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Abstract. We propose a hybridizable discontinuous Galerkin (HDG) method e↵ected with5
the convex-concave splitting temporal discretization for solving the Cahn-Hilliard equation. We6
establish optimal convergence rates for the scalar variables and the flux variables in the L2 norm7
for polynomials of degree k � 0. The error constants depend on inverse of the interface thickness8
in polynomial orders, which is obtained by utilizing a spectral-type estimate of the discrete Cahn-9
Hilliard operator in the HDG framework. In terms of degrees of freedom of the globally coupled10
unknowns, the scalar variables are superconvergent. Numerical results are reported to corroborate11
the theoretical convergence rates and the e↵ectiveness of the method.12
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1. Introduction. Let ⌦ ⇢ Rd (d = 2, 3) be a convex polygonal domain with14

Lipshitz boundary @⌦ and T be a positive constant. We consider the following Cahn-15

Hilliard equation:16

ut ��� = 0, �✏�u+ ✏�1f(u) = � in ⌦⇥ (0, T ],(1.1a)17

ru · n = r� · n = 0 on @⌦⇥ (0, T ], u(·, 0) = u0(·) in ⌦,(1.1b)1819

where f(u) = u3 � u. Owing to its importance in material science and multiphase20

flow, many works have been devoted to the design and analysis of numerical schemes21

for solving the Cahn-Hilliard equation, see, e.g., finite di↵erence methods [36], mixed22

and nonconforming finite element methods [30, 29, 31, 5, 35, 27] and Fourier-spectral23

methods [54, 42, 53].24

In recent years, the discontinuous Galerkin (DG) method has become popular25

for solving the Cahn-Hilliard equation. Applications of DG methods to fourth order26

elliptic problems have been considered by Babuška and Zlámal in [3], by Baker in27

[4], and more recently by Mozolevski et al. in a series of works [45, 44, 46, 56]. In28

[32], Feng and Karakashian design and analyze a DG method of interior penalty type29

based on the fourth order formulation of the Cahn-Hilliard equation. Optimal error30

estimates in the L2 and broken H1 norms are established for polynomials of degrees31

k � 3; see [32, 34] for details. Kay et al. propose and analyze a di↵erent DG method32

[40] that treats the Cahn-Hilliard equation as a system of second order equations33

allowing a relatively smaller penalty term with optimal convergence in the H1 norm34

for polynomials of degree k � 1. A fully adaptive version of the interior penalty35
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DG method was recently constructed in [2] for the Cahn-Hilliard equation with a36

source and optimal L2 error bounds were derived. The local discontinuous Galerkin37

(LDG) method has also been proposed for the discretization of the Cahn-Hilliard38

equation by writing it as a system of four first-order equations. Dong and Shu in39

[28] analyzed a LDG scheme for fourth-order equations including the linearized Cahn-40

Hilliard equation and obtained optimal error estimates in the L2 norm for polynomials41

of all degrees.42

The classical DG method however entails larger amount of degrees of freedom43

compared to the continuous Galerkin (CG) methods. In the seminal work [18] Cock-44

burn et al. propose a hybridizable discontinuous Galerkin (HDG) method for second45

order elliptic problems. The HDG method can be viewed as a hybridizable version46

of the LDG method. In a nutshell, the HDG method locally connects the flux and47

solution variables with the numerical traces of the solution via a local solver, which48

are in turn coupled by the continuity of fluxes across inter-element boundaries (a49

transmission condition). Hence the globally coupled degrees of freedom are those nu-50

merical traces, resulting in a significant reduction of the number of unknowns than51

traditional DG methods. Moreover, the HDG methods possess the same favorable52

properties as classical mixed methods. In particular, HDG methods provide optimal53

convergence rates for both the gradient and the primal variables of the mixed for-54

mulation. This property enables the construction of superconvergent solutions via55

postprocessing, contrary to other DG methods. These advantages of the HDG meth-56

ods have made HDG an attractive alternative for solving problems governed by PDEs57

and PDE control problems, cf. [23, 19, 24, 22, 7, 51, 50, 21, 52, 55, 11, 38, 37].58

Most studies currently focus on establishing optimal and superconvergent rates59

of HDG methods for second order problems, such as elliptic PDEs [20], convection60

di↵usion equations [14, 15, 48], Stokes equations [24, 19], Oseen equations [7] and61

Navier-Stokes equations [49, 8]. In [17], the authors utilized an HDG method with62

polynomial of degree k for all variables for solving the biharmonic equation and ob-63

tained an optimal convergence rates for solution variables and suboptimal convergence64

rates for other variables.65

In this work, we propose a HDG method for the Cahn-Hilliard equation with66

Lehrenfeld-Schöberl type stabilization using polynomials of order k+ 1 for the scalar67

unknowns, and polynomials of order k for the other unknowns. The time-marching68

is based on first-order backward Euler method with convex-splitting discretization69

for the nonlinear term. We establish optimal convergence rates in the L2 norm for70

all variables and for polynomials of order k � 0. Since the globally coupled degrees71

of freedom (numerical traces) are approximated by polynomials of order k, super-72

convergence (k+2) is achieved for approximation of the scalar variables. A particular73

di�culty in error analysis of numerical schemes for solving phase field models is to74

avoid exponential dependence of the error constants on 1/✏. On the other hand, it is75

well-known that the principal eigenvalue of the linearized Cahn-Hilliard operator has76

a lower bound, cf. [1, 13]. Based on this spectral result an optimal error estimate with77

the error constants polynomially depending on 1/✏ is established in [35] for a conform-78

ing finite element method. A spectral-type estimate in the DG space is obtained in79

[34], which is non-trivial since the DG space is not a subspace of H1. Adapting the80

perturbative argument in [34] we establish a similar spectral type estimate of the dis-81

crete Cahn-Hilliard operator within the framework of the HDG method. This enables82

us to obtain error constants depending on 1/✏ in polynomial orders, provided that the83

spatio-temporal resolution is su�ciently small.84

Closely related to our scheme is the hybrid high-order method (HHO) proposed in85
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AN HDG METHOD FOR CAHN-HILLIARD EQUATION 3

[9] which also uses mixed degree approximation and the Lehrenfeld-Schoberl stabiliza-86

tion. It is further pointed out in [16] that HDG methods for elliptic equation mostly87

resemble standard HHO methods. More recently it is shown that our HDG scheme88

for the Cahn-Hilliard equation is indeed a HHO method following the full gradient89

approach, cf. Sec. 4.2 of the book [26]. However, only error estimates in the energy90

norm was obtained for the HHO method in [9], although L2 error estimate is alluded in91

a remark therein. Furthermore, the error constants in [9] exponentially depend on 1
✏
.92

The HDG framework with reduced stabilization and polynomials of mixed orders was93

first introduced by Lehrenfeld in [41] where it was alluded that the scheme could be a94

superconvergent method, i.e., O(hk+2) for the solution variables even though polyno-95

mials of order k are used for the globally coupled unknowns (numerical traces of the96

solution). Optimal convergence and hence superconvergence was then rigorously es-97

tablished for convection di↵usion problems [48], for the Navier-Stokes equations [49],98

and more recently for linear elasticity problems [47].99

The rest of the article is organized as follows. We provide the HDG formulation100

for the Cahn-Hilliard equation in Section 2. We then give some preliminary tools101

essential for the numerical analysis in Section 3. Afterwards we perform stability102

estimate of the nonlinear HDG methods in Section 4. In Section 5, we establish the103

optimal convergence rates of the HDG methods. The theoretical convergence rates104

are further validated by numerical experiments in Section 6.105

2. The HDG formulation. To introduce the fully discrete HDG formulation106

for the Cahn-Hilliard equation, we first fix some notation. Let Th be a shape-regular,107

quasi-uniform triangulation of ⌦. Other regular polygonal meshes are applicable108

too. Let Eh denote the set of all faces E of all simplexes K of the triangulation Th.109

Also let Eo

h
and E@

h
denote the set of interior faces and boundary faces, respectively.110

Furthermore, we introduce the discrete inner products111

(w, v)Th :=
X

K2Th

(w, v)K =
X

K2Th

Z

K

wv, h⇣, ⇢i
@Th

:=
X

K2Th

h⇣, ⇢i
@K

=
X

K2Th

Z

@K

⇣⇢.112

113

For any integer k � 0, let Pk(K) denote the set of polynomials of degree at most114

k on the element K. We introduce the following discontinuous finite element spaces:115

Vh := {vh 2 [L2(⌦)]d : vh|K 2 [Pk(K)]d, 8K 2 Th},116

Wh := {wh 2 L2(⌦) : wh|K 2 Pk+1(K), 8K 2 Th},117

W̊h := {wh 2 L2
0(⌦) : wh|K 2 Pk+1(K), 8K 2 Th},118

Mh := {µh 2 L2(Eh) : µh|E 2 Pk(E), 8E 2 Eh},119120

where L2
0(⌦) is the subspace of L2(⌦) of mean zero functions.121

Since the HDG methods are based on a mixed formulation, we rewrite the PDE122

as a first order system by setting p +r� = 0 and q +ru = 0 in (1.1). The mixed123

formulation of (1.1) is124

p+r� = 0, ut +r · p = 0, q +ru = 0, ✏r · q + ✏�1f(u) = �.(2.1)125

Now we introduce the fully discrete HDG formulation based on the first-order126

convex-splitting approach. A similar scheme can be constructed utilizing the backward127

Euler method. For a fixed integer N , let 0 = t0 < t1 < · · · < tN = T be a uniform128

partition of [0, T ] with�t = T/N . The HDGmethod seeks (pn

h
,�n

h
, b�n

h
), (qn

h
, un

h
, bun

h
) 2129

This manuscript is for review purposes only.



