ON THE SUPERCONVERGENCE OF A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE CAHN-HILLIARD EQUATION*

GANG CHEN[†], DAOZHI HAN [‡], JOHN R. SINGLER [§], AND YANGWEN ZHANG [¶]

Abstract. We propose a hybridizable discontinuous Galerkin (HDG) method effected with the convex-concave splitting temporal discretization for solving the Cahn-Hilliard equation. We establish optimal convergence rates for the scalar variables and the flux variables in the L^2 norm for polynomials of degree $k \geq 0$. The error constants depend on inverse of the interface thickness in polynomial orders, which is obtained by utilizing a spectral-type estimate of the discrete Cahn-Hilliard operator in the HDG framework. In terms of degrees of freedom of the globally coupled unknowns, the scalar variables are superconvergent. Numerical results are reported to corroborate the theoretical convergence rates and the effectiveness of the method.

Key words. Cahn-Hilliard; HDG method; superconvergence; finite element.

1. Introduction. Let $\Omega \subset \mathbb{R}^d$ (d=2,3) be a convex polygonal domain with Lipshitz boundary $\partial\Omega$ and T be a positive constant. We consider the following Cahn-16 Hilliard equation:

17 (1.1a)
$$u_t - \Delta \phi = 0, \quad -\epsilon \Delta u + \epsilon^{-1} f(u) = \phi \text{ in } \Omega \times (0, T],$$

$$\forall u \cdot \boldsymbol{n} = \nabla \phi \cdot \boldsymbol{n} = 0 \text{ on } \partial \Omega \times (0, T], \quad u(\cdot, 0) = u^0(\cdot) \text{ in } \Omega,$$

where $f(u) = u^3 - u$. Owing to its importance in material science and multiphase flow, many works have been devoted to the design and analysis of numerical schemes for solving the Cahn-Hilliard equation, see, e.g., finite difference methods [36], mixed and nonconforming finite element methods [30, 29, 31, 5, 35, 27] and Fourier-spectral methods [54, 42, 53].

In recent years, the discontinuous Galerkin (DG) method has become popular for solving the Cahn-Hilliard equation. Applications of DG methods to fourth order elliptic problems have been considered by Babuška and Zlámal in [3], by Baker in [4], and more recently by Mozolevski et al. in a series of works [45, 44, 46, 56]. In [32], Feng and Karakashian design and analyze a DG method of interior penalty type based on the fourth order formulation of the Cahn-Hilliard equation. Optimal error estimates in the L^2 and broken H^1 norms are established for polynomials of degrees $k \geq 3$; see [32, 34] for details. Kay et al. propose and analyze a different DG method [40] that treats the Cahn-Hilliard equation as a system of second order equations allowing a relatively smaller penalty term with optimal convergence in the H^1 norm for polynomials of degree $k \geq 1$. A fully adaptive version of the interior penalty

^{*}Submitted to the editors DATE.

Funding: G. Chen is supported by National Natural Science Foundation of China (NSFC) grant no. 11801063, China Postdoctoral Science Foundation project no. 2018M633339 and 2019T120828. D. Han acknowledges support from National Science Foundation grants DMS-1912715 and DMS-2208231. J. Singler was supported in part by National Science Foundation grant DMS-2111421. Y. Zhang is partially supported by the National Science Foundation DMS-1818867 and DMS-2111315.

[†]School of Mathematics, Sichuan University, Chengdu, China (cglwdm@scu.edu.cn).

 $^{^{\}ddagger}$ Department of Mathematics, The State University of New York at Buffalo, Buffalo, NY (daozhiha@buffalo.edu)

[§] Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO (singlerj@mst.edu)

[¶]Department of Mathematical Science, Carnegie Mellon University, Pittsburgh, PA (yangwenz@andrew.cmu.edu).

37

38

39

40

41

42

43

44

45

46 47

48

49

50

52

53

54

56

58

60

61

63 64

65

66

67

68

69

70

71

72

74

75

76

77

78 79

80 81

82

83

84 85 DG method was recently constructed in [2] for the Cahn-Hilliard equation with a source and optimal L^2 error bounds were derived. The local discontinuous Galerkin (LDG) method has also been proposed for the discretization of the Cahn-Hilliard equation by writing it as a system of four first-order equations. Dong and Shu in [28] analyzed a LDG scheme for fourth-order equations including the linearized Cahn-Hilliard equation and obtained optimal error estimates in the L^2 norm for polynomials of all degrees.

The classical DG method however entails larger amount of degrees of freedom compared to the continuous Galerkin (CG) methods. In the seminal work [18] Cockburn et al. propose a hybridizable discontinuous Galerkin (HDG) method for second order elliptic problems. The HDG method can be viewed as a hybridizable version of the LDG method. In a nutshell, the HDG method locally connects the flux and solution variables with the numerical traces of the solution via a local solver, which are in turn coupled by the continuity of fluxes across inter-element boundaries (a transmission condition). Hence the globally coupled degrees of freedom are those numerical traces, resulting in a significant reduction of the number of unknowns than traditional DG methods. Moreover, the HDG methods possess the same favorable properties as classical mixed methods. In particular, HDG methods provide optimal convergence rates for both the gradient and the primal variables of the mixed formulation. This property enables the construction of superconvergent solutions via postprocessing, contrary to other DG methods. These advantages of the HDG methods have made HDG an attractive alternative for solving problems governed by PDEs and PDE control problems, cf. [23, 19, 24, 22, 7, 51, 50, 21, 52, 55, 11, 38, 37].

Most studies currently focus on establishing optimal and superconvergent rates of HDG methods for second order problems, such as elliptic PDEs [20], convection diffusion equations [14, 15, 48], Stokes equations [24, 19], Oseen equations [7] and Navier-Stokes equations [49, 8]. In [17], the authors utilized an HDG method with polynomial of degree k for all variables for solving the biharmonic equation and obtained an optimal convergence rates for solution variables and suboptimal convergence rates for other variables.

In this work, we propose a HDG method for the Cahn-Hilliard equation with Lehrenfeld-Schöberl type stabilization using polynomials of order k+1 for the scalar unknowns, and polynomials of order k for the other unknowns. The time-marching is based on first-order backward Euler method with convex-splitting discretization for the nonlinear term. We establish optimal convergence rates in the L^2 norm for all variables and for polynomials of order $k \geq 0$. Since the globally coupled degrees of freedom (numerical traces) are approximated by polynomials of order k, superconvergence (k+2) is achieved for approximation of the scalar variables. A particular difficulty in error analysis of numerical schemes for solving phase field models is to avoid exponential dependence of the error constants on $1/\epsilon$. On the other hand, it is well-known that the principal eigenvalue of the linearized Cahn-Hilliard operator has a lower bound, cf. [1, 13]. Based on this spectral result an optimal error estimate with the error constants polynomially depending on $1/\epsilon$ is established in [35] for a conforming finite element method. A spectral-type estimate in the DG space is obtained in [34], which is non-trivial since the DG space is not a subspace of H^1 . Adapting the perturbative argument in [34] we establish a similar spectral type estimate of the discrete Cahn-Hilliard operator within the framework of the HDG method. This enables us to obtain error constants depending on $1/\epsilon$ in polynomial orders, provided that the spatio-temporal resolution is sufficiently small.

Closely related to our scheme is the hybrid high-order method (HHO) proposed in

[9] which also uses mixed degree approximation and the Lehrenfeld-Schoberl stabilization. It is further pointed out in [16] that HDG methods for elliptic equation mostly resemble standard HHO methods. More recently it is shown that our HDG scheme for the Cahn-Hilliard equation is indeed a HHO method following the full gradient approach, cf. Sec. 4.2 of the book [26]. However, only error estimates in the energy norm was obtained for the HHO method in [9], although L^2 error estimate is alluded in a remark therein. Furthermore, the error constants in [9] exponentially depend on $\frac{1}{\epsilon}$. The HDG framework with reduced stabilization and polynomials of mixed orders was first introduced by Lehrenfeld in [41] where it was alluded that the scheme could be a superconvergent method, i.e., $O(h^{k+2})$ for the solution variables even though polynomials of order k are used for the globally coupled unknowns (numerical traces of the solution). Optimal convergence and hence superconvergence was then rigorously established for convection diffusion problems [48], for the Navier-Stokes equations [49], and more recently for linear elasticity problems [47].

The rest of the article is organized as follows. We provide the HDG formulation for the Cahn-Hilliard equation in Section 2. We then give some preliminary tools essential for the numerical analysis in Section 3. Afterwards we perform stability estimate of the nonlinear HDG methods in Section 4. In Section 5, we establish the optimal convergence rates of the HDG methods. The theoretical convergence rates are further validated by numerical experiments in Section 6.

2. The HDG formulation. To introduce the fully discrete HDG formulation for the Cahn-Hilliard equation, we first fix some notation. Let \mathcal{T}_h be a shape-regular, quasi-uniform triangulation of Ω . Other regular polygonal meshes are applicable too. Let \mathcal{E}_h denote the set of all faces E of all simplexes K of the triangulation \mathcal{T}_h . Also let \mathcal{E}_h^o and \mathcal{E}_h^∂ denote the set of interior faces and boundary faces, respectively. Furthermore, we introduce the discrete inner products

112
$$(w,v)_{\mathcal{T}_h} := \sum_{K \in \mathcal{T}_h} (w,v)_K = \sum_{K \in \mathcal{T}_h} \int_K wv, \quad \langle \zeta, \rho \rangle_{\partial \mathcal{T}_h} := \sum_{K \in \mathcal{T}_h} \langle \zeta, \rho \rangle_{\partial K} = \sum_{K \in \mathcal{T}_h} \int_{\partial K} \zeta \rho.$$

For any integer $k \geq 0$, let $\mathcal{P}^k(K)$ denote the set of polynomials of degree at most k on the element K. We introduce the following discontinuous finite element spaces:

116
$$V_{h} := \{ v_{h} \in [L^{2}(\Omega)]^{d} : v_{h}|_{K} \in [\mathcal{P}^{k}(K)]^{d}, \forall K \in \mathcal{T}_{h} \},$$
117
$$W_{h} := \{ w_{h} \in L^{2}(\Omega) : w_{h}|_{K} \in \mathcal{P}^{k+1}(K), \forall K \in \mathcal{T}_{h} \},$$
118
$$\mathring{W}_{h} := \{ w_{h} \in L_{0}^{2}(\Omega) : w_{h}|_{K} \in \mathcal{P}^{k+1}(K), \forall K \in \mathcal{T}_{h} \},$$
120
$$M_{h} := \{ \mu_{h} \in L^{2}(\mathcal{E}_{h}) : \mu_{h}|_{E} \in \mathcal{P}^{k}(E), \forall E \in \mathcal{E}_{h} \},$$

where $L_0^2(\Omega)$ is the subspace of $L^2(\Omega)$ of mean zero functions.

Since the HDG methods are based on a mixed formulation, we rewrite the PDE as a first order system by setting $\mathbf{p} + \nabla \phi = 0$ and $\mathbf{q} + \nabla u = 0$ in (1.1). The mixed formulation of (1.1) is

125 (2.1)
$$\mathbf{p} + \nabla \phi = \mathbf{0}, \ u_t + \nabla \cdot \mathbf{p} = 0, \ \mathbf{q} + \nabla u = 0, \ \epsilon \nabla \cdot \mathbf{q} + \epsilon^{-1} f(u) = \phi.$$

Now we introduce the fully discrete HDG formulation based on the first-order convex-splitting approach. A similar scheme can be constructed utilizing the backward Euler method. For a fixed integer N, let $0 = t_0 < t_1 < \cdots < t_N = T$ be a uniform partition of [0, T] with $\Delta t = T/N$. The HDG method seeks $(\mathbf{p}_h^n, \phi_h^n, \widehat{\phi}_h^n), (\mathbf{q}_h^n, u_h^n, \widehat{u}_h^n) \in$

 $V_h \times W_h \times M_h$ such that 130

131 (2.2a)
$$(\partial_t^+ u_h^n, w_1)_{\mathcal{T}_h} + \mathcal{A}(\mathbf{p}_h^n, \phi_h^n, \widehat{\phi}_h^n; \mathbf{r}_1, w_1, \mu_1) = 0,$$

132 (2.2b)
$$(\epsilon^{-1}F(u_h^n, u_h^{n-1}), w_2)_{\mathcal{T}_h} + \epsilon \mathcal{A}(\boldsymbol{q}_h^n, u_h^n, \widehat{u}_h^n; \boldsymbol{r}_2, w_2, \mu_2) - (\phi_h^n, w_2)_{\mathcal{T}_h} = 0,$$

$$(u_h^0, w_3)_{\mathcal{T}_h} - (u^0, w_3)_{\mathcal{T}_h} = 0$$

- for all $(\boldsymbol{r}_1, w_1, \mu_1), (\boldsymbol{r}_2, w_2, \mu_2) \in \boldsymbol{V}_h \times W_h \times M_h$ and $w_3 \in W_h, \mathcal{A} : [\boldsymbol{V}_h \times W_h \times M_h]^2 \to \mathbb{R}$ 135
- is defined by 136

137 (2.2d)
$$\mathcal{A}(\boldsymbol{q}_h, u_h, \widehat{u}_h; \boldsymbol{r}_h, w_h, \mu_h) = (\boldsymbol{q}_h, \boldsymbol{r}_h)_{\mathcal{T}_h} - (u_h, \nabla \cdot \boldsymbol{r}_h)_{\mathcal{T}_h} + \langle \widehat{u}_h, \boldsymbol{r}_h \cdot \boldsymbol{n} \rangle_{\partial \mathcal{T}_h}$$

$$+ (\nabla \cdot \boldsymbol{q}_h, w_h)_{\mathcal{T}_h} - \langle \boldsymbol{q}_h \cdot \boldsymbol{n}, \mu_h \rangle_{\partial \mathcal{T}_h} + \langle h_K^{-1}(\Pi_k^{\partial} u_h - \widehat{u}_h), \Pi_k^{\partial} w_h - \mu_h \rangle_{\partial \mathcal{T}_h}.$$

- Here, $\partial_t^+ u_h^n = (u_h^n u_h^{n-1})/\Delta t$, $F(u_h^n, u_h^{n-1}) = (u_h^n)^3 u_h^{n-1}$, and Π_k^{∂} is the elementwise L^2 projection onto $\mathcal{P}^k(E)$ such that 140
- 141

$$\{\Pi_k^{\partial} u_h, \mu_h\}_E = \langle u_h, \mu_h \rangle_E, \quad \forall \mu_h \in \mathcal{P}^k(E) \text{ and } E \in \partial K.$$

- 3. Preliminaries. In Subsection 3.1 we recall and prove some useful inequali-144
- ties necessary for the error analysis. Then in Subsection 3.2 we introduce the HDG 145
- elliptic projection and study its approximation properties. Finally in Subsection 3.4 146
- we introduce the the HDG spectral estimate, which is useful to our error analysis in 147
- the next section. Throughout, the generic constant C is independent of $h, \Delta t, \epsilon$ and 148
- may change from line to line. For convience of analysis we assume $\epsilon < 1$. 149
- **3.1.** Useful inequalities. We recall the standard L^2 projections $\Pi_k^o: [L^2(\Omega)]^d$ 150
- $\to V_h$ and $\Pi_{k+1}^o: L^2(\Omega) \to W_h$. The following approximation results are classical, cf. 151
- [12, Lemma 3.3], [6, Lemma 4.5.3]. 152

153 (3.1a)
$$\|\boldsymbol{q} - \boldsymbol{\Pi}_{k}^{o} \boldsymbol{q}\|_{L^{2}(K)} \le C h_{K}^{k+1} |\boldsymbol{q}|_{H^{k+1}(K)}, \|\boldsymbol{u} - \boldsymbol{\Pi}_{k+1}^{o} \boldsymbol{u}\|_{L^{2}(K)} \le C h_{K}^{k+2} |\boldsymbol{u}|_{H^{k+2}(K)},$$

- (3.1b) $||u \Pi_{k+1}^o u||_{L^2(\partial K)} \le C h_K^{k+3/2} |u|_{H^{k+2}(K)},$ 154
- $(3.1c) \|w_h\|_{L^2(\partial K)} \leq C h_K^{-1/2} \|w_h\|_{L^2(K)}, \forall w_h \in W_h,$ 155
- $(3.1d) \ \|u \Pi_{k+1}^o u\|_{L^q(K)} \le C h_K^{k+2+d(1/q-1/2)} |u|_{H^{k+2}(K)}, \quad q \in [1,+\infty],$ 156
- (3.1e) $||w_h||_{L^q(K)} \le Ch_K^{d(1/q-1/2)} ||w_h||_{L^2(K)}, \quad \forall w_h \in W_h, q \in [1, +\infty].$ 158
- The following HDG Sobolev inequalities can be readily derived from [26, Theorem 159
- 6.5]. A direct proof based on Oswald interpolation operator [39, Page 644, Theorem 160
- 2.1] is available in [10]. 161
- Lemma 3.1 (HDG Sobolev inequality). Suppose $q \in [1, \infty)$ for d = 2, and 162
- 163 $q \in [1, 6]$ for d = 3. For any $\mu_h \in M_h$ there hold

164 (3.2a)
$$\|w_h\|_{L^q(\Omega)} \le C \left(\|w_h\|_{\mathcal{T}_h} + \|\nabla w_h\|_{\mathcal{T}_h} + \|h_{\mathcal{T}}^{-1/2}(\Pi_k^{\partial} w_h - \mu_h)\|_{\partial \mathcal{T}_h} \right) \, \forall w_h \in W_h,$$

$$\begin{array}{ll} 165 & (3.2b) & \|w_h\|_{L^q(\Omega)} \leq C \left(\|\nabla w_h\|_{\mathcal{T}_h} + \|h_{\mathcal{T}}^{-1/2}(\Pi_k^{\partial} w_h - \mu_h)\|_{\partial \mathcal{T}_h} \right), \forall w_h \in \mathring{W}_h. \end{array}$$

- Here and throughout, $h_{\mathcal{T}}$ is a piecewise constant function equal to h_K on each element 167
- K. 168
- 169 Next, we present some basic properties of the operator A.

