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ON THE SUPERCONVERGENCE OF A HYBRIDIZABLE
DISCONTINUOUS GALERKIN METHOD FOR THE
CAHN-HILLIARD EQUATION*

GANG CHENT, DAOZHI HAN ¥, JOHN R. SINCLER $, AND YANGWEN ZHANG 1

Abstract. We propose a hybridizable discontinuous Galerkin (HDG) method effected with
the convex-concave splitting temporal discretization for solving the Cahn-Hilliard equation. We
establish optimal convergence rates for the scalar variables and the flux variables in the L? norm
for polynomials of degree k£ > 0. The error constants depend on inverse of the interface thickness
in polynomial orders, which is obtained by utilizing a spectral-type estimate of the discrete Cahn-
Hilliard operator in the HDG framework. In terms of degrees of freedom of the globally coupled
unknowns, the scalar variables are superconvergent. Numerical results are reported to corroborate
the theoretical convergence rates and the effectiveness of the method.

Key words. Cahn-Hilliard; HDG method; superconvergence; finite element.

1. Introduction. Let 2 C R? (d = 2,3) be a convex polygonal domain with
Lipshitz boundary 092 and T be a positive constant. We consider the following Cahn-
Hilliard equation:

(1.1a) u — AP =0, —eAu+e 'f(u)=¢ inQx (0,7,
(1.1b) Vu-n=Ve-n=0 ondQx (0,T], wu(-,0)=u’") inQ,
where f(u) = 43 — u. Owing to its importance in material science and multiphase
flow, many works have been devoted to the design and analysis of numerical schemes
for solving the Cahn-Hilliard equation, see, e.g., finite difference methods [36], mixed
and nonconforming finite element methods [30, 29, 31, 5, 35, 27] and Fourier-spectral
methods [54, 42, 53].

In recent years, the discontinuous Galerkin (DG) method has become popular
for solving the Cahn-Hilliard equation. Applications of DG methods to fourth order
elliptic problems have been considered by Babuska and Zlamal in [3], by Baker in
[4], and more recently by Mozolevski et al. in a series of works [45, 44, 46, 56]. In
[32], Feng and Karakashian design and analyze a DG method of interior penalty type
based on the fourth order formulation of the Cahn-Hilliard equation. Optimal error
estimates in the L? and broken H'! norms are established for polynomials of degrees
k > 3; see [32, 34] for details. Kay et al. propose and analyze a different DG method
[40] that treats the Cahn-Hilliard equation as a system of second order equations
allowing a relatively smaller penalty term with optimal convergence in the H' norm
for polynomials of degree & > 1. A fully adaptive version of the interior penalty
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2 G. CHEN, D. HAN, J. SINGLER AND Y. ZHANG

DG method was recently constructed in [2] for the Cahn-Hilliard equation with a
source and optimal L? error bounds were derived. The local discontinuous Galerkin
(LDG) method has also been proposed for the discretization of the Cahn-Hilliard
equation by writing it as a system of four first-order equations. Dong and Shu in
[28] analyzed a LDG scheme for fourth-order equations including the linearized Cahn-
Hilliard equation and obtained optimal error estimates in the L? norm for polynomials
of all degrees.

The classical DG method however entails larger amount of degrees of freedom
compared to the continuous Galerkin (CG) methods. In the seminal work [18] Cock-
burn et al. propose a hybridizable discontinuous Galerkin (HDG) method for second
order elliptic problems. The HDG method can be viewed as a hybridizable version
of the LDG method. In a nutshell, the HDG method locally connects the flux and
solution variables with the numerical traces of the solution via a local solver, which
are in turn coupled by the continuity of fluxes across inter-element boundaries (a
transmission condition). Hence the globally coupled degrees of freedom are those nu-
merical traces, resulting in a significant reduction of the number of unknowns than
traditional DG methods. Moreover, the HDG methods possess the same favorable
properties as classical mixed methods. In particular, HDG methods provide optimal
convergence rates for both the gradient and the primal variables of the mixed for-
mulation. This property enables the construction of superconvergent solutions via
postprocessing, contrary to other DG methods. These advantages of the HDG meth-
ods have made HDG an attractive alternative for solving problems governed by PDEs
and PDE control problems, cf. [23, 19, 24, 22, 7, 51, 50, 21, 52, 55, 11, 38, 37].

Most studies currently focus on establishing optimal and superconvergent rates
of HDG methods for second order problems, such as elliptic PDEs [20], convection
diffusion equations [14, 15, 48], Stokes equations [24, 19], Oseen equations [7] and
Navier-Stokes equations [49, 8]. In [17], the authors utilized an HDG method with
polynomial of degree k for all variables for solving the biharmonic equation and ob-
tained an optimal convergence rates for solution variables and suboptimal convergence
rates for other variables.

In this work, we propose a HDG method for the Cahn-Hilliard equation with
Lehrenfeld-Schoberl type stabilization using polynomials of order k 4+ 1 for the scalar
unknowns, and polynomials of order k£ for the other unknowns. The time-marching
is based on first-order backward Euler method with convex-splitting discretization
for the nonlinear term. We establish optimal convergence rates in the L? norm for
all variables and for polynomials of order £ > 0. Since the globally coupled degrees
of freedom (numerical traces) are approximated by polynomials of order k, super-
convergence (k+2) is achieved for approximation of the scalar variables. A particular
difficulty in error analysis of numerical schemes for solving phase field models is to
avoid exponential dependence of the error constants on 1/e. On the other hand, it is
well-known that the principal eigenvalue of the linearized Cahn-Hilliard operator has
a lower bound, cf. [1, 13]. Based on this spectral result an optimal error estimate with
the error constants polynomially depending on 1/e is established in [35] for a conform-
ing finite element method. A spectral-type estimate in the DG space is obtained in
[34], which is non-trivial since the DG space is not a subspace of H'. Adapting the
perturbative argument in [34] we establish a similar spectral type estimate of the dis-
crete Cahn-Hilliard operator within the framework of the HDG method. This enables
us to obtain error constants depending on 1/€ in polynomial orders, provided that the
spatio-temporal resolution is sufficiently small.

Closely related to our scheme is the hybrid high-order method (HHO) proposed in
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AN HDG METHOD FOR CAHN-HILLIARD EQUATION 3

[9] which also uses mixed degree approximation and the Lehrenfeld-Schoberl stabiliza-
tion. It is further pointed out in [16] that HDG methods for elliptic equation mostly
resemble standard HHO methods. More recently it is shown that our HDG scheme
for the Cahn-Hilliard equation is indeed a HHO method following the full gradient
approach, cf. Sec. 4.2 of the book [26]. However, only error estimates in the energy
norm was obtained for the HHO method in [9], although L? error estimate is alluded in
a remark therein. Furthermore, the error constants in [9] exponentially depend on %
The HDG framework with reduced stabilization and polynomials of mixed orders was
first introduced by Lehrenfeld in [41] where it was alluded that the scheme could be a
superconvergent method, i.e., O(hk+2) for the solution variables even though polyno-
mials of order k are used for the globally coupled unknowns (numerical traces of the
solution). Optimal convergence and hence superconvergence was then rigorously es-
tablished for convection diffusion problems [48], for the Navier-Stokes equations [49],
and more recently for linear elasticity problems [47].

The rest of the article is organized as follows. We provide the HDG formulation
for the Cahn-Hilliard equation in Section 2. We then give some preliminary tools
essential for the numerical analysis in Section 3. Afterwards we perform stability
estimate of the nonlinear HDG methods in Section 4. In Section 5, we establish the
optimal convergence rates of the HDG methods. The theoretical convergence rates
are further validated by numerical experiments in Section 6.