4 G. CHEN, D. HAN, J. SINGLER AND Y. ZHANG

Vh ⇥Wh ⇥Mh such that130

(@+
t
un

h
, w1)Th +A(pn

h
,�n

h
, b�n

h
; r1, w1, µ1) = 0,(2.2a)131

(✏�1F (un

h
, un�1

h
), w2)Th + ✏A(qn

h
, un

h
, bun

h
; r2, w2, µ2)� (�n

h
, w2)Th = 0,(2.2b)132

(u0
h
, w3)Th � (u0, w3)Th = 0(2.2c)133134

for all (r1, w1, µ1), (r2, w2, µ2) 2 Vh⇥Wh⇥Mh and w3 2 Wh, A : [Vh⇥Wh⇥Mh]2 ! R135

is defined by136

A(qh, uh, buh; rh, wh, µh) = (qh, rh)Th � (uh,r · rh)Th + hbuh, rh · ni@Th(2.2d)137

+ (r · qh, wh)Th � hqh · n, µhi@Th + hh�1
K

(⇧@

k
uh � buh),⇧

@

k
wh � µhi@Th .138139

Here, @+
t
un

h
= (un

h
� un�1

h
)/�t, F (un

h
, un�1

h
) = (un

h
)3 � un�1

h
, and ⇧@

k
is the element-140

wise L2 projection onto Pk(E) such that141

h⇧@

k
uh, µhiE = huh, µhiE , 8µh 2 Pk(E) and E 2 @K.142143

3. Preliminaries. In Subsection 3.1 we recall and prove some useful inequali-144

ties necessary for the error analysis. Then in Subsection 3.2 we introduce the HDG145

elliptic projection and study its approximation properties. Finally in Subsection 3.4146

we introduce the the HDG spectral estimate, which is useful to our error analysis in147

the next section. Throughout, the generic constant C is independent of h,�t, ✏ and148

may change from line to line. For convience of analysis we assume ✏ < 1.149

3.1. Useful inequalities . We recall the standard L2 projections ⇧o

k
: [L2(⌦)]d150

! Vh and ⇧o

k+1 : L2(⌦) ! Wh. The following approximation results are classical, cf.151

[12, Lemma 3.3], [6, Lemma 4.5.3].152

kq �⇧o

k
qkL2(K)  Chk+1

K
|q|Hk+1(K), ku�⇧o

k+1ukL2(K)  Chk+2
K

|u|Hk+2(K),(3.1a)153

ku�⇧o

k+1ukL2(@K)  Chk+3/2
K

|u|Hk+2(K),(3.1b)154

kwhkL2(@K)  Ch�1/2
K

kwhkL2(K), 8wh 2 Wh,(3.1c)155

ku�⇧o

k+1ukLq(K)  Chk+2+d(1/q�1/2)
K

|u|Hk+2(K), q 2 [1,+1],(3.1d)156

kwhkLq(K)  Chd(1/q�1/2)
K

kwhkL2(K), 8wh 2 Wh, q 2 [1,+1].(3.1e)157158

The following HDG Sobolev inequalities can be readily derived from [26, Theorem159

6.5]. A direct proof based on Oswald interpolation operator [39, Page 644, Theorem160

2.1] is available in [10].161

Lemma 3.1 (HDG Sobolev inequality). Suppose q 2 [1,1) for d = 2, and162

q 2 [1, 6] for d = 3. For any µh 2 Mh there hold163

kwhkLq(⌦)  C
⇣
kwhkTh + krwhkTh + kh�1/2

T (⇧@

k
wh � µh)k@Th

⌘
8wh 2 Wh,(3.2a)164

kwhkLq(⌦)  C
⇣
krwhkTh + kh�1/2

T (⇧@

k
wh � µh)k@Th

⌘
, 8wh 2 W̊h.(3.2b)165

166

Here and throughout, hT is a piecewise constant function equal to hK on each element167

K.168

Next, we present some basic properties of the operator A.169
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Proposition 3.2. For all (qh, uh, buh), (ph,�h, b�h) 2 Vh ⇥Wh ⇥Mh, one has170

A(qh, uh, buh;ph,��h,�b�h) = A(ph,�h, b�h; qh,�uh,�buh),(3.3)171

A(qh, uh, buh; qh, uh, buh) = kqhk2Th
+ kh�1/2

T (⇧@

k
uh � buh)k2@Th

,(3.4)172
���A(qh, uh, buh;ph,�h, b�h)

���  C
⇣
kh�1/2

T (⇧@

k
uh � buh)k@Th + kqhkTh(3.5)173

+ kruhkTh

⌘
⇥
⇣
kphkTh + kr�hkTh + kh�1/2

T (⇧@

k
�h � b�h)k@Th

⌘
.174

175

In addition, if A(qh, uh, buh; rh, 0, 0) = 0 for all rh 2 Vh, then the following inequality176

holds177

kruhkTh + kh�1/2
T (uh � buh)k@Th  C

⇣
kqhkTh + kh�1/2

T (⇧@

k
uh � buh)k@Th

⌘
.(3.6)178

179

The proof of Proposition 3.2 is straightforward, see [38, Lemma 1, Lemma 2] and [48,180

Lemma 3.2] for proofs of similar results.181

Next, we show that A satisfies the following discrete LBB condition.182

Lemma 3.3. For all (qh, uh, buh) 2 Vh ⇥ W̊h ⇥Mh, we have183

sup
0 6=(ph,�h,

b�h)2Vh⇥W̊h⇥Mh

A(qh, uh, buh;ph,�h, b�h)
kphkTh + kr�hkTh + kh�1/2

T (⇧@

k
�h � b�h)k@Th

(3.7)184

� C
⇣
kqhkTh + kruhkTh + kh�1/2

T (⇧@

k
uh � buh)k@Th

⌘
.185

186

Proof. First we note that if187

kphkTh + kr�hkTh + kh�1/2
T (⇧@

k
�h � b�h)k@Th = 0,188189

then ph = 0, and �h = 0 by (3.2b), and hence b�h = 0 as well.190

Next, let ↵ be a positive constant that will be specified below. For any fixed191

(qh, uh, buh) 2 Vh⇥W̊h⇥Mh, we take (ph,�h, b�h) = (qh+↵ruh, uh, buh) 2 Vh⇥W̊h⇥192

Mh to get193

A(qh, uh, buh;ph,�h, b�h)194

= (qh, qh + ↵ruh)Th � (uh,r · (qh + ↵ruh))Th195

+ hbuh, (qh + ↵ruh) · ni@Th + (r · qh, uh)Th � hqh · n, buhi@Th196

+ hh�1
K

(⇧@

k
uh � buh),⇧

@

k
uh � buhi@Th197

= kqhk2Th
+ ↵kruhk2Th

+ kh�1/2
T (⇧@

k
uh � buh)k2@Th

198

+ ↵(qh,ruh)Th + ↵hbuh �⇧@

k
uh,n ·ruhi@Th199

� (1� C↵)
⇣
kqhk2Th

+ kh�1/2
T (⇧@

k
uh � buh)k2@Th

⌘
+
↵

2
kruhk2Th

.200
201

By choosing ↵ > 0 such that 0 < 1� C↵, we get202

A(qh, uh, buh;ph,�h, b�h) � C1

⇣
kqhk2Th

+ kh�1/2
T (⇧@

k
uh � buh)k2@Th

+ kruhk2Th

⌘
.203

204

Finally, for the choice of (ph,�h, b�h) = (qh+↵ruh, uh, buh) the triangle inequality205

implies206

kphk2Th
+ kh�1/2

T (⇧@

k
�h � b�h)k2@Th

+ kr�hk2Th
207

 C2(kqhk2Th
+ kh�1/2

T (⇧@

k
uh � buh)k2@Th

+ kruhk2Th
).208209

Then (3.7) follows immediately.210
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6 G. CHEN, D. HAN, J. SINGLER AND Y. ZHANG

