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Ryota Nakai,1,* Taozhi Guo,2,* and Shinsei Ryu2

1Department of Physics, Kyushu University, Fukuoka, 819-0395, Japan
2Department of Physics, Princeton University, Princeton, New Jersey, 08540, USA

(Received 15 July 2022; accepted 28 September 2022; published 17 October 2022)

Thermal transport in condensed matter systems is traditionally formulated as a response to a background
gravitational field. In this work, we seek a twisted-boundary-condition formalism for thermal transport in analogy
to the U(1) twisted boundary condition for electrical transport. Specifically, using the transfer matrix formalism,
we introduce what we call the energy-twisted boundary condition, and study the response of the system to the
boundary condition. As specific examples, we obtain the thermal Meissner stiffness of (1+1)-dimensional CFT,
the Ising model, and disordered fermion models. We also identify the boost deformation of integrable systems as
a bulk counterpart of the energy-twisted boundary condition. We show that the boost deformation of the free
fermion chain can be solved explicitly by solving the inviscid Burgers equation. We also discuss the boost
deformation of the XXZ model, and its nonlinear thermal Drude weights, by studying the boost-deformed Bethe
ansatz equations.
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I. INTRODUCTION

Condensed matter systems are characterized by their re-
sponses to various background fields. For example, electrical
conductivity is a (linear) response to an applied electric field.
More formally, the system can be gauged or coupled to ar-
bitrary background U(1) gauge field, and one can study the
response of the system.

The electrical response is far from the complete char-
acterization of the system. In particular, for charge-neutral
systems or particle number nonconserving systems, we need
to seek other responses. For example, thermal transport can be
well-defined and investigated for generic systems. Luttinger
[1] identified the gravitational field (gravitoelectric field) as a
proper static background field to formulate the linear response
for thermal transport. (This is based on the Tolman-Ehrenfest
effect, which is similar to the Unruh effect.) This formalism
allows us to study thermal transport in much the same way as
electrical transport.

In this paper, we will further pursue parallelism between
thermal and electrical response. In particular, we seek an
analog of the twisted-boundary-condition formalism a la
Kohn and Thouless [2–4]. In this approach, the system’s
sensitivity to the twisted boundary condition—the boundary
condition twisted by the particle number conserving U(1)
phase rotation—is related to the electrical transport. In this
paper, we will discuss the boundary condition twisted by
energy, which we call the energy-twisted boundary condition.
Following the analogy, the sensitivity of the system to the
energy-twisted boundary condition is expected to capture the
system’s transport properties.

*These authors contributed equally to this work.

For the case of electrical transport, twisting the boundary
condition by U(1) phase is gauge equivalent to introducing
bulk background U(1) gauge field. In particular, the bulk
U(1) gauge field can be completely uniform (homogeneous).
Similarly, in relativistic theories, the energy-twisted boundary
condition can be thought of as a change in the background
metric—we introduce the background graviphoton field [5,6].
This is equivalent to put the system in an accelerated frame.
However, our formalism, the energy-twisted boundary con-
dition, can be applied to any lattice quantum many-body
systems, as far as energy is conserved—we can “accelerate”
or “boost” lattice quantum many-body systems by using the
energy-twisted boundary condition.

While the equivalence between the energy-twisted bound-
ary condition and the bulk background metric may not hold
for lattice quantum many-body systems in general, we will
discuss an analog of the bulk formulation for the case of
integrable lattice quantum many-body systems. Concretely,
we will discuss the so-called boost deformation for integrable
lattice quantum many-body systems.

In this paper, we will be mostly interested in (1+1)D sys-
tems, defined on a spatial circle (ring). The twisted boundary
condition, twisted either by U(1) or by energy, can be thought
of as arising from magnetic or gravitomagnetic flux threading
through the ring. For the case of U(1), this is the setting
where we can discuss persistent electrical current [7], related
to the Aharonov-Bohm effect. With energy-twisted bound-
ary condition, we can also discuss a gravitational analog of
persistent current. Just like the persistent current is based on
the Aharonov-Bohm effect, the thermal/gravitational analog
can be thought of as related to the Sagnac effect [8]. The
Aharonov-Bohm effect and the persistent current is periodic in
the unit of flux quantum. When the threaded flux is an integer
multiple of the flux quantum, the Hamiltonian is equivalent to
the Hamiltonian without magnetic flux, as one can find a
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large gauge (unitary) transformation which brings one into the
other. While it is rarely discussed, there is a similar periodic-
ity for the Sagnac effect, and for the gravitational persistent
current. It is related to the large diffeomorphism (modular
transformation) of the space-time torus.

The rest of the paper is organized as follows. In Sec. II,
we first recall the twisted boundary condition by U(1) phase
and its relation to the Drude weight and Meissner stiffness.
Subsequently, we consider the generalization, the bound-
ary condition twisted by time-translation symmetry. We then
introduce the thermal version of the Drude weight and Meiss-
ner stiffness. The precise prescription for the energy-twisted
boundary condition is discussed by using the tensor network
representation of the transfer matrices. In addition, one can
formulate the bulk perspective using the so-called boost de-
formation in integrable systems. In Sec. III, we present the
calculation of the Meissner stiffness for (1+1)D CFT and
for the transverse-field Ising model. In Appendix C, we also
present the calculation of the Meissner stiffness for (1+1)D
disordered free fermion models by using the transfer matrix
method. In Sec. IV, we take a closer look at the integrable
boost deformation, by first focusing on the free fermion chain.
We will show that the boost deformation can be solved in
terms of the inviscid Burgers equation. We also study the
boost deformation for the XXZ model, and its thermal re-
sponse, in particular, the nonlinear thermal Drude weights.
Finally, we conclude in Sec. V.

II. ENERGY-TWISTED BOUNDARY CONDITION

A. U(1) twisted boundary condition, persistent current, Drude
weight, and Meissner stiffness

Any symmetry in quantum field theories can be twisted.
This is so in particular for unitary on-site symmetries. By
twisting, we here mean twisting boundary conditions by sym-
metries. (One can also introduce symmetry twist defects,
which are closely related.) Of interest to us in this paper is
twisting by time translation symmetry (energy). Before
discussing twisting by energy, let us start, as a warm-up,
with a more familiar example of twisting by continuous U(1)
symmetry.

To be specific, let us consider a lattice fermion system
defined on a finite one-dimensional lattice of length L with
the periodic boundary condition (PBC). That is, the system is
defined on a spatial ring or circle. (The following discussion
can easily be extended to systems defined on a d-dimensional
spatial torus.) We use ψi(x) to denote a fermion annihila-
tion operator located at a site x, i represents some internal
degrees of freedom within unit cell (spin, orbitals, etc.). For
general systems, the boundary condition can be twisted, i.e.,
we can consider a twisting boundary condition, ψ (x +  L) =
eiφψi(x), where φ is a twisting phase (notice, however, that
we have systems with conserved particle number in mind in
the following to discuss conduction properties.) By using the
generator of U(1), i.e., the total charge (total fermion number
operator), Q = ψ†(x)ψ (x), this boundary condition
can be written as

ψi(x +  L) =  Gφ ψi (x ) G−1 , Gφ =  eiφQ. (1)
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As is well known, such twisting boundary condition can be
realized by the Aharanov-Bohm effect, i.e., by putting
magnetic flux through a nontrivial cycle of the circle.
Such a magnetic flux may be introduced by a con-
stant background gauge potential, e.g., A(x) =  φ/L. This
gauge potential enters into the hopping elements: ψ†(x +
1)eiφ/Lψ (x) +  H.c. By a gauge transformation ψ (x) →
eiφx/Lψ (x), one can remove the background vector potential,
ψ†(x +  1)eiφ/Lψi (x) →  ψ†(x +  1)ψi(x), except at the bound-
ary of the system: ψ j (1)eiφ/Lψi(L) →  ψ j (1)eiφψi(L) =
ψ†(1)G ψi (L)G−1. After this gauge transformation, only the
link connecting the ends at x =  1 and x =  L has a phase factor
eiφ .