PROPOSITION 3.2. For all
$$(\mathbf{q}_h, u_h, \widehat{u}_h), (\mathbf{p}_h, \phi_h, \widehat{\phi}_h) \in V_h \times W_h \times M_h$$
, one has

171 (3.3)
$$\mathcal{A}(\boldsymbol{q}_h, u_h, \widehat{u}_h; \boldsymbol{p}_h, -\phi_h, -\widehat{\phi}_h) = \mathcal{A}(\boldsymbol{p}_h, \phi_h, \widehat{\phi}_h; \boldsymbol{q}_h, -u_h, -\widehat{u}_h),$$

172 (3.4)
$$\mathcal{A}(\boldsymbol{q}_h, u_h, \widehat{u}_h; \boldsymbol{q}_h, u_h, \widehat{u}_h) = \|\boldsymbol{q}_h\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2}(\Pi_k^{\partial} u_h - \widehat{u}_h)\|_{\partial \mathcal{T}_h}^2,$$

173 (3.5)
$$\left| \mathcal{A}(\boldsymbol{q}_h, u_h, \widehat{u}_h; \boldsymbol{p}_h, \phi_h, \widehat{\phi}_h) \right| \leq C \left(\|h_{\mathcal{T}}^{-1/2}(\Pi_k^{\partial} u_h - \widehat{u}_h)\|_{\partial \mathcal{T}_h} + \|\boldsymbol{q}_h\|_{\mathcal{T}_h} \right)$$

$$+ \|\nabla u_h\|_{\mathcal{T}_h} \times \left(\|\boldsymbol{p}_h\|_{\mathcal{T}_h} + \|\nabla \phi_h\|_{\mathcal{T}_h} + \|h_{\mathcal{T}}^{-1/2}(\Pi_k^{\partial} \phi_h - \widehat{\phi}_h)\|_{\partial \mathcal{T}_h} \right).$$

In addition, if $A(\mathbf{q}_h, u_h, \widehat{u}_h; \mathbf{r}_h, 0, 0) = 0$ for all $\mathbf{r}_h \in \mathbf{V}_h$, then the following inequality 176 177

$$\|\nabla u_h\|_{\mathcal{T}_h} + \|h_{\mathcal{T}}^{-1/2}(u_h - \widehat{u}_h)\|_{\partial \mathcal{T}_h} \le C \left(\|q_h\|_{\mathcal{T}_h} + \|h_{\mathcal{T}}^{-1/2}(\Pi_k^{\partial} u_h - \widehat{u}_h)\|_{\partial \mathcal{T}_h} \right).$$

The proof of Proposition 3.2 is straightforward, see [38, Lemma 1, Lemma 2] and [48, 180

Lemma 3.2 for proofs of similar results. 181

Next, we show that A satisfies the following discrete LBB condition. 182

LEMMA 3.3. For all $(\mathbf{q}_h, u_h, \widehat{u}_h) \in \mathbf{V}_h \times \mathring{W}_h \times M_h$, we have

184 (3.7)
$$\sup_{\mathbf{0}\neq(\boldsymbol{p}_{h},\phi_{h},\widehat{\phi}_{h})\in\boldsymbol{V}_{h}\times\mathring{W}_{h}\times M_{h}}\frac{\mathcal{A}(\boldsymbol{q}_{h},u_{h},\widehat{u}_{h};\boldsymbol{p}_{h},\phi_{h},\widehat{\phi}_{h})}{\|\boldsymbol{p}_{h}\|_{\mathcal{T}_{h}}+\|\nabla\phi_{h}\|_{\mathcal{T}_{h}}+\|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{2}\phi_{h}-\widehat{\phi}_{h})\|_{\partial\mathcal{T}_{h}}}$$

$$\geq C\left(\|\boldsymbol{q}_{h}\|_{\mathcal{T}_{h}}+\|\nabla u_{h}\|_{\mathcal{T}_{h}}+\|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{2}u_{h}-\widehat{u}_{h})\|_{\partial\mathcal{T}_{h}}\right).$$

 $\frac{185}{186}$

187 *Proof.* First we note that if

$$\|\mathbf{p}_{h}\|_{\mathcal{T}_{h}} + \|\nabla\phi_{h}\|_{\mathcal{T}_{h}} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}\phi_{h} - \widehat{\phi}_{h})\|_{\partial\mathcal{T}_{h}} = 0,$$

then $p_h = 0$, and $\phi_h = 0$ by (3.2b), and hence $\widehat{\phi}_h = 0$ as well. 190

Next, let α be a positive constant that will be specified below. For any fixed 191

 $(\boldsymbol{q}_h, u_h, \widehat{u}_h) \in \boldsymbol{V}_h \times \mathring{W}_h \times M_h$, we take $(\boldsymbol{p}_h, \phi_h, \phi_h) = (\boldsymbol{q}_h + \alpha \nabla u_h, u_h, \widehat{u}_h) \in \boldsymbol{V}_h \times \mathring{W}_h \times M_h$ 192

193 M_h to get

183

194
$$\mathcal{A}(\boldsymbol{q}_{h}, u_{h}, \widehat{u}_{h}; \boldsymbol{p}_{h}, \phi_{h}, \widehat{\phi}_{h})$$
195
$$= (\boldsymbol{q}_{h}, \boldsymbol{q}_{h} + \alpha \nabla u_{h})_{\mathcal{T}_{h}} - (u_{h}, \nabla \cdot (\boldsymbol{q}_{h} + \alpha \nabla u_{h}))_{\mathcal{T}_{h}}$$
196
$$+ \langle \widehat{u}_{h}, (\boldsymbol{q}_{h} + \alpha \nabla u_{h}) \cdot \boldsymbol{n} \rangle_{\partial \mathcal{T}_{h}} + (\nabla \cdot \boldsymbol{q}_{h}, u_{h})_{\mathcal{T}_{h}} - \langle \boldsymbol{q}_{h} \cdot \boldsymbol{n}, \widehat{u}_{h} \rangle_{\partial \mathcal{T}_{h}}$$
197
$$+ \langle h_{K}^{-1}(\Pi_{k}^{\partial} u_{h} - \widehat{u}_{h}), \Pi_{k}^{\partial} u_{h} - \widehat{u}_{h} \rangle_{\partial \mathcal{T}_{h}}$$
198
$$= \|\boldsymbol{q}_{h}\|_{\mathcal{T}_{h}}^{2} + \alpha \|\nabla u_{h}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial} u_{h} - \widehat{u}_{h})\|_{\partial \mathcal{T}_{h}}^{2}$$
199
$$+ \alpha (\boldsymbol{q}_{h}, \nabla u_{h})_{\mathcal{T}_{h}} + \alpha \langle \widehat{u}_{h} - \Pi_{k}^{\partial} u_{h}, \boldsymbol{n} \cdot \nabla u_{h} \rangle_{\partial \mathcal{T}_{h}}$$

$$\geq (1 - C\alpha) \left(\|\boldsymbol{q}_{h}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial} u_{h} - \widehat{u}_{h})\|_{\partial \mathcal{T}_{h}}^{2} \right) + \frac{\alpha}{2} \|\nabla u_{h}\|_{\mathcal{T}_{h}}^{2}.$$

By choosing $\alpha > 0$ such that $0 < 1 - C\alpha$, we get 202

$$203 \qquad \mathcal{A}(\boldsymbol{q}_h, u_h, \widehat{u}_h; \boldsymbol{p}_h, \phi_h, \widehat{\phi}_h) \geq C_1 \left(\|\boldsymbol{q}_h\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} u_h - \widehat{u}_h)\|_{\partial \mathcal{T}_h}^2 + \|\nabla u_h\|_{\mathcal{T}_h}^2 \right).$$

Finally, for the choice of $(\boldsymbol{p}_h, \phi_h, \widehat{\phi}_h) = (\boldsymbol{q}_h + \alpha \nabla u_h, u_h, \widehat{u}_h)$ the triangle inequality 205 206 implies

207
$$\|\boldsymbol{p}_{h}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}\phi_{h} - \widehat{\phi}_{h})\|_{\partial\mathcal{T}_{h}}^{2} + \|\nabla\phi_{h}\|_{\mathcal{T}_{h}}^{2}$$

$$\leq C_{2}(\|\boldsymbol{q}_{h}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}u_{h} - \widehat{u}_{h})\|_{\partial\mathcal{T}_{h}}^{2} + \|\nabla u_{h}\|_{\mathcal{T}_{h}}^{2}).$$

210 Then (3.7) follows immediately. The proof of Lemma 3.3 also shows that the operator \mathcal{A} defines a norm on the

space $V_h \times \mathring{W}_h \times M_h$. Thanks to the discrete LBB condition in Lemma 3.3, the follow-

213 ing inversion of the Laplacian operator equipped with Neumann boundary conditions

- 214 is well defined.
- DEFINITION 3.4. For all $u_h \in W_h$, define $(\Pi_V u_h, \Pi_W u_h, \Pi_M u_h) \in V_h \times \mathring{W}_h \times M_h$
- 216 to be the unique solution of the problem
- $\mathcal{A}(\Pi_{\mathbf{V}}u_h, \Pi_{W}u_h, \Pi_{M}u_h; \mathbf{r}_h, w_h, \mu_h) = (u_h, w_h)_{\mathcal{T}_h}$
- 219 for all $(\boldsymbol{r}_h, w_h, \mu_h) \in \boldsymbol{V}_h \times \mathring{W}_h \times M_h$.
- In particular, by the definition \mathcal{A} in (2.2d) and integration by parts, one can show
- that for any $u_h \in \mathring{W}_h$ and $\forall (\boldsymbol{r}_h, w_h, \mu_h) \in \boldsymbol{V}_h \times W_h \times M_h$
- 222 (3.9) $\mathcal{A}(\mathbf{\Pi}_{V}u_{h}, \Pi_{W}u_{h}, \Pi_{M}u_{h}; \mathbf{r}_{h}, w_{h}, \mu_{h}) = (u_{h}, w_{h})_{\mathcal{T}_{h}}.$
- For all $u_h \in \mathring{W}_h$, we define the semi-norm
- $||u_h||_{-1,h}^2 := \mathcal{A}(\mathbf{\Pi}_{\mathbf{V}} u_h, \Pi_W u_h, \Pi_M u_h; \mathbf{\Pi}_{\mathbf{V}} u_h, \Pi_W u_h, \Pi_M u_h).$
- 227 It follows from (3.4) that
- $228 \quad (3.10) \quad \|u_h\|_{-1,h}^2 = \|\mathbf{\Pi}_{\boldsymbol{V}} u_h\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} \Pi_W u_h \Pi_M u_h)\|_{\partial \mathcal{T}_h}^2 = (u_h, \Pi_W u_h)_{\mathcal{T}_h}.$
- Next, we show that $\|\cdot\|_{-1,h}$ is a norm on the space \mathring{W}_h .
- LEMMA 3.5. $\|\cdot\|_{-1,h}$ defines a norm on the space \mathring{W}_h .
- 232 Proof. Thanks to (3.10), one only needs to show that $||u_h||_{-1,h} = 0$ implies $u_h = 0$
- for $u_h \in \mathring{W}_h$. It follows readily from (3.10) that
- $\Pi_{\mathbf{V}} u_h = \mathbf{0}, \qquad \Pi_k^{\partial} \Pi_W u_h \Pi_M u_h = 0.$
- Next, Definition 3.4 and (2.2d) imply that for all $(\mathbf{r}_h, w_h) \in \mathbf{V}_h \times \mathring{W}_h$ we have
- $(u_h, w_h)_{\mathcal{T}_h} = (\Pi_W u_h, \nabla \cdot \boldsymbol{r}_h)_{\mathcal{T}_h} \langle \Pi_M u_h, \boldsymbol{r}_h \cdot \boldsymbol{n} \rangle_{\partial \mathcal{T}_h}.$
- Taking $r_h = 0$ and $w_h = u_h$ one obtains $u_h = 0$. This completes the proof.
- LEMMA 3.6. If $u_h \in \mathring{W}_h$ and $(w_h, \mu_h) \in W_h \times M_h$, then we have
- $(u_h, w_h)_{\mathcal{T}_h} \leq C \|u_h\|_{-1, h} \left(\|\nabla w_h\|_{\mathcal{T}_h} + \|h_{\mathcal{T}}^{-1/2}(\Pi_k^{\partial} w_h \mu_h)\|_{\partial \mathcal{T}_h} \right).$
- 243 Proof. Let $(w_h, \mu_h) \in W_h \times M_h$, $u_h \in \mathring{W}_h$ and $(\Pi_{\boldsymbol{V}} u_h, \Pi_{\boldsymbol{W}} u_h, \Pi_{\boldsymbol{M}} u_h)$ be the 244 solution of (3.8). By Equation (3.9) and (2.2d) we have
- $(u_h, w_h)_{\mathcal{T}_h} = \mathcal{A}(\mathbf{\Pi}_{\mathbf{V}} u_h, \Pi_W u_h, \Pi_M u_h; \mathbf{0}, w_h, \mu_h)$
- $= (\nabla \cdot \mathbf{\Pi}_{\mathbf{V}} u_h, w_h)_{\mathcal{T}_h} \langle \mathbf{n} \cdot \mathbf{\Pi}_{\mathbf{V}} u_h, \mu_h \rangle_{\partial \mathcal{T}_h}$
- $+\langle h_K^{-1}(\Pi_k^{\partial}\Pi_W u_h \Pi_M u_h), \Pi_k^{\partial} w_h \mu_h \rangle_{\partial \mathcal{T}_h}.$
- 249 By integration by parts, (3.10) and the L^2 stability of Π_k^{∂} we have
- $(u_h, w_h)_{\mathcal{T}_h} \le \|\mathbf{\Pi}_{\mathbf{V}} u_h\|_{\mathcal{T}_h} \|\nabla w_h\|_{\mathcal{T}_h} + C\|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} w_h \mu_h)\|_{\partial \mathcal{T}_h}$
- $\times \left(\|\mathbf{\Pi}_{\boldsymbol{V}} u_h\|_{\mathcal{T}_h} + \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} \Pi_W u_h \Pi_M u_h)\|_{\partial \mathcal{T}_h} \right)$
- $\leq C \|u_h\|_{-1,h} \left(\|\nabla w_h\|_{\mathcal{T}_h} + \|h_{\mathcal{T}}^{-1/2}(\Pi_k^{\partial} w_h \mu_h)\|_{\partial \mathcal{T}_h} \right).$
- 254 This completes the proof.

Finally, by the Definition 3.4, the identity (3.10) and (3.6) one can easily establish the following inequality

257 (3.12)
$$\|\nabla \Pi_W u_h\|_{\mathcal{T}_h} + \|h_{\mathcal{T}}(\Pi_k^{\partial} \Pi_W u_h - \Pi_M u_h)\|_{\partial \mathcal{T}_h} \le C\|u_h\|_{-1,h}, \quad u_h \in \mathring{W}_h,$$

- $\|u_h\|_{-1,h} \le C\|u_h\|_{\mathcal{T}_h}, \quad u_h \in \mathring{W}_h.$
- 3.2. The HDG elliptic projection. Given $\Theta \in L^2(\Omega)$, let (Ψ, Φ) denote the solution of the following system

262 (3.14)
$$\Psi + \nabla \Phi = 0$$
, $\nabla \cdot \Psi = \Theta$ in Ω , $\Psi \cdot \boldsymbol{n} = 0$ on $\partial \Omega$, $\int_{\Omega} \Phi = 0$.

264 If Ω is convex, then we have the following regularity result:

$$\|\Psi\|_{H^1(\Omega)} + \|\Phi\|_{H^2(\Omega)} \le C_{\text{reg}} \|\Theta\|_{L^2(\Omega)}.$$

- Recall that (p, ϕ, q, u) is the solution of the Cahn-Hilliard equation in mixed form
- 268 (2.1). For all $t \in [0, T]$, we define the HDG elliptic projections:
- finding $(\boldsymbol{p}_{Ih}, \phi_{Ih}, \widehat{\phi}_{Ih}), (\boldsymbol{q}_{Ih}, u_{Ih}, \widehat{u}_{Ih}) \in \boldsymbol{V}_h \times W_h \times M_h$ such that

270 (3.16a)
$$\mathcal{A}(\mathbf{p}_{Ih}, \phi_{Ih}, \widehat{\phi}_{Ih}; \mathbf{r}_1, w_1, \mu_1) = -(\Delta \phi, w_1)_{\mathcal{T}_h}$$
 and $(\phi_{I_h} - \phi, 1)_{\mathcal{T}_h} = 0$,

371 (3.16b)
$$\mathcal{A}(\mathbf{q}_{Ih}, u_{Ih}, \widehat{u}_{Ih}; \mathbf{r}_2, w_2, \mu_2) = -(\Delta u, w_2)_{\mathcal{T}_h}$$
 and $(u_{I_h} - u, 1)_{\mathcal{T}_h} = 0$,

- 273 for all $(r_1, w_1, \mu_1), (r_2, w_2, \mu_2) \in V_h \times \mathring{W}_h \times M_h$.
- Denote the norm on the Hilbert space H^s , s > 0 by $|\cdot|_s$. We have the following approximation property for the HDG elliptic projection (3.16).
- LEMMA 3.7. Assume the regularity condition (3.15) holds. Let $(\mathbf{p}, \phi, \mathbf{q}, u)$ be smooth enough and $(\mathbf{p}_{Ih}, \phi_{Ih}, \mathbf{q}_{Ih}, u_{Ih})$ be the solutions of (3.16). We have

278 (3.17a)
$$||u - u_{Ih}||_{\mathcal{T}_h} \le Ch^{k+2} |u|_{k+2},$$

- 279 (3.17b) $\|\boldsymbol{q} \boldsymbol{q}_{Ih}\|_{\mathcal{T}_h} + \|h_{\mathcal{T}}^{-1/2}(\Pi_k^{\partial} u_{Ih} \widehat{u}_{Ih})\|_{\partial \mathcal{T}_h} \leq Ch^{k+1}|u|_{k+2},$
- 280 (3.17c) $\|\partial_t u \partial_t u_{Ih}\|_{\mathcal{T}_h} \le Ch^{k+2} |\partial_t u|_{k+2},$
- 281 (3.17d) $\|\phi \phi_{Ih}\|_{\mathcal{T}_h} \le Ch^{k+2} |\phi|_{k+2},$
- $\|\boldsymbol{p} \boldsymbol{p}_{Ih}\|_{\mathcal{T}_h} + \|h_{\mathcal{T}}^{-1/2}(\Pi_k^{\partial}\phi_{Ih} \widehat{\phi}_{Ih})\|_{\partial \mathcal{T}_h} \le Ch^{k+1}|\phi|_{k+2}.$
- The proof of Lemma 3.7 follows applications of the 3rd Strang Lemma and the
- Aubin-Nitsche technique in [25]. For completeness, we present details of the proof as
- 286 follows. Introducing

293

$$\varepsilon_h^{\boldsymbol{q}} := \boldsymbol{\Pi}_k^o \boldsymbol{q} - \boldsymbol{q}_{Ih}, \quad \varepsilon_h^u := \Pi_{k+1}^o u - u_{Ih}, \quad \varepsilon_h^{\widehat{u}} := \Pi_k^{\partial} u - \widehat{u}_{Ih},$$

one derives the error equation

290 (3.19)
$$\mathcal{A}(\varepsilon_h^{\mathbf{q}}, \varepsilon_h^u, \varepsilon_h^{\widehat{u}}; \mathbf{r}_2, w_2, \mu_2) = -(\Delta u, w_2)_{\mathcal{T}_h}$$

$$+ \langle \boldsymbol{q} \cdot \boldsymbol{n} - \boldsymbol{\Pi}_{k}^{o} \boldsymbol{q} \cdot \boldsymbol{n}, \mu_{2} - w_{2} \rangle_{\partial \mathcal{T}_{h}} + \langle h_{K}^{-1} (\boldsymbol{\Pi}_{k+1}^{o} u - u), \boldsymbol{\Pi}_{k}^{\partial} w_{2} - \mu_{2} \rangle_{\partial \mathcal{T}_{h}}.$$

294 *Proof.* We only give a proof of (3.17a) and (3.17b), since the proofs of the re-295 maining inequalities are similar. We split the proof into two steps.