The proof of Lemma 3.3 also shows that the operator A defines a norm on the211

space Vh⇥W̊h⇥Mh. Thanks to the discrete LBB condition in Lemma 3.3, the follow-212

ing inversion of the Laplacian operator equipped with Neumann boundary conditions213

is well defined.214

Definition 3.4. For all uh 2 Wh, define (⇧V uh,⇧Wuh,⇧Muh) 2 Vh⇥W̊h⇥Mh215

to be the unique solution of the problem216

A(⇧V uh,⇧Wuh,⇧Muh; rh, wh, µh) = (uh, wh)Th(3.8)217218

for all (rh, wh, µh) 2 Vh ⇥ W̊h ⇥Mh.219

In particular, by the definition A in (2.2d) and integration by parts, one can show220

that for any uh 2 W̊h and 8(rh, wh, µh) 2 Vh ⇥Wh ⇥Mh221

A(⇧V uh,⇧Wuh,⇧Muh; rh, wh, µh) = (uh, wh)Th .(3.9)222223

For all uh 2 W̊h, we define the semi-norm224

kuhk2�1,h := A(⇧V uh,⇧Wuh,⇧Muh;⇧V uh,⇧Wuh,⇧Muh).225226

It follows from (3.4) that227

kuhk2�1,h = k⇧V uhk2Th
+ kh�1/2

T (⇧@

k
⇧Wuh �⇧Muh)k2@Th

= (uh,⇧Wuh)Th .(3.10)228229

Next, we show that k · k�1,h is a norm on the space W̊h.230

Lemma 3.5. k · k�1,h defines a norm on the space W̊h.231

Proof. Thanks to (3.10), one only needs to show that kuhk�1,h = 0 implies uh = 0232

for uh 2 W̊h. It follows readily from (3.10) that233

⇧V uh = 0, ⇧@

k
⇧Wuh �⇧Muh = 0.234235

Next, Definition 3.4 and (2.2d) imply that for all (rh, wh) 2 Vh ⇥ W̊h we have236

(uh, wh)Th = (⇧Wuh,r · rh)Th � h⇧Muh, rh · ni@Th .237238

Taking rh = 0 and wh = uh one obtains uh = 0. This completes the proof.239

Lemma 3.6. If uh 2 W̊h and (wh, µh) 2 Wh ⇥Mh, then we have240

(uh, wh)Th  Ckuhk�1,h

⇣
krwhkTh + kh�1/2

T (⇧@

k
wh � µh)k@Th

⌘
.(3.11)241

242

Proof. Let (wh, µh) 2 Wh ⇥ Mh, uh 2 W̊h and (⇧V uh,⇧Wuh,⇧Muh) be the243

solution of (3.8). By Equation (3.9) and (2.2d) we have244

(uh, wh)Th = A(⇧V uh,⇧Wuh,⇧Muh;0, wh, µh)245

= (r ·⇧V uh, wh)Th � hn ·⇧V uh, µhi@Th246

+ hh�1
K

(⇧@

k
⇧Wuh �⇧Muh),⇧

@

k
wh � µhi@Th .247248

By integration by parts, (3.10) and the L2 stability of ⇧@

k
we have249

(uh, wh)Th  k⇧V uhkThkrwhkTh + Ckh�1/2
T (⇧@

k
wh � µh)k@Th250

⇥
⇣
k⇧V uhkTh + kh�1/2

T (⇧@

k
⇧Wuh �⇧Muh)k@Th

⌘
251

 Ckuhk�1,h

⇣
krwhkTh + kh�1/2

T (⇧@

k
wh � µh)k@Th

⌘
.252

253

This completes the proof.254

This manuscript is for review purposes only.



AN HDG METHOD FOR CAHN-HILLIARD EQUATION 7

Finally, by the Definition 3.4, the identity (3.10) and (3.6) one can easily establish255

the following inequality256

kr⇧WuhkTh + khT (⇧
@

k
⇧Wuh �⇧Muh)k@Th  Ckuhk�1,h, uh 2 W̊h,(3.12)257

kuhk�1,h  CkuhkTh , uh 2 W̊h.(3.13)258259

3.2. The HDG elliptic projection. Given ⇥ 2 L2(⌦), let ( ,�) denote the260

solution of the following system261

 +r� = 0, r · = ⇥ in ⌦,  · n = 0 on @⌦,

Z

⌦
� = 0.(3.14)262

263

If ⌦ is convex, then we have the following regularity result:264

k kH1(⌦) + k�kH2(⌦)  Cregk⇥kL2(⌦).(3.15)265266

Recall that (p,�, q, u) is the solution of the Cahn-Hilliard equation in mixed form267

(2.1). For all t 2 [0, T ], we define the HDG elliptic projections:268

finding (pIh,�Ih, b�Ih), (qIh, uIh, buIh) 2 Vh ⇥Wh ⇥Mh such that269

A(pIh,�Ih, b�Ih; r1, w1, µ1) = �(��, w1)Th and (�Ih � �, 1)Th = 0,(3.16a)270

A(qIh, uIh, buIh; r2, w2, µ2) = �(�u,w2)Th and (uIh � u, 1)Th = 0,(3.16b)271272

for all (r1, w1, µ1), (r2, w2, µ2) 2 Vh ⇥ W̊h ⇥Mh.273

Denote the norm on the Hilbert space Hs, s > 0 by | · |s. We have the following274

approximation property for the HDG elliptic projection (3.16).275

Lemma 3.7. Assume the regularity condition (3.15) holds. Let (p,�, q, u) be276

smooth enough and (pIh,�Ih, qIh, uIh) be the solutions of (3.16). We have277

ku� uIhkTh  Chk+2|u|k+2,(3.17a)278

kq � qIhkTh + kh�1/2
T (⇧@

k
uIh � buIh)k@Th  Chk+1|u|k+2,(3.17b)279

k@tu� @tuIhkTh  Chk+2|@tu|k+2,(3.17c)280

k�� �IhkTh  Chk+2|�|k+2,(3.17d)281

kp� pIhkTh + kh�1/2
T (⇧@

k
�Ih � b�Ih)k@Th  Chk+1|�|k+2.(3.17e)282283

The proof of Lemma 3.7 follows applications of the 3rd Strang Lemma and the284

Aubin-Nitsche technique in [25]. For completeness, we present details of the proof as285

follows. Introducing286

"q
h
:= ⇧o

k
q � qIh, "u

h
:= ⇧o

k+1u� uIh, "bu
h
:= ⇧@

k
u� buIh,(3.18)287288

one derives the error equation289

A("q
h
, "u

h
, "bu

h
; r2, w2, µ2) = �(�u,w2)Th(3.19)290

+ hq · n�⇧o

k
q · n, µ2 � w2i@Th + hh�1

K
(⇧o

k+1u� u),⇧@

k
w2 � µ2i@Th .291292

293

Proof. We only give a proof of (3.17a) and (3.17b), since the proofs of the re-294

maining inequalities are similar. We split the proof into two steps.295
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Step 1: an energy argument296

Since ("u
h
, 1)L2(⌦) = (⇧o

k+1u� uIh, 1)L2(⌦) = (u� uIh, 1)L2(⌦) = 0, then "u
h
2 W̊h.297

We take (r2, w2, µ2) = ("q
h
, "u

h
, "bu

h
) in (3.19) to get298

k"q
h
k2Th

+ kh�1/2
K

(⇧@

k
"u
h
� "bu

h
)k2

@Th
299

= hq · n�⇧o

k
q · n, "bu

h
� "u

h
i@Th + hh�1

K
(⇧o

k+1u� u),⇧@

k
"u
h
� "bu

h
i@Th300

 Chk+1|u|k+2

⇣
k"q

h
k2Th

+ kh�1/2
T (⇧@

k
"u
h
� "bu

h
)k2

@Th

⌘1/2
,301

302

where we have used the fact A("q
h
, "u

h
, "bu

h
; r2, 0, 0) = 0 and (3.6). Hence303

⇣
k"q

h
k2Th

+ kh�1/2
T (⇧@

k
"u
h
� "bu

h
)k2

@Th

⌘1/2
 Chk+1|u|k+2.(3.20)304

305

Now in light of the definitions of the error functions in (3.18), one obtains by the306