2. The HDG formulation. To introduce the fully discrete HDG formulation
for the Cahn-Hilliard equation, we first fix some notation. Let 7} be a shape-regular,
quasi-uniform triangulation of 2. Other regular polygonal meshes are applicable
too. Let &, denote the set of all faces E of all simplexes K of the triangulation 7p,.
Also let £ and 5,‘3 denote the set of interior faces and boundary faces, respectively.
Furthermore, we introduce the discrete inner products

won = ¥ k=3 [ wn oo, = 5 o= 3 [ <o

KeTn KeThn KeTh KeTn

For any integer k > 0, let P*(K) denote the set of polynomials of degree at most
k on the element K. We introduce the following discontinuous finite element spaces:
Vi, = {vp, € [L2 ()] : vp| i € [PH(K)]Y VK € Ty},
Wy, = {wh S LQ(Q) : wh|K S PkJrl(K),VK S E},
Vi/h = {wh € LS(Q) : wh|K S PkJrl(K),VK S 7;,},
My, = {un € L*(&) : pn|e € PY(E),VE € &,},
where LZ(Q) is the subspace of L?(£2) of mean zero functions.
Since the HDG methods are based on a mixed formulation, we rewrite the PDE

as a first order system by setting p + V¢ = 0 and ¢ + Vu = 0 in (1.1). The mixed
formulation of (1.1) is

(2.1) p+Ve=0, u,+V-p=0, g+Vu=0, eV-q+e f(u)=0o.

Now we introduce the fully discrete HDG formulation based on the first-order
convex-splitting approach. A similar scheme can be constructed utilizing the backward
Euler method. For a fixed integer N, let 0 =ty < t; < --- <ty =T be a uniform
partition of [0, T] with At = T/N. The HDG method seeks (p}, o}, o7), (gp, up, ujy) €

This manuscript is for review purposes only.
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4 G. CHEN, D. HAN, J. SINGLER AND Y. ZHANG

Vi, x Wy, x M), such that

(22&) (a;ruszl)'rh +A(I’Z7¢Z7¢Z;rlawlaﬂl) = Oa
(2'2b) (671F(Uza U’Z_l)?IUQ)Th + G‘A(q}TLLa u;zlaaz;r%w%l@) - (d)Zan)Th =0,
(2.2¢) (up w3)7;, — (u’,w3)7;, =0

for all (rl,wl,ul), (’I‘Q,wg,,ug) € Vi x Wy x My, and wsy € Wy, A: [VhXWhXMh]Q — R
is defined by

(2.2d)  A(gn, un, Wn; Th, Wh, pin) = (@ry TR) 75, — (UL, V- 1h) 75 + (Un, Th - M) o7,
+ (V- qn, wn) 7, — (@n -1, ) o7, + (Wt (MQuy, — ap), Mwy, — pn) o7, -

Here, 9 upl = (uff —uj ™) /At, F(up,uf ™) = (u)® —u}~!, and TI? is the element-
wise L? projection onto P*(E) such that

<H2uh,uh>E = (uh,,uh>E, V,U,h € Pk(E) and F € 0K.

3. Preliminaries. In Subsection 3.1 we recall and prove some useful inequali-
ties necessary for the error analysis. Then in Subsection 3.2 we introduce the HDG
elliptic projection and study its approximation properties. Finally in Subsection 3.4
we introduce the the HDG spectral estimate, which is useful to our error analysis in
the next section. Throughout, the generic constant C' is independent of h, At, e and
may change from line to line. For convience of analysis we assume € < 1.

3.1. Useful inequalities . We recall the standard L? projections IT¢ : [L?(Q)]¢
— Vyand II7 | : L?(Q) — Wy, The following approximation results are classical, cf.
[12, Lemma 3.3], [6, Lemma 4.5.3].
3.1a) llg — ORqllr2(x) < Ch gl g iy lu — Ty ull 2 sy < CRY2 ul e (e,
o k
3.1b) |lu— 7l 2ok < ChK+3/2"LL|Hk+2(K),

(

(

(3.1¢) llwnllL2ox) < Chig?|lwhl| L2 (x), Ywn € Wi,

(3.1d) flu =107yl oy < CREHH YTVl gisa gy, q € 1,400,
(

3.1€) Jwnl Loy < CRE V2 wnll L2y, Veon € Wi, g € [1, +00].

The following HDG Sobolev inequalities can be readily derived from [26, Theorem
6.5]. A direct proof based on Oswald interpolation operator [39, Page 644, Theorem
2.1] is available in [10].

LEMMA 3.1 (HDG Sobolev inequality).  Suppose ¢ € [1,00) for d = 2, and
q € [1,6] for d=3. For any pp € M), there hold

(3:20) lwnllzacey < C (llwnllms + IVwnllz, + 157" (W, — mn) o, ) Voo, € Wi,

(3:2b) [[wnllzoy < C (IVwnllg, + 107> (0w, = un) o ), Fon € Wi

Here and throughout, h is a piecewise constant function equal to hx on each element
K.
Next, we present some basic properties of the operator A.

This manuscript is for review purposes only.



AN HDG METHOD FOR CAHN-HILLIARD EQUATION 5

PROPOSITION 3.2. For all (qh,uh,ﬂh), (ph,¢h,$h) eV, x Wy x My, one has

(33) A(qha Up, aha Ph; _¢h7 _(Eh) = A(phv ¢h7 $h7 gp, —Up, _ah)v

—1/2
2 P My, — )| 3,
1/2

(3.4) A(qn, un, Un; qn, un, n) = ||qnl
(35> ‘A qhauhmul"uphad)ha(bh)‘ < C(HhT

+ IVunllz ) % (Ipnlls, + 1V6nllz + 105 *(n = n)lor ) -

In addition, if A(gp,un,Up;7h,0,0) =0 for all v, € Vy, then the following inequality
holds

(3:6)  IVunllrs + I1h7"(un = @n)lloms, < C (llaullz + A7 (s = @n) o, )

(MQun — an)llo7, + llanll7

The proof of Proposition 3.2 is straightforward, see [38, Lemma 1, Lemma 2] and [48
Lemma 3.2] for proofs of similar results.
Next, we show that A satisfies the following discrete LBB condition.

LEMMA 3.3. For all (qp,un,up) € Vi, X W), x My, we have

(3.7) sup A(Qh7uh;ah§l_7i1z}j7h7$h) _
0%£(pn-dn-dn) Vi x Wi x My, 1PNl 75 + IVl 7, + |y "~ (b — én) o,
> C (lanll, + I Vunliz + A7 (0un = @0)or, ) -
Proof. First we note that if
lpall7 + 1V nll 7 + 1072 (10060 — dn) o7, =0,

then pp, = 0, and ¢, = 0 by (3.2b), and hence én =0 as well.

Next, let o be a positive constant that will be specified below. For any fixed
(qh, Up, uh) eV, x Wh X Mh, we take (ph, ¢h7 ¢h) (qh +aVuh, Up, uh) eV, x Wh X
My, to get

A(qha Up,, ah;phv ¢h7 ;ﬁ\h)
= (qn, qn + aVun)7, — (un, V- (qn + aVup))7,
+ (Un, (gn + aVup) )7, + (V- qn,un) 7, — (@n - 7, Un)oT,
+ <h71(ngh — ﬁh) ngh — ah>37—h
1/2
P MQun — )3,

+ Oz(q;“ V’uh)Th + a(uh - Hkuh, n- Vuh>a7*h
—1/2 (0%
> (1 - Ca) (laully + 17— ) ) + IVl

By choosing o > 0 such that 0 < 1 — C«a, we get

= llanll7, + allVunll7, + 17y

A(Gn, wn, Gn; phy b1y 1) > Cs (||Qh|\7*h + ||h7'1/2(HkUh —ap) |37 + ||Vuh||27h> .