321

338

Step 1: an energy argument

Since
$$(\varepsilon_h^u, 1)_{L^2(\Omega)} = (\Pi_{k+1}^o u - u_{Ih}, 1)_{L^2(\Omega)} = (u - u_{Ih}, 1)_{L^2(\Omega)} = 0$$
, then $\varepsilon_h^u \in \mathring{W}_h$.

We take $(\boldsymbol{r}_2, w_2, \mu_2) = (\varepsilon_h^{\boldsymbol{q}}, \varepsilon_h^u, \varepsilon_h^{\hat{u}})$ in (3.19) to get

299
$$\|\varepsilon_{h}^{\mathbf{q}}\|_{\mathcal{T}_{h}}^{2} + \|h_{K}^{-1/2}(\Pi_{k}^{\partial}\varepsilon_{h}^{u} - \varepsilon_{h}^{\widehat{u}})\|_{\partial\mathcal{T}_{h}}^{2}$$
300
$$= \langle \mathbf{q} \cdot \mathbf{n} - \mathbf{\Pi}_{k}^{o}\mathbf{q} \cdot \mathbf{n}, \varepsilon_{h}^{\widehat{u}} - \varepsilon_{h}^{u}\rangle_{\partial\mathcal{T}_{h}} + \langle h_{K}^{-1}(\Pi_{k+1}^{o}u - u), \Pi_{k}^{\partial}\varepsilon_{h}^{u} - \varepsilon_{h}^{\widehat{u}}\rangle_{\partial\mathcal{T}_{h}}$$

$$\leq Ch^{k+1}|u|_{k+2} \left(\|\varepsilon_{h}^{\mathbf{q}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}\varepsilon_{h}^{u} - \varepsilon_{h}^{\widehat{u}})\|_{\partial\mathcal{T}_{h}}^{2} \right)^{1/2},$$

where we have used the fact $\mathcal{A}(\varepsilon_h^{\boldsymbol{q}}, \varepsilon_h^{\boldsymbol{u}}, \varepsilon_h^{\widehat{\boldsymbol{u}}}; \boldsymbol{r}_2, 0, 0) = 0$ and (3.6). Hence

$$\begin{cases}
304 \\
305
\end{cases} (3.20) \qquad \left(\|\varepsilon_h^{\boldsymbol{q}}\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2}(\Pi_k^{\partial}\varepsilon_h^u - \varepsilon_h^{\widehat{\boldsymbol{u}}})\|_{\partial\mathcal{T}_h}^2 \right)^{1/2} \le Ch^{k+1}|u|_{k+2}.$$

Now in light of the definitions of the error functions in (3.18), one obtains by the triangle inequality, the L^2 stability of the projection Π_k^{∂} , the inequalities in (3.1) and the fact that $q = -\nabla u$ that

$$\|\boldsymbol{q} - \boldsymbol{q}_{Ih}\|_{\mathcal{T}_h} + \|h_{\mathcal{T}}^{-1/2}(\Pi_k^{\partial} u_{Ih} - \widehat{u}_{Ih})\|_{\partial \mathcal{T}_h} \le Ch^{k+1}|u|_{k+2}.$$

- 311 Thus (3.17b) is established.
- Step 2: L^2 error estimate by a duality argument Let $\Theta \in L^2(\Omega)$ and let (Ψ, Φ)
- be the solution to (3.14). One has for all $(r_2, w_2, \mu_2) \in \mathbf{Q}_h \times W_h \times M_h$

314
$$\mathcal{A}(\mathbf{\Pi}_k^o \mathbf{\Psi}, \mathbf{\Pi}_{k+1}^o \mathbf{\Phi}, \mathbf{\Pi}_k^\partial \mathbf{\Phi}; \mathbf{r}_2, w_2, \mu_2) = (\Theta, w_2) + \langle \mathbf{\Psi} \cdot \mathbf{n} - \mathbf{\Pi}_k^o \mathbf{\Psi} \cdot \mathbf{n}, \mu_2 - w_2 \rangle_{\partial \mathcal{T}_h}$$

$$\frac{315}{315} \quad (3.21) \quad + \langle h_K^{-1}(\Pi_{k+1}^o \Phi - \Phi), \Pi_k^{\partial} w_2 - \mu_2 \rangle_{\partial \mathcal{T}_h}.$$

We take
$$(r_2, w_2, \mu_2) = (\varepsilon_h^q, -\varepsilon_h^u, -\varepsilon_h^{\widehat{u}})$$
 and $\Theta = -\varepsilon_h^u$ in (3.21) to get

318
$$\|\varepsilon_h^u\|_{\mathcal{T}_h}^2 = \mathcal{A}(\varepsilon_h^q, \varepsilon_h^u, \varepsilon_h^{\hat{u}}; \mathbf{\Pi}_k^o \mathbf{\Psi}, -\mathbf{\Pi}_{k+1}^o \Phi, -\mathbf{\Pi}_k^{\partial} \Phi;)$$

$$+ \langle \mathbf{\Pi}_{k}^{o} \mathbf{\Psi} \cdot \mathbf{n} - \mathbf{\Psi} \cdot \mathbf{n}, \varepsilon_{h}^{\widehat{u}} - \varepsilon_{h}^{u} \rangle_{\partial \mathcal{T}_{h}} - \langle h_{K}^{-1} (\Pi_{k+1}^{o} \Phi - \Phi), \Pi_{k}^{\partial} \varepsilon_{h}^{u} - \varepsilon_{h}^{\widehat{u}} \rangle_{\partial \mathcal{T}_{h}}$$

$$= -\langle \mathbf{\Pi}_{k}^{o} \mathbf{q} \cdot \mathbf{n} - \mathbf{q} \cdot \mathbf{n}, \Pi_{k}^{\partial} \Phi - \Pi_{k+1}^{o} \Phi \rangle_{\partial \mathcal{T}_{h}}$$

$$-\langle h_K^{-1}(\Pi_{k+1}^o u - u), \Pi_k^{\partial} \Pi_{k+1}^o \Phi - \Pi_k^{\partial} \Phi \rangle_{\partial \mathcal{T}_h}$$

$$+ \langle \mathbf{\Pi}_{k}^{o} \mathbf{\Psi} \cdot \mathbf{n} - \mathbf{\Psi} \cdot \mathbf{n}, \varepsilon_{h}^{\widehat{u}} - \varepsilon_{h}^{u} \rangle_{\partial \mathcal{T}_{h}} - \langle h_{K}^{-1} (\Pi_{k+1}^{o} \Phi - \Phi), \Pi_{k}^{\partial} \varepsilon_{h}^{u} - \varepsilon_{h}^{\widehat{u}} \rangle_{\partial \mathcal{T}_{h}}.$$

Since $\mathbf{q} \in H(\operatorname{div},\Omega), \ \mathbf{q} \cdot \mathbf{n} = 0 \text{ on } \partial\Omega \text{ and } \Pi_k^{\partial}\Phi \text{ is single-valued on } \partial\mathcal{T}_h, \text{ then } \langle \mathbf{q} \cdot \mathbf{n} \rangle$

325
$$\boldsymbol{n}, \Pi_k^{\partial} \Phi \rangle_{\partial \mathcal{T}_h} = 0 = \langle \boldsymbol{q} \cdot \boldsymbol{n}, \Phi \rangle_{\partial \mathcal{T}_h}$$
. We have

$$-\langle \mathbf{\Pi}_{k}^{o} \mathbf{q} \cdot \mathbf{n} - \mathbf{q} \cdot \mathbf{n}, \Pi_{k}^{\partial} \Phi - \Pi_{k+1}^{o} \Phi \rangle_{\partial \mathcal{T}_{h}}$$

$$= \langle \boldsymbol{q} \cdot \boldsymbol{n}, \Pi_k^{\partial} \Phi - \Pi_{k+1}^{o} \Phi \rangle_{\partial \mathcal{T}_h} - \langle \Pi_k^{o} \boldsymbol{q} \cdot \boldsymbol{n}, \Pi_k^{\partial} \Phi - \Pi_{k+1}^{o} \Phi \rangle_{\partial \mathcal{T}_h}$$

$$= \langle \boldsymbol{q} \cdot \boldsymbol{n}, \Phi - \Pi_{k+1}^{o} \Phi \rangle_{\partial \mathcal{T}_h} - \langle \Pi_{k}^{o} \boldsymbol{q} \cdot \boldsymbol{n}, \Phi - \Pi_{k+1}^{o} \Phi \rangle_{\partial \mathcal{T}_h}$$

$$=-\langle oldsymbol{\Pi}_k^o oldsymbol{q} \cdot oldsymbol{n} - oldsymbol{q} \cdot oldsymbol{n}, \Phi - \Pi_{k+1}^o \Phi
angle_{\partial \mathcal{T}_h}.$$

By the error estimates in (3.20), the inequality (3.6) and the regularity result (3.15)

with $\Theta = -\varepsilon_h^u$, one derives that

$$\|\varepsilon_h^u\|_{\mathcal{T}_h} \le Ch^{k+2}|u|_{k+2}.$$

335 The error estimate (3.17a) now follows from the triangle inequality. This completes

336 the proof.

We shall need the uniform estimate of the HDG elliptic projection u_{Ih} . By the triangle inequality and the inverse inequality (3.1e), one obtains

339
$$||u_{Ih} - u||_{L^{\infty}} \le ||u_{Ih} - \Pi_{k+1}^o u||_{L^{\infty}} + ||u - \Pi_{k+1}^o u||_{L^{\infty}}$$

$$\leq Ch^{-d/2}\|u_{Ih} - \Pi_{k+1}^o u\|_{\mathcal{T}_h} + Ch^{2-d/2}|u|_2$$

$$\frac{341}{342}$$
 $\leq Ch^{2-d/2}|u|_2.$

- 343 Hence with $||\Delta u||_{L^{\infty}(L^2)} \leq C\epsilon^{-\frac{7}{2}}$ (cf. the stability estimate in the upcoming section)
- 344 and $||u||_{L^{\infty}(L^{\infty})} \leq C$ [34], provided $h \leq \epsilon^{\frac{7}{4-d}}$, one has

$$||u_{Ih}||_{L^{\infty}(L^{\infty})} \le C.$$

3.3. The discrete Laplacian. For any $u_h \in W_h$, we define $\Delta_h u_h \in W_h$, such that for all $(\mathbf{r}_h, w_h, \mu_h) \in \mathbf{V}_h \times W_h \times M_h$ we have

$$(\Delta_h u_h, w_h)_{\mathcal{T}_h} = -\mathcal{A}(\boldsymbol{q}_h^u, u_h, \widehat{u}_h^u; \boldsymbol{r}_h, w_h, \mu_h),$$

351 where $(\boldsymbol{q}_h^u, \widehat{u}_h^u) \in \boldsymbol{V}_h \times M_h$ satisfy

353 (3.25)
$$\mathcal{A}(\boldsymbol{q}_h^u, u_h, \widehat{u}_h^u; \boldsymbol{r}_h, 0, \mu_h) = 0$$

- for all $(r_h, \mu_h) \in V_h \times M_h$. It is clear there exists a unique solution $(\Delta_h u_h, q_h^u, \widehat{u}_h^u) \in V_h \times M_h$.
- $W_h \times V_h \times M_h$, since Eqs. (3.24) and (3.25) define a square linear system of finite
- 356 dimension.
- Lemma 3.8. For all $w_h \in W_h$, we have the inequality

$$\|w_h\|_{L^{\infty}(\Omega)} \le C \|\Delta_h w_h\|_{\mathcal{T}_h},$$

- 360 where C depends on Ω .
- *Proof.* Consider the following continuous problem: find $w \in H^1(\Omega)$, such that

$$\frac{362}{363} \quad (3.27) \qquad -\Delta w = -\Delta_h w_h \text{ in } \Omega, \quad \nabla w \cdot \boldsymbol{n} = 0 \text{ on } \partial \Omega, \quad (w, 1)_{\mathcal{T}_h} = (w_h, 1)_{\mathcal{T}_h}.$$

364 Since Ω is convex, we have the regularity estimate

$$|w|_{H^2(\Omega)} \le C_{\text{reg}} ||\Delta_h w_h||_{\mathcal{T}_h}.$$

We use the definition (3.24) and (3.27) to get

$$\mathcal{A}(\boldsymbol{q}_h^w, w_h, \widehat{\boldsymbol{u}}_h^w; \boldsymbol{s}_h, v_h, \mu_h) = -(\Delta w, v_h)_{\mathcal{T}_h}, \qquad (w_h - w, 1)_{\mathcal{T}_h} = 0$$

for all $(s_h, v_h, \mu_h) \in V_h \times W_h \times M_h$. Therefore, we may use the HDG elliptic projection

371 result in Lemma 3.7 to get

$$\|w - w_h\|_{\mathcal{T}_h} \le Ch^2 |w|_{H^2(\Omega)}.$$

374 By the triangle inequality, we have

375
$$||w_h||_{L^{\infty}(\Omega)} \le ||w_h - \Pi_{k+1}^o w||_{L^{\infty}(\Omega)} + ||\Pi_{k+1}^o w - w||_{L^{\infty}(\Omega)} + ||w||_{L^{\infty}(\Omega)}$$

$$\frac{376}{377}$$
 := $R_1 + R_2 + R_3$.

Now we estimate $\{R_i\}_{i=1}^3$ term by term as follows

379
$$R_1 \le Ch^{-d/2} \|w_h - \Pi_{k+1}^o w\|_{\mathcal{T}_h} \le Ch^{-d/2} \left(\|w_h - w\|_{\mathcal{T}_h} + \|w - \Pi_{k+1}^o w\|_{\mathcal{T}_h} \right)$$

380
$$\leq Ch^{2-d/2}|w|_{H^2(\Omega)} \leq Ch^{2-d/2}||\Delta_h w_h||_{\mathcal{T}_h},$$

381
$$R_2 \le Ch^{2-d/2}|w|_{H^2(\Omega)} \le Ch^{2-d/2}||\Delta_h w_h||_{\mathcal{T}_h},$$

383
$$R_3 \le CD_{\Omega}^{2-\frac{2}{d}} |w|_{H^2(\Omega)} \le CD_{\Omega}^{2-\frac{2}{d}} ||\Delta_h w_h||_{\mathcal{T}_h},$$

- where D_{Ω} is the diameter of the domain Ω . The inequality (3.26) follows from the above estimates and the fact $h \leq D_{\Omega}$. This completes the proof.
- We remark that it is possible to obtain a Gagliardo-Nirenberg type inequality, cf. 387 [10]:

$$\|w_h\|_{L^{\infty}(\Omega)} \leq C \left(h^{2-d/2} \|\Delta_h w_h\|_{\mathcal{T}_h} + \|\Delta_h w_h\|_{\mathcal{T}_h}^{\frac{d}{2(6-d)}} \|w_h\|_{L^6(\Omega)}^{\frac{3(4-d)}{2(6-d)}} + \|w_h\|_{L^6(\Omega)} \right).$$

390 **3.4. The HDG spectral estimate.** Recall that for $f \in L_0^2(\Omega)$, $u = (-\Delta)^{-1} f \in L_0^2(\Omega)$ is such that $-\Delta u = f$, $\frac{\partial u}{\partial n}|_{\partial\Omega} = 0$. Introduce an operator $K_h : W_h \times M_h \to V_h$ defined by

393 (3.30)
$$(K_h(\psi_h, \widehat{\psi}_h), \boldsymbol{w}_h)_K = -(\psi_h, \nabla \cdot \boldsymbol{w}_h)_K + \langle \widehat{\psi}_h, \boldsymbol{n} \cdot \boldsymbol{w}_h \rangle_{\partial K}$$

- 394 for all $\boldsymbol{w}_h \in \boldsymbol{V}_h$ and $K \in \mathcal{T}_h$.
- LEMMA 3.9. Assume that the spectral estimate of the Cahn-Hilliard operator holds (Proposition 1 in [35]). Then for any fixed $\beta \in (0,1)$, one has

397 (3.31)
$$\epsilon \|K_h(\psi_h, \widehat{\psi}_h)\|_{L^2(\Omega)}^2 + \epsilon \|h_{\mathcal{T}}^{-\frac{1}{2}} (\Pi_h^{\partial} \psi_h - \widehat{\psi}_h)\|_{\partial \mathcal{T}_h}^2 + \frac{1 - \beta}{\epsilon} (f'(u_{Ih})\psi_h, \psi_h)_{\mathcal{T}_h}$$

398
$$\geq -2C_0 \|\nabla \Delta^{-1}(\psi_h)\|_{L^2(\Omega)}^2 - \|\psi_h\|_{-1,h}^2, \quad \forall (\psi_h, \widehat{\psi}_h) \in \mathring{W}_h \times M_h,$$

$$provided \ h \leq Cmin\{\beta^{1/2}\epsilon^{11/4},\beta^{3/4}\epsilon^{7/4},\epsilon^{\frac{7}{4-d}}\},$$

- where C_0 is the constant in the continuous version of the original spectral estimate of the Cahn-Hilliard operator.
- 403 Proof. Let $\psi \in H^1(\Omega) \cap L_0^2(\Omega)$ be the solution of

$$(\nabla \psi, \nabla v) = (K_h(\psi_h, \widehat{\psi}_h), \nabla v), \forall v \in H^1(\Omega).$$

406 It follows

$$\|\nabla \psi\|_{L^{2}(\Omega)} \leq \|K_{h}(\psi_{h}, \widehat{\psi}_{h})\|_{\mathcal{T}_{h}}.$$

Consider the dual problem: finding $w \in H^1(\Omega)$ such that

$$-\Delta w = \psi - \psi_h, \quad \boldsymbol{n} \cdot \nabla w|_{\partial\Omega} = 0$$