triangle inequality, the L2 stability of the projection ⇧@

k
, the inequalities in (3.1) and307

the fact that q = �ru that308

kq � qIhkTh + kh�1/2
T (⇧@

k
uIh � buIh)k@Th  Chk+1|u|k+2.309310

Thus (3.17b) is established.311

Step 2: L2 error estimate by a duality argument Let ⇥ 2 L2(⌦) and let ( ,�)312

be the solution to (3.14). One has for all (r2, w2, µ2) 2 Qh ⇥Wh ⇥Mh313

A(⇧o

k
 ,⇧o

k+1�,⇧
@

k
�; r2, w2, µ2) = (⇥, w2) + h · n�⇧o

k
 · n, µ2 � w2i@Th314

+ hh�1
K

(⇧o

k+1�� �),⇧@

k
w2 � µ2i@Th .(3.21)315316

We take (r2, w2, µ2) = ("q
h
,�"u

h
,�"bu

h
) and ⇥ = �"u

h
in (3.21) to get317

k"u
h
k2Th

= A("q
h
, "u

h
, "bu

h
;⇧o

k
 ,�⇧o

k+1�,�⇧@

k
�; )318

+ h⇧o

k
 · n� · n, "bu

h
� "u

h
i@Th � hh�1

K
(⇧o

k+1�� �),⇧@

k
"u
h
� "bu

h
i@Th319

= �h⇧o

k
q · n� q · n,⇧@

k
��⇧o

k+1�i@Th320

� hh�1
K

(⇧o

k+1u� u),⇧@

k
⇧o

k+1��⇧@

k
�i@Th321

+ h⇧o

k
 · n� · n, "bu

h
� "u

h
i@Th � hh�1

K
(⇧o

k+1�� �),⇧@

k
"u
h
� "bu

h
i@Th .322323

Since q 2 H(div,⌦), q · n = 0 on @⌦ and ⇧@

k
� is single-valued on @Th, then hq ·324

n,⇧@

k
�i@Th = 0 = hq · n,�i@Th . We have325

� h⇧o

k
q · n� q · n,⇧@

k
��⇧o

k+1�i@Th326

= hq · n,⇧@

k
��⇧o

k+1�i@Th � h⇧o

k
q · n,⇧@

k
��⇧o

k+1�i@Th327

= hq · n,��⇧o

k+1�i@Th � h⇧o

k
q · n,��⇧o

k+1�i@Th328

= �h⇧o

k
q · n� q · n,��⇧o

k+1�i@Th .329330

By the error estimates in (3.20), the inequality (3.6) and the regularity result (3.15)331

with ⇥ = �"u
h
, one derives that332

k"u
h
kTh  Chk+2|u|k+2.(3.22)333334

The error estimate (3.17a) now follows from the triangle inequality. This completes335

the proof.336
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We shall need the uniform estimate of the HDG elliptic projection uIh. By the337

triangle inequality and the inverse inequality (3.1e), one obtains338

||uIh � u||L1  ||uIh �⇧o

k+1u||L1 + ||u�⇧o

k+1u||L1339

 Ch�d/2kuIh �⇧o

k+1ukTh + Ch2�d/2|u|2340

 Ch2�d/2|u|2.341342

Hence with ||�u||L1(L2)  C✏�
7
2 (cf. the stability estimate in the upcoming section)343

and ||u||L1(L1)  C [34], provided h  ✏
7

4�d , one has344

kuIhkL1(L1)  C.(3.23)345346

3.3. The discrete Laplacian. For any uh 2 Wh, we define �huh 2 Wh, such347

that for all (rh, wh, µh) 2 Vh ⇥Wh ⇥Mh we have348

(�huh, wh)Th = �A(qu

h
, uh, buu

h
; rh, wh, µh),(3.24)349350

where (qu

h
, buu

h
) 2 Vh ⇥Mh satisfy351

A(qu

h
, uh, buu

h
; rh, 0, µh) = 0(3.25)352353

for all (rh, µh) 2 Vh ⇥Mh. It is clear there exists a unique solution (�huh, qu

h
, buu

h
) 2354

Wh ⇥ Vh ⇥ Mh, since Eqs. (3.24) and (3.25) define a square linear system of finite355

dimension.356

Lemma 3.8. For all wh 2 Wh, we have the inequality357

kwhkL1(⌦)  Ck�hwhkTh ,(3.26)358359

where C depends on ⌦.360

Proof. Consider the following continuous problem: find w 2 H1(⌦), such that361

��w = ��hwh in ⌦, rw · n = 0 on @⌦, (w, 1)Th = (wh, 1)Th .(3.27)362363

Since ⌦ is convex, we have the regularity estimate364

|w|H2(⌦)  Cregk�hwhkTh .(3.28)365366

We use the definition (3.24) and (3.27) to get367

A(qw

h
, wh, buw

h
; sh, vh, µh) = �(�w, vh)Th , (wh � w, 1)Th = 0368369

for all (sh, vh, µh) 2 Vh⇥Wh⇥Mh. Therefore, we may use the HDG elliptic projection370

result in Lemma 3.7 to get371

kw � whkTh  Ch2|w|H2(⌦).(3.29)372373

By the triangle inequality, we have374

kwhkL1(⌦)  kwh �⇧o

k+1wkL1(⌦) + k⇧o

k+1w � wkL1(⌦) + kwkL1(⌦)375

:= R1 +R2 +R3.376377
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10 G. CHEN, D. HAN, J. SINGLER AND Y. ZHANG

Now we estimate {Ri}3i=1 term by term as follows378

R1  Ch�d/2kwh �⇧o

k+1wkTh  Ch�d/2
�
kwh � wkTh + kw �⇧o

k+1wkTh

�
379

 Ch2�d/2|w|H2(⌦)  Ch2�d/2k�hwhkTh ,380

R2  Ch2�d/2|w|H2(⌦)  Ch2�d/2k�hwhkTh ,381

R3  CD
2� 2

d
⌦ |w|H2(⌦)  CD

2� 2
d

⌦ k�hwhkTh ,382383

where D⌦ is the diameter of the domain ⌦. The inequality (3.26) follows from the384

above estimates and the fact h  D⌦. This completes the proof.385

We remark that it is possible to obtain a Gagliardo–Nirenberg type inequality, cf.386

[10]:387

kwhkL1(⌦)  C

✓
h2�d/2k�hwhkTh + k�hwhk

d
2(6�d)

Th
kwhk

3(4�d)
2(6�d)

L6(⌦) + kwhkL6(⌦)

◆
.388

389

3.4. The HDG spectral estimate. Recall that for f 2 L2
0(⌦), u = (��)�1f 2390

L2
0(⌦) is such that ��u = f, @u

@n
|@⌦ = 0. Introduce an operator Kh : Wh ⇥Mh ! Vh391

defined by392

(Kh( h, b h),wh)K = �( h,r ·wh)K + h b h,n ·whi@K(3.30)393

for all wh 2 Vh and K 2 Th.394

Lemma 3.9. Assume that the spectral estimate of the Cahn-Hilliard operator holds395

(Proposition 1 in [35]). Then for any fixed � 2 (0, 1), one has396

✏kKh( h, b h)k2L2(⌦) + ✏kh� 1
2

T (⇧@

k
 h � b h)k2@Th

+
1� �

✏
(f 0(uIh) h, h)Th(3.31)397

� �2C0kr��1( h)k2L2(⌦) � k hk2�1,h, 8( h, b h) 2 W̊h ⇥Mh,398

provided h  Cmin{�1/2✏11/4,�3/4✏7/4, ✏
7

4�d },399400

where C0 is the constant in the continuous version of the original spectral estimate of401

the Cahn-Hilliard operator.402

Proof. Let  2 H1(⌦) \ L2
0(⌦) be the solution of403

(r ,rv) = (Kh( h, b h),rv), 8v 2 H1(⌦).404405

It follows406

kr kL2(⌦)  kKh( h, b h)kTh .(3.32)407408

Consider the dual problem: finding w 2 H1(⌦) such that409

��w =  �  h, n ·rw|@⌦ = 0410411
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Then412

k �  hk2L2(⌦) = (��w, �  h)413

= (rw,r( �  h)) + hn ·rw, hi@Th414

= (rw,Kh( h, b h)�r h) + hn ·rw, hi@Th415

= (⇧o

k
rw,Kh( h, b h)�r h) + hn ·rw, hi@Th416

= hn ·⇧o

k
rw � n ·rw, b h �  hi@Th417

 ChkwkH2(⌦)kh
� 1

2
K

( h � b h)k@Th418

 Chk �  hkL2(⌦)

⇣
kKh( h, b h)kTh + kh� 1

2
T (⇧@

k
 h � b h)k@Th

⌘
,419

420

hence421

k �  hkL2(⌦)  Ch
⇣
kKh( h, b h)kTh + kh� 1

2
T (⇧@

k
 h � b h)k@Th

⌘
.(3.33)422

423

Define424

Lh := ✏kKh( h, b h)k2L2(⌦) + ✏kh� 1
2

T (⇧@

k
 h � b h)k2@Th

+
1� �

✏
(f 0(uIh) h, h)425

+ c0kr��1 hk2L2(⌦) + k hk2�1,h,426

L := ✏kr k2
L2(⌦) +

1

✏
(f 0(u) , ) + C0kr��1 k2

L2(⌦),427
428

with a constant c0 to be determined, and C0 the constant in the continuous version429

of the original spectral estimate of the Cahn-Hilliard operator, cf. [1, 13, 35]. Since430

||u||L1(L1)  C [35] and under the constraint h  ✏7/(4�d), it follows from (3.32) and431

the uniform bound (3.23) that432

Lh � (1� �)L � �✏
⇣
kKh( h, b h)k2L2(⌦) + kh� 1

2
T (⇧@

k
 h � b h)k2@Th

⌘
433

� C
1� �

✏
k 2

h
�  2kL1(⌦) � C✏�1kuIh � ukL2(⌦)|| h||2L4(⌦)434

+ (c0 � C0)kr��1 hk2L2(⌦) + k hk2�1,h � C0

���kr��1 hk2L2(⌦) � kr��1 k2
L2(⌦)