The twisted boundary condition (1) can immediately be
generalized to any unitary on-site symmetries by simply
replacing Gφ by the unitary operator implementing the sym-
metry. It can also be generalized to non-on-site symmetries
[9], and to antiunitary symmetries (time-reversal symmetry)
[9,10]. These twisting are useful, e.g., to detect symmetry-
protected topological phases.

With the twisted boundary condition, we can now discuss
the system’s response to the U(1) twist, and associated quan-
tities that measure the response [2,11–15]. (Here, we follow
the notation of Ref. [14].) First, when the boundary condition is
twisted by a U(1) phase, ψi(x +  L) =  eiφψi(x), inversion
symmetry is broken and a finite electric current, the persistent
current,

−βEn

J =  L 
dφ 

=  L 
n

Z dφ 
, (2)

flows in the ground state, where En(φ) is the many-body
eigenenergy as a function of the twisted U(1) phase, Z =

e−βEn is the partition function, and F =  −β − 1  ln Z is the
free energy. By taking the second derivative with respect to the
U(1) phase φ, we can measure the stiffness of a system against
the U(1) twist. There are two similar but different quantities,
the Drude weight (charge stiffness) D and the Meissner stiff-
ness D. They are defined, respectively, by

−βEn        2

D =  
2 

n          
Z      dφ2 ¯

φ=0
,                        (3)

D =  
L d2F ¯       

.                                   (4)
φ=0

In transport theory of free fermions, the Drude weight de-
scribes the singular part of the ac electric conductivity σ (ω) at
zero frequency ω =  0,

Re σ (ω) =  2πDδ(ω) +  σreg(ω). (5)

On the other hand, the Meissner stiffness measures the
superfluid density and describes the boundary-U(1)-phase de-
pendent part of the ac conductivity as

σ (ω) =  
ω +  iδ 

+  σKG(ω). (6)

The second term of the right-hand side is the Kubo-
Greenwood formula of the ac conductivity

In the limit of L →  ∞ and then T →  0, the Drude weight
is a measure of metallicity [2], and the Meissner stiffness
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is that of superconductivity [12], that is, D =  D =  0 in
insulators, D =  0, D =  0 in metals, and D =  D =  0 in su-
perconductors. The coincidence of the two stiffnesses occurs
when the energy gap is present [12]. In the limit of L →  ∞ but
at a finite temperature, D is a measure of ballistic conduction
or integrability [16–19], while D =  0 in one dimension. As
for a finite-size system, there is typically an energy gap above
the ground state. Thus, at T →  0, the Drude weight and the
Meissner stiffness coincide provided there is no ground state
degeneracy [13].

B. Energy-twisted boundary condition

We shall now generalize the above line of thinking to time
translation symmetry. Following (1), we are interested in the
“energy-twisted” boundary condition,

ψi(x +  L) =  eaHψi (x )e−aH , (7)

where H is the Hamiltonian, and a is a parameter.
To give a precise meaning of (7), we can switch to the

imaginary-time (Euclidean) path-integral language, where the
energy-twisted boundary condition can be introduced, in term
of the space-time field, as
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FIG. 1. The tensor network representation of the untwisted (left)
and twisted (right) partition functions.

can be achieved by “reconnecting” the relevant links, located
between x =  L and x =  1. This reconnection implements a
discrete version of the energy-twisted boundary condition.
We note that twisted spatial tori have been discussed in the
context of topological order [20,21] and Lieb-Schultz-Mattis
type theorems [22,23].

Viewing the horizontal direction as a fictitious time direc-
tion, this may be viewed as an insertion of an operator in the
column-to-column picture

ψi(x +  L, τ ) =  ψi (x, τ +  a), (8) Ztwist (a) =  Tr[W LSa], (11)

where τ is the imaginary time. We should note that the imagi-
nary time is periodic, with the periodicity given by the inverse
temperature β, τ ≡  τ +  β. Accordingly, while not apparent in
(7), there is a periodicity in the twist parameter a with the
periodicity, a ≡  a +  β, much the same way as the U(1)
twisted boundary condition is periodic with periodicity given
by the flux quantum, 2π =  2πh̄c/|q| where h̄ =  c =  1 and
we choose the charge of the matter field to be one, |q| =  1.
We will call the boundary condition of type (7) or (8) as
energy-twisted boundary condition. We will also work with
the rescaled version of a,

κ =  
a

, (9)

in terms of which the periodicity condition is given by κ ≡
κ +  β/L.

It is also useful to consider discretized imaginary time and
the transfer matrix, as commonly done in lattice quantum
many-body systems. The energy-twisted boundary condition
can then be conveniently introduced when we have a matrix-
product-operator representation of the (column-to-column)
transfer matrix. If we discretize the imaginary-time direc-
tion into M lattice sites, β =  1 τ  ×  M, the partition function
can be written in terms of the row-to-row transfer matrix V
� e−1τ H as Z =  Tr[V M]. When the system’s transfer ma-trix
is represented in terms of a matrix product operator, the
partition function on the torus is then given in terms of a
tensor network, as depicted in Fig. 1. The partition function
can be alternatively written in terms of the column-to-column
transfer matrix W ,

Z =  Tr[V M ] =  Tr[W L]. (10)

Now, we distort this space-time lattice, and consider the
partition function on the twisted torus (Fig. 1 right). This

where S is the unit shift operator in time direction, that shifts
the temporal coordinate by 1τ .  The twist parameter a here is
an integer. We note when a =  M, SM =  1, and hence the
twisted partition function is periodic in a, Ztwist (a +  M ) =
Ztwist (a).

C. Energy-twisted boundary condition and deformation in
integrable systems

While the above prescription to introduce energy-twisted
boundary condition is generic, we now turn our attention to
integrable lattice systems and quantum field theories in
(1+1) dimensions. There, the energy-twisted boundary condi-
tion can be implemented without breaking their integrability.
Integrability of these models also allows us to consider their
boost deformations—bulk deformations of the models without
breaking integrability [24]. Boost deformation is to energy-
twisted boundary condition what bulk U(1) gauge field is to
U(1) twisted boundary condition. Namely, boost deformations
provide a bulk background “gauge field” corresponding to the
energy-twisted boundary condition.

Let us now briefly review the boost deformation in inte-
grable (1+1)D lattice quantum many-body systems, by first
using the set of conserved charges, and then by using the
coordinate Bethe ansatz. The latter description makes its con-
nection to the energy-twisted boundary condition clear, while
in the former we have a bulk description in terms of a de-
formed Hamiltonian.

We recall that integrable spin chains come with an infi-
nite tower of commuting charges {Qr}, [Qr , Qs] =  0 (r, s =
2, 3, . . .), the existence of which is the manifestation of the
integrability. Among the conserved charges is the Hamilto-
nian of the spin chain, H =  Q2. Ref. [24] introduced one
parameter deformations of generic integrable quantum spin
chains. Starting from the infinite tower of commuting charges
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{Qr} of the original short-range spin chain, the scheme in-
troduced in Ref. [24] continuously deforms the conserved
charges {Qr} →  {Qr (λ)} where λ is the deformation param-
eter. Under such deformation, the integrability is maintained,
i.e., [Qr (λ), Qs(λ)] =  0, but the deformed charges are longer-
ranged. One of the examples of the deformations is the so-
called T T deformation [25]. Of our interest here is the boost
deformation, which is defined, for the second conserved charge
(the Hamiltonian), by

PHYSICAL REVIEW B 106, 155128 (2022)

where SN is the symmetric group of degree N and S −  =  Sx
j 
−

iSxj . Here, we introduce the rapidity variable vj ,

ip j                ip(vj )         
sinh γ (v j +  i)
sinh 2 (v j −  i)

and f (v) is related to the S matrix and the phase shift,

iδ(v)              sinh γ (v +  2i)

sinh 2 (v −  2i)

d 

d 

(λ) 
=  i[B[Q2(λ)], Qr (λ)]. (12)

by S(v) =  f (v)/ f (−v ). The energy for the state (16) is given
by

Here, B[Q2(λ)] is the boost operator for the charge Q2 and
defined by

B[Q2] =  
X  

x q2(x), (13)
x

where q2(x) is the density of Q2, Q2 =  
P  

q2(x). The boost-
deformed Hamiltonian Q2(λ) =  H (λ) is an analog of the
Hamiltonian H (φ) in the presence of background U(1) gauge
field A(x) =  φ/L discussed in Sec. II A. As will be seen in
Eq. (30), the parameter λ can be identified with the parameter
a, κ introduced in Sec. II as

iλ =  κ , (14)

i.e., an analytic continuation of κ . We note that the flow equa-
tion (12) for real λ keeps the conserved charges hermitian,
while the operator twisting the boundary condition in (7) is
nonunitary when a and κ are real.