412 Then

413
$$\|\psi - \psi_h\|_{L^2(\Omega)}^2 = (-\Delta w, \psi - \psi_h)$$
414
$$= (\nabla w, \nabla(\psi - \psi_h)) + \langle \boldsymbol{n} \cdot \nabla w, \psi_h \rangle_{\partial \mathcal{T}_h}$$
415
$$= (\nabla w, K_h(\psi_h, \widehat{\psi}_h) - \nabla \psi_h) + \langle \boldsymbol{n} \cdot \nabla w, \psi_h \rangle_{\partial \mathcal{T}_h}$$
416
$$= (\boldsymbol{\Pi}_k^o \nabla w, K_h(\psi_h, \widehat{\psi}_h) - \nabla \psi_h) + \langle \boldsymbol{n} \cdot \nabla w, \psi_h \rangle_{\partial \mathcal{T}_h}$$
417
$$= \langle \boldsymbol{n} \cdot \boldsymbol{\Pi}_k^o \nabla w - \boldsymbol{n} \cdot \nabla w, \widehat{\psi}_h - \psi_h \rangle_{\partial \mathcal{T}_h}$$
418
$$\leq Ch \|w\|_{H^2(\Omega)} \|h_K^{-\frac{1}{2}}(\psi_h - \widehat{\psi}_h)\|_{\partial \mathcal{T}_h}$$
419
$$\leq Ch \|\psi - \psi_h\|_{L^2(\Omega)} \left(\|K_h(\psi_h, \widehat{\psi}_h)\|_{\mathcal{T}_h} + \|h_{\mathcal{T}}^{-\frac{1}{2}}(\boldsymbol{\Pi}_k^\partial \psi_h - \widehat{\psi}_h)\|_{\partial \mathcal{T}_h} \right),$$

421 hence

$$\|\psi - \psi_h\|_{L^2(\Omega)} \le Ch\left(\|K_h(\psi_h, \widehat{\psi}_h)\|_{\mathcal{T}_h} + \|h_{\mathcal{T}}^{-\frac{1}{2}}(\Pi_k^{\partial}\psi_h - \widehat{\psi}_h)\|_{\partial \mathcal{T}_h}\right).$$

424 Define

425
$$\mathcal{L}_{h} := \epsilon \| K_{h}(\psi_{h}, \widehat{\psi}_{h}) \|_{L^{2}(\Omega)}^{2} + \epsilon \| h_{\mathcal{T}}^{-\frac{1}{2}} (\Pi_{k}^{\partial} \psi_{h} - \widehat{\psi}_{h}) \|_{\partial \mathcal{T}_{h}}^{2} + \frac{1 - \beta}{\epsilon} (f'(u_{Ih}) \psi_{h}, \psi_{h})$$
426
$$+ c_{0} \| \nabla \Delta^{-1} \psi_{h} \|_{L^{2}(\Omega)}^{2} + \| \psi_{h} \|_{-1,h}^{2},$$

$$\mathcal{L} := \epsilon \| \nabla \psi \|_{L^{2}(\Omega)}^{2} + \frac{1}{\epsilon} (f'(u) \psi, \psi) + C_{0} \| \nabla \Delta^{-1} \psi \|_{L^{2}(\Omega)}^{2},$$

with a constant c_0 to be determined, and C_0 the constant in the continuous version

of the original spectral estimate of the Cahn-Hilliard operator, cf. [1, 13, 35]. Since

431 $||u||_{L^{\infty}(L^{\infty})} \leq C$ [35] and under the constraint $h \leq \epsilon^{7/(4-d)}$, it follows from (3.32) and

432 the uniform bound (3.23) that

433
$$\mathcal{L}_{h} - (1 - \beta)\mathcal{L} \geq \beta \epsilon \left(\|K_{h}(\psi_{h}, \widehat{\psi}_{h})\|_{L^{2}(\Omega)}^{2} + \|h_{\mathcal{T}}^{-\frac{1}{2}}(\Pi_{k}^{\partial}\psi_{h} - \widehat{\psi}_{h})\|_{\partial \mathcal{T}_{h}}^{2} \right)$$
434
$$- C \frac{1 - \beta}{\epsilon} \|\psi_{h}^{2} - \psi^{2}\|_{L^{1}(\Omega)} - C\epsilon^{-1} \|u_{Ih} - u\|_{L^{2}(\Omega)} \|\psi_{h}\|_{L^{4}(\Omega)}^{2}$$

$$+ (c_{0} - C_{0}) \|\nabla \Delta^{-1}\psi_{h}\|_{L^{2}(\Omega)}^{2} + \|\psi_{h}\|_{-1,h}^{2} - C_{0} \left\| \|\nabla \Delta^{-1}\psi_{h}\|_{L^{2}(\Omega)}^{2} - \|\nabla \Delta^{-1}\psi\|_{L^{2}(\Omega)}^{2} \right\|$$

The negative terms on the right-hand side of the above inequality are estimated as

438 follows. First, by the error estimate (3.33), the interpolation inequality (3.11) and

439 the estimate (3.32) there holds

$$440 C\frac{1-\beta}{\epsilon} \|\psi_{h}^{2} - \psi^{2}\|_{L^{1}(\Omega)} \leq \frac{C}{\epsilon} \|\psi_{h} - \psi\|_{L^{2}(\Omega)}^{2} + \frac{C}{\epsilon} \|\psi_{h} - \psi\|_{L^{2}(\Omega)} \|\psi_{h}\|_{L^{2}(\Omega)}$$

$$441 \leq \frac{C}{\epsilon} h^{2} \left(\|K_{h}(\psi_{h}, \widehat{\psi}_{h})\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-\frac{1}{2}} (\Pi_{k}^{\partial} \psi_{h} - \widehat{\psi}_{h})\|_{\partial \mathcal{T}_{h}}^{2} \right)$$

$$442 + \frac{Ch}{\epsilon} \left(\|K_{h}(\psi_{h}, \widehat{\psi}_{h})\|_{\mathcal{T}_{h}} + \|h_{\mathcal{T}}^{-\frac{1}{2}} (\Pi_{k}^{\partial} \psi_{h} - \widehat{\psi}_{h})\|_{\partial \mathcal{T}_{h}} \right)^{3/2} \|\psi_{h}\|_{-1,h}^{1/2}$$

$$443 \leq C(\epsilon^{-1}h^{2} + \epsilon^{-4/3}h^{4/3}) \left(\|K_{h}(\psi_{h}, \widehat{\psi}_{h})\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-\frac{1}{2}} (\Pi_{k}^{\partial} \psi_{h} - \widehat{\psi}_{h})\|_{\partial \mathcal{T}_{h}}^{2} \right) + \|\psi_{h}\|_{-1,h}^{2}.$$

Next, with $||u||_{L^{\infty}(H^2)} \leq C\epsilon^{-7/2}$, the error estimate of HDG elliptic projection (3.17a),

446 the estimate (3.32) and the HDG Sobolev imbedding (3.2b) imply

$$C\epsilon^{-1} \|u_{Ih} - u\|_{L^{2}(\Omega)} \|\psi_{h}\|_{L^{4}(\Omega)}^{2}$$

$$\leq C\epsilon^{-1} h^{2} \|u\|_{H^{2}} \left(\|K_{h}(\psi_{h}, \widehat{\psi}_{h})\|_{\mathcal{T}_{h}}^{2} + \|h_{K}^{-\frac{1}{2}} (\Pi_{k}^{\partial} \psi_{h} - \widehat{\psi}_{h})\|_{\partial \mathcal{T}_{h}}^{2} \right)$$

$$\leq C\epsilon^{-9/2} h^{2} \left(\|K_{h}(\psi_{h}, \widehat{\psi}_{h})\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-\frac{1}{2}} (\Pi_{k}^{\partial} \psi_{h} - \widehat{\psi}_{h})\|_{\partial \mathcal{T}_{h}}^{2} \right).$$

451 Finally, utilizing (3.33) gives

$$\begin{aligned}
452 & \left\| \|\nabla \Delta^{-1} \psi_h\|_{L^2(\Omega)}^2 - \|\nabla \Delta^{-1} \psi\|_{L^2(\Omega)}^2 \right\| \leq 2 \|\nabla \Delta^{-1} (\psi_h - \psi)\|_{L^2(\Omega)}^2 + \|\nabla \Delta^{-1} \psi_h\|_{L^2(\Omega)}^2 \\
453 & \leq 2 \|\psi_h - \psi\|_{L^2(\Omega)}^2 + \|\nabla \Delta^{-1} \psi_h\|_{L^2(\Omega)}^2
\end{aligned}$$

$$454
_{455} \leq Ch^2 \left(\|K_h(\psi_h, \widehat{\psi}_h)\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-\frac{1}{2}} (\Pi_k^{\partial} \psi_h - \widehat{\psi}_h)\|_{\partial \mathcal{T}_h}^2 \right) + \|\nabla \Delta^{-1} \psi_h\|_{L^2(\Omega)}^2.$$

456 Therefore,

466

467

468

469

475

476

477

457
$$\mathcal{L}_{h} - (1 - \beta)\mathcal{L}$$
458
$$\geq g(\epsilon, h) \left(\|K_{h}(\psi, \widehat{\psi}_{h})\|_{L^{2}(\Omega)}^{2} + \|h_{\mathcal{T}}^{-\frac{1}{2}}(\Pi_{k}^{\partial}\psi_{h} - \widehat{\psi}_{h})\|_{\partial \mathcal{T}_{h}}^{2} \right)$$
459
$$+ (c_{0} - 2C_{0}) \|\nabla \Delta^{-1}\psi_{h}\|_{L^{2}(\Omega)}^{2} + \|\psi_{h}\|_{-1,h}^{2},$$
461 with $g(\epsilon, h) := \beta \epsilon - C\epsilon^{-1}h^{2} - C\epsilon^{-4/3}h^{4/3} - C\epsilon^{-9/2}h^{2} - Ch^{2}.$

with
$$g(\epsilon, h) := \beta \epsilon - C \epsilon^{-1} h^{2} - C \epsilon^{-1} h^{3} - C \epsilon^{-3} h^{3} - C \epsilon^{-3} h^{2} - C h^{2}$$
.

Thus if $c_{0} = 2C_{0}$ and $h \leq C \min\{\beta^{1/2} \epsilon^{11/4}, \beta^{3/4} \epsilon^{7/4}\}$, then

$$\mathcal{L}_h - (1 - \beta)\mathcal{L} \ge 0,$$

so
$$\mathcal{L}_h \geq (1-\beta)\mathcal{L} \geq 0$$
. This establishes the spectral estimate (3.31).

4. Stability of the HDG formulation. In this section we obtain stability estimates of the HDG method (2.2). Throughout, C denotes a generic constant that may depend on the initial condition and final time T but independent of ϵ , h and Δt . We assume that the initial energy is uniformly bounded in terms of ϵ , i.e.

$$\frac{470}{471} \quad (4.1) \qquad \frac{1}{4\epsilon} \|(u_h^0)^2 - 1\|_{\mathcal{T}_h}^2 + \frac{\epsilon}{2} \|\boldsymbol{q}_h^0\|_{\mathcal{T}_h}^2 + \frac{\epsilon}{2} \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} u_h^0 - \widehat{u}_h^0)\|_{\partial \mathcal{T}_h}^2 \le C,$$

and that $||\phi_h^0||_{\mathcal{T}_h} \leq \frac{C}{\epsilon}$. This assumption is reasonable from the standpoint of sharp interface limit of the Cahn-Hilliard free energy functional, cf. [43]. Relaxed assumption where the constant C is replaced by $\epsilon^{-\sigma_1}$ is utilized in [35, 34].

By an elementary fixed point argument and energy method, the unconditional unique solvability of the HDG scheme (2.2) is established in [10]. The basic energy stability bounds are provided in the following lemma.

LEMMA 4.1. For any $h, \Delta t > 0$ and m = 1, 2, ..., N, the following stability bounds hold for the solution to the HDG scheme

480 (4.2)
$$\frac{1}{4\epsilon} \| (u_h^m)^2 - 1 \|_{\mathcal{T}_h}^2 + \frac{\epsilon}{2} \left(\| \boldsymbol{q}_h^m \|_{\mathcal{T}_h}^2 + \| h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} u_h^m - \widehat{u}_h^m) \|_{\partial \mathcal{T}_h}^2 \right)$$

$$+ \Delta t \sum_{n=1}^m \left(\| \boldsymbol{p}_h^n \|_{\mathcal{T}_h}^2 + \| h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} \phi_h^n - \widehat{\phi}_h^n) \|_{\partial \mathcal{T}_h}^2 \right) \leq C.$$

483 Proof. One takes $(\mathbf{r}_2, w_2, \mu_2) = (\mathbf{0}, \partial_t^+ u_h^n, \partial_t^+ \widehat{u}_h^n)$ in (2.2b) to get

$$(4.3) \qquad (\epsilon^{-1}F(u_h^n, u_h^{n-1}), \partial_t^+ u_h^n)_{\mathcal{T}_h} + \epsilon(\nabla \cdot \boldsymbol{q}_h^n, \partial_t^+ u_h^n)_{\mathcal{T}_h} - \epsilon(\boldsymbol{q}_h^n \cdot \boldsymbol{n}, \partial_t^+ \widehat{u}_h^n)_{\partial \mathcal{T}_h} + \epsilon(h_h^{-1}(\Pi_h^2 u_h^n - \widehat{u}_h^n), \partial_t^+(\Pi_h^2 u_h^n - \widehat{u}_h^n))_{\partial \mathcal{T}_h} - (\phi_h^n, \partial_t^+ u_h^n)_{\mathcal{T}_h} = 0.$$

Then one applies ∂_t^+ to (2.2b) and take $(\mathbf{r}_2, w_2, \mu_2) = (\mathbf{q}_h^n, 0, 0)$ to get

$$486 \quad (4.4) \qquad \epsilon(\partial_t^+ \mathbf{q}_h^n, \mathbf{q}_h^n)_{\mathcal{T}_h} - \epsilon(\partial_t^+ u_h^n, \nabla \cdot \mathbf{q}_h^n)_{\mathcal{T}_h} + \epsilon \langle \partial_t^+ \widehat{u}_h^n, \mathbf{q}_h^n \cdot \mathbf{n} \rangle_{\partial \mathcal{T}_h} = 0.$$

Likewise, taking $(\mathbf{r}_1, w_1, \mu_1) = (\mathbf{p}_h^n, \phi_h^n, \widehat{\phi}_h^n)$ in (2.2a) one obtains

$$(\partial_t^+ u_h^n, \phi_h^n)_{\mathcal{T}_h} + \|\boldsymbol{p}_h^n\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2}(\Pi_k^{\partial} \phi_h^n - \widehat{\phi}_h^n)\|_{\partial \mathcal{T}_h}^2 = 0.$$

Taking the summation of (4.3), (4.4) and (4.5) gives

$$492 \quad \epsilon^{-1}(F(u_h^n, u_h^{n-1}), \partial_t^+ u_h^n)_{\mathcal{T}_h} + \epsilon(\partial_t^+ q_h^n, q_h^n)_{\mathcal{T}_h} + \epsilon\langle h_K^{-1}(\Pi_k^\partial u_h^n - \widehat{u}_h^n), \partial_t^+(\Pi_k^\partial u_h^n - \widehat{u}_h^n)\rangle_{\partial \mathcal{T}_h}$$

$$493 + \|\boldsymbol{p}_h^n\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} \phi_h^n - \widehat{\phi}_h^n)\|_{\partial \mathcal{T}_h}^2 = 0.$$

Recall that $F(u_h^n, u_h^{n-1}) = (u_h^n)^3 - u_h^{n-1}$, and the identity

$$(a^3 - b)(a - b) = \frac{1}{4}[(a^2 - 1)^2 - (b^2 - 1)^2 + (a^2 - b^2)^2 + 2a^2(a - b)^2 + 2(a - b)^2].$$

495 One obtains

496
$$\frac{1}{4\epsilon} \|(u_h^n)^2 - 1\|_{\mathcal{T}_h}^2 + \frac{\Delta t \epsilon}{2} (\|\boldsymbol{q}_h^n\|_{\mathcal{T}_h}^2 + \|\boldsymbol{h}_{\mathcal{T}}^{-1/2} (\boldsymbol{\Pi}_k^{\partial} u_h^n - \widehat{\boldsymbol{u}}_h^n)\|_{\partial \mathcal{T}_h}^2)$$

497
$$+ \Delta t(\|\boldsymbol{p}_{h}^{n}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}\phi_{h}^{n} - \widehat{\phi}_{h}^{n})\|_{\partial\mathcal{T}_{h}}^{2})$$

$$\frac{498}{499} \leq \frac{1}{4\epsilon} \|(u_h^{n-1})^2 - 1\|_{\mathcal{T}_h}^2 + \frac{\Delta t\epsilon}{2} (\|\boldsymbol{q}_h^{n-1}\|_{\mathcal{T}_h}^2 + \|\boldsymbol{h}_{\mathcal{T}}^{-1/2} (\boldsymbol{\Pi}_k^{\partial} \boldsymbol{u}_h^{n-1} - \widehat{\boldsymbol{u}}_h^{n-1})\|_{\partial \mathcal{T}_h}^2).$$

The inequality (4.2) follows from taking summation of the above equation from n=1

to
$$n = m$$
. This completes the proof.

From Lemma 4.1 one derives the following estimates.