Finally, for the choice of (pp, ¢n, <$h) = (gn+aVup, up, Uy) the triangle inequality
implies

—1/2 iy
lpnllZ; + 1> (@2n — dn)l137, + [V enll%,
1/2
< Os(|lgnll, + I1h > (Mun — @n)ll37, + [VunllZ,).
Then (3.7) follows immediately. d

This manuscript is for review purposes only.
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6 G. CHEN, D. HAN, J. SINGLER AND Y. ZHANG

The proof of Lemma 3.3 also shows that the operator A defines a norm on the
space Vj, X Wh X My,. Thanks to the discrete LBB condition in Lemma 3.3, the follow-
ing inversion of the Laplacian operator equipped with Neumann boundary conditions
is well defined.

DEFINITION 3.4. For alluy, € Wh, deﬁne (Hvuh, Hw’u,}“HMuh) eV, XWh x M,
to be the unique solution of the problem

(3.8) A(Xyup, My up, Oarup; vh, wh, pn) = (s, wa) 75,

for all (rp,wp, pp) € Vi, X Wi, x M.

In particular, by the definition A in (2.2d) and integration by parts, one can show
that for any wy, € Wy, and V(rp, wp, pup) € Vi X Wy, x My,

(3.9) Ay up, Dy up, Marup; vh, wh, tn) = (Wh, wa)75,-
For all uy, € Wh, we define the semi-norm
lunll® 1 o= Ay un, Dy up, Mpgup; My up, Myug, Dapup).

It follows from (3.4) that

1/2
(3.10) lunl® 1, = My unlF, + [Ihy Py wp, — Magun)l37, = (un, My 7 -

Next, we show that || - |1, is a norm on the space Wh.
LEMMA 3.5. || -||_1.n defines a norm on the space Wi,.

Proof. Thanks to (3.10), one only needs to show that ||uy||—1,, = 0 implies up = 0
for up, € Wy, It follows readily from (3.10) that

Iy u, =0, 2y up — Mapus = 0.
Next, Definition 3.4 and (2.2d) imply that for all (r,,wy) € Vi, x W), we have
(up, wp)7, = MAwun, V- rp)7, — Oarup, 7h - n)ar, -
Taking r, = 0 and wy, = uy, one obtains u, = 0. This completes the proof. 0
LEMMA 3.6. Ifuy € Wy, and (wp, pp) € Wi X My, then we have
(311 (unswn)z < Cllunll-vn (IVwill, + 1072w, = ) o)

Proof. Let (wp,un) € Wi, x My, up, € W), and (Ilyup, Dy up, Mprup) be the
solution of (3.8). By Equation (3.9) and (2.2d) we have

(un, wn) T, = AXvup, My up, Tarun; 0, wh, pn)
= (V- Ivup,wp)7;, — (n - Iyup, pp)oT,
+ <h;(1 (Hgﬂwuh — HM’LLh), ngh — /J/h>87'h,~
By integration by parts, (3.10) and the L? stability of 11 we have
(un, wn) 7, < [Ty w7 [Vwnll, + Cllhr > (@wn = ) o7

X (HHVUhHTh + ||h;-1/2(H2HWUh - HMUh)Han)
< Cllunl-1 (IVwnllz + 107> (WGwn = un) o7, ) -

This completes the proof. 0
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AN HDG METHOD FOR CAHN-HILLIARD EQUATION 7

Finally, by the Definition 3.4, the identity (3.10) and (3.6) one can easily establish
the following inequality
(3.12) ||VHWuh||7‘h + ||hT(H2HWuh — HMuh)”aTh < C||uh||,1,h, up € Wh,
(313)  lunll-1.n < Cllunllz, un € Wi

3.2. The HDG elliptic projection. Given © € L?(), let (¥, ®) denote the
solution of the following system

(3.14) T+Vd=0, V.- =6 inQ, ¥-n=0 ondQ, /cp:o.
Q

If Q is convex, then we have the following regularity result:
(3.15) 1| a1 o) + 1@ m2(0) < CregllO||L2(0)-

Recall that (p, ¢, q,u) is the solution of the Cahn-Hilliard equation in mixed form
(2.1). For all t € [0,T], we define the HDG elliptic projections:

~

finding (prn, ¢1n, ¢11), (Q1n, 1n, Urn) € Vi, X Wy X M), such that

(316&) A(p[ha¢[h>$]h;,rl;wl7,ul) = _(Aﬁbawl)Th and ((blh _¢71)'Th = 0)
(3.16b)  A(qrn,urn, Urn; T2, w2, pi2) = —(Au, w2)7;, and (ur, —u,1)7, =0,

for all (7"1,11]1,,&1), (7‘2,’[1)2,/12) eV x Wh X Myp,.
Denote the norm on the Hilbert space H®,s > 0 by |- |s. We have the following
approximation property for the HDG elliptic projection (3.16).

LEMMA 3.7. Assume the regularity condition (3.15) holds. Let (p,¢,q,u) be
smooth enough and (prh, @1n, qrn, urn) be the solutions of (3.16). We have

(3.17a) lu = w7, < CR*2 |ulpps,
(3.17b) la = aunll7 + 1hr " (Murn = m) lom < CHEHulkya,
(317C) ||8tu — 8tu1h||7h S C’hk+2|8tu|k+2,
(3.17d) | — brnll7, < CR*2|B|1 10,
(3.17e) o — prulls + 1072 (26 — r)llor, < CREY@lia.

The proof of Lemma 3.7 follows applications of the 3rd Strang Lemma and the
Aubin-Nitsche technique in [25]. For completeness, we present details of the proof as
follows. Introducing

q._ — T._ 179 o
(318) €y = qu—th, E‘Z = HZ+1U—UUL, Ez = Hku—u”“
one derives the error equation

(3.19) A(sZ, Ehs SE; T2, Wa, fi2) = —(Au, 'wz)Th,

+ (g -n—TIRq - n, us — wa)or, + (b (I3, 1u — ), Mws — p2) o7,

Proof. We only give a proof of (3.17a) and (3.17b), since the proofs of the re-
maining inequalities are similar. We split the proof into two steps.

This manuscript is for review purposes only.
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Step 1: an energy argument .
Since (Ez, ].)Lz(Q) = (Herlu —Ush, 1)L2(Q) = (u —UTh, 1)L2(Q) =0, then €y € W,
We take (72, wa, p2) = (7, ), €)t) in (3.19) to get
1/2
80, + i (0 — i) 3,

=(q-n—II}q-n, 5h —ep)oT, + <h_1(HZ+1u —u), HﬁSﬁ - 5@871

—1/2 a 1/2
< CH*ulrs (1185, + Ih7 > (0fek el l3r )

where we have used the fact A(e, ¥, e¥;72,0,0) = 0 and (3.6). Hence

_1/9 - 1/2
(3.20) (e, + 07 2@y = el ) < W ulua.

Now in light of the definitions of the error functions in (3.18), one obtains by the
triangle inequality, the L? stability of the projection Hg, the inequalities in (3.1) and
the fact that ¢ = —Vu that

—1
lg — aunll7 + 187> (Wur, — @rm)llom, < Ch**ulpse.