In the above, the boost deformation is conveniently de-
scribed for infinite systems. It is however possible to discuss
integrability and the deformation for finite chains. There, we
need to worry about the compatibility between the long-range
nature of the deformed conserved charges, and the finite size
of the system with a boundary condition. As long as the
range of a conserved charge of interest does not exceed the
length of the chain L, one can formulate the Bethe ansatz
equations, and expect that they give the correct spectrum for
this particular charge. The Bethe ansatz equations we use here
are asymptotic ones, valid for large enough L.

Let us consider, as an example, the S =  1/2 XXZ spin
chain

H =  J 
L ¡

Sx Sx+1 +  Sx Sx+1 +  1Sx Sz
+1

¢ 
−  

LJ 1
. (15)

x =1

In the following, we will assume L to be even, and J >  0 and
−1  <  1  <  1. We parametrize the anisotropy 1  as 1  =  cos γ .
The coordinate Bethe ansatz for a state containing N “parti-
cles” with (quasi) momenta p1, . . . , pN is given by

|vN i =
X X  Y  

f
¡
vσ j −  vσk 

¢

x1 <x2 <···<xN σ�SN j >k

N

× eipσ j x j S −  · · · S− |↑ · · · ↑i , (16)
j =1

X X 2J sin2 γ

j =1

j

j =1 
cos γ −  cosh (γ v j )

Requiring PBC, we obtain the Bethe ansatz equations

eip(v j )L =  
Y  

S(v j −  vk ), j =  1, . . . , N, (20)
k (= j )

that determine the quasi momenta.
The boost deformation results in the change in momen-

tum p(vj ) →  pλ(v j ) [24]. We can then consider the modified
Bethe ansatz equations

eipλ(vj )L =  
Y  

S(vj −  vk ). (21)
k (= j )

As mentioned above, these Bethe ansatz equations are asymp-
totic ones, valid for large enough L. In Ref. [26], it was shown
that, in infinite volume, the deformed momentum pλ depends
linearly on λ,

pλ(v j ) =  pλ=0 (v j ) +  λh(v j ), (22)

which is an input to the Bethe ansatz equations.

D. Thermal response

In analogy to the U(1) case, we expect that the energy-
twisted boundary condition and deformation (12) is related to
thermal transport. The commutator of the Hamiltonian with
the boost operator [the right-hand side of (12) when r =  2] is
the energy current operator, which is an integral of motion in
integrable models. The persistent heat current (an analog of
the persistent charge current) flowing in the ground state of a
boost-deformed Hamiltonian is thus

−βEn

J =  −  
dλ

=  −  
n

Z dλ 
=  −  

dλ 
. (23)

From the linear response theory, we can define the thermal
Drude weight [14], which is the zero-frequency singularity
part of the ac thermal conductivity

Re κ (ω) =  
2πDQ 

δ(ω) +  κreg(ω), (24)

and the thermal version of the Meissner stiffness [14], which is
the contribution to the thermal conductivity besides the
Kubo-Greenwood part [1]

Q

κ (ω) =  
T (ω +  iδ) 

+  κKG(ω). (25)
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Notice that the definition of these quantities is due to Ref. [14],
which may be different from other references by T and a
constant. As expected, the thermal Drude weight and Meiss-
ner stiffness of free fermions are identified with the second
derivatives of the energy and free energy, respectively, with
respect to the boost-deformation parameter λ as

−βEn        2
¯

D =  
2L 

n
Z

¯
dλ2 ¯

λ=0
, (26)

DQ =  
2L dλ2 ¯

λ=0
. (27)

(see Appendix D).
At a finite temperature, the thermal Meissner stiffness is

zero unless superconducting [14]. The thermal Drude weight
has been studied in 1d quantum systems in [27–32]. [Specifi-
cally, see (43).]
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FIG. 2. The space-time torus with the energy-twisted boundary
condition. (Here, we set the velocity to be one, v =  1, for simplicity.)

With (30), the partition function in the presence of the twist is
given by Z =  Tr qL0−c/24, where q is now given by

III. ENERGY-TWISTED BOUNDARY CONDITION AND
THERMAL MEISSNER STIFFNESS

q =  e2π iτ =  e− 2  
L 
β 

1+ivκ . (33)

In this section, we consider the energy-twisted boundary
condition in (1+1)D CFT and lattice many-body systems, and
calculate the thermal Meissner stiffness.

A. (1+1)D CFT

Let us start with a simple example, the (1+1)D chiral Dirac
fermion theory,

Z L

H = dx ψ †Hψ , H  =  −iv∂x , (28)
0

where ψ (x) is a complex fermion field operator, and v is the
Fermi velocity. The single-particle eigen functions are given
by fp(x) =  ei

p
x/ L with the single-particle energy ε(p) =

vp, H f p(x ) =  ε(p) fp(x). Requiring the regular (unboosted)
PBC leads to the quantization of p, p =  2π/L ×  integer. The
energy-twisted boundary condition can be imposed by requir-
ing

fp(x +  L) =  eipL fp(x) =  eκε(p)L fp(x), (29)

where κ is the twist parameter. Thus, p is quantized as

(p +  iκε(p))L =  2πn, n � Z,

⇒ p =  
1 +  ivκ 

2

L

n
. (30)

This equation should be compared with (21) with iλ =  κ .
We now consider the partition function in the presence of

energy-twisted boundary condition. In relativistic systems this
can be incorporated by introducing graviphoton field in the
background metric (Appendix A). For 2-torus, the twist can
be incorporated by modifying the modulus. For the untwisted
case, the partition function is

Z =  Tr e−βH =  Tr qL0−c/24 , (31)

where L0 is the Virasoro generator, c =  1 is the central charge,
and q is given by

Namely, the modulus changes from the untwisted to twisted
case as

τ =  
i

L 
→  

i

L 1 +  ivκ 
. (34)

Recall that the modulus is the ratio of two periodicities ω1

and ω2 on the complex plane, τ =  ω2/ω1. After the twist, ω1

is changed as L →  L +  iLvκ , while ω2 =  ivβ remains
unchanged (Fig. 2). When κ =  β/L, (34) is nothing but the
modular transformation T ST ,

τ →  
1 +  τ 

, (35)

where T : τ →  τ +  1 and S : τ →  −1/τ  are the genera-tors
of the modular group SL(2, Z)/Z2: τ →  (aτ +  b)/(cτ +
d ) (a, b, c, d � Z). The modular transformation leaves the
space-time torus unchanged (it acts as a large diffeomor-
phism), and hence the space-time at κ and κ +  β/L are
equivalent.