���435
436

The negative terms on the right-hand side of the above inequality are estimated as437

follows. First, by the error estimate (3.33), the interpolation inequality (3.11) and438

the estimate (3.32) there holds439

C
1� �

✏
k 2

h
�  2kL1(⌦) 

C

✏
k h �  k2

L2(⌦) +
C

✏
k h �  kL2(⌦)k hkL2(⌦)440

 C

✏
h2

⇣
kKh( h, b h)k2Th

+ kh� 1
2

T (⇧@

k
 h � b h)k2@Th

⌘
441

+
Ch

✏

⇣
kKh( h, b h)kTh + kh� 1

2
T (⇧@

k
 h � b h)k@Th

⌘3/2
k hk1/2�1,h442

 C(✏�1h2 + ✏�4/3h4/3)
⇣
kKh( h, b h)k2Th

+ kh� 1
2

T (⇧@

k
 h � b h)k2@Th

⌘
+ k hk2�1,h.443

444

Next, with ||u||L1(H2)  C✏�7/2, the error estimate of HDG elliptic projection (3.17a),445

This manuscript is for review purposes only.
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the estimate (3.32) and the HDG Sobolev imbedding (3.2b) imply446

C✏�1kuIh � ukL2(⌦)|| h||2L4(⌦)447

 C✏�1h2||u||H2

⇣
kKh( h, b h)k2Th

+ kh� 1
2

K
(⇧@

k
 h � b h)k2@Th

⌘
448

 C✏�9/2h2
⇣
kKh( h, b h)k2Th

+ kh� 1
2

T (⇧@

k
 h � b h)k2@Th

⌘
.449

450

Finally, utilizing (3.33) gives451

���kr��1 hk2L2(⌦) � kr��1 k2
L2(⌦)

���  2kr��1( h �  )k2
L2(⌦) + kr��1 hk2L2(⌦)452

 2k h �  k2
L2(⌦) + kr��1 hk2L2(⌦)453

 Ch2
⇣
kKh( h, b h)k2Th

+ kh� 1
2

T (⇧@

k
 h � b h)k2@Th

⌘
+ kr��1 hk2L2(⌦).454

455

Therefore,456

Lh � (1� �)L457

� g(✏, h)
⇣
kKh( , b h)k2L2(⌦) + kh� 1

2
T (⇧@

k
 h � b h)k2@Th

⌘
458

+ (c0 � 2C0)kr��1 hk2L2(⌦) + k hk2�1,h,459
460

with g(✏, h) := �✏� C✏�1h2 � C✏�4/3h4/3 � C✏�9/2h2 � Ch2.461

Thus if c0 = 2C0 and h  Cmin{�1/2✏11/4,�3/4✏7/4}, then462

Lh � (1� �)L � 0,463464

so Lh � (1� �)L � 0. This establishes the spectral estimate (3.31).465

4. Stability of the HDG formulation. In this section we obtain stability466

estimates of the HDG method (2.2). Throughout, C denotes a generic constant that467

may depend on the initial condition and final time T but independent of ✏, h and �t.468

We assume that the initial energy is uniformly bounded in terms of ✏, i.e.469

1

4✏
k(u0

h
)2 � 1k2Th

+
✏

2
kq0

h
k2Th

+
✏

2
kh�1/2

T (⇧@

k
u0
h
� bu0

h
)k2

@Th
 C,(4.1)470

471

and that ||�0
h
||Th  C

✏
. This assumption is reasonable from the standpoint of sharp in-472

terface limit of the Cahn-Hilliard free energy functional, cf. [43]. Relaxed assumption473

where the constant C is replaced by ✏��1 is utilized in [35, 34].474

By an elementary fixed point argument and energy method, the unconditional475

unique solvability of the HDG scheme (2.2) is established in [10]. The basic energy476

stability bounds are provided in the following lemma.477

Lemma 4.1. For any h,�t > 0 and m = 1, 2, . . . , N , the following stability bounds478

hold for the solution to the HDG scheme479

1

4✏
k(um

h
)2 � 1k2Th

+
✏

2

�
kqm

h
k2Th

+ kh�1/2
T (⇧@

k
um

h
� bum

h
)k2

@Th

�
(4.2)480

+�t
mX

n=1

�
kpn

h
k2Th

+ kh�1/2
T (⇧@

k
�n
h
� b�n

h
)k2

@Th

�
 C.481

482
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Proof. One takes (r2, w2, µ2) = (0, @+
t
un

h
, @+

t
bun

h
) in (2.2b) to get483

(4.3)
(✏�1F (un

h
, un�1

h
), @+

t
un

h
)Th + ✏(r · qn

h
, @+

t
un

h
)Th � ✏hqn

h
· n, @+

t
bun

h
i@Th

+ ✏hh�1
K

(⇧@

k
un

h
� bun

h
), @+

t
(⇧@

k
un

h
� bun

h
)i@Th � (�n

h
, @+

t
un

h
)Th = 0.

484

Then one applies @+
t

to (2.2b) and take (r2, w2, µ2) = (qn

h
, 0, 0) to get485

✏(@+
t
qn

h
, qn

h
)Th � ✏(@+

t
un

h
,r · qn

h
)Th + ✏h@+

t
bun

h
, qn

h
· ni@Th = 0.(4.4)486487

Likewise, taking (r1, w1, µ1) = (pn

h
,�n

h
, b�n

h
) in (2.2a) one obtains488

(@+
t
un

h
,�n

h
)Th + kpn

h
k2Th

+ kh�1/2
T (⇧@

k
�n
h
� b�n

h
)k2

@Th
= 0.(4.5)489490

Taking the summation of (4.3), (4.4) and (4.5) gives491

✏�1(F (un

h
, un�1

h
), @+

t
un

h
)Th + ✏(@+

t
qn

h
, qn

h
)Th + ✏hh�1

K
(⇧@

k
un

h
� bun

h
), @+

t
(⇧@

k
un

h
� bun

h
)i@Th492

+ kpn

h
k2Th

+ kh�1/2
T (⇧@

k
�n
h
� b�n

h
)k2

@Th
= 0.493494

Recall that F (un

h
, un�1

h
) = (un

h
)3 � un�1

h
, and the identity

(a3 � b)(a� b) =
1

4
[(a2 � 1)2 � (b2 � 1)2 + (a2 � b2)2 + 2a2(a� b)2 + 2(a� b)2].

One obtains495

1

4✏
k(un

h
)2 � 1k2Th

+
�t✏

2
(kqn

h
k2Th

+ kh�1/2
T (⇧@

k
un

h
� bun

h
)k2

@Th
)496

+�t(kpn

h
k2Th

+ kh�1/2
T (⇧@

k
�n
h
� b�n

h
)k2

@Th
)497

 1

4✏
k(un�1

h
)2 � 1k2Th

+
�t✏

2
(kqn�1

h
k2Th

+ kh�1/2
T (⇧@

k
un�1
h

� bun�1
h

)k2
@Th

).498
499

The inequality (4.2) follows from taking summation of the above equation from n = 1500

to n = m. This completes the proof.501

From Lemma 4.1 one derives the following estimates.502

Lemma 4.2. For h,�t > 0 there holds503

kum

h
k4
L4 +�t

mX

n=1

kr�n
h
k2Th

 C, krum

h
k2Th

 C

✏
,(4.6)504

k�m
h
k2Th

+
mX

n=1

k�n
h
� �n�1

h
k2Th

+ ✏�t
mX

n=1

k@+
t
un

h
k2Th

 C

✏7
.(4.7)505

506

Proof. Inequalities (4.6) are consequences of the estimate (4.2) and the inequality507

(3.6). Taking (r2, w2, µ2) = (0, 1, 1) in (2.2b) yields508

|(�n
h
, 1)Th | =

1

✏
|
�
F (un

h
, un�1

h
), 1

�
Th
|  1

✏
(kun

h
k3
L3(⌦) + kun

h
kL1(⌦)) 

C

✏
.509

510

In light of the stability bounds (4.2), it follows from the triangle inequality, the HDG511