Thus (3.17b) is established.
Step 2: L? error estimate by a duality argument Let © € L?(Q) and let (¥, )
be the solution to (3.14). One has for all (rq, ws, ua) € Qp X Wi, x Mj,
AW, TI7 @, TI0®; 7o, wa, p12) = (O, w2) + (¥ - — IIW - n, o — wa)or,,
(3:21) + (hy' (711 ® — @), MPws — o)
We take (r2, w2, p2) = (ef, —e¥, —e¥) and © = —¢¥ in (3.21) to get
ek lF, = A(efl, i, i I, — 117, @, —1100:)
+(IR® -n =W ncf —ef)or, — (b (U7 @ — @), 1Ie); — f)or,
—(IIgg - n—q-n Hkq) I3, 1 ®)o7;
— (hk ( 1l — ), Hk 1P — Hg@)an
+ (¥ - n—W-n,cf —ef)or, — (b (U7, ® — @), 1e); — f)or,
Since ¢ € H(div,Q), g-n = 0 on 99 and I17® is single-valued on 97y, then (g
n, 19®) s, =0 = (q-n,®)s7,. We have
— (Mg -n—q-n,IP -1}, 9)s7;
=(g-n, TP — T}, ®)o7, — (I} - n, IR — T, ®)ar,
=(g-n,® -1}, ®)o7, — (g -n, & -1}, D)o,
=—-(II{g-n—q-n,®-1I} )7,

By the error estimates in (3.20), the inequality (3.6) and the regularity result (3.15)
with © = —¢}!, one derives that

(3:22) lehllz < CR**2[uliyo.

The error estimate (3.17a) now follows from the triangle inequality. This completes
the proof. 0

This manuscript is for review purposes only.



AN HDG METHOD FOR CAHN-HILLIARD EQUATION 9

We shall need the uniform estimate of the HDG elliptic projection uy,. By the
triangle inequality and the inverse inequality (3.1e), one obtains

lurn —ullzee < [lurn —TIE 4 qullpee + [[u = TI7 ul|pee
< Ch™ P lupy = T yull7, + CR* 2 ul
< Ch2= 2|y,

Hence with [[Au|| e (r2) < Ce 7 (cf. the stability estimate in the upcoming section)
and [|u|[ oo~y < C [34], provided h < €77, one has

(323) HuthLoo(Loc) S C.

3.3. The discrete Laplacian. For any u, € W}, we define Apu, € Wy, such
that for all (rp, wp, un) € Vi x Wy, x M}, we have

(324) (Ahuh?wh)'rh = _A(q;iauhvaz;rhvwhvuh)?
where (g}, u}) € Vi, x My, satisfy
(325) A(qﬁ7uh,az;rh,07ﬂh) =0

for all (7, un) € Vi, X My, It is clear there exists a unique solution (Apup, gy, uj) €
W), x Vi, x Mp, since Egs. (3.24) and (3.25) define a square linear system of finite
dimension.

LEMMA 3.8. For all wp, € Wp, we have the inequality
(3.26) lwallLe= () < CllAnwnll7,,

where C' depends on €.
Proof. Consider the following continuous problem: find w € H'(Q), such that

(3.27) —Aw=—-Apw,in Q, Vw-n=00n0dQ, (w,1)5 = (wy,1)7.

Since € is convex, we have the regularity estimate

(328) |w|H2(Q) < Creg”Ahwh| Th-
We use the definition (3.24) and (3.27) to get
A(q}’li}7 Wh, {1\’1}1;7 Sh; Uh, ,Uh) = _(Aw7 Uh)Th? (wh - w, 1)Th =0

for all (sp, vn, un) € Vi, x Wy, x My,. Therefore, we may use the HDG elliptic projection
result in Lemma 3.7 to get

(329) ||w—wh||7—h < Ch2|w|H2(Q).
By the triangle inequality, we have

lwallLe @) < llwn = 74wl pee @) + 1w — wllpe @) + lwl[L= (o)
= Ry + Ry + R3.

This manuscript is for review purposes only.
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Now we estimate {R;}?_; term by term as follows

Ry < Ch="2|jwy, — T}y wll7;, < Ch™2 (|lwp — wll7, + [lw — T}, w]|7;)
< ChQ_d/2|w‘H2(Q) < ChQ_d/QHAhwhHTh,
Ry < CR*™2|w|y2q) < CR*~Y2|| Apwa| 72,
22 22
R3 < CODq ?|wlpz0) < CDg *[|Apwnl 7,
where Dg is the diameter of the domain . The inequality (3.26) follows from the
above estimates and the fact h < Dgq. This completes the proof. 0

We remark that it is possible to obtain a Gagliardo—Nirenberg type inequality, cf.
[10]:

d 3(4—d)
l[wn || ooy < C <h2_d/2|Ahthh + [ Apwnll7y ™ lwnll foiey + ||wh||L6<9)) :

3.4. The HDG spectral estimate. Recall that for f € LZ(Q),u = (-A)"1f €
L3(Q) is such that —Au = f, g—ﬂag = 0. Introduce an operator K : Wy, x M, =V,
defined by

(3.30) (Kn(¥n, n)s wi) i = — (0, V- wn) i + (Pn, - wp)ox

for all wy, € V}, and K € Tj,.

LEMMA 3.9. Assume that the spectral estimate of the Cahn-Hilliard operator holds
(Proposition 1 in [35]). Then for any fixed 5 € (0,1), one has

(3:31) el Kn(vhn, ¥n)ll72(q) + ellhr? (M7vn — ¥n)ll57, + T(f/(th)wh7wh)7—h
> —2C[VA™ (n)l| 720y = [¥nl21 05 Y(n, n) € Wiy x My,
provided h < Cmin{B'/2e'1/4, 33/47/4, eﬁ}’

where Cy is the constant in the continuous version of the original spectral estimate of
the Cahn-Hilliard operator.

Proof. Let ¢ € H*(Q) N L(Q2) be the solution of
(Ve, Vo) = (Kn(4n, vn), Vo), Yo € HY(Q).
It follows

(3.32) VL2 < 1K h (Wm0 || 7.
Consider the dual problem: finding w € H*(Q) such that

—Aw =1 — ¢y, n-Vwlgg =0

This manuscript is for review purposes only.
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Then
1% = ¥nll72(0) = (—Aw, ¥ —¢n)
= (Vw, V(Y —¢p)) + (n - Vw, ¥n)aT,
= (Vw, Ky (¥n, %) — Vibn) + (n - Vo, ¥p)ar,
= (I} Vw, Kin(n, ¥n) — Vbn) + (n - Vw, Yo,
= (n-TIVw — n - Vw, by, — U)o,
< Chlw]| 2oyl (@ — 0n)llo7
< Chll =l ey (1K Bl + 1t (W, = )l )
hence
(3.33) I = Yllzacey < Ch (1K, Gz, + 107 (0200 = Bn) o7 ) -
Define

1-—
Ly = eHKh(¢h7¢h)”L2(Q) + 6||hT (T0yn — )37, + ﬂ(f (wrn)n, ¥n)
+ COHVA_lwhHH(Q) + ||1/1hH71,h7

1 -
L= e[ VlIZe) + - (F' (9, ¥) + Co VAT 120,

with a constant ¢y to be determined, and Cy the constant in the continuous version
of the original spectral estimate of the Cahn-Hilliard operator, cf. [1, 13, 35]. Since
|[u|| (1) < C [35] and under the constraint h < €™/~ it follows from (3.32) and
the uniform bound (3.23) that

Ly —(1—pB)L > pe (||Kh(¢h, ZZh)H?ﬁ(Q) + || Py ® (TR — Jh)”%n)
1-p _
- CTW% — ?|Lr ) — O Mlurn — ull L2l 740)
+ (co = CoIVAT Pul 20y + 19nl1Z1n — Co (IVAT Pl F2(0) — [VAT )72

