41 measurements each of vertically integrated
<1 and > 1 mm nighttime mesozooplankton grazing rates
by the gut pigment method (Décima et al., 2016; Landry
and Swalethorp, 2021), 41 measurements each of vertically
integrated < 1 and > 1 mm daytime mesozooplankton graz-
ing rates by the gut pigment method (Décima et al., 2016;
Landry and Swalethorp, 2021), 37 measurements of sinking
nitrogen using sediment traps (Stukel et al., 2019b; Stukel
et al., 2021), 19 measurements of sinking biogenic silica us-
ing sediment traps (Krause et al., 2016; Stukel et al., 2019b),
and 475 measurements of photosynthetically active radiation.
Each of the above measurements was typically the mean of
measurements taken at a specific depth (or vertically inte-
grated) on multiple days of the Lagrangian experiment, thus
allowing us to also quantify uncertainties for all measure-
ments. Each of the above measurements also directly maps
onto a specific standing stock or process in the model en-
abling direct model-data comparisons. Field data are listed
in Supplement Tables S2—S4.

2.4 Data assimilation and objective model
parameterization approach

Using the available datasets described above, our goal was
to develop an automated and objective model parameteriza-
tion method that would allow us to generate an ensemble of
parameter sets for hypothesis testing or as prior distributions
in future data-assimilation studies. We refer to this approach
as objective ensemble parameterization with Markov chain
Monte Carlo (OEPycmc). We began by log-transforming
most field measurements to normalize the data (some mea-
surements, e.g., growth rates that can be positive or negative,
were not transformed). We then defined a cost function,

J(p)=

Ns;les\/WE’iNDTJ 1 No,i,j error; j 2
> . (D

1
> /MNiei &= Nor,i = No,i,j = \ unci jk

where Nijes Was the number of different sampling locations
(i.e., 4=CCE, CRD, GoM, and Chatham Rise), NLg; was
the number of Lagrangian experiments conducted at location
i, Npt,; was the number of data types that were measured at
site 7, No,;,j was the number of distinct observations of data
type j at location i, and

model[,‘/.k — ObS,',j)k if modelf,j.k > detlim;../-.k
error ;= or obs; jx > det]iAm,-‘j (2)
ij.k 0 if  model; j; < detlim; j; °
and obs; j x < detlim;

https://doi.org/10.5194/bg-19-3595-2022

3601

where model; ; x is the model result corresponding to obser-
vation obs; ; i, and detlim; j x is the detection limit for data
type j. This is equivalent to stating that there is no model-
data discrepancy if both the observation and the correspond-
ing model result are below the experimental detection limit.
Detection limits varied depending on measurement type. In
practice the actual value of detlim; ; x was not very important
to our results, because observations were seldom less than
detlim; ; x. However, this formal definition is necessary with
log-normally distributed errors, because occasionally the re-
ported observational value was zero (or even negative).
Observational uncertainty was defined as

Iiik ExpUnc, j,k) , 3)

unc; j = max | ———
(\/ Ns.i,jk

where o; ;1 is the standard deviation of multiple samples
taken for the distinct observation k of data type j at loca-
tion i (i.e., 0; jk is the standard deviation of multiple mea-
surements taken in the same depth layer over the course of
a Lagrangian experiment), Ng ; ; x is the number of samples
associated with observation k of data type j at location i, and
ExpUng; ; « is the experimental uncertainty (e.g., instrument
accuracy) of observation k of data type j at location i. We
chose to use the maximum of these two terms because, in
most cases, the standard error of repeated measurements was
greater than experimental uncertainty (and inherently incor-
porates experimental uncertainty). However, in some cases
(e.g., if three measurements of nitrate at 12m depth on a
particular Lagrangian experiment reported the same value),
the standard error of the measurements was an unrealistically
low estimate of true uncertainty. We note that observational
uncertainty can result from both instrument error and repre-
sentativity error, and while we explicitly incorporate instru-
ment error, we do not directly include all sources of repre-
sentativity error. Representativity error refers to error due to
unresolved scales and processes, observation-operator error,
and errors associated with preprocessing and quality control
(Janji¢ et al., 2018). Since our data are derived from direct
in situ measurements, the latter two sources of representativ-
ity error are likely much less significant than errors resulting
from unresolved scales and processes. Because we incorpo-
rate the standard deviation of multiple measurements taken
at different depths and sampling times within a model layer
in our measurement uncertainty, we include this dominant
source of representativity error.

The cost function, J (p), gives equal weight to all measure-
ment types within a specific Lagrangian experiment (e.g., if
a Lagrangian experiment has 10 measurements of sinking ni-
trogen flux and 100 measurements of chlorophyll, J(p) gives
each of those measurement types equal weight). It also gives
different locations a weight proportional to the square root
of the number of Lagrangian experiments at that site. That
decision was made so that a more heavily sampled region
(i.e., CCE) can provide more constraint to the model, while
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preventing that region from overwhelming the model results.
We note that this is a comparatively weak cost function (rela-
tive to, for instance, likelihood), because it normalizes to the
number of measurements. We chose a weak cost function, be-
cause it reflects the fact that uncertainty in initial conditions
and physical forcing introduces a model-data misfit that is
unassociated with parameter choice.

To investigate the parameter space, we performed a
Markov chain Monte Carlo search (Metropolis et al., 1953).
We first defined allowable ranges for all parameter values
based on laboratory and field experiments, combined with
results from prior model simulations (Supplement Table S1).
These allowable ranges were broad and often spanned sev-
eral orders of magnitude for a particular parameter. We then
defined an initial guess for each parameter based primar-
ily on values used in other NEMURO models (Kishi et al.,
2007; Shropshire et al., 2020; Yoshie et al., 2007). We first
ran 30d simulations for all 49 Lagrangian experiments us-
ing the initial parameter values and calculated the cost func-
tion based on J(pj). We then perturbed the parameter set
by adding to each parameter a random number drawn from
a normal distribution with mean of 0 and standard deviation
equal to a jump length of 0.02 times the width of the allow-
able range for that parameter. When newly selected values
fell outside the allowable range, we mirrored them across the
boundary. For many of the variables expected to follow a
log-normal distribution (e.g., phytoplankton half-saturation
constants), we log-transformed prior to the MCMC search.
We then reran the 30 d model for all Lagrangian experiments
and calculated a new cost associated with this parameter set,
J(p2). We chose whether or not to accept this parameter set
based on the relative cost functions of J(p1) and J(p2). If
J(p2) was less than J(p;), we automatically accepted the
new parameter set as a viable solution. If J(p2) was greater
than J(p1), we accepted it with probability

prob = 60-5><(J(Pn)—J(Pn+1)) ) )

We walked through the parameter solution space for a to-
tal of 1.1 million iterations (discarding the first 100 000 itera-
tions as a “burn-in” period before the cost function stabilized
at a relatively low value). In this way, we explored the corre-
lated uncertainty in all parameters of the core model, except
the temperature sensitivity coefficient. We chose not to vary
the temperature sensitivity coefficient (TLIM), because it is
fairly well constrained from experimental measurements and
most model rates were directly correlated to TLIM; hence
changes in TLIM lead to commensurate changes in so many
other rate parameters that allowing it to vary would have
made calculation of mean values of other parameters (e.g.,
maximum growth or grazing rates) almost meaningless.

We also saved model results associated with the BCP
(e.g., sinking particle flux, net primary production, subduc-
tion rates, active transport) for the model simulations associ-
ated with each parameter set.
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3 Results
3.1 Objective model parameterization

In our Markov chain Monte Carlo (MCMC) exploration of
the solution space, the cost function evaluated at our ini-
tial guess was 972. Over the first ~ 100000 iterations of
the MCMC procedure, the cost function declined to approxi-
mately 100 and remained near this value for the remainder of
the MCMC procedure (1 million additional simulations). We
thus considered the first 100 000 iterations to be a burn-in pe-
riod, and all results are based on the subsequent 1 000 000 so-
lution sets. For this analysis set, the mean cost function was
98.2 % with a 95 % confidence interval (CI) of 83.8-115.3.
For comparison, we also conducted an undirected MCMC
exploration of the solution space (i.e., every solution was
accepted regardless of relative change in cost function) that
yielded a mean cost function of 3197 (CI = 1270-5657) after
the burn-in period, with a minimum value of 740 (across the
1000 000 simulations). The OEPycmMmc procedure thus deter-
mined a set of 1 000 000 solutions for which the cost function
was substantially reduced relative to either our initial param-
eter guess or a random sample of the solution space.