Lemma 4.2. For $h, \Delta t > 0$ there holds

504 (4.6)
$$||u_h^m||_{L^4}^4 + \Delta t \sum_{n=1}^m ||\nabla \phi_h^n||_{\mathcal{T}_h}^2 \le C, \quad ||\nabla u_h^m||_{\mathcal{T}_h}^2 \le \frac{C}{\epsilon},$$

505 (4.7)
$$\|\phi_h^m\|_{\mathcal{T}_h}^2 + \sum_{n=1}^m \|\phi_h^n - \phi_h^{n-1}\|_{\mathcal{T}_h}^2 + \epsilon \Delta t \sum_{n=1}^m \|\partial_t^+ u_h^n\|_{\mathcal{T}_h}^2 \le \frac{C}{\epsilon^7}.$$

Proof. Inequalities (4.6) are consequences of the estimate (4.2) and the inequality (3.6). Taking $(\mathbf{r}_2, w_2, \mu_2) = (\mathbf{0}, 1, 1)$ in (2.2b) yields

$$|(\phi_h^n, 1)_{\mathcal{T}_h}| = \frac{1}{\epsilon} |(F(u_h^n, u_h^{n-1}), 1)_{\mathcal{T}_h}| \le \frac{1}{\epsilon} (||u_h^n||_{L^3(\Omega)}^3 + ||u_h^n||_{L^1(\Omega)}) \le \frac{C}{\epsilon}.$$

In light of the stability bounds (4.2), it follows from the triangle inequality, the HDG

512 Sobolev inequality (3.2b), and the inequality (3.6) that

513 (4.8)
$$\Delta t \sum_{n=1}^{m} \|\phi_h^n\|_{\mathcal{T}_h}^2 \le \frac{C}{\epsilon^2}.$$

Applying ∂_t^+ to (2.2b) gives

516 (4.9a)
$$\epsilon \mathcal{A}(\partial_t^+ \boldsymbol{q}_h^n, \partial_t^+ u_h^n, \partial_t^+ \widehat{u}_h^n; \boldsymbol{r}_2, w_2, \mu_2) + (\epsilon^{-1} \partial_t^+ F(u_h^n, u_h^{n-1}), w_2)_{\mathcal{T}_h}$$

$$\frac{1}{517} - (\partial_t^+ \phi_h^n, w_2)_{\mathcal{T}_h} = 0.$$

Taking
$$(\boldsymbol{r}_1, w_1, \mu_1) = \epsilon(-\partial_t^+ \boldsymbol{q}_h^n, \partial_t^+ u_h^n, \partial_t^+ \widehat{u}_h^n)$$
 in (2.2a), $(\boldsymbol{r}_2, w_2, \mu_2) = (\boldsymbol{p}_h^n, -\phi_h^n, -\widehat{\phi}_h^n)$

520 in (4.9a), one obtains

521
$$\epsilon(\partial_t^+ u_h^n, \partial_t^+ u_h^n)_{\mathcal{T}_h} - \epsilon \mathcal{A}(\boldsymbol{p}_h^n, \phi_h^n, \widehat{\phi}_h^n; \partial_t^+ \boldsymbol{q}_h^n, -\partial_t^+ u_h^n, -\partial_t^+ \widehat{u}_h^n) = 0,$$
522
$$\epsilon \mathcal{A}(\partial_t^+ \boldsymbol{q}_h^n, \partial_t^+ u_h^n, \partial_t^+ \widehat{u}_h^n; \boldsymbol{p}_h^n, -\phi_h^n, -\widehat{\phi}_h^n)$$
523
$$+ \left(\epsilon^{-1} \partial_t^+ F(u_h^n, u_h^{n-1}), -\phi_h^n\right)_{\mathcal{T}_h} - (\partial_t^+ \phi_h^n, -\phi_h^n)_{\mathcal{T}_h} = 0.$$

524 Taking summation of the two equations, one obtains

$$(\partial_t^+ \phi_h^n, \phi_h^n)_{\mathcal{T}_h} + \epsilon \|\partial_t^+ u_h^n\|_{\mathcal{T}_h}^2 = \epsilon^{-1} (\partial_t^+ F(u_h^n, u_h^{n-1}), \phi_h^n)_{\mathcal{T}_h},$$

527 and hence

$$\|\phi_{h}^{m}\|_{\mathcal{T}_{h}}^{2} + \sum_{n=1}^{m} \|\phi_{h}^{n} - \phi_{h}^{n-1}\|_{\mathcal{T}_{h}}^{2} + 2\Delta t \epsilon \sum_{n=1}^{m} \|\partial_{t}^{+} u_{h}^{n}\|_{\mathcal{T}_{h}}^{2}$$

$$= 2\epsilon^{-1}\Delta t \sum_{n=1}^{m} \left(\partial_{t}^{+} F(u_{h}^{n}, u_{h}^{n-1}), \phi_{h}^{n}\right)_{\mathcal{T}_{h}} + \|\phi_{h}^{0}\|_{\mathcal{T}_{h}}^{2}.$$
529

By Hölder's inequality and the HDG Sobolev inequality in Lemma 3.1 one derives

$$\frac{\Delta t}{\epsilon} \sum_{n=1}^{m} \left(\partial_{t}^{+} F(u_{h}^{n}, u_{h}^{n-1}), \phi_{h}^{n} \right)_{\mathcal{T}_{h}}$$

$$\leq \frac{C\Delta t}{\epsilon} \sum_{n=1}^{m} \|\partial_{t}^{+} u_{h}^{n}\|_{\mathcal{T}_{h}} \|\phi_{h}^{n}\|_{L^{6}(\Omega)} \left(\|u_{h}^{n}\|_{L^{6}(\Omega)}^{2} + \|u_{h}^{n-1}\|_{L^{6}(\Omega)}^{2} + 1 \right)$$

$$\leq \frac{C\Delta t}{\epsilon} \sum_{n=1}^{m} \|\partial_{t}^{+} u_{h}^{n}\|_{\mathcal{T}_{h}} \|\phi_{h}^{n}\|_{L^{6}(\Omega)} \left(\|u_{h}^{n}\|_{\mathcal{T}_{h}}^{2} + \|u_{h}^{n-1}\|_{\mathcal{T}_{h}}^{2} + \|q_{h}^{n}\|_{\mathcal{T}_{h}}^{2} + \|q_{h}^{n-1}\|_{\mathcal{T}_{h}}^{2} \right)$$

$$+ \|h_{K}^{-1/2} (\Pi_{h}^{2} u_{h}^{n} - \widehat{u}_{h}^{n})\|_{\partial \mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2} (\Pi_{h}^{2} u_{h}^{n-1} - \widehat{u}_{h}^{n-1})\|_{\partial \mathcal{T}_{h}} + 1 \right)$$

$$\leq \frac{C\Delta t}{\epsilon^{2}} \sum_{n=1}^{m} \|\partial_{t}^{+} u_{h}^{n}\|_{\mathcal{T}_{h}} \|\phi_{h}^{n}\|_{L^{6}(\Omega)}$$

$$\leq \frac{\epsilon \Delta t}{2} \sum_{n=1}^{m} \|\partial_{t}^{+} u_{h}^{n}\|_{\mathcal{T}_{h}}^{2} + \frac{C\Delta t}{\epsilon^{5}} \sum_{n=1}^{m} \|\phi_{h}^{n}\|_{L^{6}(\Omega)}^{2}.$$

Hence (4.11) implies that

$$\|\phi_h^m\|_{\mathcal{T}_h}^2 + \sum_{n=1}^m \|\phi_h^n - \phi_h^{n-1}\|_{\mathcal{T}_h}^2 + \epsilon \Delta t \sum_{n=1}^m \|\partial_t^+ u_h^n\|_{\mathcal{T}_h}^2 \le \frac{C\Delta t}{\epsilon^5} \sum_{n=1}^m \|\phi_h^n\|_{L^6(\Omega)}^2 + \|\phi_h^0\|_{\mathcal{T}_h}^2.$$

541 An application of the HDG Sobolev embedding inequality Lemma 3.1 then gives

$$\|\phi_{h}^{m}\|_{\mathcal{T}_{h}}^{2} + \sum_{n=1}^{m} \|\phi_{h}^{n} - \phi_{h}^{n-1}\|_{\mathcal{T}_{h}}^{2} + \epsilon \Delta t \sum_{n=1}^{m} \|\partial_{t}^{+} u_{h}^{n}\|_{\mathcal{T}_{h}}^{2}$$

$$\leq \frac{C \Delta t}{\epsilon^{5}} \sum_{n=1}^{m} (\|\boldsymbol{p}_{h}^{n}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2} (\Pi_{k}^{\partial} \phi_{h}^{n} - \widehat{\phi}_{h}^{n})\|_{\partial \mathcal{T}_{h}}^{2} + \|\phi_{h}^{n}\|_{\mathcal{T}_{h}}^{2}) + \|\phi_{h}^{0}\|_{\mathcal{T}_{h}}^{2}$$

$$\leq \frac{C}{\epsilon^{7}},$$

$$\leq \frac{C}{\epsilon^{7}},$$

where one uses the estimate (4.8) and the bounds in Lemma 4.1 in the derivation of the last step. This finishes the proof.

LEMMA 4.3. Let u_h^n be the solution of (2.2). For all n = 1, 2, ..., N, we have

$$\|\Delta_h u_h^n\|_{\mathcal{T}_h} \le C\epsilon^{-\frac{7}{2}},$$

548

where C depends on ϵ , T and the initial condition.

Proof. We take $(r_2, w_2, \mu_2) = (\mathbf{0}, \Delta_h u_h^n, 0)$ in (2.2b) to get

$$\left(\epsilon^{-1}F(u_h^n, u_h^{n-1}), \Delta_h u_h^n\right)_{\mathcal{T}_h} - \epsilon \|\Delta_h u_h^n\|_{\mathcal{T}_h}^2 - (\phi_h^n, \Delta_h u_h^n)_{\mathcal{T}_h} = 0.$$

555 By the Cauchy-Schwarz inequality, one gets

$$\begin{aligned}
\delta &= \delta \|\Delta_{h} u_{h}^{n}\|_{\mathcal{T}_{h}}^{2} = \left(\epsilon^{-1} F(u_{h}^{n}, u_{h}^{n-1}), \Delta_{h} u_{h}^{n}\right)_{\mathcal{T}_{h}} - (\phi_{h}^{n}, \Delta_{h} u_{h}^{n})_{\mathcal{T}_{h}} \\
&\leq \epsilon^{-1} (\|u_{h}^{n}\|_{L^{6}(\Omega)}^{3} + \|u_{h}^{n}\|_{\mathcal{T}_{h}}) \|\Delta_{h} u_{h}^{n}\|_{\mathcal{T}_{h}} + \|\phi_{h}^{n}\|_{\mathcal{T}_{h}} \|\Delta_{h} u_{h}^{n}\|_{\mathcal{T}_{h}}.
\end{aligned}$$

Next using the HDG Sobolev inequality (3.2a) and Lemma 4.1 one obtains

560
$$||u_{h}^{n}||_{L^{6}(\Omega)} \leq C \left(||u_{h}^{n}||_{\mathcal{T}_{h}} + ||\nabla u_{h}^{n}||_{\mathcal{T}_{h}} + ||h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}u_{h}^{n} - \widehat{u}_{h}^{n})||_{\partial\mathcal{T}_{h}} \right)$$

$$\leq C \left(||u_{h}^{n}||_{L^{4}(\Omega)} + ||\nabla u_{h}^{n}||_{\mathcal{T}_{h}} + ||h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}u_{h}^{n} - \widehat{u}_{h}^{n})||_{\partial\mathcal{T}_{h}} \right)$$

$$\leq C\epsilon^{-\frac{1}{2}}.$$

- Then the desired result follows from Lemma 4.2 and Young's inequality. □
- Using Lemma 3.8 and Lemma 4.3 one deduces the uniform estimate of u_h^n .
- LEMMA 4.4. Let u_h^n be the solution of (2.2), then for all n = 1, 2, ..., N, we have

$$\|u_h^n\|_{L^{\infty}(\Omega)} \le C\epsilon^{-\frac{7}{2}}.$$

5. Error analysis. In this section, we establish the optimal convergence result for the HDG scheme for solving the Cahn-Hilliard equation. We prove the main convergence result by performing error estimates first in the negative norm, then in the L^2 norm for the scalar variables and flux variables, respectively. Throughout, we assume the data and the solution of (1.1) are smooth enough. For convenience, we shall also adopt the notation $||a,b||_{L^p} := ||a||_{L^p} + ||b||_{L^p}$.

589

5.1. The main result.

THEOREM 5.1. Assume the same conditions as in Proposition 1 in [35] so that the spectral estimate of the Cahn-Hilliard operator holds. Let $(\mathbf{p}, \phi, \mathbf{q}, u)$ and $(\mathbf{p}_h^n, \phi_h^n, \mathbf{q}_h^n, \mathbf{q}_h^n, \mathbf{q}_h^n, \mathbf{q}_h^n)$ be the solutions of (2.1) and (2.2), respectively. Furthermore, assume the solution $(\mathbf{p}, \phi, \mathbf{q}, u)$ attains the maximum regularity for the best approximation results in (3.1). Then provided

581
$$h \leq C \min \left\{ \epsilon^{\frac{17}{4}}, \quad \epsilon^{\frac{7}{4-d}}, \quad \left(\frac{\epsilon}{C(T, u, \phi)}\right)^{\frac{37}{2(k+2)}} \right\},$$

$$583$$

$$\Delta t \leq C \epsilon^{60},$$

the following optimal error estimates hold for polynomials of degree $k \geq 0$

$$\max_{1 \le n \le N} \|u^n - u_h^n\|_{L^2(\Omega)}^2 + \Delta t \sum_{n=1}^N \|\phi^n - \phi_h^n\|_{L^2(\Omega)}^2 \le \frac{1}{\epsilon^{26}} C(T, \epsilon, u, \phi) (h^{k+2} + \Delta t)^2,$$

$$\max_{1 \le n \le N} \|\boldsymbol{q}^n - \boldsymbol{q}_h^n\|_{L^2(\Omega)}^2 + \Delta t \sum_{n=1}^N \|\boldsymbol{p}^n - \boldsymbol{p}_h^n\|_{L^2(\Omega)}^2 \le \frac{1}{\epsilon^{24}} C(T, \epsilon, u, \phi) (h^{k+1} + \Delta t)^2,$$

588 where
$$C(T, u, \phi) := Ce^{CT}(||u, \partial_t u||^2_{L^2(H^{k+2})} + ||\phi||^2_{L^2(H^{k+2})} + ||\partial_{tt} u||^2_{L^2(L^2)} + 1).$$

5.2. Proof of Theorem **5.1.** To simplify notation, we define

590 (5.1a)
$$e_h^{p^n} := p_{Ih}^n - p_h^n, \quad e_h^{\phi^n} := \phi_{Ih}^n - \phi_h^n, \quad e_h^{\widehat{\phi}^n} := \widehat{\phi}_{Ih}^n - \widehat{\phi}_h^n,$$

By the definition of \mathcal{A} in (2.2d) and the HDG elliptic projection (3.16), for all $(\mathbf{r}_1, w_1, \mu_1), (\mathbf{r}_2, w_2, \mu_2)$ in $\mathbf{V}_h \times W_h \times M_h$ one obtains the error equations

595 (5.2a)
$$(\partial_t^+ e_h^{u^n}, w_1)_{\mathcal{T}_h} + \mathcal{A}(e_h^{\mathbf{p}^n}, e_h^{\phi^n}, e_h^{\widehat{\phi}^n}; \mathbf{r}_1, w_1, \mu_1) = (\partial_t^+ u_{Ih}^n - \partial_t u^n, w_1)_{\mathcal{T}_h},$$

596 (5.2b)
$$\epsilon \mathcal{A}(e_h^{\mathbf{q}^n}, e_h^{\mathbf{q}^n}, e_h^{\mathbf{q}^n}; \mathbf{r}_2, w_2, \mu_2)_{\mathcal{T}_h} - (e_h^{\phi^n}, w_2)_{\mathcal{T}_h} = (\phi^n - \phi_{Ih}^n, w_2)_{\mathcal{T}_h}$$

$$+ \epsilon^{-1} \Big(F(u_h^n, u_h^{n-1}) - f(u^n), w_2 \Big)_{\mathcal{T}_h}.$$

We divide the error analysis into three lemmas. We first obtain a non-optimal error estimate in the negative norm.

601 Lemma 5.2 (Error estimates in the negative norm). Under the same conditions 602 as the discrete spectral estimate in Lemma 3.9, provided

603
$$h \le C \min \left\{ \epsilon^{\frac{17}{4}}, \quad \epsilon^{\frac{7}{4-d}}, \quad \left(\frac{\epsilon}{C(T, u, \phi)}\right)^{\frac{37}{2(k+2)}} \right\},$$

$$\Delta t \le C \epsilon^{60},$$

606 then

607 (5.3)
$$\max_{1 \le n \le N} \|e_h^{u^n}\|_{-1,h}^2 + \frac{4\epsilon^4 \Delta t}{1 - \epsilon^3} \sum_{n=1}^N \left(\|e_h^{\mathbf{q}^n}\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} e_h^{u^n} - e_h^{\widehat{u}^n})\|_{\partial \mathcal{T}_h}^2 \right)$$

608
$$\leq C(T, u, \phi) \epsilon^{-7} ((\Delta t)^2 + h^{2(k+2)}),$$

$$\text{ on } \quad \text{where } C(T,u,\phi) := Ce^{CT}(||u,\partial_t u||^2_{L^2(H^{k+2})} + ||\phi||^2_{L^2(H^{k+2})} + ||\partial_{tt} u||^2_{L^2(L^2)} + 1).$$

610 Proof. Taking
$$(\mathbf{r}_1, w_1, \mu_1) = (-\mathbf{\Pi}_{\mathbf{V}} e_h^{u^n}, \Pi_{W} e_h^{u^n}, \Pi_{M} e_h^{u^n})$$
 in (5.2a), $(\mathbf{r}_2, w_2, \mu_2) = (e_h^{\mathbf{q}^n}, e_h^{u^n}, e_h^{u^n})$ in (5.2b), adding the resulting equations, one obtains

$$(\partial_t^+ e_h^{u^n}, \Pi_W e_h^{u^n})_{\mathcal{T}_h} + \epsilon \|e_h^{q^n}\|_{\mathcal{T}_h}^2 + \epsilon \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} e_h^{u^n} - e_h^{\widehat{u}^n})\|_{\partial \mathcal{T}_h}^2$$

613
$$+ \epsilon^{-1} \Big(f(u^n) - F(u_h^n, u_h^{n-1}), e_h^{u^n} \Big)_{T_i}$$

Utilizing Definition 3.4 and (2.2d), one has 616

617
$$(\partial_t^+ e_h^{u^n}, \Pi_W e_h^{u^n})_{\mathcal{T}_h} = \mathcal{A}(\Pi_V \partial_t^+ e_h^{u^n}, \Pi_W \partial_t^+ e_h^{u^n}, \Pi_M \partial_t^+ e_h^{u^n}; \mathbf{0}, \Pi_W e_h^{u^n}, \Pi_M e_h^{u^n})$$

$$= (\nabla \cdot \mathbf{\Pi}_{\mathbf{V}} \partial_t^+ e_h^{u^n}, \Pi_W e_h^{u^n})_{\mathcal{T}_h} - \langle \mathbf{n} \cdot \mathbf{\Pi}_{\mathbf{V}} \partial_t^+ e_h^{u^n}, \Pi_M e_h^{u^n} \rangle_{\partial \mathcal{T}_h}$$

$$+ \langle h_K^{-1}(\Pi_k^{\partial}\Pi_W e_h^{u^n} - \Pi_M e_h^{u^n}), \partial_t^+(\Pi_k^{\partial}\Pi_W e_h^{u^n} - \Pi_M e_h^{u^n}) \rangle_{\partial \mathcal{T}_h}.$$

On the other hand,
$$\mathcal{A}(\mathbf{\Pi}_{\mathbf{V}}e_h^{u^n}, \Pi_{W}e_h^{u^n}, \Pi_{M}e_h^{u^n}; \mathbf{r}_h, w_h, \mu_h) = (e_h^{u^n}, w_h)_{\mathcal{T}_h}$$
. With $\mathbf{r}_h = \mathbf{\Pi}_{\mathbf{V}}\partial_t^+e_h^{u^n}, w_h = \mu_h = 0$ it follows

$$\mathbb{G}_{24}^{23} \qquad (\Pi_W e_h^{u^n}, \nabla \cdot \boldsymbol{\Pi}_{\boldsymbol{V}} \partial_t^+ e_h^{u^n})_{\mathcal{T}_h} - \langle \Pi_M e_h^{u^n}, \boldsymbol{n} \cdot \boldsymbol{\Pi}_{\boldsymbol{V}} \partial_t^+ e_h^{u^n} \rangle_{\partial \mathcal{T}_h} = (\boldsymbol{\Pi}_{\boldsymbol{V}} e_h^{u^n}, \partial_t^+ \boldsymbol{\Pi}_{\boldsymbol{V}} e_h^{u^n})_{\mathcal{T}_h}.$$