Sobolev inequality (3.2b), and the inequality (3.6) that512

�t
mX

n=1

k�n
h
k2Th

 C

✏2
.(4.8)513

514
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Applying @+
t

to (2.2b) gives515

✏A(@+
t
qn

h
, @+

t
un

h
, @+

t
bun

h
; r2, w2, µ2) + (✏�1@+

t
F (un

h
, un�1

h
), w2)Th(4.9a)516

� (@+
t
�n
h
, w2)Th = 0.517518

Taking (r1, w1, µ1) = ✏(�@+
t
qn

h
, @+

t
un

h
, @+

t
bun

h
) in (2.2a), (r2, w2, µ2) = (pn

h
,��n

h
,�b�n

h
)519

in (4.9a), one obtains520

✏(@+
t
un

h
, @+

t
un

h
)Th � ✏A(pn

h
,�n

h
, b�n

h
; @+

t
qn

h
,�@+

t
un

h
,�@+

t
bun

h
) = 0,521

✏A(@+
t
qn

h
, @+

t
un

h
, @+

t
bun

h
;pn

h
,��n

h
,�b�n

h
)522

+
⇣
✏�1@+

t
F (un

h
, un�1

h
),��n

h

⌘

Th

� (@+
t
�n
h
,��n

h
)Th = 0.523

Taking summation of the two equations, one obtains524

(@+
t
�n
h
,�n

h
)Th + ✏k@+

t
un

h
k2Th

= ✏�1
�
@+
t
F (un

h
, un�1

h
),�n

h

�
Th
,(4.10)525

526

and hence527

k�m
h
k2Th

+
mX

n=1

k�n
h
� �n�1

h
k2Th

+ 2�t✏
mX

n=1

k@+
t
un

h
k2Th

= 2✏�1�t
mX

n=1

�
@+
t
F (un

h
, un�1

h
),�n

h

�
Th

+ k�0
h
k2Th

.

(4.11)528

529

By Hölder’s inequality and the HDG Sobolev inequality in Lemma 3.1 one derives530

�t

✏

mX

n=1

⇣
@+
t
F (un

h
, un�1

h
),�n

h

⌘

Th

531

 C�t

✏

mX

n=1

k@+
t
un

h
kThk�nhkL6(⌦)

⇣
kun

h
k2
L6(⌦) + kun�1

h
k2
L6(⌦) + 1

⌘
532

 C�t

✏

mX

n=1

k@+
t
un

h
kThk�nhkL6(⌦)

�
kun

h
k2Th

+ kun�1
h

k2Th
+ kqn

h
k2Th

+ kqn�1
h

k2Th
533

+kh�1/2
K

(⇧@

k
un

h
� bun

h
)k2

@Th
+ kh�1/2

T (⇧@

k
un�1
h

� bun�1
h

)k@Th + 1
⌘

534

 C�t

✏2

mX

n=1

k@+
t
un

h
kThk�nhkL6(⌦)535

 ✏�t

2

mX

n=1

k@+
t
un

h
k2Th

+
C�t

✏5

mX

n=1

k�n
h
k2
L6(⌦).536

537

Hence (4.11) implies that538

k�m
h
k2Th

+
mX

n=1

k�n
h
� �n�1

h
k2Th

+ ✏�t
mX

n=1

k@+
t
un

h
k2Th

 C�t

✏5

mX

n=1

k�n
h
k2
L6(⌦) + k�0

h
k2Th

.539

540
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An application of the HDG Sobolev embedding inequality Lemma 3.1 then gives541

k�m
h
k2Th

+
mX

n=1

k�n
h
� �n�1

h
k2Th

+ ✏�t
mX

n=1

k@+
t
un

h
k2Th

542

 C�t

✏5

mX

n=1

(kpn

h
k2Th

+ kh�1/2
T (⇧@

k
�n
h
� b�n

h
)k2

@Th
+ k�n

h
k2Th

) + k�0
h
k2Th

543

 C

✏7
,544

545

where one uses the estimate (4.8) and the bounds in Lemma 4.1 in the derivation of546

the last step. This finishes the proof.547

Lemma 4.3. Let un

h
be the solution of (2.2). For all n = 1, 2 . . . , N , we have548

k�hu
n

h
kTh  C✏�

7
2 ,(4.12)549550

where C depends on ✏, T and the initial condition.551

Proof. We take (r2, w2, µ2) = (0,�hun

h
, 0) in (2.2b) to get552

⇣
✏�1F (un

h
, un�1

h
),�hu

n

h

⌘

Th

� ✏k�hu
n

h
k2Th

� (�n
h
,�hu

n

h
)Th = 0.553

554

By the Cauchy-Schwarz inequality, one gets555

✏k�hu
n

h
k2Th

=
⇣
✏�1F (un

h
, un�1

h
),�hu

n

h

⌘

Th

� (�n
h
,�hu

n

h
)Th556

 ✏�1(kun

h
k3
L6(⌦) + kun

h
kTh)k�hu

n

h
kTh + k�n

h
kThk�hu

n

h
kTh .557

558

Next using the HDG Sobolev inequality (3.2a) and Lemma 4.1 one obtains559

kun

h
kL6(⌦)  C

⇣
kun

h
kTh + krun

h
kTh + kh�1/2

T (⇧@

k
un

h
� bun

h
)k@Th

⌘
560

 C
⇣
kun

h
kL4(⌦) + krun

h
kTh + kh�1/2

T (⇧@

k
un

h
� bun

h
)k@Th

⌘
561

 C✏�
1
2 .562563

Then the desired result follows from Lemma 4.2 and Young’s inequality.564

Using Lemma 3.8 and Lemma 4.3 one deduces the uniform estimate of un

h
.565

Lemma 4.4. Let un

h
be the solution of (2.2), then for all n = 1, 2, . . . , N , we have566

kun

h
kL1(⌦)  C✏�

7
2 .567568

5. Error analysis. In this section, we establish the optimal convergence result569

for the HDG scheme for solving the Cahn-Hilliard equation. We prove the main570

convergence result by performing error estimates first in the negative norm, then in571

the L2 norm for the scalar variables and flux variables, respectively. Throughout, we572

assume the data and the solution of (1.1) are smooth enough. For convenience, we573

shall also adopt the notation ||a, b||Lp := ||a||Lp + ||b||Lp .574
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5.1. The main result.575

Theorem 5.1. Assume the same conditions as in Proposition 1 in [35] so that the576

spectral estimate of the Cahn-Hilliard operator holds. Let (p,�, q, u) and (pn

h
,�n

h
, qn

h
,577

un

h
) be the solutions of (2.1) and (2.2), respectively. Furthermore, assume the solution578

(p,�, q, u) attains the maximum regularity for the best approximation results in (3.1).579

Then provided580

h  Cmin

⇢
✏

17
4 , ✏

7
4�d ,

⇣ ✏

C(T, u,�)

⌘ 37
2(k+2)

�
,581

�t  C✏60,582583

the following optimal error estimates hold for polynomials of degree k � 0584

max
1nN

kun � un

h
k2
L2(⌦) +�t

NX

n=1

k�n � �n
h
k2
L2(⌦) 

1

✏26
C(T, ✏, u,�)(hk+2 +�t)2,585

max
1nN

kqn � qn

h
k2
L2(⌦) +�t

NX

n=1

kpn � pn

h
k2
L2(⌦) 

1

✏24
C(T, ✏, u,�)(hk+1 +�t)2,586

587

where C(T, u,�) := CeCT (||u, @tu||2L2(Hk+2) + ||�||2
L2(Hk+2) + ||@ttu||2L2(L2) + 1).588

5.2. Proof of Theorem 5.1. To simplify notation, we define589

ep
n

h
:= pn

Ih
� pn

h
, e�

n

h
:= �n

Ih
� �n

h
, e

b�n

h
:= b�n

Ih
� b�n

h
,(5.1a)590

eq
n

h
:= qn

Ih
� qn

h
, eu

n

h
:= un

Ih
� un

h
, ebu

n

h
:= bun

Ih
� bun

h
.(5.1b)591592

By the definition of A in (2.2d) and the HDG elliptic projection (3.16), for all593

(r1, w1, µ1), (r2, w2, µ2) in Vh ⇥Wh ⇥Mh one obtains the error equations594

(@+
t
eu

n

h
, w1)Th +A(ep

n

h
, e�

n

h
, e

b�n

h
; r1, w1, µ1) = (@+

t
un

Ih
� @tu

n, w1)Th ,(5.2a)595

✏A(eq
n

h
, eu

n

h
, ebu

n

h
; r2, w2, µ2)Th � (e�

n

h
, w2)Th = (�n � �n

Ih
, w2)Th(5.2b)596

+ ✏�1
⇣
F (un

h
, un�1

h
)� f(un), w2

⌘

Th

.597
598

We divide the error analysis into three lemmas. We first obtain a non-optimal599

error estimate in the negative norm.600

Lemma 5.2 (Error estimates in the negative norm). Under the same conditions601

as the discrete spectral estimate in Lemma 3.9, provided602

h  Cmin

⇢
✏

17
4 , ✏

7
4�d ,

⇣ ✏

C(T, u,�)