We investigated the 1 000000 OEPycMmc solution sets to
determine which parameters were well or poorly constrained
by the data (Supplement Tables S1 and S2). We focus here
on how well the field observations allowed the OEPpycmc
approach to constrain the parameters relative to prior esti-
mates of allowable ranges. This is distinct from the ques-
tion of which parameters are most well constrained because
some parameters were well known from prior knowledge
(e.g., phytoplankton maximum growth rates) while others
are poorly known (e.g., phytoplankton half-saturation con-
stants). Some parameters were very well constrained by the
data. Ten of the 101 variables were constrained to within
10 % of their allowed range (for log-transformed variables,
10 % of their log-transformed parameter space). Six of the 10
well-constrained variables were associated with phytoplank-
ton bottom-up forcing, while only two parameters associ-
ated with zooplankton were well constrained by the data (the
Ivlev constants for protistan grazing on small and large phy-
toplankton). The most-well-constrained parameter was the
ammonium half-saturation constant for small phytoplankton
which was assumed to vary from 0.001-1 mmol NHI m3
and was constrained by the OEPycmc procedure to a 95 %
CI of 0.0011-0.0065 mmol NHZr m~3. For metazoan zoo-
plankton, all parameters except Ivlev constants had 95 % Cls
that spanned > 60 % of the allowable range, and many ex-
ceeded 90 % of the allowable range. Overall, 25 parameters
had 95 % CIs that spanned > 60 % of the allowable range,
suggesting that those parameters were more strongly con-
strained by our prior estimates than by the field data (Sup-
plement Table S1). We note that some well-constrained pa-
rameters were constrained by the data to fall within narrow
bands near the middle of their prior allowable range (e.g.,
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Vmax,sp, Fig. 3), and others were constrained to the edges
of their allowable ranges (e.g., asp, Fig. 3). While the latter
case shows sensitivity of our model to our chosen priors, we
do not consider this a flaw. Instead, it demonstrates that the
data are providing strong constraint on the possible values
of these parameters and effectively providing guidance for
constraining these parameters in future studies.

Next, we highlight analyses of bottom-up forcing on small
phytoplankton (Fig. 3) and correlation of large phytoplank-
ton (i.e., diatoms) bottom-up forcing with other model dy-
namics (Fig. 4) as examples of typical patterns of corre-
lation among parameters. Small phytoplankton parameters
were generally well constrained by the extensive datasets
of phytoplankton growth rates, net primary production, and
phytoplankton biomass (as assessed microscopically and/or
by chlorophyll analyses). For instance, although we allowed
the maximum growth rate of small phytoplankton (Viax sp)
to vary from 0.1 to 1d~!, the OEPyicmc procedure con-
strained Vpax sp to 0.22 to 0.64 (at the 95 % CI). The least-
well-constrained parameter related to small phytoplankton
growth was the half-saturation constant for nitrate uptake,
which varied from 0.011 to 1.3mmol Nm~3. Several of
these phytoplankton parameters were also correlated in pre-
dictable manners. For instance, Viax,sp Was negatively cor-
related with the initial slope of the photosynthesis—irradiance
curve (asp, correlation coefficient (p) = —0.15), because in-
creased maximum growth rates and stronger light depen-
dence (i.e., a slower rate of increase in photosynthesis with
increasing light) offset each other to maintain similar re-
alized growth rates under typical light-limited conditions.
Vmax,sp Was also positively correlated with the mortality
rate (mortsp, p =0.25), because commensurate changes in
Vmax,sp and mortsp maintain similar net growth rates for
small phytoplankton.

Parameters associated with large phytoplankton were typ-
ically less well constrained, although they did differ from
parameters associated with small phytoplankton in several
predictable ways. For instance, the maximum growth rate of
large phytoplankton (Vipax,Lp, mean =0.72 d=!,95% Clwas
0.43-0.99 d~!) was greater than the maximum growth rate of
small phytoplankton (mean=0.37d~!, 95% CI was 0.22—
0.64d~!) despite the fact that we used identical allowable
ranges of 0.1-1 d~!. The half-saturation rate for large phyto-
plankton uptake of nitrate (Kno,Lp = 1.6 mmol Nm3) was
also substantially greater than Kno sp (0.25 mmol Nm™3),
although their half-saturation constants for ammonium up-
take were similar. Unsurprisingly, the maximum growth rate
of large phytoplankton was strongly correlated with the max-
imum grazing rate of protistan zooplankton on large phyto-
plankton (gmax,sz,Lp, p = 0.35), because grazing by protis-
tan zooplankton is often the dominant source of mortality
for all phytoplankton (including diatoms). More surprisingly,
Vmax,Lp had an even stronger correlation with the maximum
grazing rate of epipelagic-resident large (> 1 mm) mesozoo-
plankton on small phytoplankton (gmax,pzrES,sp, p = 0.43).
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We believe that this arises from a correlation between large
mesozooplankton standing stock and gmax pzrRES,sp. Since
small phytoplankton are often the most abundant potential
prey item, higher gmax pzRES,sp values allow large mesozoo-
plankton (which preferentially graze large phytoplankton) to
sustain higher biomass and prevent large phytoplankton from
escaping grazing pressure, thus requiring a higher maximum
growth rate to maintain their biomass.

Some correlations were unexpected. For instance, the ini-
tial slope of the photosynthesis—irradiance curve (o p) was
positively correlated with the remineralization rate of la-
bile dissolved organic nitrogen to NHI (refdec. DON,NH> 0 =
0.31). Both of these parameters were strongly constrained
by the OEPycMmc procedure (opp had an allowable prior
range of 0.001-0.04 m?> W~! d~! but had a posterior 95 % CI
of 0.008-0.03m?> W~ d~!; refec. pon. N had an allowable
range of 0.005-0.3d~! but a 95 % CI of 0.005-0.01d~1). It
is not clear why these parameters would be correlated, al-
though it is likely related to the relative realized growth rates
of large phytoplankton in the upper and lower euphotic zone.
High values of arp would promote higher realized growth
rates in the deep euphotic zone; high values of refjec poN,NH
would lead to higher realized growth rates in the nutrient-
limited upper euphotic zone. The Ikeda parameter for small
mesozooplankton (Ikj 7, d~1), which sets the basal respira-
tion of small (< 1 mm) mesozooplankton, was positively cor-
related with Viax Lp (0 = 0.12), Knu,Lp (0 = 0.16), and oL p
(p = 0.29). While the first and third correlations are not sur-
prising (both lead to increased large phytoplankton growth
which would support higher mesozooplankton respiration),
it is surprising that Ik; z would be correlated with Knn,Lp
since higher half-saturation constants lead to lower realized
phytoplankton growth rates. Vinax Lp Was also negatively cor-
related with the daytime mortality rate of small (< 1 mm)
vertically migrating mesozooplankton at their mesopelagic
resting depth (mortgay,1zpvMm, © = —0.35), which is op-
posite to what would be expected if large phytoplankton
growth was necessary to support mesozooplankton mortal-
ity, but may reflect an indirect effect of intraguild compe-
tition between small mesozooplankton and protistan graz-
ers (mortqay 1 zDVM Was also negatively correlated with the
Ivlev constant for small mesozooplankton grazing on protis-
tan zooplankton (Ivizpvm,sz, p = —0.27), which would in-
dicate that mesozooplankton mortality increases when their
feeding rate on protists increases).

While these are only a subset of the multiple correlations,
they highlight the complex, and often counterintuitive, rela-
tionships among many parameters. This analysis also clearly
elucidates the importance of joint parameter sensitivity anal-
yses. For instance, when model sensitivity to maximum
large vertically migrating mesozooplankton grazing rates on
small phytoplankton (gmax PzRES,sp) Was investigated with
a maximum large phytoplankton growth rate (Vpax pp) of
~0.6d~!, the analysis suggested that the model was only
weakly sensitive to gmaxpzrEs,sp and that the optimal value
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Figure 3. OEPycMmc parameter distributions for bottom-up control of small phytoplankton. Line plots on top are probability density func-
tions for individual parameters (see bottom for label and axes). Colored plots are heat maps showing joint parameter distributions. Parameters
are maximum growth rate at 0 °C (Vppax sp, units = d—1), half-saturation constant for nitrate uptake (KNo,sp, mmol N m_3), half-saturation
constant for ammonium uptake (Kny,sp, mmol N m~3), initial slope of the photosynthesis—irradiance curve (asp, m2w—ld-1), photoinhi-

bition parameter (Ssp, m2w—ld~1, respiration rate at 0 °C (resgp, d

—1), linear mortality term at 0 °C (mortgp, d—1), excretion parameter

(excgp, unitless), and ammonium inhibition of nitrate uptake (inhyg, NO,SP- m3 mmol N~ 1).