Let us now consider the energy-twisted boundary con-
dition in a generic (1+1)D CFT using the formalism in
Sec. II. In Lorentz invariant theories, row-to-row and column-
to-column transfer matrices are essentially the same. The
row-to-row transfer matrix is given in terms of the Hamil-
tonian H as V =  exp(−H ). For a CFT placed on the spatial
circle of circumference L, H is given in terms of the Vira-
soro generators L0 and L0 and the central charge c as H =
(2πv/L)(L0 +  L0 −  c/12). (v is the velocity of the excitations
and plays the role of the speed of light.) The corresponding
column-to-column transfer matrix is given by W =  exp(−H )
where H =  (2π/vβ )(L +  L −  c/12). The partition function
can be written in two different ways, Z (β , L) =  Tr H  e−βH =
Tr ˜ e−LH , where H  and H  are the CFT Hilbert space on a
ring of circumference L and β, respectively. Introducing the
moduli as

τ =  ivβ/L, τ̄ =  −ivβ /L ,

q =  e2π iτ =  e−
2π vβ 

. (32) τ̃ =  −1/τ , τ̃ =  −1/τ̄ , (36)
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quantum quench in CFT [33]. The quench dynamics at a time t
are traced by a modulus τ =  v(iβ +  t )/L, which is related to our
twist by the S-modular transformation and interchanging β
and L. As a result, the fidelity has more peaks at higher
temperature, while the energy-twisted free energy has more
peaks at lower temperature.

Following [33], the formula (41) can be derived as fol-
lows. A successive application of modular transformations
ST n0 ST n1 · · · ST nk maps a modulus τ =  q/p to τ =  0, where
n0, · · · , nk are integers appearing in the continued fraction of
p/q as

q 
=  n0 −  

n1 −  n2−··· 

. (42)

FIG. 3. The variation of the free energy of the Ising CFT with
energy twist.

the partition function can be written as

Z (β , L) =  Tr H  e2π iτ (L0−c/24)e−2π iτ̄ (L0−c/24)

=  Tr ˜ e2π iτ̃ (L0−c/24)e−2π iτ̃ (L0−c/24). (37)

To introduce the energy twist, we modify the moduli as

ivβ ivβ 1
L L 1 +  ivκ

τ̃ =  
vβ 

→  
vβ 

(1 +  ivκ ). (38)

The energy-twisted partition function is invariant under τ̃ →
τ̃ +  n or Lκ →  Lκ +  nβ, where n is an integer.

The energy-twisted partition function in the low-
temperature limit, vβ/L →  ∞, can be evaluated as

Z (β , L) � e2π iτ (h− 24 )e−2π iτ̄ (h− 24 ) , (−1/β ) ln Z

� −  
(c −  24h)πv 

. (39)

Here, h denotes the (rescaled) ground state energy. The ther-
mal Meissner stiffness in the low-temperature limit converges
to

DQ(T =  0) � −
(c −  24h)πv3 

. (40)

This quantifies the variation of the ground state energy in
response to the energy-twisted boundary condition. According
to Appendix D 1, DQ(T =  0) agrees with the same limit of
the thermal Drude weight DQ(T =  0) due to the presence of
a finite-size gap and the uniqueness of the ground state. As an
example, the twisted free energy of the Ising CFT is plotted in
Fig. 3. The behavior near κ =  0 matches with (39) with h =  0.

Between Lκ/β =  0 and 1, the free energy at low tempera-
ture has smaller Lorentzian peaks

(c −  24h)πv

6q2L(1 +  v2δκ2)

at Lκ/β =  p/q +  Lδκ/β , where p and q are mutually coprime
integers and δκ is a small deviation from p/q (see Fig. 3).
Specifically, a peak at Lκ/β =  1/2 is 1/4 the height at κ =  0,
peaks at Lκ/β =  1/3 and 2/3 are 1/9 the height at κ =  0, and so
on. These peaks have the same origin as the fidelity after a

By the same modular transformation, a modulus τ =
ivβ/(L +  iv(p/q)β +  ivLδκ ) is mapped to τ '  iq2L(1 +
ivδκ )/vβ when vβ/L À  1, which relates the behavior around
Lκ/β =  p/q with that around κ =  0. Finally performing the S
transformation again, the free energy (41) is obtained, pro-
vided vβ/L À  q2 and Lδκ ¿  β.

On the other hand, high-temperature (vβ/L ¿  1) behavior
can be addressed provided the modular invariance is present.
From (37), we obtain DQ � 0, which agrees with [14]. Notice
that high temperature in CFT indicates a temperature regime
that is much higher than the energy-level spacing. At high
temperature in CFT but, simultaneously, sufficiently lower
than other energy scales, such as the band width or Ising
coupling, the thermal Drude weight estimated from the heat
current has been reported [29,31], and is given by

¯Q =  
(c −  24h)πvT 2 

. (43)

B. The transverse-field Ising model

While in the above we demonstrated the basic ideas using
(1+1)D CFT as an example, it is interesting to apply the idea to
broader systems, which do not have conformal symmetry nor
Lorentz invariance. Here, we consider the transverse-field Ising
model

H =  
X ¡  

−  Jσi σi+1 −  hσ z
¢
, (44)

i=1

satisfying PBC (σL+1 =  σ1). The Ising coupling favors a
ferromagnetically ordered phase (J >  h), and the transverse
field favors a disordered (paramagnetic) phase (J <  h). These
phases are related to each other by an order-disorder duality
transformation [34]. The phase transition between them oc-
curs at h/J =  1 (the self-dual point), at which the low-energy
properties are described by the Ising CFT [35].

We use the transfer matrix formalism introduced in Sec. II
to calculate the response to the energy-twisted boundary
condition. Some details can be found in Appendix B. The
twisted free energy F (κ ) =  −β − 1  ln Z (κ ) is evaluated nu-
merically for a ring of perimeter L =  10. Here, we fix the
Ising coupling by J =  1. The free energy at the critical point
(h =  J =  1) agrees with the CFT result (Fig. 4 bottom left).
The free energy has a period of κ =  β/L and the peaks of the
free energy become clear as the temperature is lowered.
The free energy changes nonmonotonically as a function of
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A. The free fermion model

The boost deformation and the inviscid Burgers equation.
We start from the (undeformed) tight-binding model on a 1d
lattice (x � Z), H =  − (c†cx+1 +  H.c.), which defines
the initial condition Q2(λ =  0) =  H of the boost deformation
(12). It is straightforward to verify that the Hamiltonian (the
second charge) stays quadratic during the boost deformation.
Hence, we represent the Hamiltonian and the corresponding
boost operator as

Q2(λ) =  
X

t z (λ )cx cx + z ,
x,z

B[Q2(λ)] = (x +  z/2)tz (λ)cx cx+z , (45)
x,z

FIG. 4. (Top) The thermal Meissner stiffness of the transverse-
field Ising model (L =  10 and J =  1) at β =  100. (Bottom) The
variation of the free energy of the transverse Ising model at the criti-
cal point (J =  h =  1, left) and in a ferromagnetic phase (J =  1, h =
0.5, right) and the perimeter L =  10 against the twist parameter κ is
shown for temperature β =  10, 30, 100, and 300 (from red to blue).

the twist parameter κ , which is in stark contrast to a mono-
tonically varying free energy of electrons under the U(1) twist
within a single quantum flux, exhibiting a saw-tooth shape.
The free energy shifted by a suitable constant is plotted.

Away from the critical point, we can see that the free
energy variation decays rapidly due to the stiffness of the
order (Fig. 4 bottom right). In addition, the free energy peaks
besides Lκ/β =  (integer) fade out even at low temperature.
The peak height at these points is no longer related to that at
the origin as it is at the critical point. This would be a
signature of the deviation of the theory from the Ising CFT.
The free energy profile obeys the duality of the model, that is,
h/J <  1 in the ferromagnetic phase and h0/J0

 =  (h/J )−1 >  1
in the paramagnetic phase have the same response against the
twist.

In Appendix C, we consider yet another lattice model, the
1d disordered free fermion model(s), and discuss the thermal
Meissner stiffness.