The negative terms on the right-hand side of the above inequality are estimated as
follows. First, by the error estimate (3.33), the interpolation inequality (3.11) and
the estimate (3.32) there holds

1-06 C C
CTW% — 4?1 < o — D22y + ~n = Ylirz@ ¥z ()

C ~ 1 ~
< <h2 (1 (s n) 5, + a7 (06n — Bn) 37, )
Ch —~ 3/2
o+ = (I on ) 5, + 1 (T whnm) el 2

< O(e—1h2 + ) (11 Kn(n, D)% + b7 (0260 = B3, ) + N2

Next, with [[u[|ge g2y < Ce™ /2 the error estimate of HDG elliptic projection (3.17a),
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the estimate (3.32) and the HDG Sobolev imbedding (3.2b) imply

Ce Murn — ull 2@ l1¥nl 10
o~ 1 ~
< Ce 12 [ullz (I1Kn(n, D)5, + b (0 — D) 37, )

~ _ 1 ~
< O 202 (|[Kn(6n, D) 13, + 157 (0n — D)3, )
Finally, utilizing (3.33) gives

1787 n 20 — VAT 120y | < 2IVAT Wn = 920 + VA 20y
< 2l|¢hn — Yl|F2 0 + ||VA_17/}h||%2
< Cn? (I1Kn(n, o) I3, + A7 (U20n — n) 37, ) + VA 6n 320
Therefore,
Lh— (=)L
> g(e.h) (IKn (s )32 + 107 (20 — Bn) 317,
+ (co = 2Co) VAT Y1 F2(q) + I9nllZ 10,

with g(e, h) := Be — Ce 'h? — Ce=*/3n*/3 — Ce=9/2h% — Ch2.
Thus if ¢g = 2Cy and h < Cmin{BY/2e'1/4, 3/4€7/4} | then

so Ly, > (1 — B)L > 0. This establishes the spectral estimate (3.31). |

4. Stability of the HDG formulation. In this section we obtain stability
estimates of the HDG method (2.2). Throughout, C' denotes a generic constant that
may depend on the initial condition and final time T but independent of €, h and At.
We assume that the initial energy is uniformly bounded in terms of ¢, i.e.

€ —1/2
Th §||q2|2n *Hh / (I7up, — )37, < C,

(4.1) *H( ) =13

and that ||¢} ||z, < €. This assumption is reasonable from the standpoint of sharp in-
terface limit of the Cahn-Hilliard free energy functional, cf. [43]. Relaxed assumption
where the constant C is replaced by €7 is utilized in [35, 34].

By an elementary fixed point argument and energy method, the unconditional
unique solvability of the HDG scheme (2.2) is established in [10]. The basic energy
stability bounds are provided in the following lemma.

LEMMA 4.1. For anyh,At >0 andm =1,2,..., N, the following stability bounds
hold for the solution to the HDG scheme

1 1/2
(4.2) ;II(U?’?)2 - 1|7 + (th 1%, + 12 (- @) |37,

+AtZ (lpp 1%, + I1h (e — ) 137,) < C.

n=1
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Proof. One takes (72, wa, p2) = (0,9 ul, 9 ul) in (2.2b) to get
gy R 00R) (Va0 a0
+ (bt My, — ap), 0f (Mupy = ap))or, — (6f, 07 up) 7, = 0.
Then one applies 9;" to (2.2b) and take (72, wa, u2) = (g}, 0,0) to get

(4.4) 0 a @) — €0 up, V - @), + €0y, g - m)or, =0

Likewise, taking (r1, w1, pu1) = (P}, o7, (ZZ) in (2.2a) one obtains

(4.5) (O, 817 + Ik + (6 = Gl = 0.

Taking the summation of (4.3), (4.4) and (4.5) gives

e H(F(uh,upy ™), 0 up) 7 + €O @iy, ai) 7 + el (Mupy — ), O (ujy, —Gp))or,
5+ 72 (026h — 337, = 0.

Recall that F(u},u} ") = (u})® — u}' ', and the identity

+Ph 17

(a® = b)(a—b) = i[(a2 —1)? = (0* = 1)2 + (a® = b*)? +2a%*(a — b)* + 2(a — b)?].

One obtains

1., . Ate —1/2 ~n
o lln)? =111, + - Ulgitl, + 1> (e, — @)l37,)
—1/2
+At<||ph|n+||h / M2er — o)1 7))
_ Ate —1/2 .
< Lu(u;z D2 =105, + S (lay W + A = ) 3.

The inequality (4.2) follows from taking summation of the above equation from n =1
to n = m. This completes the proof. 0

From Lemma 4.1 one derives the following estimates.
LEMMA 4.2. For h, At > 0 there holds

m - n m c
(46) e llds + A" IVeRIE, <€, IVapl3, < 2,
n=1
m o m C
(4.7) I8 15, + D bk — o I, +eat > 107 upllF, < =
n=1 n=1

Proof. Inequalities (4.6) are consequences of the estimate (4.2) and the inequality
(3.6). Taking (r2,ws, u2) = (0,1,1) in (2.2b) yields

1

1 n—
(65 D7l = Z(F(uh, ™), 1) 7 | < (IluhIILsQ>+IluhIIL1m)<

In light of the stability bounds (4.2), it follows from the triangle inequality, the HDG
Sobolev inequality (3.2b), and the inequality (3.6) that

6

m . C
(4 ALY 6% < 5
n=1
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515 Applying 9;" to (2.2b) gives
516 (4.9a) A0 apy, O upy, O s o, wa, pa) + (€710 F(ufy, up ™), wa) T,
513 — (8 ¢y, wa) ;. = 0.

519 Taklng (7'1711)17/1'1) = 6(_aqu7aju27a;r%) in (22&), (7’2,11)27#2) = (pz, _d);iv _(EZ)
520 in (4.9a), one obtains

521 (0 up, O up) 7, — APy, o, oy 07 @iy, —0; up, —0, ) = 0,
522 cA(O} qp, 0wy, o g pit, — o1, — o))
523 ( “LOF F(uf,up ™), ¢h) — (0 o, — )T =

524 Taking summation of the two equations, one obtains
537 (4.10) (OF o1 o)+ ellOF upllF,, = € (O Flufup ™), 1) 1.

527 and hence

m m
193 15, + D NIk — o5, + 2Ate Y 1107 ui |5,

8 (4.11) n "
= _1Atz (OF F(upt,uy ™), 03) 1 + 10517 -
529 n=1
530 By Hélder’s inequality and the HDG Sobolev inequality in Lemma 3.1 one derives
At &
531 — (3 F(up,up™t), ¢h>
€ Th

n=1

CAt o -
532 up 7 okl e ) (||UZ||2L6(Q) + [lup 1||2L6(Q) + 1)

nZ

533 Fupllmllonlloe (lupllz, + lup = 1% + lan i + gy 5,
' 1/2 —1/2 70 i
s I~ ) + W 5l + 1)

CAt &
535 < — i un 7 9n e )

n=1

eAt CAL &
536 <5 Z 105 w3, + =5 2 197 ey
537 n=1 n=t

538  Hence (4.11) implies that

m m CAt m
539 Nlen 5 + D ok — oh 7 + et Y _10fupllF < == D Iohllioce + 16017
n=1

540 n=1 n=1

This manuscript is for review purposes only.
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AN HDG METHOD FOR CAHN-HILLIARD EQUATION 15

An application of the HDG Sobolev embedding inequality Lemma 3.1 then gives

m m
167715, + > ek — o 17, + €At > 107 upllF,
n=1

n=1
CAt & " —1/2 n_ Tn n
<= S (el + 1h7 2 @265 — o) 137 + lenlz) + 6013,
n=1
C
S e

€

where one uses the estimate (4.8) and the bounds in Lemma 4.1 in the derivation of
the last step. This finishes the proof. ]

LEMMA 4.3. Let u} be the solution of (2.2). For alln=1,2...,N, we have
(4.12) |Anufllz < Ce 3,

where C' depends on €, T and the initial condition.