was near 0.03d~!. However, when the same analysis was
conducted with Vipax 1p =~ 1.0, the model was very sensi-
tive to gmaxPZRES,sp, and the optimal value was 0.1-0.2 d-L

3.2 Model-data comparison (assimilated data)

To determine whether the model was able to simulate assim-
ilated measurements accurately, we compared model—-data
results with respect to two key processes related to export:
net primary production and sinking particle flux at the base
of the euphotic zone (Figs. 5 and 6, respectively). For most
Lagrangian experiments, the model 95 % confidence interval
bracketed the mean of the observed net primary production
(Fig. 5). However, the model substantially underestimated
net primary productivity for several experiments in the CCE
(e.g., 605-1, 605-3, 704-4, 810-5, and 1604-4) conducted
in near-coastal regions with recently upwelled high-nitrate
water. The model—data discrepancy thus likely results from
our assumption of a one-dimensional system with constant
physics for 30d. In reality, these Lagrangian experiments
were heavily influenced by coastal upwelling processes miss-
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ing in our one-dimensional model and experienced markedly
non-linear dynamics as the water parcels were advected away
from the upwelling source and nutrients drawn down over
time (e.g., Landry et al., 2009). Contemporaneous nutrient
input from directly below these water parcels was thus likely
not the source of nitrogen supporting high production, as is
assumed by our one-dimensional physical framework. In less
dynamic regions (e.g., GoM), the model more faithfully sim-
ulated phytoplankton production.

The model did a reasonable job simulating sinking particle
export flux from the euphotic zone (Fig. 6). For the majority
of experiments, observed export fell within the 95 % confi-
dence interval of the model simulations. However, the sim-
ulated export flux range was quite substantial for most cy-
cles. Indeed, the 95 % confidence intervals for export flux at
single locations using the 1 000 000 MCMC solutions were
at times as large as the confidence interval for mean ob-
served flux across the 49 different Lagrangian experiments.
This suggests that uncertainty in parameter estimation for the
model is as important a source of error for export flux as
variability between regions and seasons. The only region for

https://doi.org/10.5194/bg-19-3595-2022



M. R. Stukel et al.: Quantifying biological carbon pump pathways 3605

i

LP
)

Q,

-3
107
sl
1072 .
03 L3
1
o
=
N
<3
g
% ()
% L !
E’ [
& = ke
S oY
i
o5
=
z ‘
a
S i
F) 5
£
o
=
=
Q
2
Y
5
g
g =0
Z
Z 107!
2
F
Q—ﬁ -2
5 10 | |
05 lio3 102 10102 10" ot lip~2 107! 107! 0.02 0.04 0.06 0.08 05 102 107!
max,LP Opp NH,LP gmax,SZ,LP gmaxyzmas,sp gmax,PZDVM,LZ IkLZ mortday,PZDVM refdecDONNH

Figure 4. OEPyjcMmc parameter distributions for large phytoplankton and some other model processes. Line plots on top are probability
density functions for individual parameters (see bottom for label and axes). Colored plots are heat maps showing joint parameter distri-
butions. Parameters are maximum growth rate at 0 °C (Vipax,Lp, units = d_l), initial slope of the photosynthesis—irradiance curve (o p,
m2 W1 d~1), half-saturation constant for NHZ‘r uptake (KNH,LP, mmol N m~3), maximum grazing rate of small zooplankton on large
phytoplankton (gmax,sz,LP» d~1), maximum grazing rate of large (> 1 mm) epipelagic-resident mesozooplankton on small phytoplankton
(8max,PZRES, SP» d~1), maximum grazing rate of large (> 1 mm) vertically migrating mesozooplankton on small (< 1 mm) mesozooplankton
(&max,PZDVM,LZ> d~1), the Tkeda respiration parameter for small (< 1 mm) mesozooplankton, daytime mortality rate for small (< 1 mm)
vertically migrating mesozooplankton (mortgay, 1 ZDVM, m? mmol N~! d_l), and remineralization rate of DON to NHI (refdec, DON,NH-

UL I O O I Y Y Y O O O
Costa
¢ California Current Ecosystem Rica Gulf?of Salp
350 A Mexico POOP
[ Dome
300 [~ —
= 250 -
K
g
O
= 200 [~ -
=]
El o
&
; 150 — <> <
o ¢
100 — O —
o AR o
© # é é o o # o
¢ o
101 BTEINB T, ety wm G300 T T Hagdooten of
]
0 L1 1 1 | 1 11 I I I | [ O I I I L9 1
T R R T T T TR T P “)y‘:\ LI O T 10 > LB TO IO NI N
AR SV
T EERRRETEE S °‘1@b\\hi\%i\%{»@@%&%&% X >°° ¢ @“’@ &S @“‘ n“ AN

% O
'\’\ SIS
\\\\\\\\QQQQ%
e,\;@@,\p,&q’%f& 2

Figure 5. Model-data net primary production comparison. Blue box plots show model results for each simulated Lagrangian experiment,
with whiskers extending to 95 % confidence limits. Yellow diamonds show observations from Lagrangian experiments.

https://doi.org/10.5194/bg-19-3595-2022 Biogeosciences, 19, 3595-3624, 2022



3606

M. R. Stukel et al.: Quantifying biological carbon pump pathways

10\\\\\IIJ\\\\\\IJJ\\\\III\\\\\KIJ\\\\C\t\IIJ\\\\\\II
osta
— . Gulf of Salp
ol California Current Ecosystem Rica Mexico poOP
Dome
o 8- n
o
G 7 —
£
& ¢
S 6 -
g
£
® S =
=
=
o
2 4 -
2 ¢
g o
e 3 1
k)
= O o
g
n 20 O o O O
0 3
1 % o ¢
M Bagao, 00
0 1| 1| ¢ 1 | | | | A | <P |
,,,,,,,,,,,,,,,,,,,,,, VP o> e ooV o? IO TICIY, D p B N D0 R BN N D D
"S’S’e")dﬁ&‘&‘&‘ SRAIRY P R T T T R
SSRGS %\%\%\@\\\\\\\@\@\ \SQ,QQP@,“& JCRCCS v“\@ S @ @ e e ST A T e e R
R R RS

Figure 6. Model-data sinking particle export comparison at the base of the euphotic zone. Blue box plots show model results for each
simulated Lagrangian experiment, with whiskers extending to 95 % confidence limits. Yellow diamonds show observations from sediment
trap deployments (no observations were available for nine experiments).

which the model produced a stark bias in export flux relative
to the observations was the CRD, where the model consis-
tently overestimated export flux. This is not surprising for
this region, because the CRD is dominated by Synechococ-
cus, which contribute substantially less to export flux than
larger phytoplankton (Saito et al., 2005; Stukel et al., 2013).
In other regions, model underestimates of export flux were
typically more notable than model overestimates (observa-
tions were seldom less than the lower bound of the model’s
95 % confidence interval).

3.3 Model-data comparison (unassimilated data)

To assess the model’s ability to simulate state variables and
processes not included in the assimilation dataset, we uti-
lized the thorium sorption and nitrogen isotope submod-
ules and compared model results to measured total wa-
ter column 23*Th (Fig. 7), the C: 234Th ratio of sink-
ing particles (Fig. 8a), and the 8'N of sinking particles
(Fig. 8b). NEMUROgcp accurately simulated many proper-
ties of 234Th dynamics found in the field data. For instance,
it did a reasonable job of estimating the shape and magnitude
of vertical profiles, notably simulating low 23#Th activity in
surface waters and 23*Th activity close to equilibrium with
238U in deeper waters. The model also captured some key
aspects of inter- and intra-regional variability in 2>*Th activ-
ity, including much lower 23*Th activity in coastal regions
of the CCE (e.g., Fig. 7a, c, ah) relative to offshore regions
(e.g., Fig. 7e, ad, ae). The model also accurately estimated
the consistently high 23*Th activity found in the GoM. The
greatest model—data mismatch with respect to 23Th activ-
ity was found in the CRD (Fig. 7ai—am). In this region, the
model was fairly accurate at predicting mixed layer 234Th
activity, but the model consistently underestimated 23*Th ac-
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tivity in the deep euphotic zone. The model was also rea-
sonably effective at predicting the C:23*Th ratio of sink-
ing particles. The model both accurately estimated the mean
value of sinking particle C:23*Th ratios (median observa-
tion = 7.2 umol C dpm™~!; median model value for locations
paired with observations = 7.7 umol C dpm™"') and the range
of C:23*Th values (observation =2.2-20.5 umol Cdpm~!;
model = 4.1-30.0 umol C dpm™~!). For most simulations, the
modeled and observed C:%3*Th ratios also showed very
good agreement (Fig. 8a). However, the model consistently
overestimated the C:23*Th ratio of sinking particles in the
CRD, a region where the model was particularly poorly con-
strained and predicted a wide range of C:%3*Th ratios. The
model also substantially underestimated the C:23*Th ratio
for several sediment trap collections in the GoM. Neverthe-
less, the overall model—-data agreement with respect to 23*Th
dynamics is reassuring, especially since key parameters (e.g.,
thorium sorption and desorption coefficients) were not esti-
mated by the OEPycMmc procedure but instead were taken
directly from the literature.