IV. BOOST DEFORMATION IN INTEGRABLE SYSTEMS

In this section, we discuss the boost deformation in (1+1)D
integrable lattice systems. In particular, we first look at the
free fermion model in detail and show that the boost defor-
mation leads to the Burgers equation of the single-particle
dispersion. We then turn to the XXZ model, and, by using the
boost-deformed Bethe ansatz equations, calculate the ground
state energy as a function of the boost parameter, and the
thermal Drude weight.

where the set of λ-dependent coefficients tz(λ) parameterize
the boost-deformed Hamiltonian with the initial condition
tz(λ =  0) =  −δ1 ,z −  δ−1,z . In terms of the coefficients tz(λ),
the flow equation of the boost deformation (12), reduces to

d
d

(λ) 
=  −  

2 
w 

tw (λ)tz−w (λ). (46)

Starting from the nearest neighbor tight-binding model
Q2(λ =  0), the boost deformation (12) [or the coupled
ODE (46)] generates a longer-range hopping Hamiltonian
Q2(λ). For a given λ, we consider a large enough chain of
length L, and impose PBC. By the Fourier transform c =
L−1/2 eikxc̃k , [k =  2π (integer)/L], the Hamiltonian in mo-
mentum space is H (λ) = f (λ, k)c̃†c̃ ,  where the energy
dispersion f (λ, k ) is given by the Fourier transform of tz(λ):

f (λ, k ) : =  
X

eiw k tw (λ ). (47)
w

From the perspective from the coupled ODE (46), the dis-
persion f (λ, k ) can be considered as the “generating function”
of the coefficients tz(λ). So far as the generating function is
differentiable with respect to k, it obeys a PDE, the inviscid
Burgers equation

∂λ 
+  f 

∂k 
=  0, (48)

which can be derived from (46).
The inviscid Burgers equation has a formal solution de-

rived by the method of characteristics [36]. The equienergy
contour in the λ-k space is k =  λ f (λ =  0, k0 ) +  k0 that em-
anates from a point (λ, k ) =  (0, k0 ). This equation indicates
how an initial state with a momentum k0 and an eigenen-
ergy f (0, k0 ) evolves by fixing the eigenenergy. A state of
(k, f (λ, k )) on the dispersion relation moves along the mo-
mentum direction at a speed of f (λ, k ) =  f (0, k0 ). Thus the
deformed dispersion relation is obtained by tilting the energy
axis by arctan λ. The Hamiltonian can be deformed until the
dispersion relation becomes singular, where the slope of the
dispersion relation diverges. Beyond this point, the generating
function is no longer differentiable (the formation of the shock
wave by the terminology of the hydrodynamics).
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diverges, and the dispersion relation converges to f (λ, k ) =
(k −  π /2)/λ (k � [−π /2, 3π /2]).

The boost deformation, the thermal Drude weight, and
the thermal Meissner stiffness. The thermal Drude weight
and the thermal Meissner stiffness of the lattice free fermion
model calculated by (26) and (27) are plotted in Fig. 5. As
shown in Appendix D 3, the thermal Drude weight of a clean
fermion system converges to πvT 2/6 in the thermodynamic
limit L →  ∞ at low temperature T ¿  1. The thermal Drude
weight (and thermal Meissner stiffness) at T =  0 is consistent
with the CFT result (40) by taking into account that a complex
fermion is equivalent to two real fermions (c =  1/2) and that
2(c −  24h) =  −2  for PBC (h =  1/16) and 2(c −  24h) =  1
for APBC (h =  0). However, notice that physical properties of
a free fermion depends on the length modulo 4 (for details see
Appendix D 4).

B. The XXZ chain with boost deformation

We now turn to the boost deformation of the XXZ model
(15). As outlined in Sec. II C, the boost deformation can be
implemented in the Bethe ansatz equations. Specifically, we
solve

L
£

p1
¡
vj 

¢ 
+  λh

¡
v j 

¢¤ 
−  

X  
p2

¡
v j −  vk 

¢ 
=  2π I j (51)

k =1

FIG. 5. (Top) The thermal Drude weight and thermal Meissner
stiffness of the free fermion chain with L =  8, 16, 32 (solid and
dotted lines, respectively) and the thermal Drude weight in the ther-
modynamic limit (red line). (Bottom) The thermal Drude weight
(thermal Meissner stiffness) at zero temperature is shown. The inset is
the evolution of the dispersion relation from λ =  0 (black) to λ =
4.

When the generating function is not differentiable with
respect to k, it obeys an integro-differential equation

∂λ 

Z 
dk e−iwk f (λ, k ) =  

2 

Z 
dk

∂ 
∂k

wk 

f (λ, k)2. (49)

Solutions to (49) are known as weak solutions to the inviscid
Burgers equation (48). We should regard the weak solutions as
the genuine generating function since the integro-differential
equation (49) is equivalent to (46).
A nondifferentiable solution to the inviscid Burgers equa-tion

can also be addressed by the inviscid limit of the Burgers
equation, which is exactly solvable by the Cole-Hopf trans-
formation. In general, the asymptotic solution of the Burgers
equation in the inviscid limit becomes a linear dispersion
f (λ, k ) =  (k −  kM )/λ, where kM satisfies f (0, kM ) =  0 and
∂ f (0, kM )/∂k >  0.

Specifically, the dispersion of the deformed Hamiltonian is
the solution of

f (λ, k ) =  −2 cos[k −  λ f (λ, k )]. (50)

The evolution of the dispersion relation is shown in the inset of
Fig. 5 (bottom). Starting from f (0, k ) =  −2 cos k , the shock
wave is formed after λ =  1/2, where the slope at k =  −π /2

with pn(v) =  2 tan−1 ( tanh
nγ

v 

). Here, focusing on the ground
state at half-filling, N =  L/2, the quantum numbers in (51)
are given by I j =  − N − 1  +  j −  1. We then obtain the ground
state energy E (λ) as a function of the boost parameter (Fig. 6).

When 1  =  0, we have checked that the calculation using
the boost-deformed Bethe ansatz equations reproduces the
free fermion result. We observe that for small λ, there is a
“plateaulike” structure, whereas for larger λ, the ground state
energy depends more sensitively on λ. At the free fermion
point 1  =  0, this change in the behavior of the ground state
energy coincides with the formation of the shock wave in the
dispersion at λ =  ±1/2.

The finite-size scaling of the zero temperature thermal
Drude weight is shown in the bottom plot of Fig. 6. Here, as
we take the limit β →  ∞ before L →  ∞, the thermal Drude
weight and thermal Meissner stiffness coincide. We can thus
compare the result from the Bethe ansatz with the CFT
prediction. Recalling (39), the ground state energy in the
presence of boost at low temperature is

E =  E∞ −  
6L

¡
1 +  v2κ2

¢ . (52)

Here, c =  1 is the central charge and vs =  π sin γ is the sound
velocity. With the identification iλ =  κ , we obtain the CFT
prediction

2      ̄ 3

DQ =  
2L dλ2 ¯λ=0 

=  DQ −  
6L2 

. (53)

This is basically the same as (40). As shown in Fig. 6, the
result from the Bethe ansatz agrees well with the CFT predic-
tion, and converges to zero in the L →  ∞ limit as predicted
[27].
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These findings should be compared with the behaviors of
the nonlinear spin Drude weights [37,39,40]. First, we did not
observe divergences for DQ(n=3,5) in contrast with the nonlin-
ear spin Drude weights. Second, the Bethe ansatz results for
DQ(n=3,5) are described very well by the CFT predictions.

To address these questions (at least partially), let us fo-
cus on the noninteracting case and consider the effect of the
nonlinearity of the dispersion on the nonlinear thermal Drude
weight.1 We consider the single particle spectrum:

² (p) =  v1 p +  v3 p3 +  · · · =  
X

v 2 m − 1 p2 m − 1 . (56)
m=1

As in Eq. (30), we impose the energy-twisted boundary con-
dition,

p −  λ
X

v 2 m − 1 p2 m − 1  =  
2π 

(−r +  α ), r � Z (57)
m=1

where α =  0(1/2) for PBC (APBC). This quantization condi-
tion on p can be solved order-by-order in λ. If we expand the
momentum p as p = l =0 λl Al , we can determine Al as

FIG. 6. (Top) The ground state energy of the boost-deformed
XXZ model with L =  100 for 1  =  −0.1, 0, 0.1 computed from the
boost-deformed Bethe ansatz equations. Here δE0 =  E0(λ) −  E0(0).
The inset shows the ground state energy of the boost deformed XXZ
model for −0.9 6  1  6  0.9 with step size of 0.1 from top to bottom.
(Bottom) The size dependence of the thermal Drude weight (26) at
zero temperature calculated using the Bethe ansatz equations (dots).
Solid lines represent the CFT predictions (40).