Proof. We take (ra, wa, pu2) = (0, Apui,0) in (2.2b) to get
(Pl ™), Avy) = el Anui 5, = (8 Anui)y, = 0.
h
By the Cauchy-Schwarz inequality, one gets

el anuiliy, = (Pt u ™), Ane) = (61, Anii),

h

< e Hluhlzs) + lunllm) I Anuillz, + 16517, | Anub 7

Next using the HDG Sobolev inequality (3.2a) and Lemma 4.1 one obtains

—1/2
lpllsocey < © (Il + I90R I + A7 202 — @3) o7,

< C (lupllzse + IVupllz + 107> (O0us — @3)llor, )

<C 2.
Then the desired result follows from Lemma 4.2 and Young’s inequality. 0

Using Lemma 3.8 and Lemma 4.3 one deduces the uniform estimate of uj.

LEMMA 4.4. Let u}} be the solution of (2.2), then for alln=1,2,..., N, we have
_z
HUZ”LQQ(Q) S Ce 2.

5. Error analysis. In this section, we establish the optimal convergence result
for the HDG scheme for solving the Cahn-Hilliard equation. We prove the main
convergence result by performing error estimates first in the negative norm, then in
the L2 norm for the scalar variables and flux variables, respectively. Throughout, we
assume the data and the solution of (1.1) are smooth enough. For convenience, we
shall also adopt the notation ||a, b||re := ||a||Le + ||b]|Le-
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16 G. CHEN, D. HAN, J. SINGLER AND Y. ZHANG

5.1. The main result.

THEOREM b5.1. Assume the same conditions as in Proposition 1 in [35] so that the
spectral estimate of the Cahn-Hilliard operator holds. Let (p, ¢, q,u) and (P}, %, qy,
u}y) be the solutions of (2.1) and (2.2), respectively. Furthermore, assume the solution
(p, &, q,u) attains the maximum reqularity for the best approzimation results in (3.1).

Then provided
17 7 € %
h < N —a, (7) ’
cun{t = (o)
At < 0660,
the following optimal error estimates hold for polynomials of degree k > 0

N

n T T 1

axy [u™ = up|Faa) + A 6" = dhl72() < 6760(T767U7¢)(hk+2 + At)?,
al 1

max " — q;ll72i) + At Y 1" = Phl72 () < 6740(Ta e u, @) (K" + At)?,

1<n<N
n=1

where C(T,u, ¢) := CeT(||u, dpul 7, Toqarrey T ONT2 grey + 10sull72 2y + 1)
5.2. Proof of Theorem 5.1. To simplify notation, we define

n

(5.1a) =Pl PR e =00 eh =0 —

(5.1b) eZ” = qrn — qh, eZ" = upy — up, egn = upy, — Up,-

By the definition of A in (2.2d) and the HDG elliptic projection (3.16), for all

(r1, w1, p1), (re, we, uo) in Vi x Wy, X M), one obtains the error equations

(5:20) (9 er” wi) + AR €l el i) = (0 uf, — O w)T,,

(5'2b) EA(eZ 7627176%”?7“27 W2, :UQ)Th - (e;i; ’w2)771 = (¢n - ¢7Ilh7 w2)7—h,
(Pl = F)ws)

h

We divide the error analysis into three lemmas. We first obtain a non-optimal
error estimate in the negative norm.

LEMMA 5.2 (Error estimates in the negative norm). Under the same conditions
as the discrete spectral estimate in Lemma 3.9, provided

. 17 _7 € 2(1?:-2)
< 1 i—
h_len{e , €34, (C’(T,u,(b)) },
At < Ce%,

46 At — am
(5:3)  max [l |+ T (|| I, + Iy 2 (e — ei)I3r, )
< C(T,u,0) 7 ((A0° + h2<k+2>),

where O(T, u, ¢) = CeCT(HU;atu||%2(Hk+2) + H¢||2L2(Hk+2) + ||attu||2L2(L2) + 1)
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Proof. Taking (r1, w1y, p1) = (—Hvezn,ﬂwe}fn,ﬂMeﬁn) in (5.2a), (re,wa, o) =
(ef el el in (5.2b), adding the resulting equations, one obtains

1/2(erh —egn) 3

(8 eh 7HW€h )Th +6||eh ||Th +6||h7’
e (F ) = Pl up ™), ei)
T
= (0" = Sfnreh )7 + (O uy, — O Thwefy )7,
Utilizing Definition 3.4 and (2.2d), one has
(0 el Myel )7 = Ay d; el Mo el M df el ; 0, Myel  Myel”)
= (V- Ty o e} Twep )y, — (n- Ty 0 e} Tuel o,

+ (h MMy —aer ), 0 (Mwey — Marel o,

On the other hand, A(Hvezn,ﬂwezn,HMe};";rh,wh, ) = (eh L wy) 7, . With 7, =
Hvafe};n, wp, = pp = 0 it follows

(Mwey .V -y ey )7, — (Myel ,n-Tvo ey or, = (Mvep 0 Myep )7,

210, et |12 | - Therefore one obtains

Hence (9, el Myet" )7, = 50,
the following error equation

]_ u’n _12 a’n,
64) SO ek 12+ 07 ek 12+ e (el B, + 7 2002k — )3,

e (F) = Pl ™)l ) = (6" = 66 ) + (O i, — O Ty ).

h

The right-hand side of (5.4) is estimated as follows

(55> |(¢n - qs?ha ezn)Th + (a:u?h - 8tun7 HWeZ")T%J
A
—1/2 an um
< Cp! + (||€h 12, + Ih7 2 (M0ep” — ef M37) + llel 112 1.0,
ith p = L¢" — ofuy, — 0 Since F P = (up)d =gt
with pf == Zl¢" — @715, + 10 upy, — deu™||%, . Since F(up,up™") = (up)® —up ™,

the nonlinear term can be written as
fu™) = F(uj,up™)
= fu") = fufy,) + f'(uh)er” +3(up,)*(ep )? + (er)? — Atdf up.

By the Cauchy-Schwartz inequality, the HDG Sobolev imbedding, the inequality (3.6)
and the uniform estimate (3.23) , one obtains

6:6) e (Fn) - Pl e ) = e e e ),

€t C
1/2 an
— o — (el 1B + I (et — e )l3) — < ek s,

where pf = % [||f(u™) — F(uf,, uf;, )||%—h + At?(|9) u||%. ], and the uniform bound
n (3.23) has been utilized.
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646 In light of (5.5) and (5.6), the error equation (5.4) can be written as

At

1o o 1,
617 (57) SO llen Zun + S0 ek IZ0n + ~llen Il

3

i (e + e =+ S (0 ), )
b0 A (1 B, + I e — el
650 < llep 24,0+ glle}i" 125 + C (o + p5) + O (f (upp)eh e ) .
651 By the uniform estimate (3.23) and the inequality (3.11), there holds
652 (5.8) CEI(f (upp)er ep” ) | < Clep |15,

4
653 < Ollei” 2+ 5 (e 15, + Ih7 2 (2ei” = e )ll3, ).