The model was also able to accurately simulate the §'9N
of sinking particles, albeit with a more limited set of obser-
vations available (note that we did not simulate nitrogen iso-
topes for Lagrangian experiments from the SalpPOOP cruise,
because the 89N of deep-water nitrate, an important bound-
ary value, was unknown in this region). The median observed
8N of sinking particles was 4.6 compared to a model esti-
mate of 6.1, while the observed range was 1.7-14.3 and the
modeled range was 1.8-9.3 (Fig. 8b). The only simulation
for which there was a substantial mismatch between model
result and observation was from a single experiment in the
CRD for which one sediment trap replicate had a very high
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Figure 7. Model-data water-column 234 activity comparison. Dark blue lines show mean vertical profile of 234Th activity from MCMC
model simulations, with lighter blue shading indicating 95 % CI. Red diamonds show observations. Each panel is for a separate Lagrangian

experiment.

measured §'°N value, while the other two replicates were
near the simulated value.

3.4 Sensitivity analysis

The OEPyMceMc approach allowed us to investigate uncer-
tainty associated with all three pathways of the BCP (see
the next two sections). First, we focus specifically on vari-
ability in model estimates of gravitational flux, as these can
be directly compared to field measurements. When com-
paring modeled gravitational flux for different Lagrangian
cycles, the median coefficient of variation (standard devi-
ation / mean) was 0.49, with a range of 0.29-1.38. This
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represents substantial uncertainty in sinking particle flux
due solely to different potential parameter choices (Fig. 6).
For instance, on the fifth Chatham Rise Lagrangian exper-
iment (which was the experiment with coefficient of varia-
tion closest to the median), the mean model-predicted grav-
itational flux was 1.24 mmolNm~2d~! with a standard de-
viation of 0.62mmol Nm~2d~" and a 95% confidence in-
terval from 0.29 to 2.6mmolNm~2d~!. This shows that
for a typical cycle, there was nearly an order of magni-
tude variability in export flux based solely on uncertainty in
model parameterization. For comparison, across the 49 La-
grangian experiments for which we have sediment trap de-
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ployments near the base of the euphotic zone, the field obser-
vations of gravitational flux at the base of the euphotic zone
ranged from 0.22-6.3 mmol Nm~2d~!. Thus, for a typical
Lagrangian experiment, uncertainty in model parameteriza-
tion introduced slightly less uncertainty in gravitational flux
than variability across the multiple regions. For the fourth
GoM Lagrangian experiment (the experiment with the high-
est coefficient of variation), the mean model-predicted grav-
itational flux was 0.23 mmolNm~—2d~! with a standard de-
viation of 0.31 and a 95 % confidence interval from 0.0069—
1.07mmol Nm~2d~!. For this particular cycle, some likely
parameter sets predicted gravitational flux nearly equal to the
mean measured gravitational flux across the diverse regions
we studied, while other likely parameter sets predicted ex-
port more than an order of magnitude lower than the lowest
observed flux. This high degree of uncertainty should be con-
sidered when results of a single model simulation are con-
sidered and provides a strong argument for the importance of
ensemble modeling.

To investigate the relationships among uncertainties in the
three pathways of the BCP and uncertainties in parameters,
we computed the R? of ordinary least squares linear regres-
sions of each BCP pathway as a function of each parame-
ter. This approach allows us to quantify the percentage of
variability in the export pathway explained by a linear rela-
tionship with a specific parameter. This is distinctly different
from some traditional sensitivity analysis approaches that ei-
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ther compute the derivative of a model output with respect
to different parameters or vary parameters by a fixed amount
(e.g., £ 10 %). Unlike those approaches, our R? approach ex-
plicitly accounts for the certainty with which different pa-
rameters are constrained. For instance, a model may be very
sensitive to the maximum growth rate of diatoms; however,
if that parameter is well constrained by laboratory experi-
ments, field data, and/or data assimilation, then parameter
uncertainty may not be the dominant source of uncertainty
in model results. Our approach is thus well suited to deter-
mining which parameters especially merit future experimen-
tal focus.

Our results show that the R? values for BCP pathways re-
gressed against most parameters were ~ 0.01 or less. How-
ever, some of the parameters were able to explain 10 % of the
variability in specific BCP pathways. For instance, the lin-
ear mortality parameter for protistan zooplankton (mortsz)
explained 15% of the variability in gravitational particle
export (positive correlation) and 18 % of the variability in
export due to vertical mixing (negative correlation). These
correlations reflect the importance of protistan zooplankton
in controlling phytoplankton populations without producing
rapidly sinking particles. Multiple parameters had similar in-
verse correlations with gravitational particle export and ex-
port due to vertical mixing. For example, the assimilation ef-
ficiency of small epipelagic-resident mesozooplankton, the
Ivlev constant for large mesozooplankton feeding on small
mesozooplankton, and the sinking speed of fast-sinking de-
tritus all had positive correlations with gravitational flux; the
maximum grazing rate of small epipelagic-resident meso-
zooplankton on protistan zooplankton and the remineraliza-
tion rate of fast-sinking detritus had negative correlations
with gravitational flux. The remineralization rate of fast-
sinking detritus explained the highest proportion of variabil-
ity in gravitational flux (45 %). Only two parameters (the
maximum grazing rate of large vertically migrating meso-
zooplankton on small mesozooplankton and the Ivlev con-
stant for large mesozooplankton feeding on small protists)
explained > 10 % of the variability in active transport (19 %
and 18 %, respectively, with both positively correlated with
active transport). Notably, none of the parameters most re-
sponsible for uncertainty in the BCP were related to phyto-
plankton bottom-up limitation. We do not believe that this
reflects a lack of importance of bottom-up processes in the
BCP. Rather, this reflects a much greater uncertainty in pa-
rameterizations for zooplankton and non-living organic mat-
ter, combined with the importance of these processes to the
BCP (Cavan et al., 2017; Anderson et al., 2013).

As mentioned previously, two of the most impor-
tant parameters for determining gravitational flux are
the sinking speed (Lsink) and remineralization rate of
fast-sinking particles to DON (refgec 1poN,DON). No-
tably, these two parameters are strongly related to
the remineralization length scale for these particles
(RLS = Lsink / (refgec, LPON,DON + refdec, LPON, NH4)). We il-
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lustrate the impact of variability in RLS on model gravita-
tional flux by focusing on two Lagrangian experiments repre-
sentative of the CRD (CRD-1) and upwelling-influenced re-
gions of the CCE (1604-3). RLS was strongly correlated with
gravitational flux for each experiment (Pearson’s p =0.62
for both experiments, p < 10~7). The relationship was not
perfectly linear, however (Supplement Fig. Sla, b). Particu-
larly for the CRD experiment, but also for the CCE exper-
iment, there was a threshold effect such that RLS was only
weakly correlated with gravitational flux at RLS > ~ 150 m.
This resulted from higher RLS values leading to decreased
recycling in the system and hence reduced primary produc-
tion. Comparison of the probability density functions for
RLS determined by the OEPycmc procedure with probabil-
ity density functions for only those parameter sets that ac-
curately predicted gravitational flux for these cycles (to + 1
standard deviation of the observed value) shows that gravita-
tional flux was more accurately predicted for the CCE experi-
ment with RLS values slightly higher than the overall average
of the whole dataset (median for the entire dataset was 85 m;
median for parameter sets that accurately predicted export
for this cycle was 115 m, Supplement Fig. S1c), while it was
more accurately predicted for the CRD experiment with RLS
values lower than the average for the dataset (median RLS for
accurate parameter sets =57 m, Supplement Fig. S1d). This
highlights the sensitivity of the model to these parameters
while suggesting differences in remineralization length scale
between these specific regions, although we caution that RLS
calculated above is only for fast-sinking detritus and does
not account for the additional gravitational flux mediated by
slowly sinking particles.