A0 =
2π  

(−r +  α),

A1 =
X

v 2 m − 1 A 2 m − 1 ,
m=1

A2 = v2m−1(2m −  1)A2m−2A1,
m=1

(58)
.

Al =
X

v 2 m − 1

X
Cr1,r2···Ai1 

Ai2 
Ai3 

· · · ,

m=1
r

i1 <i2 <···6l −1
1i1 r1 +i2 r2 +···=l−1

.

Using our formalism, it is also possible to discuss the non-
linear thermal Drude weights. They can be defined, following
the definition of the nonlinear spin Drude weights [37,38], as

n+1      ̄

DQ(n) = , n >  1. (54)
λ=0

The results are shown in Fig. 7. From Fig. 7, we see that the
CFT prediction still fits well the higher order nonlinear
thermal Drude weight obtained from the Bethe ansatz, if we
assume DQ(n=3,5) =  0: the nonlinear thermal Drude weights
also converge to zero at large system sizes.

Finally, we can also obtain the nonlinear thermal Drude
weights at finite boost parameter λ, as shown in Fig. 8. The
nonlinear thermal Drude weights at zero temperature could be
computed as

n+1

DQ(n)(λ) =  
L dλ

n
+1 

� 
1 −  v2λ2 

. (55)

Since vs =  π sin γ � (0, π ), as we change 1 ,  there is a sin-
gularity at vs =  1/λ. We indeed see in our Bethe ansatz
calculation that at certain value of 1 ,  DQ(n)(λ) diverges for λ
=  0.5 and λ =  0.7 (Fig. 8). We confirmed that these diver-
gence values coincide with vs =  1/λ.

with Cr ,r ... =  (2m−1)! . We assume the ground state
where      all      single-particle      states      with      − r  +  α <
0 are filled. The ground state energy is then
given by E (λ) = ∞ v p2m−1(λ) =

∞ v2m−1 ( λlAl 
)2m−1. The nonlinear thermal

Drude weight is obtained by taking the (higher) derivative of
the ground state energy with respect to λ. Focusing on the
contributions from the linear part of the dispersion,

n n+1 ∞

dλn 
= 1

L
r =1

(−r +  α) +  · · · (59)

We have so far focused on the left-movers. Combining the
contributions from the right-movers, for which the dispersion
is given by v2m−1 (−p)2m−1 , we see that the contributions
cancel for odd n, while they add up for even n. For APBC, we
can regularize      r =1 (−r +  α) =  −1/24. Hence,

n+1

= − 1 n : even . (60)
0                     n : odd

1We thank Hosho Katsura who suggested this calculation.
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FIG. 7. The linear (a), third- (b), and fifth- (c) order nonlinear thermal Drude weights at λ =  0 as defined in Eq. (54) for different system
sizes. The dots are from solving the Bethe ansatz and the solid lines are calculated from Eq. (54).

This is consistent with the calculation from Eq. (39) which
suggests

(c −  24h)πv

6L(1 −  v2λ2)

(we take c =  1 and h =  0). The nonlinear thermal Drude
weight is then

¯Q(n) =
1  d (n+1)E 

=  

�

−
(n +  1)!vn+2π

n : odd . (62)
0 n : even

To conclude, we see that the leading contributions to the
nonlinear thermal Drude weights come from the linear part of
the dispersion v1. This should be contrasted with the nonlinear
spin Drude weights, which are governed by the nonlinearity
of the dispersion, v2m−1>1 [41]. That is, the purely linearly-
dispersing band or CFT predicts vanishing nonlinear spin
Drude weights and fails to reproduce lattice calculations. On
the other hand, for the nonlinear thermal Drude weight, CFT
still captures the dominant contributions.

V. CONCLUSION

We have formulated a symmetry twist of the boundary
condition relevant to thermal transport as the energy-twisted
boundary condition, and shown that the stiffness against the
twist quantifies thermal transport properties. We have also
identified its bulk counterpart as the boost deformation, which
has been studied in the context of a long-range deformation

of integrable systems. These have a close analogy with the
U(1) twisted boundary condition and the equivalent bulk U(1)
gauge transformation relevant to electric transport. The rela-
tions have been confirmed by the agreement of the thermal
Drude weight and the thermal Meissner stiffness estimated by
each method. Specifically, the CFT result under the energy-
twisted boundary condition agrees with the other results as
far as CFT is applicable. A rigorous relation between the
stiffnesses and the ac conductivity is shown only at the free
fermion point.

The energy-twisted boundary condition is imposed on tori
and is mostly suited for the evaluation of the partition function
via the reconnection of tensor networks. It is thus compatible
in particular with exact methods in 1 +  1 dimensions and
numerical analysis in any dimensions. We have demonstrated
how this method works in the estimation of the thermal Meiss-
ner stiffness of CFTs based on the modular transformation,
and also that of the transverse-field Ising model and dis-
ordered lattice fermions in 1 +  1 dimensions based on the
transfer matrix.

The boost deformation is a sort of integrable deformation
applied in the bulk, and thus suited for integrable systems in 1
+  1 dimensions. We showed an implementation of the boost
deformation in the Bethe ansatz, and addressed the linear
and nonlinear thermal Drude weights of the XXZ Heisenberg
spin chain. We also analyzed the energy-twisted deformation
of the free fermion chain via the inviscid Burgers equation.
The agreement of the thermal Meissner stiffness with that of
the Ising CFT under the energy-twisted boundary condition

FIG. 8. The second-order nonlinear thermal Drude weight at λ =  0.2 (a), 0.5 (b), and 0.7 (c) for different system sizes. The dots are from
solving the Bethe ansatz and the solid lines are calculated from Eq. (55). The blue vertical lines in (b) and (c) indicate the divergence region
calculated from Eq. (55).
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indicates an equivalence of the bulk and boundary-condition
methods at least in a critical model.

Extending these analyses to a wider range of systems,
beyond those studied in this paper, is an important open
question. In particular, unlike the energy-twisted boundary
condition, the boost deformation is formulated by making
use of the integrability of (1+1)D quantum many-body sys-
tems, or in continuum systems with Lorentz invariance. It is
important to formulate and study the boost deformation
outside of these contexts. Also interesting is to study the
energy-twisted boundary condition and boost deformation in
quantum many-body systems in higher dimensions. As a sim-
ple warm-up, in Appendix E, we present the implementation
of the energy-twisted boundary condition in the 2d integer
quantum Hall effect. Just like Laughlin’s argument for the
quantized Hall conductance, the transverse energy transport
can be induced by an adiabatic change in the boost parameter.
Studying interacting 2d quantum many-body systems (e.g.,
fractional quantum Hall systems) using the energy-twisted
boundary condition and boost deformation would be a natural
next step. In this regard, it would be interesting to make a
comparison with other formalisms, such as Ref. [42].
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APPENDIX A: GRAVIPHOTON FIELD ON 2-TORUS

Consider the (1+1)D Euclidean space-time with the metric

ds2 =  
¡
dτ +  AEdx

¢2 +  dx2 ,                     (A1)

where AE is the background gravitomagnetic vector potential.
By the Wick rotation, τ =  it and AE =  iAg, the line ele-
ment in the Minkowski signature is given by ds2 =  −(d t +
Axdx)2 +  dx2. The gravitomagnetic vector potential induces a
gravitational counterpart of magnetic flux. Provided that the
gravitomagnetic vector potential AE is static, the metric (A1) is
obtained from the regular flat metric by a transformation