- Hence $(\partial_t^+ e_h^{u^n}, \Pi_W e_h^{u^n})_{\mathcal{T}_h} = \frac{1}{2} \partial_t^+ \|e_h^{u^n}\|_{-1,h}^2 + \frac{\Delta t}{2} \|\partial_t^+ e_h^{u^n}\|_{-1,h}^2$. Therefore one obtains 625
- the following error equation 626

627 (5.4)
$$\frac{1}{2} \partial_t^+ \|e_h^{u^n}\|_{-1,h}^2 + \frac{\Delta t}{2} \|\partial_t^+ e_h^{u^n}\|_{-1,h}^2 + \epsilon \left(\|e_h^{q^n}\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} e_h^{u^n} - e_h^{\widehat{u}^n})\|_{\partial \mathcal{T}_h}^2 \right)$$

$$\begin{array}{ll}
628 & +\epsilon^{-1} \Big(f(u^n) - F(u_h^n, u_h^{n-1}), e_h^{u^n} \Big)_{\mathcal{T}_h} = (\phi^n - \phi_{Ih}^n, e_h^{u^n})_{\mathcal{T}_h} + (\partial_t^+ u_{Ih}^n - \partial_t u^n, \Pi_W e_h^{u^n})_{\mathcal{T}_h}.
\end{array}$$

The right-hand side of (5.4) is estimated as follows 630

631 (5.5)
$$|(\phi^n - \phi_{Ih}^n, e_h^{u^n})_{\mathcal{T}_h} + (\partial_t^+ u_{Ih}^n - \partial_t u^n, \Pi_W e_h^{u^n})_{\mathcal{T}_h}|$$

$$\leq C\rho_1^n + \frac{\epsilon^4}{1 - \epsilon^3} (\|e_h^{\mathbf{q}^n}\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2} (\Pi_h^{\partial} e_h^{u^n} - e_h^{\widehat{u}^n})\|_{\partial \mathcal{T}_h}^2) + \|e_h^{u^n}\|_{-1,h}^2,$$

634 with
$$\rho_1^n := \frac{1}{\epsilon^4} \|\phi^n - \phi_{Ih}^n\|_{\mathcal{T}_h}^2 + \|\partial_t^+ u_{Ih}^n - \partial_t u^n\|_{\mathcal{T}_h}^2$$
. Since $F(u_h^n, u_h^{n-1}) = (u_h^n)^3 - u_h^{n-1}$, 635 the nonlinear term can be written as

635

636
$$f(u^n) - F(u_h^n, u_h^{n-1})$$

$$= f(u^n) - f(u_{Ih}^n) + f'(u_{Ih}^n)e_h^{u^n} + 3(u_{Ih}^n)^2(e_h^{u^n})^2 + (e_h^{u^n})^3 - \Delta t \partial_t^+ u_h^n.$$

By the Cauchy-Schwartz inequality, the HDG Sobolev imbedding, the inequality (3.6) 639

and the uniform estimate (3.23), one obtains 640

641 (5.6)
$$\epsilon^{-1} \Big(f(u^n) - F(u_h^n, u_h^{n-1}), e_h^{u^n} \Big)_{\mathcal{T}_h} \ge \epsilon^{-1} \Big(f'(u_{Ih}^n) e_h^{u^n}, e_h^{u^n} \Big)_{\mathcal{T}_h} + \frac{1}{\epsilon} \|e_h^{u^n}\|_{L^4}^4$$

$$-C\rho_2^n - \frac{\epsilon^4}{1 - \epsilon^3} (\|e_h^{\mathbf{q}^n}\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2} (\Pi_h^{\partial} e_h^{u^n} - e_h^{\widehat{u}^n})\|_{\partial \mathcal{T}_h}^2) - \frac{C}{\epsilon} \|e_h^{u^n}\|_{L^3}^3,$$

where $\rho_2^n := \frac{1}{\epsilon^6} \left[\|f(u^n) - F(u_{Ih}^n, u_{Ih}^{n-1})\|_{\mathcal{T}_h}^2 + \Delta t^2 \|\partial_t^+ u_h^n\|_{\mathcal{T}_h}^2 \right]$, and the uniform bound in (3.23) has been utilized.

In light of (5.5) and (5.6), the error equation (5.4) can be written as

647 (5.7)
$$\frac{1}{2} \partial_{t}^{+} \|e_{h}^{u^{n}}\|_{-1,h}^{2} + \frac{\Delta t}{2} \|\partial_{t}^{+} e_{h}^{u^{n}}\|_{-1,h}^{2} + \frac{1}{\epsilon} \|e_{h}^{u^{n}}\|_{L^{4}}^{4}$$

$$+ \frac{1 - 7\epsilon^{3}}{1 - \epsilon^{3}} \left(\epsilon \|e_{h}^{q^{n}}\|_{\mathcal{T}_{h}}^{2} + \epsilon \|h_{\mathcal{T}}^{-1/2} (\Pi_{k}^{\partial} e_{h}^{u^{n}} - e_{h}^{\widehat{u}^{n}}) \|_{\partial \mathcal{T}_{h}}^{2} + \frac{1 - \epsilon^{3}}{\epsilon} \left(f'(u_{Ih}^{n}) e_{h}^{u^{n}}, e_{h}^{u^{n}} \right)_{\mathcal{T}_{h}} \right)$$

$$+\frac{4\epsilon^4}{1-\epsilon^3} \left(\|e_h^{\mathbf{q}^n}\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} e_h^{u^n} - e_h^{\widehat{u}^n})\|_{\partial \mathcal{T}_h}^2 \right)$$

$$\leq \|e_h^{u^n}\|_{-1,h}^2 + \frac{C}{\epsilon^8} \|e_h^{u^n}\|_{L^3}^3 + C(\rho_1^n + \rho_2^n) + C\epsilon^2 (f'(u_{Ih}^n)e_h^{u^n}, e_h^{u^n})_{\mathcal{T}_h}$$

By the uniform estimate (3.23) and the inequality (3.11), there holds

$$C\epsilon^{2} | (f'(u_{Ih}^{n})e_{h}^{u^{n}}, e_{h}^{u^{n}})_{\mathcal{T}_{h}}| \leq C\epsilon^{2} \|e_{h}^{u^{n}}\|_{\mathcal{T}_{h}}^{2}$$

$$\leq C \|e_{h}^{u^{n}}\|_{-1, h}^{2} + \frac{\epsilon^{4}}{1 - \epsilon^{3}} (\|e_{h}^{\mathbf{q}^{n}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{u^{n}} - e_{h}^{\widehat{u}^{n}})\|_{\partial \mathcal{T}_{h}}^{2}).$$

Furthermore, the interpolation inequality and the HDG Sobolev imbedding implies

$$\frac{C}{\epsilon} \|e_{h}^{u^{n}}\|_{L^{3}}^{3} \leq \frac{C}{\epsilon} \|e_{h}^{u^{n}}\|_{L^{2}}^{\frac{3}{2}} \|e_{h}^{u^{n}}\|_{L^{6}}^{\frac{3}{2}} \\
+ \frac{C}{\epsilon^{12}} \|e_{h}^{u^{n}}\|_{L^{2}}^{6} + \frac{\epsilon^{4}}{1 - \epsilon^{3}} \Big(\|e_{h}^{q^{n}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial} e_{h}^{u^{n}} - e_{h}^{\widehat{u}^{n}})\|_{\partial \mathcal{T}_{h}}^{2} \Big).$$

By the definition (3.30) and the error equation (5.2b), one has $K_h(e_h^{u^n}, e_h^{\widehat{u}^n}) = e_h^{q^n}$.

The spectral estimate (3.31) with $\beta = \epsilon^3$ then implies

659 (5.10)
$$\epsilon \|e_h^{\mathbf{q}^n}\|_{\mathcal{T}_h}^2 + \epsilon \|h_{\mathcal{T}}^{-1/2}(\Pi_k^{\partial} e_h^{u^n} - e_h^{\widehat{u}^n})\|_{\partial \mathcal{T}_h}^2 + \frac{1 - \epsilon^3}{\epsilon} (f'(u_{Ih}^n) e_h^{u^n}, e_h^{u^n})_{\mathcal{T}_h}$$
660
$$\geq -2C_0 \|\nabla(-\Delta)^{-1} e_h^{u^n}\|_{L^2}^2 - \|e_h^{u^n}\|_{-1,h}^2.$$

Defining $(-\Delta)^{-1}e_h^{u^n} = f^n$, it follows from the definition (3.8)

$$\mathcal{A}(\mathbf{\Pi}_{\mathbf{V}}e_{h}^{u^{n}}, \Pi_{W}e_{h}^{u^{n}}, \Pi_{M}e_{h}^{u^{n}}; \mathbf{r}_{h}, w_{h}, \mu_{h}) = (e_{h}^{u^{n}}, w_{h})_{\mathcal{T}_{h}} = -(\Delta f^{n}, w_{h})_{\mathcal{T}_{h}}.$$

Hence the error estimate of the HDG elliptic projection in Lemma 3.7 and the inter-

665 polation inequality (3.11) implies that

$$666 2C_0 ||\nabla(-\Delta)^{-1}e_h^{u^n}||_{L^2}^2 \le C(||\nabla[(-\Delta)^{-1}e_h^{u^n} - \Pi_W e_h^{u^n}]||_{\mathcal{T}_h}^2 + ||\nabla\Pi_W e_h^{u^n}||_{\mathcal{T}_h}^2)$$

$$667 \leq Ch^2 ||f^n||_{H^2}^2 + C ||e_h^{u^n}||_{-1,h}^2$$

$$\leq Ch^2 ||e_h^{u^n}||_{L^2}^2 + C ||e_h^{u^n}||_{-1,h}^2$$

$$669 \qquad \leq \frac{\epsilon^4}{1 - \epsilon^3} \Big(\|e_h^{\boldsymbol{q}^n}\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} e_h^{u^n} - e_h^{\widehat{u}^n})\|_{\partial \mathcal{T}_h}^2 \Big) + \frac{Ch^4}{\epsilon^4} \|e_h^{u^n}\|_{-1,h}^2 + C\|e_h^{u^n}\|_{-1,h}^2$$

$$\frac{\epsilon^{40}}{671} \leq \frac{\epsilon^{4}}{1 - \epsilon^{3}} \left(\|e_{h}^{\mathbf{q}^{n}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2} (\Pi_{k}^{\partial} e_{h}^{u^{n}} - e_{h}^{\widehat{u}^{n}})\|_{\partial \mathcal{T}_{h}}^{2} \right) + C \|e_{h}^{u^{n}}\|_{-1,h}^{2},$$

provided $h \leq \epsilon$. The estimate (5.10) now becomes

673 (5.11)
$$\epsilon \|e_h^{\mathbf{q}^n}\|_{\mathcal{T}_h}^2 + \epsilon \|h_{\mathcal{T}}^{-1/2}(\Pi_k^{\partial} e_h^{u^n} - e_h^{\widehat{u}^n})\|_{\partial \mathcal{T}_h}^2 + \frac{1 - \epsilon^3}{\epsilon} (f'(u_{Ih}^n) e_h^{u^n}, e_h^{u^n})_{\mathcal{T}_h}$$

$$\geq -\frac{\epsilon^4}{1-\epsilon^3} \left(\|e_h^{\mathbf{q}^n}\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} e_h^{u^n} - e_h^{\widehat{u}^n})\|_{\partial \mathcal{T}_h}^2 \right) - C \|e_h^{u^n}\|_{-1,h}^2$$

Taking into account of (5.8), (5.9), and (5.11), the error inequality (5.7) is now

$$\frac{1}{2}\partial_t^+ \|e_h^{u^n}\|_{-1,h}^2 + \frac{\Delta t}{2} \|\partial_t^+ e_h^{u^n}\|_{-1,h}^2 + \frac{1}{\epsilon} \|e_h^{u^n}\|_{L^4}^4$$

$$+\frac{2\epsilon^4}{1-\epsilon^3} \Big(\|e_h^{\mathbf{q}^n}\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} e_h^{u^n} - e_h^{\widehat{u}^n})\|_{\partial \mathcal{T}_h}^2 \Big)$$

$$\leq C \|e_h^{u^n}\|_{-1,h}^2 + \frac{C}{\epsilon^{12}} \|e_h^{u^n}\|_{L^2}^6 + C(\rho_1^n + \rho_2^n).$$

By the L^2 stability estimate of the numerical solution (4.6) and the L^2 error estimate of the HDG elliptic projection in Lemma 3.7, provided $h \le \epsilon^{\frac{7}{4}}$, one obtains

682 $\|e_h^{u^n}\|_{L^2}^6 \le C\|e_h^{u^n}\|_{L^2}^3$. Then the inequality (3.11) implies

$$\frac{C}{\epsilon^{12}} \|e_h^{u^n}\|_{L^2}^3 \le C \Big(\|e_h^{\mathbf{q}^n}\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} e_h^{u^n} - e_h^{\widehat{u}^n})\|_{\partial \mathcal{T}_h}^2 \Big)^{\frac{3}{4}} \|e_h^{u^n}\|_{-1,h}^{\frac{3}{2}}$$

$$\leq \frac{\epsilon^4}{1 - \epsilon^3} \left(\|e_h^{\mathbf{q}^n}\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} e_h^{u^n} - e_h^{\widehat{u}^n})\|_{\partial \mathcal{T}_h}^2 \right) + C \epsilon^{-60} \|e_h^{u^n}\|_{-1,h}^6,$$

whence (5.12) becomes

687 (5.13)
$$\frac{1}{2} \partial_t^+ \|e_h^{u^n}\|_{-1,h}^2 + \frac{\Delta t}{2} \|\partial_t^+ e_h^{u^n}\|_{-1,h}^2 + \frac{1}{\epsilon} \|e_h^{u^n}\|_{L^4}^4$$

$$+\frac{\epsilon^4}{1-\epsilon^3} \left(\|e_h^{\mathbf{q}^n}\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} e_h^{u^n} - e_h^{\widehat{u}^n})\|_{\partial \mathcal{T}_h}^2 \right)$$

$$\leq C(\|e_h^{u^n}\|_{-1,h}^2 + \epsilon^{-60}\|e_h^{u^n}\|_{-1,h}^6) + C(\rho_1^n + \rho_2^n).$$

Multiplying (5.13) by $2\Delta t$ and taking summation over n from 1 to m, one derives

691 (5.14)
$$\|e_h^{u^m}\|_{-1,h}^2 + \frac{2\epsilon^4 \Delta t}{1 - \epsilon^3} \sum_{n=1}^m \left(\|e_h^{q^n}\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} e_h^{u^n} - e_h^{\widehat{u}^n})\|_{\partial \mathcal{T}_h}^2 \right)$$

$$\leq \|e_h^{u^0}\|_{-1,h}^2 + C\Delta t \sum_{n=1}^m (\|e_h^{u^n}\|_{-1,h}^2 + \epsilon^{-60} \|e_h^{u^n}\|_{-1,h}^6) + C\Delta t \sum_{n=1}^m (\rho_1^n + \rho_2^n).$$

In view of the imbedding (3.13) and the fact $||e_h^{u^n}||_{L^2} \leq C$, one chooses $\Delta t \leq C\epsilon^{60}$

694 such that

$$C\Delta t(\|e_h^{u^n}\|_{-1,h}^2 + \epsilon^{-60}\|e_h^{u^n}\|_{-1,h}^6) \le \frac{1}{2}\|e_h^{u^n}\|_{-1,h}^2.$$

697 It follows

698 (5.15)
$$\|e_h^{u^m}\|_{-1,h}^2 + \frac{4\epsilon^4 \Delta t}{1 - \epsilon^3} \sum_{n=1}^{m} \left(\|e_h^{q^n}\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} e_h^{u^n} - e_h^{\widehat{u}^n})\|_{\partial \mathcal{T}_h}^2 \right)$$

699
$$\leq 2\|e_h^{u^0}\|_{-1,h}^2 + C\Delta t \sum_{n=1}^{m-1} (\|e_h^{u^n}\|_{-1,h}^2 + \epsilon^{-60}\|e_h^{u^n}\|_{-1,h}^6) + C\Delta t \sum_{n=1}^{m} (\rho_1^n + \rho_2^n).$$

$$500 \leq \frac{C}{\epsilon^6} h^{2(k+2)} (||u, \partial_t u||^2_{L^2(H^{k+2})} + ||\phi||^2_{L^2(H^{k+2})}) + \frac{C(\Delta t)^2}{\epsilon^7} (||\partial_{tt} u||^2_{L^2(L^2)} + 1)$$

701
$$+C\Delta t \sum_{n=1}^{m-1} (\|e_h^{u^n}\|_{-1,h}^2 + \epsilon^{-60} \|e_h^{u^n}\|_{-1,h}^6).$$

One has applied the stability estimate (4.7), the uniform estimate (3.23), the imbed-702 703 ding (3.13), and the error estimates of the HDG elliptic projection in Lemma 3.7.