3.5 Model results: three pathways of export

We compared the relative magnitude of the three BCP
pathways for all Lagrangian cycles and all OEPyicmc pa-
rameter sets (Fig. 9a). Results showed that export was
typically dominated by some combination of gravitational
flux and/or mixing flux (i.e., eddy subduction+ vertical
mixing). Active transport typically contributed a relatively
small proportion of export from the base of the euphotic
zone (mean=2.8 %, 95 % CI1 =0.02 %—-16.5 %). Across the
dataset, gravitational flux was the dominant export path-
way (mean =56.1%, 7.1 %-99.6 %), although mixing was
also an important source of export (mean=41.1%, 0 %-
92.3 %). The large confidence intervals for each of these
fluxes highlight the uncertainty in our estimates of the BCP
pathways. They also, however, obscure distinct regional vari-
ability among the experiments analyzed in our study.
During upwelling-influenced experiments in the CCE,
mixing and gravitational flux often contributed approxi-
mately equally to the BCP, with different parameter sets sug-
gesting either dominance by mixing or gravitational flux. For
instance, during CCE cycle 1604-3 (Fig. 9b) gravitational
flux contributed an average of 61 % (29 %—84 %) of export,
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Figure 9. Triangle diagrams showing the proportion of export due
to each biological carbon pump pathway at the base of the euphotic
zone. Locations near the upper apex of the triangle indicate dom-
inance by sinking particles, locations near the bottom left indicate
dominance by active transport, and locations near the bottom right
show dominance by mixing. Colors represent the proportion of total
model simulations with export patterns falling within a specific pro-
portion of different export pathways. Lines indicate contours show-
ing a constant proportion of one BCP pathway (i.e., red lines are
constant proportions of active transport, blue lines are constant pro-
portions of gravitational flux, and purple lines are constant propor-
tions of mixing flux). (a) Results for all simulations, (b) results for
a typical CCE coastal site (1604-3), (c) typical CCE oligotrophic
site (1408-5), (d) typical Costa Rica Dome site (CRD-1), (e) typical
Gulf of Mexico site (GoM-5), (f) typical Chatham Rise site (Salp-
5), and (g) example of a CCE site (0605-3) dominated by mixing
flux.
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while mixing was responsible for 35 % (12 %—67 %). Not
every CCE coastal cycle had a relatively even split, how-
ever, with some more dominated by sinking flux and oth-
ers more dominated by mixing flux (e.g., CCE cycle 0605-3
which occurred during a dense coastal dinoflagellate bloom,
Fig. 9g). In oligotrophic regions of the CCE and GoM, ex-
port was typically dominated by sinking flux, with relatively
minor contributions from both mixing and active transport.
For instance, during CCE cycle 1408-5 gravitational flux
was responsible for 86 % (70 %—-97 %) of export (Fig. 9c¢),
while during GoM cycle 5 sinking was responsible for 89 %
(66 %—98 %) of export (Fig. 9¢). During CRD experiments,
which had relatively high mesozooplankton biomasses rela-
tive to phytoplankton biomass, active transport was compar-
atively more important. For instance, during CRD cycle 1,
active transport averaged 6.5 % (0.7 %—26 %) of export and
was more important than mixing flux (4.3 %, 0.4 %—12 %,
Fig. 9d). During the Chatham Rise experiments in the South-
ern Ocean, export patterns were comparable to those in the
upwelling-influenced CCE, driven primarily by gravitational
flux and mixing, with gravitational flux slightly more impor-
tant.

Looking at patterns across regions and across the vary-
ing conditions on our Lagrangian experiments, the propor-
tion of export driven by vertical mixing was correlated with
vertical eddy diffusivity at the base of the euphotic zone
(Spearman’s p = 0.64, p < 107%). This is not surprising,
since vertical diffusion drives particulate and dissolved or-
ganic matter flux across the euphotic zone. Because sink-
ing and vertical mixing were the two dominant mechanisms
of export, vertical eddy diffusivity also showed a strong in-
verse correlation with gravitational flux (Spearman’s p =
—0.64, p< 10’6). Across all simulations, organic matter
mixed out of the euphotic zone was relatively evenly split
between DOM and POM, but variability in POM flux was
greater (mean = 3.4 +6.9 mmolNm~2d~") than variability
in DOM (mean =4.6 + 5.5 mmol N m~2 d~1). For most sim-
ulations (72 %), DOM mixing flux exceeded POM mixing
flux. However, POM mixing was greater for 66 % of the sim-
ulations with total mixing flux >20mmol Nm~2d~!. Flux
of fast-sinking particles exceeded that of slow-sinking par-
ticles at the euphotic zone base for 90.5 % of simulations,
with fast-sinking particles averaging of 2.3 mmol Nm~2d~!
(0.07-10.4 mmol N m~2d~!) and slow-sinking particles av-
eraging 0.35 mmol Nm~—2d~! (0.02-1.4 mmol Nm~2d~1).

3.6 Model results: diel vertical migration and active
transport

In NEMUROgcp, active transport is driven by two pro-
cesses: respiration/excretion and mortality at depth. The for-
mer is parameterized as a temperature- and size-dependent
function representing basal respiration and is comparatively
well constrained by prior experimental work. The latter is
parameterized as a density-dependent function representing

Biogeosciences, 19, 3595-3624, 2022

predator-induced mortality, a process that is highly uncertain
because few studies have quantified zooplankton mortality
in the mesopelagic ocean. We fit linear regressions to log-
transformed active transport plotted against log-transformed
mesozooplankton biomass (Fig. 10a) to determine a power
law relationship predicting active transport from meso-
zooplankton biomass: AT =aB¢, where AT is active
transport (mmolNm~2d~1), B is biomass (mmol Nm~2),
a=0.0052 £6 x 107, and ¢ =1.29 £0.0004, R? = 0.90,
p <1072, Similar relationships were also determined
for the respiration/excretion component of active trans-
port (E=aB¢, a=0.0037+4 x 107%, b=1.02+0.0005,
R? =0.87, p < 107?) and the mortality component of active
transport (M =aB¢, a =0.00054 + 107%, b =2.0440.001,
R>=0.89, p<«107?). As expected, since excretion is
density-independent while mortality is density-dependent,
the exponent of the excretion power law was ~ 1 and the
exponent of the mortality power law was ~ 2. This led to
mortality becoming a greater fraction of total active trans-
port as mesozooplankton biomass increased (Fig. 10d). The
transition from active transport dominated almost entirely
by respiration to active transport comprised mostly of mor-
tality at depth occurred rapidly as biomass increased past
~5mmol Nm~2. As a result of the density-dependent pa-
rameterization of mortality, daytime mortality also increased
with increasing zooplankton biomass (m =aB¢, where m
is specific mortality (h_l), a=26x10"*4+5x%x107°, and
b=0.995 £0.001, R?> =0.68, p < 107?). This generated
daily mortality rates (i.e., over a 12h daytime period) of
~0.3%d! at a biomass of I mmolNm~2 and ~6%d~!
at a biomass of 20 mmol N m—2 (Fig. 10e). Overall mortal-
ity for vertically migrating mesozooplankton was approxi-
mately evenly split between the epipelagic and mesopelagic,
although this ratio was poorly constrained by the model
(Fig. 10f). For instance, 9 %—96 % of large-mesozooplankton
mortality occurred in the mesopelagic (at the 95 % CI).

As suggested by the validation data, vertical migrator
biomass was primarily found in the large (> 1 mm) meso-
zooplankton size class. The large mesozooplankton were also
predominantly vertical migrators, while the small mesozoo-
plankton were primarily epipelagic residents (Fig. 10g). Con-
sequently, large mesozooplankton typically dominated ac-
tive transport (Fig. 10h) even though small mesozooplankton
usually contributed proportionally more to active transport
than to biomass as a result of higher specific respiration rates
(Fig. 10i).