(τ , x) →  (τ +  βa(x), x), (A2)

where a(x) =  β −1 
R x dx0AE(x0). To be consistent with the spa-

tial periodicity, we assume AE is a periodic function of x,
AE(x +  L) =  AE(x). If we start from the space-time 2-torus
with periodicity

PHYSICAL REVIEW B 106, 155128 (2022)

then after the transformation the new identification condition
is given by [6]

(τ , x) � (τ +  β , x) � (τ +  βa(L), x +  L). (A4)

APPENDIX B: LATTICE SPIN SYSTEMS AND
TRANSFER MATRIX FORMALISM

In this Appendix, we review the derivation of the column-
to-column transfer matrix of the transverse-field Ising model
following [43–47] and derive the twisted partition function.
Consider the transverse-field Ising model in a general form

H =  
X ¡  

−  Jiσi σi+1 −  hiσ z
¢
, (B1)

i=1

satisfying PBC (σL+1 =  σ1). By Trotterizing the imaginary
time direction, the partition function is written in terms of
the row-to-row transfer matrix V as Z =  Tr e−βH '  TrV M ,
where an integer M is the length of the temporal direction.
The transfer matrix can be written as a product form, V =
V (1)1/2V (2)V (1)1/2, where

V (1) =  
Y

e γ i σ z  
, V (2) =  

Y
eK i σ x σ i + 1  . (B2)

i=1                                      i=1

Here, the coefficients are defined by Ki =  βJi/M and γi =
βhi/M . By introducing vectors B0(² ) =  ( cosh ², 0)T and
B1(² ) =  (0, sinh ² )T , we obtain [46]

eKiσ xσi+1 =
X  

Bsi 
(Ki )Bti+1 (Ki )

¡
σi 

¢si 
¡
σi+1

¢ti+1 , (B3)
si ,ti+1

where si and ti+1 take 0,1, and thus

V (2) = BT (K1)Ck2 · · ·CkL Bt1 (KL )
s1 ,t1 ,k2 ,··· ,kL

×  
¡
σ1 

¢s1 +t1 � 
¡
σ2 

¢k2 · · · � 
¡
σL

¢kL , (B4)

where Ck =          Bs(Ki−1 )BT     (Ki) and, the subscript of Bs (² )
is defined modulo 2. By making the imaginary-time coordi-
nate explicit, we obtain V M = j =1 Vj where

Vj =
X

Bs1 j 
(K1)Ck2 j · · ·CL

L j Bt1 j (KL )
s1 j ,t1 j ,k2 j ,··· ,kL j

×  X s1 j +t1 j � X k2 j · · · � X kL j , (B5)

and X k =  eγiσi /2(σ x )keγiσi /2.
When the space-time is twisted by a lattice sites, Ising

coupling connects the boundary spin at a position (L, j) to the
spin on the other side at (1, j +  a). This changes the ket vector in
(B5) as Bt (KL ) →  Bt (KL ). Inserting the identity matrix
1 = τ |τjihτj| of the auxiliary two-dimensional space in
front of Bt1 j+a (KL ), the transfer matrix on a twisted space-time
becomes

Vj (a) = hτ j−a|C1
1 j · · ·CL

L j |τ j i
τ j      k1 j ,··· ,kL j

(τ , x) � (τ +  β , x) � (τ , x +  L), (A3) ×  X1
1 j � X2

2 j · · · � X kL j . (B6)
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Due to the duality between C and X , the column-to-column
transfer matrix is

i =  
X  X  

hσi|Xi1
1 · · · Xi1

M |σii
σi      ki1 ,··· ,kiM

× Ci  
i1 �Ci 

i2 � · · · �CkiM , (B7)

which     satisfies     Z =       σ hσ1 · · ·σL|      j Vj(a)|σ1 · · · σL i =
hτ1−a · · · τM−a|       W |τ1 · · · τM i. Here, the auxiliary spin

is also periodically identified: τ j +M =  τ j .
The spin operators C and X can be rewritten by a similar

expression as the original X and C, respectively, as

Ci j =  αieKi−1τ j /2
¡
τ j 

¢keK�τ j /2 ,                     (B8)

Xi j =  βi 

X
Bs (γ i

�)Bs+k (γ i
�),                     (B9)

s

where tanh K =  e−2Ki       and tanh γ =  e−2γi
�      

from the stan-
dard notation [34], αi =  (sinh 2Ki−1 sinh 2Ki/4)1/4, and βi =
(2 sinh 2γi ) . Notice that the vector Bs (² ) in (B9) is the
spinor of the real spin σ , while that in (B3) is of the
auxiliary spin τ . These expressions lead to the column-to-
column transfer matrix in terms of the auxiliary spin as W =
(αiβi )MW (1)1/2

W (2)W (1)1/2
, where

M M

i
(1) = eK�τ z 

, W (2) = eγi
�τ xτ j+1 . (B10)

j =1                                        j =1

The transfer matrix is diagonalized by introducing
fermionic representation via the Jordan-Wigner transforma-
tion: τ z =  2c†c j −  1, τ + =  τ x +  iτ y =  2eiπ      l < j  cl cl c†. The
Ising coupling is then written by the hopping of the Jordan-
Wigner fermions as

τ j τ j +1 =  (c† −  c j )(c j+1 +  c j +1 ), (B11)

where, at the boundary, cM +1 =  −eiπ  
P

j  c†c j c1 is imposed.
Since the Hamiltonian is bilinear in the fermion operators,
the total fermion number F = c†c j modulo 2 is con-
served. The Fock space is then decomposed into even- and
odd-fermion-number subspaces, within which the fermion
operator obeys APBC and PBC, respectively. The boundary
condition in the temporal direction appears in the frequencies
of the Fourier mode:

−iπ /4

c j =   √          e cω , (B12)
ω

where
�

±  
π 

, ±
3π  

, · · · , ±
(M −  1)π

(F :even)
ω =  �

0 , ± 
M 

, · · · , ±
(M −  2)π 

, π (F :odd)
(B13)

for even M and
�

±  
π 

, ±
3π  

, · · · , ±
(M −  2)π 

, π (F :even)
ω =  

�0 , ± 
M 

, · · · , ±
(M −  1)π

(F :odd) 
(B14)
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for odd M. The transfer matrix is then written as

i =  
Y  

W (ω), (B15)
ω�[0,π ]

where the summation is over the non-negative part of (B13)
and (B14), and by using nω =  c† cω,

W (0) =  e(K� 
1 +2γi

�+K�)(n0−1/2) , (B16)

W (π ) =  e(K� 
1−2γi

�+K�)(nπ −1/2) , (B17)

W (ω) =  eKi−1 (nω+n−ω −1)

×  e2γi
�(cos ω(nω+n−ω )+sin ω(c−ωc† +cω c−ω ))

×  eK�(nω+n−ω −1) , (B18)

We can decompose the Fock space into subspaces specified
by Fourier components of ω =  0, π , and combined ω and
−ω .  To be specific, the ω =  0/π subspace is spanned by |0i
and c0/π|0i, and a ω =  0, π subspace by |0i, cω|0i, c† 

ω|0i,
and c−ωc† |0i. The trace of the column-to-column transfer
matrix (B15) is thus the product of the traces of small matrices
corresponding to the subspaces.