654 Furthermore, the interpolation inequality and the HDG Sobolev imbedding implies

C n C n 3 n 3
655 (5.9) ?||e}j 3. < :Ile}f IZ2llen 176
C 64 1/2 an
656 +€@\ 17<||6h 15 + [|hr PMer” —ef") |6Th)

n

657 By the definition (3.30) and the error equation (5.2b), one has Kj (e} ,eil") = eff .
658 The spectral estimate (3.31) with 8 = €* then implies

: —1/2 an 1—é€ nout
650 (5.00) ellefl |5, +ellhr P (MRer” — eIl + ——— (F (uhereh ),

> —2Co[[V(=2) 6" 22 = et 21

h

661 Defining (—A)~tey" = £, it follows from the definition (3.8)

663 Ay Myepr Myer ;7h,wh, pn) = (€, wi)7 = — (A", wp) 7.

664 Hence the error estimate of the HDG elliptic projection in Lemma 3.7 and the inter-
665 polation inequality (3.11) implies that

666 2Co||V(=A) ey |7 < CIV[(=A) e — Twep 1115, + IVIwes |15;)

667 < CR?|[ ™32 + Cller" 1% 10

668 < CR?|le” |7 + Clley 1210
64 1/2 an Ch4 n n
w0 < s (1l 1 + A = e )3 ) + el 12+ Cle 12
- < et —1/2 a2 u™ |2
o0 < g (e I+ e A" = e ) + Cllei 12

672 provided h < e. The estimate (5.10) now becomes

- 1/2 ~n 1-— 63 n n
o5 (511) el 13, + ellir AW — ey, + ——— (F ()i el )
. et —1/2 a2 u™ |12

674 >~ (e I, + a7 2 @er” = e 3 ) = Cller 1210
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Taking into account of (5.8), (5.9), and (5.11), the error inequality (5.7) is now

At

1 . . 1,
(5.12) SO ler” 120+ SN0 e 12 + —llei 174

2¢* —1/2 an
1 (e 15 + 2 (Rei” = )3 )
< Ol 2 + oyl s + Cot + ).

By the L? stability estimate of the numerical solution (4.6) and the L? error
estimate of the HDG elliptic projection in Lemma 3.7, provided h < 6%, one obtains
e[S, < C|let"||3,. Then the inequality (3.11) implies

1/2 1 s
Sl 12 < (e By + 107 2002k — e )3 ) ek 1
4
1 2 —~n _ n
< 5 (led 15, + Ih7 2 (1ey” = e )37, ) +Celei” |9,

whence (5.12) becomes

At

1 " . 1,
(5.13) SO ler” 120+ 107 e 12 + —llei 174

4
€ —1/2 "
s (e 15, + I (el — e, )

< C(llet 121+ Pler 190) + CoT + pb).
Multiplying (5.13) by 2At¢ and taking summation over n from 1 to m, one derives

u™ 26 At —1/2 an
14) e+ T (|| 15 + 1072 (@ei” = e )3 7)

u? u™ — u™ - n n
< llex ||%1,h+CAtZ(||eh 1210 + € Pl 1S1,4) + CALY (o} + pB).

n=1 n=1

In view of the imbedding (3.13) and the fact [|e}" |12 < C, one chooses At < C'¢%
such that

. 6on un 1,
CAt(leh [Z1n + €l 120) < 5lleh 121

It follows
4€4At —1/2 am
(5.15) e I+ 15 2 (e I + 172 @er” = )3 )
n=1
m—1 m
0 " — u” n n
< 2 20+ CAE Y (lei 120+ € ek 181,) + CAL D (o5 +p5).
n=1 n=1
C C(At
< SR, Bl gy + 61 rnoy) + C G (Bl + 1)
m—1
+CAE Y (leg" 2+ € lles” 5 4).
n=1
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One has applied the stability estimate (4.7), the uniform estimate (3.23), the imbed-
ding (3.13), and the error estimates of the HDG elliptic projection in Lemma 3.7.
Define d,,, > 0 and S,,, such that

264 At —
_ 3
1—c¢ —

= right-hand side of (5.15).

m n —1/2 0 _u™ a™
S = Nl 20, + (e 5, + 172126 = eV, ) + o

Then
Smi1 — Sy < CALS,, + CAte ®S3 | m > 1.
An application of the nonlinear Gronwall’s inequality in Lemma 2.3 of [33] gives

S < (14 CAH™ 1S {1 — CS?[(1+ CA)*™ — (1 4+ CAt)e 02+ CAt) 12
< CeCTS) < O(T, e,u)e " [R2*+2) 1 (A1)

with C(T,u, ¢) := Ce®T(||u, atu||%2(Hk+2) +H¢||%2(Hk+2)+H(9ttu\|%2(L2) +1), provided
that

1
1—CS?[(1+CAt)*™ — (1+ CAt)?le 2 +CcAt)~! > 3

which is fulfilled if

1
R2042) L (Af)? < 37
TS ST g

Recalling the constraint on h from (3.31) with 3 = €3, one concludes that provided

37
. 17 7 € 2(k+2)
< — -
h ()'111111{647 €1-d, (C’( 7U7¢)) },

At < Ce%,

the estimate (5.3) holds. This completes the proof. ad
Next, we perform the error estimates of the scalar variables in the L? norm.

LEMMA 5.3. Under the same conditions as Lemma 5.2, the following error esti-
mate holds

N
n n n n 1
At Z 6" = dhll72(0) +  max [u™ = upl72q) < @O(Ta u, ¢) (W2 + At)%.
n=1 -

Proof. Taking (ri,wi,p1) = (—e2" et el™) in (5.2a) and (rq,ws, pug) = (€F
fein, feﬁn) in (5.2b) respectively one obtains

(5.16) (O ep ep )m + Al Len Lep s —el e e ) = (9 ufy, — Ou" e} ),
(517) ||6?15 | %—h + GA(ez aeznaegn;eg a_ei 7_€i ) = _(¢n - ¢?ha 62 )Th

— (P - f@) )
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Next, we multiply (5.16) by € and add the result to (5.17) to get

(5.18) (O ei” el )+ llef 15, = —(¢" = dfn.eil )7
— (Pl ) = fn) )+ e@f ufy - O e )
h

By Lemma 4.4, there holds
n—1 n 1 n n +,,n
(5.19) P, ™) = F)] < O + 1)]af | + At0;

Applying Cauchy-Schwarz inequality and taking summation of (5.18) from n =1 to
n = m one arrives at

N
eller” |15, +2€Atz lleg” |13, + e(At) Z en |17
n=1 n=1
1 S n n |12 w2 n n 12
< C(ej +1)At Z(W — o7, + llen 17, + v — g, l7,)
n=1
- +, n ni|2 C 2
+ CAte Y [0 upy, — O™ |7, + 5 (At)%.

n=1

Now by Lemma 3.7 we have

m
ALY 107 ufy, — |3,

n=1

< Atz (0 ufy — O u™ |7, + 10 u™ — 0|7,

/tn
t

n—1

(5.20)
+

tn—1

2
(t - tn,l)aﬁu dt‘|

2
tn
7Atz/ l at’th—’LL)dt

T

T
§A|@Wm—W@mMH%NVA|@M@th

Next by the HDG Sobolev imbedding (3.2b), the inequality (3.6), and the error esti-
mate in the negative norm (5.3) one obtains

1/2 am”
Atiijuﬂ<<cAt§j(whuﬂ+wm e — e )3, )

n=1 n=1

< e_llC(T,u,¢)((At)2 + h2(k+2))~

Therefore the approximation properties of the elliptic projection in Lemma 3.7 gives

m " 1
Tt 28t e T, < 55 C(T u, 6) (P02 + (At)?).

n=1

m
eller, |

This establishes the optimal error estimates of u and ¢ in the L? norm. 0

Finally one performs the error analysis of the flux variables. One has
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760 LEMMA 5.4. Under the same conditions as Lemma 5.2 the flux variables satisfy
761  the following error bounds

N
762 (5.21) max ||eh 1%, + Atz ||eh 12+ < C(T, u, d)e 24 (A1) + p2(k+1)).
763 n=1

p n ¢ é;n

764 Proof. Taking (r1, w1, 1) = (ej ,ej ,e, )in (5.2a) gives
aE u™ —1/2 zn
5 (5.22) (O e ’eh )Th + ||€h 1%, + I / (erh - ef )37

766 = (0 uly, — Opu™ ,eh )Th.