It would be reasonable to assume that predator-induced
mortality in the deep ocean would be negatively cor-
related with the abundance of diel vertical migrators,
because high mortality would yield a competitive ad-
vantage for epipelagic-resident zooplankton. For the full
dataset, however, we found a negligible correlation between
the mesopelagic mortality term for large mesozooplank-
ton (mortqay, pzpvm) and large mesozooplankton biomass
(Spearman’s p = —0.0077). When investigating this corre-
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lation for individual experiments, the correlation was some- the magnitude of export attributable to predation on large
times positive and sometimes negative. This lack of a mesozooplankton in the deep ocean (p = 0.25).

correlation was driven by strong correlations between the
mortday,pzpvM and both the assimilation efficiency of these
zooplankton and their maximum grazing rate on smaller
mesozooplankton. This led to a compensatory higher growth
rate to offset the higher mortality rate and consequently to
a reasonably strong correlation between mortgay, pzpvm and

4 Discussion
4.1 Biological carbon pump pathways

Gravitational flux is by far the most-well-studied pathway of
the BCP, because it is the only pathway for which direct in
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situ flux measurements are possible. Nevertheless, incredibly
sparse in situ sampling necessitates spatiotemporal extrapo-
lation approaches to derive regional and global estimates of
gravitational flux, including the use of forward models, in-
verse models, and satellite algorithms (e.g., Schlitzer, 2004;
Laws et al., 2000; Hauck et al., 2015; DeVries and Weber,
2017). Satellite algorithms, as perhaps the most widely used
and cited methods for deriving global estimates, deserve spe-
cial attention. These approaches have delivered widely vary-
ing estimates of the magnitude of gravitational flux, and in-
deed the algorithms underlying such estimates often differ in
the fundamental relationship predicted between sinking par-
ticle flux and phytoplankton biomass and production (Laws
et al., 2000; Siegel et al., 2014; Henson et al., 2011; Dunne
et al., 2005). Such studies typically estimate export flux from
relationships with net primary production (or surface chloro-
phyll) and/or temperature because these properties are easily
observable by satellite remote sensing. These studies, how-
ever, have reached widely differing conclusions about the
relationships of these properties to export efficiency (e ra-
tio = gravitational flux/net primary productivity). Indeed,
the in situ data compiled here show no significant depen-
dence of export efficiency on net primary productivity (NPP)
or temperature (Fig. 11a), because export efficiency depends
not just on temperature and phytoplankton production, but
also the community composition of phytoplankton and zoo-
plankton, physiological adaptations of important taxa, and a
multitude of ecological interactions (Turner, 2015; Buesseler
and Boyd, 2009; Guidi et al., 2016). Indeed, focusing only
on the regions studied here, anomalously high Synechococ-
cus abundances likely result in low export efficiency in the
CRD (Stukel et al., 2013; Saito et al., 2005), salp blooms
drive very high export in the Chatham Rise (Décima et al.,
2022), and the diatom Thalassiosira seems to play a particu-
larly important role in export in the CCE (Preston et al., 2019;
Valencia et al., 2021). In the latter, diatom photophysiolog-
ical health is a strong predictor of export (Brzezinski et al.,
2015), although the diatoms likely sink mainly after grazing
by metazooplankton (Morrow et al., 2018).

Despite the diversity of processes that affect the BCP,
many of which are not included in NEMUROgcp, our sim-
ulations reasonably reproduce the variability of export effi-
ciency across the study regions, even though results for in-
dividual experiments are imprecise (Fig. 11). One important
process that drives variability in export efficiency is tempo-
ral decoupling of production and export (Henson et al., 2015;
Laws and Maiti, 2019; Kahru et al., 2020). Despite the use of
constant physical forcing throughout our 30d simulations,
they exhibit distinct temporal variability in biogeochemi-
cal properties. We highlight results from one experiment
in slightly aged, upwelled water off the California coast,
using five different evenly spaced parameter sets (i.e., the
200 000th, 400 000th, 600 000th, 800 000th, and 1 000 000th
parameter sets) chosen from our ensemble (Fig. 12). In each
of these simulations, net primary production increases early
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in the simulations, rapidly in some, and more gradual in oth-
ers (Fig. 12a). Net primary production soon diverges in all of
the simulations, however, with some gradually decreasing af-
ter the first week and others exhibiting blooms. Gravitational
flux was even more variable, with one simulation peaking al-
most immediately and others with substantial temporal lags
between net primary production and export (Fig. 12b). This
led to substantial temporal variability in export efficiency
(Fig. 12c) and quite complex relationships between gravita-
tional flux and net primary production (Fig. 12d).

Assessing the accuracy with which the model simulates
export due to vertical mixing (variously called the eddy sub-
duction pump, mixed layer pump, and/or physical pump)
is more difficult. Previous studies to quantify this process
have either relied on indirect biogeochemical proxies (Stukel
and Ducklow, 2017; Llort et al., 2018) or numerical mod-
els (Omand et al., 2015; Levy et al., 2013; Stukel et al.,
2018b; Nowicki et al., 2022) to quantify these processes.
Our vertical mixing results should be considered with some
caution due to our overly simplified one-dimensional phys-
ical framework, which conflates distinct processes includ-
ing mesoscale subduction, diapycnal diffusion, mixed layer
entrainment and detrainment, and gyre-scale Ekman pump-
ing. Nevertheless, it is reassuring that our simulations from
the CCE, which showed that vertical mixing out of the eu-
photic zone was often similar in magnitude to gravitational
flux and at times even higher, is similar to results based on a
Lagrangian particle model developed for the region (Stukel
et al., 2018b). More realistic estimates for all regions could
be derived by coupling NEMUROgcp and our parameter en-
sembles to a three-dimensional ocean simulation.

The magnitude of active transport mediated by diel ver-
tically migrating zooplankton in the global ocean remains
highly uncertain due to a paucity of measurements and the
difficulty of constraining the amount of mortality occurring
at depth. Studies that include only respiration and/or excre-
tion of zooplankton at depth typically find that active trans-
port is a relatively small fraction of gravitational flux (Stein-
berg et al., 2000; Hannides et al., 2009). However, more re-
cent studies that have attempted to incorporate mortality ex-
perienced in the deep ocean have derived much larger es-
timates of active transport (Kelly et al., 2019; Kiko et al.,
2020; Hernandez-Leon et al., 2019). These studies should be
considered highly uncertain, however, because they necessar-
ily make large assumptions about the amount of zooplank-
ton mortality occurring in the deep ocean, where it has never
been directly quantified. Results from our study, which does
include mortality at depth, suggest that active transport is a
quantitatively important but never dominant component of
carbon export out of the euphotic zone, in line with results
from recent global estimates derived from a combination of
satellite remote-sensing products and modeling approaches
(Archibald et al., 2019; Nowicki et al., 2022).

One aspect of the BCP that our current euphotic-zone
only simulations do not address is sequestration efficiency
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Figure 12. Temporal variability in net primary production (a, mmol C m~2d-1, gravitational flux (b, mmol N m~2d~1), and export effi-
ciency (c, unitless with a C: N conversion ratio of 106 : 16 mol: mol), along with a phase-space plot depicting the same data (d). All plots
are from Lagrangian experiment 1604-3 (CCE upwelling region). Different colors are for simulations with ensemble parameter sets 2 x 10,
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in the mesopelagic (Kwon et al., 2009; Marsay et al., 2015;
Buesseler and Boyd, 2009). It is reasonable to surmise that
the remineralization length scale will vary for different BCP
pathways and be regionally variable as well. With gravita-
tional flux, typically ~ 50 % of particles will sink 100 m be-
neath the euphotic zone before remineralization, although
remineralization length scales are highly variable and the
spatial patterns are poorly understood (Buesseler and Boyd,
2009; Marsay et al., 2015). Meanwhile, vertically migrating
zooplankton typically reside at depths of 200600 m during
the day and hence respire the majority of their carbon diox-
ide at this depth (Bianchi et al., 2013b), although it is un-
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clear how the inclusion of mortality at depth into our un-
derstanding of active transport will affect the overall depth
of penetration of actively transported carbon into the deep
ocean. Stukel et al. (2018b), suggested that subducted par-
ticles in the southern CCE are mostly remineralized near
the base of the euphotic zone, with little penetration into
the mesopelagic, although in regions with deep convective
mixing, signatures of subduction show substantial transport
into the deep ocean (Omand et al., 2015; Llort et al., 2018).
Nowicki et al. (2022) estimated that gravitational flux and ac-
tive transport have similar sequestration timescales but that
sequestration times for mixing were much shorter. In con-
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trast, Boyd et al. (2019) surmised that active transport may
have the greatest sequestration efficiency, followed by ver-
tical mixing and then gravitational flux, although their syn-
thesis was only able to draw from the few studies that have
quantified these processes, and they note that determining the
sensitivities of sequestration efficiencies to environmental
drivers is crucial to predicting climate change impacts on ma-
rine carbon sequestration. We believe that future incorpora-
tion of our model ensemble approach into three-dimensional
coupled modeling frameworks could be an important step
forward in understanding the magnitude and uncertainty in
these processes.