⌘ 37
2(k+2)

�
,603

�t  C✏60,604605

then606

max
1nN

keu
n

h
k2�1,h +

4✏4�t

1� ✏3

NX

n=1

⇣
keq

n

h
k2Th

+ kh�1/2
T (⇧@

k
eu

n

h
� ebu

n

h
)k2

@Th

⌘
(5.3)607

 C(T, u,�)✏�7
�
(�t)2 + h2(k+2)

�
,608

where C(T, u,�) := CeCT (||u, @tu||2L2(Hk+2) + ||�||2
L2(Hk+2) + ||@ttu||2L2(L2) + 1).609
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Proof. Taking (r1, w1, µ1) = (�⇧V eu
n

h
,⇧W eu

n

h
,⇧Meu

n

h
) in (5.2a), (r2, w2, µ2) =610

(eq
n

h
, eu

n

h
, ebu

n

h
) in (5.2b), adding the resulting equations, one obtains611

(@+
t
eu

n

h
,⇧W eu

n

h
)Th + ✏keq

n

h
k2Th

+ ✏kh�1/2
T (⇧@

k
eu

n

h
� ebu

n

h
)k2

@Th
612

+ ✏�1
⇣
f(un)� F (un

h
, un�1

h
), eu

n

h

⌘

Th

613

= (�n � �n
Ih
, eu

n

h
)Th + (@+

t
un

Ih
� @tu

n,⇧W eu
n

h
)Th .614615

Utilizing Definition 3.4 and (2.2d), one has616

(@+
t
eu

n

h
,⇧W eu

n

h
)Th = A(⇧V @

+
t
eu

n

h
,⇧W@+

t
eu

n

h
,⇧M@

+
t
eu

n

h
;0,⇧W eu

n

h
,⇧Meu

n

h
)617

= (r ·⇧V @
+
t
eu

n

h
,⇧W eu

n

h
)Th � hn ·⇧V @

+
t
eu

n

h
,⇧Meu

n

h
i@Th618

+ hh�1
K

(⇧@

k
⇧W eu

n

h
�⇧Meu

n

h
), @+

t
(⇧@

k
⇧W eu

n

h
�⇧Meu

n

h
)i@Th .619620

On the other hand, A(⇧V eu
n

h
,⇧W eu

n

h
,⇧Meu

n

h
; rh, wh, µh) = (eu

n

h
, wh)Th . With rh =621

⇧V @
+
t
eu

n

h
, wh = µh = 0 it follows622

(⇧W eu
n

h
,r ·⇧V @

+
t
eu

n

h
)Th � h⇧Meu

n

h
,n ·⇧V @

+
t
eu

n

h
i@Th = (⇧V eu

n

h
, @+

t
⇧V eu

n

h
)Th .623624

Hence (@+
t
eu

n

h
,⇧W eu

n

h
)Th = 1

2@
+
t
keun

h
k2�1,h + �t

2 k@+
t
eu

n

h
k2�1,h. Therefore one obtains625

the following error equation626

1

2
@+
t
keu

n

h
k2�1,h +

�t

2
k@+

t
eu

n

h
k2�1,h + ✏

⇣
keq

n

h
k2Th

+ kh�1/2
T (⇧@

k
eu

n

h
� ebu

n

h
)k2

@Th

⌘
(5.4)627

+✏�1
⇣
f(un)� F (un

h
, un�1

h
), eu

n

h

⌘

Th

= (�n � �n
Ih
, eu

n

h
)Th + (@+

t
un

Ih
� @tu

n,⇧W eu
n

h
)Th .628

629

The right-hand side of (5.4) is estimated as follows630

|(�n � �n
Ih
, eu

n

h
)Th + (@+

t
un

Ih
� @tu

n,⇧W eu
n

h
)Th |(5.5)631

 C⇢n1 +
✏4

1� ✏3
(keq

n

h
k2Th

+ kh�1/2
T (⇧@

k
eu

n

h
� ebu

n

h
)k2

@Th
) + keu

n

h
k2�1,h,632

633

with ⇢n1 := 1
✏4
k�n � �n

Ih
k2Th

+ k@+
t
un

Ih
� @tunk2Th

. Since F (un

h
, un�1

h
) = (un

h
)3 � un�1

h
,634

the nonlinear term can be written as635

f(un)� F (un

h
, un�1

h
)636

= f(un)� f(un

Ih
) + f 0(un

Ih
)eu

n

h
+ 3(un

Ih
)2(eu

n

h
)2 + (eu

n

h
)3 ��t@+

t
un

h
.637638

By the Cauchy-Schwartz inequality, the HDG Sobolev imbedding, the inequality (3.6)639

and the uniform estimate (3.23) , one obtains640

✏�1
⇣
f(un)� F (un

h
, un�1

h
), eu

n

h

⌘

Th

� ✏�1
�
f 0(un

Ih
)eu

n

h
, eu

n

h

�
Th

+
1

✏
keu

n

h
k4
L4(5.6)641

� C⇢n2 � ✏4

1� ✏3
(keq

n

h
k2Th

+ kh�1/2
T (⇧@

k
eu

n

h
� ebu

n

h
)k2

@Th
)� C

✏
keu

n

h
k3
L3 ,642

643

where ⇢n2 := 1
✏6

⇥
kf(un)� F (un

Ih
, un�1

Ih
)k2Th

+�t2k@+
t
un

h
k2Th

⇤
, and the uniform bound644

in (3.23) has been utilized.645
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In light of (5.5) and (5.6), the error equation (5.4) can be written as646

1

2
@+
t
keu

n

h
k2�1,h +

�t

2
k@+

t
eu

n

h
k2�1,h +

1

✏
keu

n

h
k4
L4(5.7)647

+
1� 7✏3

1� ✏3

⇣
✏keq

n

h
k2Th

+ ✏kh�1/2
T (⇧@

k
eu

n

h
� ebu

n

h
)k2

@Th
+

1� ✏3

✏

�
f 0(un

Ih
)eu

n

h
, eu

n

h

�
Th

⌘
648

+
4✏4

1� ✏3

⇣
keq

n

h
k2Th

+ kh�1/2
T (⇧@

k
eu

n

h
� ebu

n

h
)k2

@Th

⌘
649

 keu
n

h
k2�1,h +

C

✏8
keu

n

h
k3
L3 + C(⇢n1 + ⇢n2 ) + C✏2

�
f 0(un

Ih
)eu

n

h
, eu

n

h

�
Th

650

By the uniform estimate (3.23) and the inequality (3.11), there holds651

C✏2|
�
f 0(un

Ih
)eu

n

h
, eu

n

h

�
Th
|  C✏2keu

n

h
k2Th

(5.8)652

 Ckeu
n

h
k2�1,h +

✏4

1� ✏3

⇣
keq

n

h
k2Th

+ kh�1/2
T (⇧@

k
eu

n

h
� ebu

n

h
)k2

@Th

⌘
.653

Furthermore, the interpolation inequality and the HDG Sobolev imbedding implies654

C

✏
keu

n

h
k3
L3  C

✏
keu

n

h
k

3
2

L2keu
n

h
k

3
2

L6(5.9)655

+
C

✏12
keu

n

h
k6
L2 +

✏4

1� ✏3

⇣
keq

n

h
k2Th

+ kh�1/2
T (⇧@

k
eu

n

h
� ebu

n

h
)k2

@Th

⌘
.656

By the definition (3.30) and the error equation (5.2b), one has Kh(eu
n

h
, ebu

n

h
) = eq

n

h
.657

The spectral estimate (3.31) with � = ✏3 then implies658

✏keq
n

h
k2Th

+ ✏kh�1/2
T (⇧@

k
eu

n

h
� ebu

n

h
)k2

@Th
+

1� ✏3

✏

�
f 0(un

Ih
)eu

n

h
, eu

n

h

�
Th

(5.10)659

� �2C0||r(��)�1eu
n

h
||2
L2 � keu

n

h
k2�1,h.660

Defining (��)�1eu
n

h
= fn, it follows from the definition (3.8)661

A(⇧V eu
n

h
,⇧W eu

n

h
,⇧Meu

n

h
; rh, wh, µh) = (eu

n

h
, wh)Th = �(�fn, wh)Th .662663

Hence the error estimate of the HDG elliptic projection in Lemma 3.7 and the inter-664

polation inequality (3.11) implies that665

2C0||r(��)�1eu
n

h
||2
L2  C(||r[(��)�1eu

n

h
�⇧W eu

n

h
]||2Th

+ kr⇧W eu
n

h
k2Th

)666

 Ch2||fn||2
H2 + Ckeu

n

h
k2�1,h667

 Ch2||eu
n

h
||2
L2 + Ckeu

n

h
k2�1,h668

 ✏4

1� ✏3

⇣
keq

n

h
k2Th

+ kh�1/2
T (⇧@

k
eu

n

h
� ebu

n

h
)k2

@Th

⌘
+

Ch4

✏4
keu

n

h
k2�1,h + Ckeu

n

h
k2�1,h669

 ✏4

1� ✏3

⇣
keq

n

h
k2Th

+ kh�1/2
T (⇧@

k
eu

n

h
� ebu

n

h
)k2
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provided h  ✏. The estimate (5.10) now becomes672
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675