767 Applying 9;" to (5.2b) and then setting (ro,ws, o) = (ezn,0,0) in the resulting
768 equation, one obtains

769 (5.23) (0 el el ), —e(@f ey Vel )7 +e(df el el - m)ar, =0.

71 Next with (rg, wa, 2) = (0,0; e, 0; el") in (5.2b) taking summation of the result
72 with (5.22)~(5.23) yield

773 (5.24) (3+eh 762 )75, + e(hs! (Mep” —ef ), 0 (MYept” —ef o,

7 IR 13, + I1h > (0el” — e M3, = (0 ufy — O e ) .

775 R G P (N B (TR R

776 =1 + 1y + I5.

777 The three terms I;,7 = 1...3 are estimated as follows. For I;, by the Cauchy-
778 Schwartz inequality, the HDG Sobolev inequality Lemma 3.1, and (3.6), one obtains
79 1] < 10 ufhy — O |7 llef I,

780 < 107 ufy, — 0|17, (1Y I + 107> (@0ef” — e )llor)

781 < Cllof ufy — 3tU"HTh(H€h i+ 17 (@) — e )Han)

782 < 105wy — Dy + 7 (1eE I3, + N7 201eg” — e Yo

783 By (5.2a) with (71, 1) = (0,0) one has

81 |Io| = |(T19, 19" — &7, O €t )7 |

785 < IA(e§n7einve?§07( 1@ = &7), 0) + (8 ufy, — Bpu”, (T2 16" — 671)) 1. |
786 < |0 ufy, — O™ || LG g " — ¢7h||Th

wr o 4O | + (e — e o)

s <V 6™ — 6l + b7 I (I, 6™ — 67 lom,)

e n n o n n 1 " —1/2 (y70 o™
50 < C(105ufy — O™ |7, + T 110" — OFullin) + 7 (llef 15, + 1h7 Py — e or).

790 where one has utilizes the continuity of the operator A4 in (3.5), the inverse inequality,
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the L? stability of the projections I1{ and IT¢_,. Likewise,
73]
< QHHzH(F(uh,uz Y = ) B+ 3 (1 1 + Ih 2 0ef” — i) 37)
UG (F(afu ™) = Fm) B, + Clo7 i, — o3,

+ ||h71/2Hng+1 (F(uwZ D= fu) - F@N37,)

n n -1/2 "
< o, — o, + 3 (18 13, + 7 A(ef” — e )
c "
I (Bt ™) = (™)l

Taking into account of the above estimates of Iy, Is, I's, multiplying (5.24) by At,
then taking summation from n =1 to n = m, one derives

m am 1 & n _ n o
1/2 1/2
elled 17, + ellhr PMep” —ef )II+§AtZ(IIe£’ ||%’;L+Hh7‘/ (11Zey” — ey 37

n=1

m
—~1/2 =0
<lef 1%, + 17 (er” — e )37, + CAL Y 107 ufy, — 0|3,

n=1

]' n— n
+0Atz (1T 410" = OFullirs + TR (F gty wi ™) = F(@™) 1)

n=1

< O(T,u, ¢)e= 2 (R2FHD 4 (At)?).

We have applied the inverse inequality, the approximation results of the HDG elliptic
projection Lemma 3.7, the uniform estimate (5.19), and the error estimate (5.3). This
completes the proof. ]

Theorem 5.1 follows from Lemmas 5.3 to 5.4, the triangle inequality and the error
estimates of the HDG elliptic projection (3.7). This finishes the proof of the main
convergence result.

6. Numerical Experiments. We consider two examples on square domains in
R2. The meshes are regular triangulation by right triangles. We remark that more
robust tests need to be randomized meshes or polygonal meshes. cf. [9]. These will be
considered in future development of the computer codes. In the first example we use
manufactured solution of the system (1.1) with explicit forcing terms; in the second
example we perform simulation of spinodal decomposition and coarsening of a random
field. Since the scheme is nonlinear, we solve the system iteratively by linearizing the
nonlinear term using Newton’s method.

FEzxample 6.1. We take the domain to be the unit square, and the problem data
u? is chosen so that the exact solution of the system (1.1) is given by

e=1, u=¢=c 2% —2)’(1 -y~
We report the errors at the final time 7" =1 for polynomial degrees k =0 and k =1

in Tables 1 and 2 for the energy-splitting scheme. The observed convergence rates
match the theory, where At = h*+1,

This manuscript is for review purposes only.



24

G. CHEN, D. HAN, J. SINGLER AND Y. ZHANG

h/\V?2 1/4 1/8 1/16 1/32 1/64
[q—qnl[7, 8.6761E-04 4.8763E-04 2.5059E-04 1.2614E-04 6.3177E-05
order - 0.83111 0.96063 0.99025 0.99757
[P —pnll7, 8.9460E-04 4.9143E-04 2.5107E-04 1.2620E-04 6.3185E-05
order - 0.86427 0.96891 0.99232 0.99809
[u—unllr, 2.5759E-04 6.7122E-05 1.6952E-05 4.2490E-06 1.0629E-06
order - 1.9402 1.9853 1.9963 1.9991
[6— onll7, 2.6295E-04 6.7806E-05 1.7076E-05 4.2768E-06 1.0697E-06
order - 1.9553 1.9894 1.9974 1.9993

Ezample 6.1, k = 0 with energy-splitting scheme: Errors, observed convergence orders for u, ¢

and their fluxes q and p.

TABLE 1

h/\/2 1/4 1/8 1/16 1/32 1/64
lg —anll7;, 1.5809E-04 4.3945E-05 1.1415E-05 2.8955E-06 7.2935E-07
order - 1.8470 1.9448 1.9790 1.9891
lp—pull7,, 1.5896E-04 4.3991E-05 1.1418E-05 2.8957E-06 7.2940E-07
order - 1.8534 1.9459 1.9793 1.9891
lw—wunl7, 4.9741E-05 6.3026E-06 7.9008E-07 9.8850E-08 1.2358E-08
order - 2.9804 2.9959 2.9987 2.9998
¢ — dnllr,  4.9111E-05 6.1809E-06 7.7336E-07 9.6709E-08  1.2090E-08
order - 2.9902 2.9986 2.9994 2.9998

TABLE 2
Example 6.1, k = 1 with energy-splitting scheme: Errors, observed convergence orders for u, ¢
and their fluzes g and p.

826 FEzxzample 6.2. In this test, the exact solution is unknown, we take the domain

827 = (0,1) x (0,1), € = 0.03, the initial condition is a random field of values that are

828 uniformly distributed between —0.05 and 0.05. We report the solution at the time

829 T = 0.001, T = 0.1 and T = 0.5 for polynomial degrees k = 1 in Figure 1 with

830 At =2.5x10"% and h = 1/100. The plots demonstrate the dynamics of rapid initial
spinodal decomposition and later stage of slow coarsening.

Fic. 1. Filled contour plots of the time evolution of w. Left is T = 0.001, middle is T' = 0.1
and right is T = 0.5.

831
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