4.2 Data-assimilating biogeochemical models

Implicit to our OEPycMmc approach is the philosophical real-
ization that our model (like all biogeochemical models) over-
simplifies an incredibly complex system. Hence, we accept
that no single solution set will accurately simulate all aspects
of the BCP. Instead, we proposed a mechanistic—probabilistic
approach that explicitly investigates the ecosystem uncer-
tainty. This contrasts with some other data-assimilation ap-
proaches (e.g., gradient-based methods including the varia-
tional adjoint, Schartau et al., 2001; Friedrichs et al., 2007;
Lawson et al., 1995) that seek to find a single solution that
minimizes model-data misfit. While the variational-adjoint
approach is computationally efficient and allows objective
determination of a single solution that can then be used for
high-resolution simulations (Mattern et al., 2017), our work
shows that very different parameter sets can result in simi-
lar cost function values, despite generating distinctly differ-
ent model outputs. For instance, different sets of parameters
(all with approximately equivalent mismatch to our exten-
sive suite of field measurements) predicted distinctly differ-
ent functioning of the BCP in the CCE coastal region (with
some parameter sets suggesting that subduction is most im-
portant and others suggesting that sinking particles are most
important, Fig. 9b) and in the Costa Rica Dome (where some
parameter sets suggested sinking was responsible for almost
all carbon export, compared to other parameter sets that sug-
gested almost equal importance of active transport, Fig. 9d).
The results of a typical variational-adjoint data-assimilation
approach (or any approach that determines results from a sin-
gle “best” parameter set) would have selected only one of
these possible parameter sets and assumed that it accurately
depicted the ecosystem; our results more accurately quantify
this true uncertainty.

Our approach has similarities with other biogeochem-
ical model ensemble approaches. For instance, Doron
et al. (2013) used an ensemble Kalman filter algorithm
to assimilate surface chlorophyll data and determine re-
gional variability in biogeochemical parameters for a simple
ecosystem model. Gharamti et al. (2017a, b) used a modified
approach to simultaneously estimate model parameters and
state variable distributions to enable reasonably accurate en-
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semble predictions of modeled processes. These Kalman fil-
ter approaches are widely used in physical sciences for state
estimation, reanalyses, and prediction purposes, although the
data-assimilating state variable updates sacrifice true dynam-
ical consistency. Meier et al. (2011) used dynamically con-
sistent model ensembles generated from three different bio-
geochemical models forced with four climate projections and
three different nutrient-loading scenarios to investigate in-
creasing hypoxia in the Baltic Sea. Garnier et al. (2016)
used a probabilistic version of the NEMO/PISCES model to
generate a 60-member ensemble simulation of chlorophyll
in the North Atlantic that accounts for uncertainties in bio-
geochemical parameters and sub-grid-scale processes. Gal et
al. (2014) conducted a single model ensemble approach sim-
ilar to ours in which they perturbed the most sensitive pa-
rameters in their model to investigate whether trends asso-
ciated with different nutrient-loading scenarios were consis-
tent across the ensemble, although their approach did not use
data assimilation to determine the different parameter values
used. Nowicki et al. (2022), building on previous work in De-
Vries and Weber (2017), used satellite-observed net primary
production and phytoplankton size distributions to force a
simple steady-state euphotic-zone food web model coupled
to an organic matter transport and transformation model. The
combined modeling system includes 42 parameters that are
optimized to minimize mismatch with a suite of observa-
tions using a quasi-Newton algorithm. By making different
assumptions related to the incorporated field data and opti-
mizing parameters for each set of assumptions, the authors
developed an ensemble of 124 ecosystem realizations. Ra-
mondenc et al. (2020) used the statistical model check engine
to assimilate laboratory and in situ observations to proba-
bilistically constrain parameters associated with scyphozoan
growth and degrowth. Vervatis et al. (2021a, b) conducted a
model ensemble study of the Bay of Biscay in which they
perturbed the atmospheric forcing, physical ocean parame-
terization, and biogeochemical sources and sinks (although,
in contrast to our model, they did not vary the parameters
but rather incorporated a spatiotemporally varying perturba-
tion that acted directly on sources and sinks including pho-
tosynthesis, death, and grazing without modification to pa-
rameters). They found that chlorophyll was most sensitive to
changes in atmospheric forcing and also highlight that the
ensemble results can lead to improved simulation of plank-
ton functional types. Anugerahanti et al. (2018) conducted a
model ensemble approach in which, rather than modifying
parameter values, they modified the functional form of key
transfer functions associated with nutrient uptake, grazing,
and mortality while simulating chlorophyll, nutrients, and
primary production at five time-series sites. They discovered
that the model was especially sensitive to modifications to
the grazing and mortality functions. A further study (Anuger-
ahanti et al., 2020) simultaneously perturbed physical circu-
lation fields and the biogeochemical model and found that
results were most sensitive to variability in the biological
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model. The result of these ensemble approaches is a proba-
bilistic estimate of model outputs that (hopefully) accurately
reflects true uncertainty in the system. Our OEPycMmc ap-
proach, by utilizing field data to automate the choice of pa-
rameter sets to be used in the model ensemble, allows us to
generate 1 million different dynamically consistent model
realizations that each fit the available data, while simulta-
neously exploring different regions of the solution space
with regard to uncertainties in all of the modeled parame-
ters. We consider this to be a reasonable tradeoff for the in-
creased computational expense of our approach (relative to
the variational-adjoint or Kalman filter approaches), while
noting that each approach has distinct advantages or disad-
vantages for different applications.

An additional novelty of our study is the variety of dif-
ferent data types assimilated into the model (30 different
rate and standing stock measurement types). Most data-
assimilating biogeochemical models only incorporate data
associated with nutrients and/or surface chlorophyll and
other remotely sensed parameters (e.g., Xiao and Friedrichs,
2014b; Mattern et al., 2014; Wang et al., 2012). The incor-
poration of multiple data types spanning trophic levels and
biogeochemical processes is important to model validation,
because models can often reasonably simulate time series of
one particular variable, with unrealistic dynamics of associ-
ated trophic levels. Ciavatta et al. (2014) found that assim-
ilation of light attenuation coefficient data improved model
prediction of light attenuation coefficient data but did not
improve model estimates of surface chlorophyll and even
degraded model performance in some regions. Furthermore,
assimilation of only noisy standing stock data can lead to
model overfitting and inability to retrieve accurate model pa-
rameters, even in an idealized model (Loptien and Dietze,
2015). The few studies that have attempted to incorporate
many measurement types have focused on nutrient and phy-
toplankton parameters. For instance, Kim et al. (2021) as-
similated standing stock data associated with nine model
compartments along with net primary production and bac-
terial production into a model of an Antarctic coastal ecosys-
tem but incorporated no metazoan zooplankton data. In a
model simulating three distinct open-ocean regions, Luo
et al. (2010) incorporated only one zooplankton parame-
ter (mesozooplankton biomass) amongst 17 assimilated data
types, mostly associated with non-living compartments. By
contrast, we incorporate an extensive suite of group-specific
protistan grazing rate measurements and biomass and graz-
ing rate measurements for each of our four metazoan zoo-
plankton groups. While these provide realistic bounds within
which zooplankton dynamics can vary, zooplankton param-
eters still remain among the least constrained parameters in
our model due to the difficulty of making zooplankton rate
measurements (e.g., the paucity of grazing measurement rel-
ative to net primary production) and the fact that most zoo-
plankton measurements (derived from net tows) inherently
integrate over broad depth ranges. The weak constraints on
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zooplankton processes are particularly important in light of
multiple studies that have shown that even subtle changes
in grazing formulations can fundamentally alter the biogeo-
chemical behaviors of models (Sailley et al., 2015; Gentle-
man and Neuheimer, 2008; Schartau et al., 2017; Chenillat
et al., 2021; Sailley et al., 2013; Prowe et al., 2012) and the
crucial roles of metazoan zooplankton for multiple pathways
of the BCP (Buitenhuis et al., 2006; Steinberg and Landry,
2017).

4.3 Future directions

We have highlighted some of the insight about the BCP
that can be gleaned from our ensemble data-assimilation ap-
proach. However, as noted previously, there are many lim-
itations associated with using a simplified one-dimensional
physical framework, and indeed a large portion of our
study goal was to set the stage for more advanced uses of
NEMUROgcp and OEPpcmce. One obvious future step is
to incorporate NEMUROgcp into three-dimensional circula-
tion models. Although NEMUROgcp was originally written
in MATLAB, we are currently adapting it to Fortran com-
patible with circulation models such as ROMS, HYCOM,
and MITgcm. Three-dimensional NEMUROgcp simulations
may take different forms. One approach would be to use
different parameter sets from the data ensemble in indepen-
dent model runs to conduct three-dimensional global biogeo-
chemical model ensembles. Notably, our different parameter
sets are equally supported by assimilated field data, yet some
predict very different ecosystem states (e.g., they vary in rel-
ative proportion of large/small phytoplankton, in turnover
times for biota, in partitioning of organic matter between the
particulate and dissolved phase, etc.). This ensemble model-
ing approach would thus allow quantification of BCP uncer-
tainties in four dimensions. An alternate approach would be
to use parameter distributions from one-dimensional simula-
tions as prior estimates of parameters for data assimilation
in a three-dimensional model. These prior estimates of each
parameter (and the parameter covariance matrix) could be
incorporated into the cost function for many different data-
assimilation approaches. Comparison to satellite-observed or
in situ time-series data would add powerful additional con-
straints on parameter values.