Taking into account of (5.8), (5.9), and (5.11), the error inequality (5.7) is now676
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By the L2 stability estimate of the numerical solution (4.6) and the L2 error680

estimate of the HDG elliptic projection in Lemma 3.7, provided h  ✏
7
4 , one obtains681
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whence (5.12) becomes686
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Multiplying (5.13) by 2�t and taking summation over n from 1 to m, one derives690

keu
m

h
k2�1,h +

2✏4�t

1� ✏3

mX

n=1

⇣
keq

n

h
k2Th

+ kh�1/2
T (⇧@

k
eu

n

h
� ebu

n

h
)k2

@Th

⌘
(5.14)691

 keu
0

h
k2�1,h + C�t

mX

n=1

(keu
n

h
k2�1,h + ✏�60keu

n

h
k6�1,h) + C�t

mX

n=1

(⇢n1 + ⇢n2 ).692

In view of the imbedding (3.13) and the fact keun
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It follows697
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One has applied the stability estimate (4.7), the uniform estimate (3.23), the imbed-702

ding (3.13), and the error estimates of the HDG elliptic projection in Lemma 3.7.703

Define dm � 0 and Sm such that704

Sm := keu
m

h
k2�1,h +
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= right-hand side of (5.15).706

Then707

Sm+1 � Sm  C�tSm + C�t✏�60S3
m
, m � 1.708

An application of the nonlinear Gronwall’s inequality in Lemma 2.3 of [33] gives709

Sm  (1 + C�t)m�1S1{1� CS2
1 [(1 + C�t)2m � (1 + C�t)2]✏�60(2 + C�t)�1}� 1

2710

 CeCTS1  C(T, ✏, u)✏�7[h2(k+2) + (�t)2]711

with C(T, u,�) := CeCT (||u, @tu||2L2(Hk+2)+ ||�||2
L2(Hk+2)+ ||@ttu||2L2(L2)+1), provided712

that713

1� CS2
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2
,714

715

which is fulfilled if716

h2(k+2) + (�t)2  1

C(T, u,�)
✏37.717

718

Recalling the constraint on h from (3.31) with � = ✏3, one concludes that provided719

h  Cmin

⇢
✏

17
4 , ✏

7
4�d ,

⇣ ✏

C(T, u,�)

⌘ 37
2(k+2)

�
,720

�t  C✏60,721722

the estimate (5.3) holds. This completes the proof.723

Next, we perform the error estimates of the scalar variables in the L2 norm.724

Lemma 5.3. Under the same conditions as Lemma 5.2, the following error esti-725

mate holds726
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Next, we multiply (5.16) by ✏ and add the result to (5.17) to get734
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By Lemma 4.4, there holds738
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Applying Cauchy-Schwarz inequality and taking summation of (5.18) from n = 1 to741

n = m one arrives at742
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Now by Lemma 3.7 we have747
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Next by the HDG Sobolev imbedding (3.2b), the inequality (3.6), and the error esti-750

mate in the negative norm (5.3) one obtains751
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Therefore the approximation properties of the elliptic projection in Lemma 3.7 gives755
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This establishes the optimal error estimates of u and � in the L2 norm.758

Finally one performs the error analysis of the flux variables. One has759
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Lemma 5.4. Under the same conditions as Lemma 5.2 the flux variables satisfy760

the following error bounds761

max
1nN

keq
n

h
k2Th

+�t
NX

n=1

kep
n

h
k2Th

+  C(T, u,�)✏�24((�t)2 + h2(k+1)).(5.21)762

763

Proof. Taking (r1, w1, µ1) = (ep
n

h
, e�

n

h
, e

b�n

h
) in (5.2a) gives764

(@+
t
eu

n

h
, e�

n

h
)Th + kep

n

h
k2Th

+ kh�1/2
T (⇧@

k
e�

n

h
� e

b�n

h
)k2

@Th
(5.22)765

= (@+
t
un

Ih
� @tu

n, e�
n

h
)Th .766

Applying @+
t
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The three terms Ij , j = 1 . . . 3 are estimated as follows. For I1, by the Cauchy-777

Schwartz inequality, the HDG Sobolev inequality Lemma 3.1, and (3.6), one obtains778
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where one has utilizes the continuity of the operator A in (3.5), the inverse inequality,790
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the L2 stability of the projections ⇧@
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Taking into account of the above estimates of I1, I2, I3, multiplying (5.24) by �t,799

then taking summation from n = 1 to n = m, one derives800
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We have applied the inverse inequality, the approximation results of the HDG elliptic805

projection Lemma 3.7, the uniform estimate (5.19), and the error estimate (5.3). This806

completes the proof.807

Theorem 5.1 follows from Lemmas 5.3 to 5.4, the triangle inequality and the error808

estimates of the HDG elliptic projection (3.7). This finishes the proof of the main809

convergence result.810

6. Numerical Experiments. We consider two examples on square domains in811

R2. The meshes are regular triangulation by right triangles. We remark that more812

robust tests need to be randomized meshes or polygonal meshes. cf. [9]. These will be813

considered in future development of the computer codes. In the first example we use814

manufactured solution of the system (1.1) with explicit forcing terms; in the second815

example we perform simulation of spinodal decomposition and coarsening of a random816

field. Since the scheme is nonlinear, we solve the system iteratively by linearizing the817

nonlinear term using Newton’s method.818

Example 6.1. We take the domain to be the unit square, and the problem data819

u0 is chosen so that the exact solution of the system (1.1) is given by820

" = 1, u = � = e�tx2y2(1� x)2(1� y)2.821822

We report the errors at the final time T = 1 for polynomial degrees k = 0 and k = 1823

in Tables 1 and 2 for the energy-splitting scheme. The observed convergence rates824

match the theory, where �t = hk+1.825
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h/
p
2 1/4 1/8 1/16 1/32 1/64

kq � qhkTh 8.6761E-04 4.8768E-04 2.5059E-04 1.2614E-04 6.3177E-05
order - 0.83111 0.96063 0.99025 0.99757

kp� phkTh 8.9460E-04 4.9143E-04 2.5107E-04 1.2620E-04 6.3185E-05
order - 0.86427 0.96891 0.99232 0.99809

ku� uhkTh 2.5759E-04 6.7122E-05 1.6952E-05 4.2490E-06 1.0629E-06
order - 1.9402 1.9853 1.9963 1.9991

k�� �hkTh 2.6295E-04 6.7806E-05 1.7076E-05 4.2768E-06 1.0697E-06
order - 1.9553 1.9894 1.9974 1.9993

Table 1
Example 6.1, k = 0 with energy-splitting scheme: Errors, observed convergence orders for u, �

and their fluxes q and p.

h/
p
2 1/4 1/8 1/16 1/32 1/64

kq � qhkTh 1.5809E-04 4.3945E-05 1.1415E-05 2.8955E-06 7.2935E-07
order - 1.8470 1.9448 1.9790 1.9891

kp� phkTh 1.5896E-04 4.3991E-05 1.1418E-05 2.8957E-06 7.2940E-07
order - 1.8534 1.9459 1.9793 1.9891

ku� uhkTh 4.9741E-05 6.3026E-06 7.9008E-07 9.8850E-08 1.2358E-08
order - 2.9804 2.9959 2.9987 2.9998

k�� �hkTh 4.9111E-05 6.1809E-06 7.7336E-07 9.6709E-08 1.2090E-08
order - 2.9902 2.9986 2.9994 2.9998

Table 2
Example 6.1, k = 1 with energy-splitting scheme: Errors, observed convergence orders for u, �

and their fluxes q and p.

Example 6.2. In this test, the exact solution is unknown, we take the domain826

⌦ = (0, 1)⇥ (0, 1), " = 0.03, the initial condition is a random field of values that are827

uniformly distributed between �0.05 and 0.05. We report the solution at the time828

T = 0.001, T = 0.1 and T = 0.5 for polynomial degrees k = 1 in Figure 1 with829

�t = 2.5⇥ 10�4 and h = 1/100. The plots demonstrate the dynamics of rapid initial830

spinodal decomposition and later stage of slow coarsening.

Fig. 1. Filled contour plots of the time evolution of u. Left is T = 0.001, middle is T = 0.1
and right is T = 0.5.
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[45] Igor Mozolevski and Endre Süli. A priori error analysis for the hp-version of the discontinuous949
Galerkin finite element method for the biharmonic equation. Comput. Methods Appl.950
Math., 3(4):596–607, 2003.951
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