Define $d_m \geq 0$ and S_m such that 704

$$S_m := \|e_h^{u^m}\|_{-1,h}^2 + \frac{2\epsilon^4 \Delta t}{1 - \epsilon^3} \sum_{n=1}^m \left(\|e_h^{q^n}\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} e_h^{u^n} - e_h^{\widehat{u}^n})\|_{\partial \mathcal{T}_h}^2 \right) + d_m$$

= right-hand side of (5.15). 706

Then 707

$$S_{m+1} - S_m \le C\Delta t S_m + C\Delta t \epsilon^{-60} S_m^3, \quad m \ge 1.$$

An application of the nonlinear Gronwall's inequality in Lemma 2.3 of [33] gives 709

710
$$S_m \le (1 + C\Delta t)^{m-1} S_1 \{1 - CS_1^2 [(1 + C\Delta t)^{2m} - (1 + C\Delta t)^2] \epsilon^{-60} (2 + C\Delta t)^{-1} \}^{-\frac{1}{2}}$$

711
$$\leq Ce^{CT}S_1 \leq C(T, \epsilon, u)\epsilon^{-7}[h^{2(k+2)} + (\Delta t)^2]$$

with $C(T, u, \phi) := Ce^{CT}(||u, \partial_t u||^2_{L^2(H^{k+2})} + ||\phi||^2_{L^2(H^{k+2})} + ||\partial_{tt} u||^2_{L^2(L^2)} + 1)$, provided 712

that 713

$$1 - CS_1^2[(1 + C\Delta t)^{2m} - (1 + C\Delta t)^2]\epsilon^{-60}(2 + C\Delta t)^{-1} \ge \frac{1}{2},$$

which is fulfilled if 716

$$h^{2(k+2)} + (\Delta t)^2 \le \frac{1}{C(T, u, \phi)} \epsilon^{37}.$$

Recalling the constraint on h from (3.31) with $\beta = \epsilon^3$, one concludes that provided 719

720
$$h \le C \min \left\{ e^{\frac{17}{4}}, \quad e^{\frac{7}{4-d}}, \quad \left(\frac{\epsilon}{C(T, u, \phi)}\right)^{\frac{37}{2(k+2)}} \right\},$$

$$\Delta t \leq C \epsilon^{60}$$

the estimate (5.3) holds. This completes the proof. 723

Next, we perform the error estimates of the scalar variables in the L^2 norm. 724

LEMMA 5.3. Under the same conditions as Lemma 5.2, the following error esti-725 726 mate holds

727
$$\Delta t \sum_{n=1}^{N} \|\phi^n - \phi_h^n\|_{L^2(\Omega)}^2 + \max_{1 \le n \le N} \|u^n - u_h^n\|_{L^2(\Omega)}^2 \le \frac{1}{\epsilon^{26}} C(T, u, \phi) (h^{k+2} + \Delta t)^2.$$

729 *Proof.* Taking
$$(\mathbf{r}_1, w_1, \mu_1) = (-e_h^{\mathbf{q}^n}, e_h^{u^n}, e_h^{\widehat{u}^n})$$
 in (5.2a) and $(\mathbf{r}_2, w_2, \mu_2) = (e_h^{\mathbf{p}^n}, e_h^{\widehat{\phi}^n})$ in (5.2b) respectively one obtains

731 (5.16)
$$(\partial_t^+ e_h^{u^n}, e_h^{u^n})_{\mathcal{T}_h} + \mathcal{A}(e_h^{p^n}, e_h^{\phi^n}, e_h^{\phi^n}; -e_h^{q^n}, e_h^{u^n}, e_h^{\widehat{u}^n}) = (\partial_t^+ u_{Ih}^n - \partial_t u^n, e_h^{u^n})_{\mathcal{T}_h},$$

732 (5.17)
$$\|e_h^{\phi^n}\|_{\mathcal{T}_h}^2 + \epsilon \mathcal{A}(e_h^{q^n}, e_h^{u^n}, e_h^{\widehat{u}^n}; e_h^{p^n}, -e_h^{\phi^n}, -e_h^{\widehat{\phi}^n}) = -(\phi^n - \phi_{Ih}^n, e_h^{\phi^n})_{\mathcal{T}_h}$$

733
$$-\epsilon^{-1} \Big(F(u_h^n, u_h^{n-1}) - f(u^n), e_h^{\phi^n} \Big)_{\mathcal{T}_b}.$$

Next, we multiply (5.16) by ϵ and add the result to (5.17) to get

735 (5.18)
$$\epsilon(\partial_t^+ e_h^{u^n}, e_h^{u^n}) + \|e_h^{\phi^n}\|_{\mathcal{T}_h}^2 = -(\phi^n - \phi_{Ih}^n, e_h^{\phi^n})_{\mathcal{T}_h}$$
736
$$-\epsilon^{-1} \Big(F(u_h^n, u_h^{n-1}) - f(u^n), e_h^{\phi^n} \Big)_{\mathcal{T}_h} + \epsilon(\partial_t^+ u_{Ih}^n - \partial_t u^n, e_h^{u^n})_{\mathcal{T}_h}.$$

738 By Lemma 4.4, there holds

739 (5.19)
$$|F(u_h^n, u_h^{n-1}) - f(u^n)| \le C(\frac{1}{\epsilon^7} + 1)|u_h^n - u^n| + \Delta t|\partial_t^+ u_h^n|.$$

Applying Cauchy-Schwarz inequality and taking summation of (5.18) from n = 1 to

742 n = m one arrives at

743
$$\epsilon \|e_{h}^{u^{m}}\|_{\mathcal{T}_{h}}^{2} + 2\epsilon \Delta t \sum_{n=1}^{m} \|e_{h}^{\phi^{n}}\|_{\mathcal{T}_{h}}^{2} + \epsilon (\Delta t)^{2} \sum_{n=1}^{N} \|\partial_{t}^{+} e_{h}^{u^{n}}\|_{\mathcal{T}_{h}}^{2}$$

$$\leq C \left(\frac{1}{\epsilon^{14}} + 1\right) \Delta t \sum_{n=1}^{m} (\|\phi^{n} - \phi_{Ih}^{n}\|_{\mathcal{T}_{h}}^{2} + \|e_{h}^{u^{n}}\|_{\mathcal{T}_{h}}^{2} + \|u^{n} - u_{Ih}^{n}\|_{\mathcal{T}_{h}}^{2})$$

$$+ C \Delta t \epsilon \sum_{n=1}^{m} \|\partial_{t}^{+} u_{Ih}^{n} - \partial_{t} u^{n}\|_{\mathcal{T}_{h}}^{2} + \frac{C}{\epsilon^{10}} (\Delta t)^{2}.$$

747 Now by Lemma 3.7 we have

$$\Delta t \sum_{n=1}^{m} \|\partial_{t}^{+} u_{Ih}^{n} - \partial_{t} u^{n}\|_{\mathcal{T}_{h}}^{2}
\leq \Delta t \sum_{n=1}^{m} (\|\partial_{t}^{+} u_{Ih}^{n} - \partial_{t}^{+} u^{n}\|_{\mathcal{T}_{h}}^{2} + \|\partial_{t}^{+} u^{n} - \partial_{t} u^{n}\|_{\mathcal{T}_{h}}^{2})
\leq \frac{1}{\Delta t} \sum_{n=1}^{m} \int_{\Omega} \left\{ \left[\int_{t_{n-1}}^{t_{n}} \partial_{t} (u_{Ih} - u) dt \right]^{2} + \left[\int_{t_{n-1}}^{t_{n}} (t - t_{n-1}) \partial_{tt} u dt \right]^{2} \right\}
\leq \int_{0}^{T} \|\partial_{t} (u_{Ih} - u)\|_{L^{2}(\Omega)}^{2} dt + (\Delta t)^{2} \int_{0}^{T} \|\partial_{tt} u\|_{L^{2}(\Omega)}^{2} dt.$$

Next by the HDG Sobolev imbedding (3.2b), the inequality (3.6), and the error estimate in the negative norm (5.3) one obtains

752
$$\Delta t \sum_{n=1}^{N} \|e_{h}^{u^{n}}\|_{\mathcal{T}_{h}}^{2} \leq C \Delta t \sum_{n=1}^{N} \left(\|e_{h}^{q^{n}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial} e_{h}^{u^{n}} - e_{h}^{\widehat{u}^{n}})\|_{\partial \mathcal{T}_{h}}^{2} \right)$$

$$\leq \epsilon^{-11} C(T, u, \phi) \left((\Delta t)^{2} + h^{2(k+2)} \right).$$

755 Therefore the approximation properties of the elliptic projection in Lemma 3.7 gives

756
$$\epsilon \|e_h^{u^m}\|_{\mathcal{T}_h}^2 + 2\Delta t \sum_{n=1}^m \|e_h^{\phi^n}\|_{\mathcal{T}_h}^2 \le \frac{1}{\epsilon^{25}} C(T, u, \phi) \left(h^{2(k+2)} + (\Delta t)^2\right).$$

This establishes the optimal error estimates of u and ϕ in the L^2 norm.

Finally one performs the error analysis of the flux variables. One has

The Lemma 5.4. Under the same conditions as Lemma 5.2 the flux variables satisfy the following error bounds

762 (5.21)
$$\max_{1 \le n \le N} \|e_h^{\mathbf{q}^n}\|_{\mathcal{T}_h}^2 + \Delta t \sum_{n=1}^N \|e_h^{\mathbf{p}^n}\|_{\mathcal{T}_h}^2 + \le C(T, u, \phi) \epsilon^{-24} ((\Delta t)^2 + h^{2(k+1)}).$$

764 *Proof.* Taking
$$(\mathbf{r}_1, w_1, \mu_1) = (e_h^{\mathbf{p}^n}, e_h^{\phi^n}, e_h^{\widehat{\phi}^n})$$
 in (5.2a) gives

765 (5.22)
$$(\partial_t^+ e_h^{u^n}, e_h^{\phi^n})_{\mathcal{T}_h} + \|e_h^{\mathbf{p}^n}\|_{\mathcal{T}_h}^2 + \|h_{\mathcal{T}}^{-1/2} (\Pi_k^{\partial} e_h^{\phi^n} - e_h^{\widehat{\phi}^n})\|_{\partial \mathcal{T}_h}^2$$
766
$$= (\partial_t^+ u_{Ih}^n - \partial_t u^n, e_h^{\phi^n})_{\mathcal{T}_h}.$$

Applying ∂_t^+ to (5.2b) and then setting $(\boldsymbol{r}_2,w_2,\mu_2)=(e_h^{\boldsymbol{q}^n},0,0)$ in the resulting equation, one obtains

$$\epsilon(\partial_t^+ e_h^{\boldsymbol{q}^n}, e_h^{\boldsymbol{q}^n})_{\mathcal{T}_h} - \epsilon(\partial_t^+ e_h^{u^n}, \nabla \cdot e_h^{\boldsymbol{q}^n})_{\mathcal{T}_h} + \epsilon \langle \partial_t^+ e_h^{\widehat{u}^n}, e_h^{\boldsymbol{q}^n} \cdot n \rangle_{\partial \mathcal{T}_h} = 0.$$

Next with $(\mathbf{r}_2, w_2, \mu_2) = (0, \partial_t^+ e_h^{u^n}, \partial_t^+ e_h^{\widehat{u}^n})$ in (5.2b) taking summation of the result with (5.22)–(5.23) yield

773 (5.24)
$$\epsilon(\partial_{t}^{+}e_{h}^{\mathbf{q}^{n}}, e_{h}^{\mathbf{q}^{n}})_{\mathcal{T}_{h}} + \epsilon\langle h_{\mathcal{T}}^{-1}(\Pi_{k}^{\partial}e_{h}^{u^{n}} - e_{h}^{\widehat{u}^{n}}), \partial_{t}^{+}(\Pi_{k}^{\partial}e_{h}^{u^{n}} - e_{h}^{\widehat{u}^{n}})\rangle_{\partial\mathcal{T}_{h}}$$
774
$$+\|e_{h}^{\mathbf{p}^{n}}\|_{\mathcal{T}_{h}}^{2} + \|h_{K}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{\phi^{n}} - e_{h}^{\widehat{\phi}^{n}})\|_{\partial\mathcal{T}_{h}}^{2} = \left(\partial_{t}^{+}u_{Ih}^{n} - \partial_{t}u^{n}, e_{h}^{\phi^{n}}\right)_{\mathcal{T}_{h}}$$
775
$$+\left(\phi^{n} - \phi_{Ih}^{n}, \partial_{t}^{+}e_{h}^{u^{n}}\right)_{\mathcal{T}_{h}} + \epsilon^{-1}\left(F(u_{h}^{n}, u_{h}^{n-1}) - f(u^{n}), \partial_{t}^{+}e_{h}^{u^{n}}\right)_{\mathcal{T}_{h}}$$
776
$$:= I_{1} + I_{2} + I_{3}.$$

The three terms I_j , j = 1...3 are estimated as follows. For I_1 , by the CauchySchwartz inequality, the HDG Sobolev inequality Lemma 3.1, and (3.6), one obtains

779
$$|I_{1}| \leq \|\partial_{t}^{+}u_{Ih}^{n} - \partial_{t}u^{n}\|_{\mathcal{T}_{h}} \|e_{h}^{\phi^{n}}\|_{\mathcal{T}_{h}}$$
780
$$\leq C\|\partial_{t}^{+}u_{Ih}^{n} - \partial_{t}u^{n}\|_{\mathcal{T}_{h}} (\|\nabla e_{h}^{\phi^{n}}\|_{\mathcal{T}_{h}} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{\phi^{n}} - e_{h}^{\widehat{\phi}^{n}})\|_{\partial\mathcal{T}_{h}})$$
781
$$\leq C\|\partial_{t}^{+}u_{Ih}^{n} - \partial_{t}u^{n}\|_{\mathcal{T}_{h}} (\|e_{h}^{\mathbf{p}^{n}}\|_{\mathcal{T}_{h}} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{\phi^{n}} - e_{h}^{\widehat{\phi}^{n}})\|_{\partial\mathcal{T}_{h}})$$
782
$$\leq C\|\partial_{t}^{+}u_{Ih}^{n} - \partial_{t}u^{n}\|_{\mathcal{T}_{h}}^{2} + \frac{1}{4} (\|e_{h}^{\mathbf{p}^{n}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{\phi^{n}} - e_{h}^{\widehat{\phi}^{n}})\|_{\partial\mathcal{T}_{h}}).$$

783 By (5.2a) with $(\mathbf{r}_1, \mu_1) = (0, 0)$ one has

784
$$|I_{2}| = |(\Pi_{k+1}^{o}\phi^{n} - \phi_{Ih}^{n}, \partial_{t}^{+}e_{h}^{u^{n}})_{\mathcal{T}_{h}}|$$

785 $\leq |\mathcal{A}(e_{h}^{\mathbf{p}^{n}}, e_{h}^{\phi^{n}}, e_{h}^{\hat{\phi}^{n}}; 0, (\Pi_{k+1}^{o}\phi^{n} - \phi_{Ih}^{n}), 0)| + |(\partial_{t}^{+}u_{Ih}^{n} - \partial_{t}u^{n}, (\Pi_{k+1}^{o}\phi^{n} - \phi_{Ih}^{n}))_{\mathcal{T}_{h}}|$

786 $\leq \|\partial_{t}^{+}u_{Ih}^{n} - \partial_{t}u^{n}\|_{\mathcal{T}_{h}} \|\Pi_{k+1}^{o}\phi^{n} - \phi_{Ih}^{n}\|_{\mathcal{T}_{h}}$

787 $+C(\|e_{h}^{\mathbf{p}^{n}}\|_{\mathcal{T}_{h}} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{\phi^{n}} - e_{h}^{\hat{\phi}^{n}})\|_{\partial\mathcal{T}_{h}})$

788 $\times (\|\nabla(\Pi_{k+1}^{o}\phi^{n} - \phi_{Ih}^{n})\|_{\mathcal{T}_{h}} + \|h_{\mathcal{T}}^{-1/2}\Pi_{k}^{\partial}(\Pi_{k+1}^{o}\phi^{n} - \phi_{Ih}^{n})\|_{\partial\mathcal{T}_{h}})$

789 $\leq C(\|\partial_{t}^{+}u_{Ih}^{n} - \partial_{t}u^{n}\|_{\mathcal{T}_{h}}^{2} + \|\Pi_{k+1}^{o}\phi^{n} - \phi_{Ih}^{n}\|_{H^{1}}^{2}) + \frac{1}{4}(\|e_{h}^{\mathbf{p}^{n}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{\phi^{n}} - e_{h}^{\hat{\phi}^{n}})\|_{\partial\mathcal{T}_{h}}),$

where one has utilizes the continuity of the operator A in (3.5), the inverse inequality,

791 the L^2 stability of the projections Π_k^{∂} and Π_{k+1}^{o} . Likewise,

792
$$|I_{3}|$$

793 $\leq \frac{C}{\epsilon^{2}} \|\Pi_{k+1}^{o} \left(F(u_{h}^{n}, u_{h}^{n-1}) - f(u^{n})\right)\|_{\mathcal{T}_{h}}^{2} + \frac{1}{4} \left(\|e_{h}^{\mathbf{p}^{n}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2} (\Pi_{k}^{\partial} e_{h}^{o^{n}} - e_{h}^{\widehat{\phi}^{n}})\|_{\partial \mathcal{T}_{h}}^{2}\right)$
794 $+ \frac{C}{\epsilon^{2}} (\|\nabla \Pi_{k+1}^{o} \left(F(u_{h}^{n}, u_{h}^{n-1}) - f(u^{n})\right)\|_{\mathcal{T}_{h}}^{2} + C\|\partial_{t}^{+} u_{Ih}^{n} - \partial_{t} u^{n}\|_{\mathcal{T}_{h}}^{2}$
795 $+ \|h_{\mathcal{T}}^{-1/2} \Pi_{k}^{\partial} \Pi_{k+1}^{o} \left(F(u_{h}^{n}, u_{h}^{n-1}) - f(u^{n}) - f(u^{n})\right)\|_{\partial \mathcal{T}_{h}}^{2}\right)$
796 $\leq C\|\partial_{t}^{+} u_{Ih}^{n} - \partial_{t} u^{n}\|_{\mathcal{T}_{h}}^{2} + \frac{1}{4} \left(\|e_{h}^{\mathbf{p}^{n}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2} (\Pi_{k}^{\partial} e_{h}^{o^{n}} - e_{h}^{\widehat{\phi}^{n}})\|_{\partial \mathcal{T}_{h}}^{2}\right)$
797 $+ \frac{C}{\epsilon^{2}} \|\Pi_{k+1}^{o} \left(F(u_{h}^{n}, u_{h}^{n-1}) - f(u^{n})\right)\|_{H^{1}}^{2}$