Another future use of the ensemble approach would be
to simulate the results of specific Lagrangian experiments.
In the current study, we developed an ensemble of plausi-
ble parameter sets that could be used for global ensemble
models in the future or as prior distributions for future stud-
ies, while also assessing the uncertainty in parameter values.
These goals informed our decision to conduct a joint parame-
ter estimation that simultaneously utilized data from all avail-
able experiments (rather than estimating different parame-
ter values for each experiment or each region). To simulate
ecosystem dynamics for a specific experiment as accurately
as possible, one would need to treat initial conditions and
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boundary values as unknown values to be determined dur-
ing the optimization procedure. As such, the cost function
should formally be defined as a function of these unknown
values: J(Ic, By, F, P), where Ic represents the initial con-
ditions (all state variables, all depths), By is the boundary
values (i.e., values of the state variables at the bottom bound-
ary of the model), F is the physical forcing, and P is the
parameter set. While this introduces a large number of addi-
tional unknown variables to solve for, it also justifies use of
a more stringent cost function (e.g., the likelihood function).
Thus to use NEMUROgcp to model a specific Lagrangian
experiment (e.g., time-varying conditions during the North
Pacific EXPORTS Lagrangian study, Siegel et al., 2021), we
recommend treating our results for estimated global ranges
of parameters as prior values in a Bayesian analysis to simul-
taneously constrain Ic, By, F, and P for that Lagrangian
experiment.

In the current study, we incorporated a broad suite of
standing stock and rate measurements spanning nutrients,
phytoplankton, zooplankton, and non-living organic matter,
because our goal was to simultaneously constrain all param-
eters in the model while investigating overall uncertainty in
model outputs. However, Loptien and Dietze (2015) noted
that specific parameters and processes can be better con-
strained if only the most relevant type of data are included.
We thus suggest that targeted choice of data types to assim-
ilate could allow the use of OEPycMmc for investigation of
specific processes that are difficult to directly measure in
situ. For instance, zooplankton mortality at depth has been
hypothesized to be a potentially important component of the
BCP (Kelly et al., 2019; Herndndez-Leon et al., 2019), but
estimates of zooplankton mortality at depth are typically de-
rived from either allometric relationships between zooplank-
ton size and life span or estimates of mortality made in the
upper ocean (Brett and Groves, 1979; Hirst and Kigrboe,
2002; Ohman and Hirche, 2001). By incorporating only the
data sources that offer the most constraint on zooplankton pa-
rameters (e.g., biomass and grazing rates of each zooplank-
ton group), it may be possible to better constrain the fraction
of mortality occurring in the deep ocean.

NEMUROgcp was built off of the NEMURO family of
models (Kishi et al., 2007), and here we only added extra
state variables essential for modeling BCP pathways from
the euphotic zone into the mesopelagic. There are, of course,
multiple additional processes that are important to simulat-
ing marine biogeochemistry and the BCP that are currently
absent. Some additional processes that we consider priorities
and plan to implement in future versions of NEMUROgcp in-
clude variable stoichiometry of organic matter, Ny fixation,
and additional realism in the microbial community. Elemen-
tal stoichiometry (e.g., C:N:P) can vary substantially be-
tween different organic pools and across the different BCP
pathways (Hannides et al., 2009; Singh et al., 2015), is pre-
dicted to change as a result of ocean acidification and/or in-
creased temperature and stratification (Oschlies et al., 2008;

Biogeosciences, 19, 3595-3624, 2022

M. R. Stukel et al.: Quantifying biological carbon pump pathways

Riebesell et al., 2007), and can affect the balance between
carbon sequestration and nutrient supply and regeneration,
leading to potentially enhanced carbon sequestration and
growing oxygen minimum zones in a future ocean (Michaels
et al., 2001; Oschlies et al., 2008; Riebesell et al., 2007).
Adding variable stoichiometry to NEMUROgcp is simple but
will require the addition of state variables associated with
each model compartment that is allowed to vary in its el-
emental ratios, with substantial added computational costs.
N, fixation is simultaneously a source of new production in
the absence of upwelling and a process that can substantially
alter elemental stoichiometry in the open ocean. It could be
introduced to the model through a state variable(s) simulat-
ing diazotrophs (Hood et al., 2001) or through implicit pa-
rameterization (Ilyina et al., 2013). NEMUROgcp might also
benefit from added realism in microbial dynamics. The roles
of heterotrophic bacteria in particle remineralization are cur-
rently included implicitly in the model. Explicit simulation
of bacterial biomass and processes such as colonization of
particles, microbial hotspots on sinking particles, production
of hydrolytic enzymes, quorum sensing, and predator—prey
dynamics with protists have the potential to more accurately
simulate feedbacks that affect remineralization length scales
in the ocean (Robinson et al., 2010; Simon et al., 2002; Mis-
lan et al., 2014). Additionally, the model currently includes
only two phytoplankton, which were explicitly identified as
diatoms and non-diatoms in this data-assimilation exercise.
The latter category subsumes a wide variety of different phy-
toplankton taxa into a group with transfer functions designed
to simulate picophytoplankton (especially cyanobacteria). It
thus excludes the presence of mixotrophs, which are abun-
dant and diverse bacterivores in the open ocean, can sur-
vive low-nutrient and low-light conditions by supplementing
their nutritional budget with phagotrophy, and may have dis-
tinctly different biogeochemical roles due to their decreased
reliance on dissolved nutrients (Stoecker et al., 2017; Jones,
2000).

5 Conclusions

The data-assimilation approach utilized here is a computa-
tionally feasible method for incorporating a diverse suite of
in situ measurements to objectively define parameter sets for
ensemble modeling of the BCP. The 30 data types assimi-
lated in this study improve constraints on ecosystem dynam-
ics. However, some parameters, especially those related to
metazoan zooplankton, remain poorly constrained by avail-
able data, despite assimilation of eight data types explic-
itly representing metazoan zooplankton rates and standing
stocks. This likely results from a combination of the inher-
ently patchy nature of many mesozooplankton populations
(i.e., high measurement uncertainty) and the vertically inte-
grated nature of zooplankton net tows which obscures simple
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relationships between predator abundance, prey abundance,
and grazing rates.

The three BCP pathways were spatiotemporally variable
across four study regions. Despite a very simple physical
framework, distinct patterns were identified. Active transport
was only a dominant contributor to the BCP in the CRD,
where simulations predicted it to be responsible for 20 %—
40 % of export from the euphotic zone. Near the subtropical
front of the Southern Ocean and in upwelling-influenced re-
gions of the CCE, both gravitational flux and vertical mixing
were important components of the BCP, with the relative im-
portance of the two determined more by differences between
parameter sets than by differences between the conditions
experienced during specific Lagrangian experiments. In off-
shore oligotrophic regions of the CCE and the GoM > 80 %
of export was usually attributable to gravitational flux, al-
though mixing dominated in a few experiments.

Our ensemble approach highlights uncertainties around
model estimates of the BCP that arise from imprecisely de-
fined parameters. Indeed, variability in many aspects of the
BCP is as large comparing different (realistic) parameter sets
within a specific location as it is across regions as distinctly
different as the oligotrophic GoM and coastal CCE. Notably,
different realistic parameter sets from our ensembles predict
very different export efficiencies (and hence magnitudes of
the gravitational pump) despite similar net primary produc-
tion. This suggests that model validation against net primary
production (or sea surface chlorophyll) data is insufficient to
validate model skill in simulating BCP variability. The ex-
plicit representation of thorium and nitrogen isotope dynam-
ics in NEMUROgcp should aid in future model validation
efforts.

Code availability. The core NEMUROpgcp code is available
on GitHub at https://github.com/mstukel/NEMURO_BCP (Stukel,
2022a). The code necessary to run the objective ensemble param-
eterization procedure can be found at https://github.com/mstukel/
OEP_MCMC_NEMURObcp (Stukel, 2022b).

Data availability. Field data used in this paper are avail-
able on either the CCE LTER Datazoo repository (https:/
oceaninformatics.ucsd.edu/datazoo/catalogs/ccelter/datasets) or the
Biological and Chemical Oceanography Data Management Of-
fice repository: https://www.bco-dmo.org/project/834957, https://
www.bco-dmo.org/project/819488, and https://www.bco-dmo.org/
project/754878. For ease of access the data are also included in Sup-
plement Tables S2—-S4. The data file containing all model outputs
(from all ensembles) is too large to deposit but can be generated
from the code on GitHub. A summarized version (every 1000th it-
eration) is included as Supplement Table S5, and summary statistics
are given in Supplement Table S1, with the correlation and covari-
ance matrices given in Supplement Table S6.
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