Taking into account of the above estimates of I_1, I_2, I_3 , multiplying (5.24) by Δt , then taking summation from n = 1 to n = m, one derives

$$\begin{aligned}
&\delta \|e_{h}^{\mathbf{q}^{m}}\|_{\mathcal{T}_{h}}^{2} + \epsilon \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{u^{m}} - e_{h}^{\widehat{u}^{m}})\| + \frac{1}{2}\Delta t \sum_{n=1}^{m} \left(\|e_{h}^{\mathbf{p}^{n}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{\phi^{n}} - e_{h}^{\widehat{\phi}^{n}})\|_{\partial\mathcal{T}_{h}}^{2}\right) \\
&\delta \|e_{h}^{\mathbf{q}^{0}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{u^{0}} - e_{h}^{\widehat{u}^{0}})\|_{\partial\mathcal{T}_{h}}^{2} + C\Delta t \sum_{n=1}^{m} \|\partial_{t}^{+}u_{Ih}^{n} - \partial_{t}u^{n}\|_{\mathcal{T}_{h}}^{2} \\
&\delta \|e_{h}^{\mathbf{q}^{0}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{u^{0}} - e_{h}^{\widehat{u}^{0}})\|_{\partial\mathcal{T}_{h}}^{2} + C\Delta t \sum_{n=1}^{m} \|\partial_{t}^{+}u_{Ih}^{n} - \partial_{t}u^{n}\|_{\mathcal{T}_{h}}^{2} \\
&\delta \|e_{h}^{\mathbf{q}^{0}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{u^{0}} - e_{h}^{\widehat{u}^{0}})\|_{\partial\mathcal{T}_{h}}^{2} + C\Delta t \sum_{n=1}^{m} \|\partial_{t}^{+}u_{Ih}^{n} - \partial_{t}u^{n}\|_{\mathcal{T}_{h}}^{2} \\
&\delta \|e_{h}^{\mathbf{q}^{0}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{u^{0}} - e_{h}^{\widehat{u}^{0}})\|_{\partial\mathcal{T}_{h}}^{2} + C\Delta t \sum_{n=1}^{m} \|\partial_{t}^{+}u_{Ih}^{n} - \partial_{t}u^{n}\|_{\mathcal{T}_{h}}^{2} \\
&\delta \|e_{h}^{\mathbf{q}^{0}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{u^{0}} - e_{h}^{\widehat{u}^{0}})\|_{\partial\mathcal{T}_{h}}^{2} + C\Delta t \sum_{n=1}^{m} \|\partial_{t}^{+}u_{Ih}^{n} - \partial_{t}u^{n}\|_{\mathcal{T}_{h}}^{2} \\
&\delta \|e_{h}^{\mathbf{q}^{0}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{u^{0}} - e_{h}^{\widehat{u}^{0}})\|_{\partial\mathcal{T}_{h}}^{2} + C\Delta t \sum_{n=1}^{m} \|\partial_{t}^{+}u_{Ih}^{n} - \partial_{t}u^{n}\|_{\mathcal{T}_{h}}^{2} \\
&\delta \|e_{h}^{\mathbf{q}^{0}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{u^{0}} - e_{h}^{\widehat{u}^{0}})\|_{\partial\mathcal{T}_{h}}^{2} + C\Delta t \sum_{n=1}^{m} \|\partial_{t}^{+}u_{Ih}^{n} - \partial_{t}u^{n}\|_{\mathcal{T}_{h}}^{2} \\
&\delta \|e_{h}^{\mathbf{q}^{0}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{u^{0}} - e_{h}^{\widehat{u}^{0}})\|_{\partial\mathcal{T}_{h}}^{2} + C\Delta t \sum_{n=1}^{m} \|\partial_{t}^{+}u_{Ih}^{n} - \partial_{t}u^{n}\|_{\mathcal{T}_{h}}^{2} \\
&\delta \|e_{h}^{\mathbf{q}^{0}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{u^{0}} - e_{h}^{\widehat{u}^{0}})\|_{\partial\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{u^{0}} - e_{h}^{\widehat{u}^{0}})\|_{\mathcal{T}_{h}}^{2} \\
&\delta \|e_{h}^{\mathbf{q}^{0}}\|_{\mathcal{T}_{h}}^{2} + \|h_{\mathcal{T}}^{-1/2}(\Pi_{k}^{\partial}e_{h}^{u^{0}} - e_{h}^{\widehat{u}^{0}})\|_{\mathcal{$$

We have applied the inverse inequality, the approximation results of the HDG elliptic projection Lemma 3.7, the uniform estimate (5.19), and the error estimate (5.3). This completes the proof.

Theorem 5.1 follows from Lemmas 5.3 to 5.4, the triangle inequality and the error estimates of the HDG elliptic projection (3.7). This finishes the proof of the main convergence result.

6. Numerical Experiments. We consider two examples on square domains in \mathbb{R}^2 . The meshes are regular triangulation by right triangles. We remark that more robust tests need to be randomized meshes or polygonal meshes. cf. [9]. These will be considered in future development of the computer codes. In the first example we use manufactured solution of the system (1.1) with explicit forcing terms; in the second example we perform simulation of spinodal decomposition and coarsening of a random field. Since the scheme is nonlinear, we solve the system iteratively by linearizing the nonlinear term using Newton's method.

Example 6.1. We take the domain to be the unit square, and the problem data u^0 is chosen so that the exact solution of the system (1.1) is given by

$$\varepsilon = 1, \quad u = \phi = e^{-t}x^2y^2(1-x)^2(1-y)^2.$$

808

809

810

811

812

813

815

816

817

818

We report the errors at the final time T=1 for polynomial degrees k=0 and k=1 in Tables 1 and 2 for the energy-splitting scheme. The observed convergence rates match the theory, where $\Delta t = h^{k+1}$.

$h/\sqrt{2}$	1/4	1/8	1/16	1/32	1/64			
$\overline{\ oldsymbol{q}-oldsymbol{q}_h\ _{\mathcal{T}_h}}$	8.6761E-04	4.8768E-04	2.5059E-04	1.2614E-04	6.3177E-05			
order	-	0.83111	0.96063	0.99025	0.99757			
$\overline{\ oldsymbol{p}-oldsymbol{p}_h\ _{\mathcal{T}_h}}$	8.9460E-04	4.9143E-04	2.5107E-04	1.2620E-04	6.3185E-05			
order	-	0.86427	0.96891	0.99232	0.99809			
$\frac{\ u-u_h\ _{\mathcal{T}_h}}{\ u-u_h\ _{\mathcal{T}_h}}$	2.5759E-04	6.7122E-05	1.6952E-05	4.2490E-06	1.0629E-06			
order	-	1.9402	1.9853	1.9963	1.9991			
$\ \phi - \phi_h\ _{\mathcal{T}_h}$	2.6295E-04	6.7806E-05	1.7076E-05	4.2768E-06	1.0697E-06			
order	-	1.9553	1.9894	1.9974	1.9993			
Table 1								

Example 6.1, k=0 with energy-splitting scheme: Errors, observed convergence orders for u, ϕ and their fluxes q and p.

$h/\sqrt{2}$	1/4	1/8	1/16	1/32	1/64			
$\overline{\ oldsymbol{q}-oldsymbol{q}_h\ _{\mathcal{T}_h}}$	1.5809E-04	4.3945E-05	1.1415E-05	2.8955E-06	7.2935E-07			
order	-	1.8470	1.9448	1.9790	1.9891			
$\overline{\ oldsymbol{p}-oldsymbol{p}_h\ _{\mathcal{T}_h}}$	1.5896E-04	4.3991E-05	1.1418E-05	2.8957E-06	7.2940E-07			
order	-	1.8534	1.9459	1.9793	1.9891			
$ u-u_h _{\mathcal{T}_h}$	4.9741E-05	6.3026E-06	7.9008E-07	9.8850E-08	1.2358E-08			
order	-	2.9804	2.9959	2.9987	2.9998			
$\ \phi - \phi_h\ _{\mathcal{T}_h}$	4.9111E-05	6.1809E-06	7.7336E-07	9.6709E-08	1.2090E-08			
order	-	2.9902	2.9986	2.9994	2.9998			
m 0								

Table 2

Example 6.1, k=1 with energy-splitting scheme: Errors, observed convergence orders for u, ϕ and their fluxes q and p.

Example 6.2. In this test, the exact solution is unknown, we take the domain $\Omega=(0,1)\times(0,1)$, $\varepsilon=0.03$, the initial condition is a random field of values that are uniformly distributed between -0.05 and 0.05. We report the solution at the time T=0.001, T=0.1 and T=0.5 for polynomial degrees k=1 in Figure 1 with $\Delta t=2.5\times10^{-4}$ and h=1/100. The plots demonstrate the dynamics of rapid initial spinodal decomposition and later stage of slow coarsening.

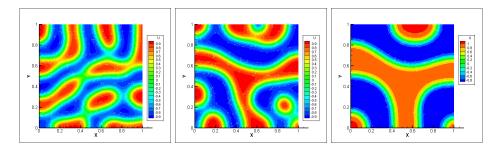


Fig. 1. Filled contour plots of the time evolution of u. Left is T=0.001, middle is T=0.1 and right is T=0.5.

831 832

833

826

828

Acknowledgments. We wish to thank the editor and the referees for many helpful suggestions that greatly improve the quality of the article.

834 REFERENCES

838

839 840

841

842

843

844

845

846 847

848 849

850

851

852

853

854

855

856

857

858

859 860

861

862

863

864 865

866 867

868

869 870

871

872 873

874

875

876 877

878

879

880

881 882

883

884

 $\begin{array}{c} 885 \\ 886 \end{array}$

887 888

889 890

- [1] Nicholas D. Alikakos, Peter W. Bates, and Xinfu Chen. Convergence of the cahn-hilliard equation to the hele-shaw model. Archive for Rational Mechanics and Analysis, 128:165–205, 1994. 10.1007/BF00375025.
 - [2] Andreas C. Aristotelous, Ohannes A. Karakashian, and Steven M. Wise. Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn-Hilliard equation with a mass source. IMA J. Numer. Anal., 35(3):1167–1198, 2015.
 - [3] Ivo Babuška and Miloš Zlámal. Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal., 10:863–875, 1973.
 - [4] Garth A. Baker. Finite element methods for elliptic equations using nonconforming elements. Math. Comp., 31(137):45-59, 1977.
 - [5] John W. Barrett, James F. Blowey, and Harald Garcke. Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal., 37(1):286–318, 1999.
 - [6] Susanne C. Brenner and L. Ridgway Scott. The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer, New York, third edition, 2008.
 - [7] Aycil Cesmelioglu, Bernardo Cockburn, Ngoc Cuong Nguyen, and Jaume Peraire. Analysis of HDG methods for Oseen equations. J. Sci. Comput., 55(2):392–431, 2013.
 - [8] Aycil Cesmelioglu, Bernardo Cockburn, and Weifeng Qiu. Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier-Stokes equations. *Math. Comp.*, 86(306):1643–1670, 2017.
 - [9] Florent Chave, Daniele A. Di Pietro, Fabien Marche, and Franck Pigeonneau. A hybrid highorder method for the Cahn-Hilliard problem in mixed form. SIAM J. Numer. Anal., 54(3):1873–1898, 2016.
 - [10] Gang Chen, Daozhi Han, John Singler, and Yangwen Zhang. On the superconvergence of a hydridizable discontinuous Galerkin method for the Cahn-Hilliard equation. arXiv:1901.00079, 2019.
 - [11] Gang Chen, Weiwei Hu, Jiguang Shen, John R. Singler, Yangwen Zhang, and Xiaobo Zheng. An HDG method for distributed control of convection diffusion PDEs. J. Comput. Appl. Math., 343:643–661, 2018.
 - [12] Gang Chen, John R. Singler, and Yangwen Zhang. An HDG method for Dirichlet boundary control of convection dominated diffusion PDEs. SIAM J. Numer. Anal., 57(4):1919–1946, 2019
 - [13] Xinfu Chen. Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces. Comm. Partial Differential Equations, 19(7-8):1371-1395, 1994.
 - [14] Yanlai Chen and Bernardo Cockburn. Analysis of variable-degree HDG methods for convectiondiffusion equations. Part I: general nonconforming meshes. IMA J. Numer. Anal., 32(4):1267–1293, 2012.
 - [15] Yanlai Chen and Bernardo Cockburn. Analysis of variable-degree HDG methods for convection-diffusion equations. Part II: Semimatching nonconforming meshes. Math. Comp., 83(285):87–111, 2014.
 - [16] Bernardo Cockburn, Daniele A. Di Pietro, and Alexandre Ern. Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal., 50(3):635-650, 2016.
 - [17] Bernardo Cockburn, Bo Dong, and Johnny Guzmán. A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Sci. Comput., 40(1-3):141– 187, 2009.
 - [18] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal., 47(2):1319–1365, 2009.
 - [19] Bernardo Cockburn, Jayadeep Gopalakrishnan, Ngoc Cuong Nguyen, Jaume Peraire, and Francisco-Javier Sayas. Analysis of HDG methods for Stokes flow. Math. Comp., 80(274):723-760, 2011.
 - [20] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Francisco-Javier Sayas. A projection-based error analysis of HDG methods. Math. Comp., 79(271):1351–1367, 2010.
 - [21] Bernardo Cockburn, Ngoc Cuong Nguyen, and Jaime Peraire. HDG methods for hyperbolic problems. In Handbook of numerical methods for hyperbolic problems, volume 17 of Handb. Numer. Anal., pages 173–197. Elsevier/North-Holland, Amsterdam, 2016.
- [22] Bernardo Cockburn and Francisco-Javier Sayas. Divergence-conforming HDG methods for
 Stokes flows. Math. Comp., 83(288):1571–1598, 2014.
- 894 [23] Bernardo Cockburn and Ke Shi. Conditions for superconvergence of HDG methods for Stokes

898

899

900 901

902

903

904

905

906

907

908

909

912

913

914

915 916

917

918

919

920

 $921 \\ 922$

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944 945

 $946 \\ 947$

948

952 953

- flow. Math. Comp., 82(282):651–671, 2013.
- [24] Bernardo Cockburn and Ke Shi. Devising HDG methods for Stokes flow: an overview. Comput.
 & Fluids, 98:221-229, 2014.
 - [25] Daniele A. Di Pietro and Jérôme Droniou. A third Strang lemma and an Aubin-Nitsche trick for schemes in fully discrete formulation. Calcolo, 55(3):Paper No. 40, 39, 2018.
 - [26] Daniele Antonio Di Pietro and Jérôme Droniou. The hybrid high-order method for polytopal meshes, volume 19 of MS&A. Modeling, Simulation and Applications. Springer, Cham, [2020] ©2020. Design, analysis, and applications.
 - [27] Amanda E. Diegel, Cheng Wang, and Steven M. Wise. Stability and convergence of a secondorder mixed finite element method for the Cahn-Hilliard equation. IMA J. Numer. Anal., 36(4):1867–1897, 2016.
 - [28] Bo Dong and Chi-Wang Shu. Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal., 47(5):3240–3268, 2009.
 - [29] Qiang Du and R. A. Nicolaides. Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal., 28(5):1310–1322, 1991.
- 910 [30] Charles M. Elliott and Donald A. French. A nonconforming finite-element method for the 911 two-dimensional Cahn-Hilliard equation. SIAM J. Numer. Anal., 26(4):884–903, 1989.
 - [31] Charles M. Elliott and Stig Larsson. Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation. Math. Comp., 58(198):603–630, S33–S36, 1992.
 - [32] Xiaobing Feng and Ohannes A. Karakashian. Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Math. Comp., 76(259):1093-1117 (electronic), 2007.
 - [33] Xiaobing Feng and Yukun Li. Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen-Cahn equation and the mean curvature flow. IMA J. Numer. Anal., 35(4):1622–1651, 2015.
 - [34] Xiaobing Feng, Yukun Li, and Yulong Xing. Analysis of mixed interior penalty discontinuous Galerkin methods for the Cahn-Hilliard equation and the Hele-Shaw flow. SIAM J. Numer. Anal., 54(2):825–847, 2016.
 - [35] Xiaobing Feng and Andreas Prohl. Error analysis of a mixed finite element method for the Cahn-Hilliard equation. *Numer. Math.*, 99(1):47–84, 2004.
 - [36] Daisuke Furihata. A stable and conservative finite difference scheme for the Cahn-Hilliard equation. *Numer. Math.*, 87(4):675–699, 2001.
 - [37] Wei Gong, Weiwei Hu, Mariano Mateos, John Singler, Xiao Zhang, and Yangwen Zhang. A New HDG Method for Dirichlet Boundary Control of Convection Diffusion PDEs II: Low Regularity. SIAM J. Numer. Anal., 56(4):2262–2287, 2018.
 - [38] Weiwei Hu, Jiguang Shen, John R. Singler, Yangwen Zhang, and Xiaobo Zheng. A Super-convergent HDG Method for Distributed Control of Convection Diffusion PDEs. J. Sci. Comput., 76(3):1436–1457, 2018.
 - [39] Ohannes A. Karakashian and Frederic Pascal. Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems. SIAM J. Numer. Anal., 45(2):641–665, 2007.
 - [40] David Kay, Vanessa Styles, and Endre Süli. Discontinuous Galerkin finite element approximation of the Cahn-Hilliard equation with convection. SIAM J. Numer. Anal., 47(4):2660–2685, 2009.
 - [41] C. Lehrenfeld. Hybrid Discontinuous Galerkin methods for solving incompressible flow problems. 2010. Master Thesis.
 - [42] Dong Li and Zhonghua Qiao. On second order semi-implicit Fourier spectral methods for 2D Cahn-Hilliard equations. J. Sci. Comput., 70(1):301–341, 2017.
 - [43] Luciano Modica. The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal., 98(2):123-142, 1987.
 - [44] Igor Mozolevski and Paulo Rafael Bösing. Sharp expressions for the stabilization parameters in symmetric interior-penalty discontinuous Galerkin finite element approximations of fourthorder elliptic problems. Comput. Methods Appl. Math., 7(4):365–375, 2007.
- 949 [45] Igor Mozolevski and Endre Süli. A priori error analysis for the hp-version of the discontinuous 950 Galerkin finite element method for the biharmonic equation. Comput. Methods Appl. 951 Math., 3(4):596–607, 2003.
 - [46] Igor Mozolevski, Endre Süli, and Paulo R. Bösing. hp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput., 30(3):465–491, 2007.
- 955 [47] Weifeng Qiu, Jiguang Shen, and Ke Shi. An HDG method for linear elasticity with strong 956 symmetric stresses. *Math. Comp.*, 87(309):69–93, 2018.

957 [48] Weifeng Qiu and Ke Shi. An HDG method for convection diffusion equation. J. Sci. Comput., 958 66(1):346–357, 2016.

961

962

963 964

965

966

967

968

969

970

971

972

- 959 [49] Weifeng Qiu and Ke Shi. A superconvergent HDG method for the incompressible Navier-Stokes equations on general polyhedral meshes. *IMA J. Numer. Anal.*, 36(4):1943–1967, 2016.
 - [50] Sander Rhebergen and Bernardo Cockburn. A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. J. Comput. Phys., 231(11):4185– 4204, 2012.
 - [51] Sander Rhebergen, Bernardo Cockburn, and Jaap J. W. van der Vegt. A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys., 233:339–358, 2013.
 - [52] M. A. Sánchez, Cristian Ciuca, Ngoc Cuong Nguyen, Jaime Peraire, and Bernardo Cockburn. Symplectic Hamiltonian HDG methods for wave propagation phenomena. J. Comput. Phys., 350:951–973, 2017.
 - [53] Jie Shen, Jie Xu, and Jiang Yang. The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys., 353:407–416, 2018.
 - [54] Jie Shen and Xiaofeng Yang. An efficient moving mesh spectral method for the phase-field model of two-phase flows. J. Comput. Phys., 228(8):2978–2992, 2009.
- 974 [55] M. Stanglmeier, N. C. Nguyen, J. Peraire, and B. Cockburn. An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation. *Comput. Methods Appl. Mech. Engrg.*, 300:748–769, 2016.
- 977 [56] Endre Süli and Igor Mozolevski. hp-version interior penalty DGFEMs for the biharmonic 978 equation. Comput. Methods Appl. Mech. Engrg., 196(13-16):1851–1863, 2007.