When the space-time is twisted, the fermion operators at
i =  1 are changed as cm →  cm+a , which shifts the Fourier
mode by a frequency-dependent phase as

cω →  eiaωcω. (B19)

This modifies the trace operation so that the bra vector is
shifted by a phase determined by the number of fermion and
the frequency as

hn0| →  hn0|, hnπ| →  (−1)anπ  hnπ|,

hnωn−ω| →  eiaω(nω−n−ω )hnωn−ω|. (B20)

Finally, the partition function after the twist is the sum of
contributions from even- and odd-fermion-number spaces as

Z (a) � 
X  Y  

Trω

"
1 ±  (−1)F Y

W  (ω)

#

, (B21)
±  ω�[0,π ] i=1

where the first summation is over the even- and odd-fermion-
number spaces, and Tr0     is the trace over a ω subspace with
the modified bra vector (B20). A proportionality constant
(αiβi )LM is omitted. Specifically, the trace of a twisted ω =  0
subspace is

"
L

#

Tr0       (±1)F          W (ω)
i=1

h0| T |0i

=  �±e−iaωh0|c−ω
� W (ω)� 

c† 
|
0

i �. (B22)

h0|cωc−ω                                              c−ωc† |0i

The matrix element of the Fourier-decomposed transfer ma-
trix W (ω) can be found in [34].
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APPENDIX C: TRANSFER MATRIX METHOD FOR
FREE FERMION MODELS

Following [48], we consider the free fermion model on a
1d lattice with the Hamiltonian

H =  
X

h i , i + 1  =  −
X

t i ( c i  ci+1 +  H.c.) +  
X

( U i  −  μ)ci ci.
i i i

(C1)
To implement the transfer matrix method, we decom-
pose the system into even and odd sites and define H1 =

hi,i+1 , H2 = hi,i+1 . With the local transfer
matrices defined as V1 =  e      1 = vi,i+1 , and V2 =
e 2 = vi,i+1 , where vi,i+1 =  e i ,i+1 , the partition
function can be written as

Z =  Tr (e−βH ) =  Tr (V1V2)M
 
+  O(²2 ), (C2)

where ²  =  β/M and M is Trotter number. By inserting the
complete set of states, we can write the row-to-row partition
function as

PHYSICAL REVIEW B 106, 155128 (2022)

where Ci =  uibi, and t2i−1 and t2i,ω are defined as

t =
1 a2i−1 −  w2i−1 b2i−1 , (C9)

2i−1 2i−1 2i−1 2i−1

t2i =  
u2i     

a2i 
ωb

w2i

a
e

i −
b2 i  

i     
. (C10)

We use the even number of Trotter sites, and hence ω =
(2m+1)π with m =  −  2 , · · · −  1, 0, · · · 2 −  1.

1. Phase-twisted boundary condition

Now we consider the system with phase twisted boundary
condition, i.e., tN →  tN e2π iφ where φ =  8 / 8 0 .  This results in
the change of the parameter uN in the transfer matrix τN,1,

�
uN 0 0 0 

�

τ l ,l +1 =  bN� 0 aN −  wN
aN +  wi 0 

�. (C11)

0             0                 0           uN

X Y ¡  2l−1,2l 2l−1,2l ¢¡ 2l ,2l +1 2l ,2l +1¢
1,2 N −1,N 2,3 N,1

{ni } l =1

Accordingly, the modified partition function is

Z =  
Y

C i      

Y
Tr [2 cos(2πφ ) +  Tω]. (C12)

i ω

where vl ,l +1 =  hnl , nl      |vi,i+1|nl +1 , nl+1 i with i and l rep-
resent the site number in space and Trotter directions,
respectively.

In order to go from the row-to-row to column-to-column
transfer matrix, we rotate each block as

τi,i+1 =  nl , 1 −  nl +1
¯
vi,i+1

¯
1 −  nl

+1, nl+1
®

. (C4)

Explicitly, it is given by
�

u 0 0 0
�

l ,l +1 0      ai −  wi            b−1 0
i ,i+1 0           bi               ai +  wi 0

0 0 0 ui

in the basis of {|00i, |01i, |10i, |11i} with parameter defined
as

αi =  
−² (

U
i −  μ )

, γi =  
q
α 2

 
+  ²2t 2 ,

bi =  eαi , ui =  
²ti sinh γi , (C6)

i

ai =  cosh γi , wi =  
αi sinh γi .

i

Therefore the partition function in terms of the column-to-
column transfer matrices is written as

Z =  Tr [ 1,2T ,3 · · · TN,1], T ,i+1 =  
Y
τ i , i + 1  . (C7)

l

Once we write the partition in the matrix form, we can
perform the Fourier transform in the Trotter direction, and the
partition function can be written as

N/2

Z = Ci Tr [2 +  Tω], Tω = t2i−1t2i,ω , (C8)
i ω i=1

We use M =  2N to ensure the convergence of the partition
function. The results are shown in Fig. 9. The period of φ is 1
which is equal to a phase twist of 2π . Here we consider the
system with on-site random potential Ui to be Gaus-sian
distributed with variance σ . We see that as the disorder
strength increases, the free energy curves become more flat
which means the system is more localized and less sensitive to
boundary conditions.

Then we compute the electrical Meissner stiffness D =
(2L)−1d 2F/dφ2 (Fig. 9). For the clean free fermion system
(black), we observe the electrical Meissner stiffness decays
algebraically as D � L−2 for L ¿  β, which we confirmed is
consistent with the analytical result. (Here, we take the
parameter β =  500.) On the other hand, for the high tempera-
ture (long wire) regime, β ¿  L, the Meissner stiffness decays
exponentially.

We also studied two types of disordered fermion chains,
one with on-site disorder, and the other with bond disorder.
Here, for the on-site randomness, we consider Ui to be Gaus-
sian distributed with variance σ . For the random hopping
model, the hopping amplitudes are drawn from a uniform
distribution, ti,i+1 � [1 −  σ , 1 +  σ ]. We focus on the length
regime `  ¿  L ¿  β, where `  is the mean free path.

For the case of on-site disorder, we see that as the disorder
strength increases (σ increases), the Meissner stiffness de-
creases as expected. The algebraically decaying part follows
L−2 and the exponents of the exponentially decaying part
grows as disorder strength is increased. Such behavior fits the
Anderson localization picture where the localization length
decreases as the disorder strength increases. A similar behav-
ior is also observed for the random hopping model, where the
electrical Meissner stiffness also follows algebraically and ex-
ponentially decay. We note that the electrical conductance for
the random hopping model is known to decay algebraically, g
� 1/ L. The exponentially decaying part could be ex-
plained by the normalization of energy level spacing.
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FIG. 9. (Left) The U(1)-phase-twist variation of the free energy of the free fermion model with random on-site potential. The curves are
shown as varying σ from 0 to 0.8. The calculation is done with L =  50 and β =  100. The electrical Meissner stiffness for the disordered free
fermion chain with random on-site potential (middle) and with random hopping (right). Dots represents the results from the transfer matrix
method and solid lines are fitting with D � Lae−b

L . The fitting parameter are labeled in plots with β =  500.

2. Energy-twisted boundary condition

We now turn to the energy-twisted boundary condition. It
can be implemented in the column-to-column transfer matrix
method as

Z =  Tr [ 1,2 · · · TN−1,N eiP1τ ]. (C13)

Similar to the phase-twisted boundary condition, the energy
twist results in the coupling ti,i+1 →  ti,i+1eiωMκ where ω is the
frequency in the Trotter direction. Therefore, following the
same calculation as the phase twist, the partition function can
be written as

Z =  
Y

C i      

Y
Tr [2 cos(ωMκ ) +  Tω]. (C14)

i ω

The energy-twisted free energy and the thermal Meissner
stiffness, computed by the transfer matrix method, are plotted
in Fig. 10. As before, we study the clean fermion model, the
disordered model with on-site disorder, and the random
hopping model. For the free energy plot, we consider the
system with on-site random potential Ui to be Gaussian dis-
tributed with variance σ . We could see that as the disorder
strength increases, the free energy curves become more flat,
which means the system is more localized and less sensitive to
boundary conditions.

For the clean system, we checked that the thermal Meiss-
ner stiffness decays algebraically as DQ � L−4 (for L ¿  β),
which agrees with the CFT prediction d2F/dκ2 � L−3 . For
the case of on-site disorder, the algebraically decaying part
generally follows DQ � L−4 . As the disorder is stronger, the
thermal Meissner stiffness decays exponentially with length
as expected from Anderson localization. The exponent repre-
sents the inverse of the localization length and it increases as
the disorder is stronger.

For the random hopping model, the thermal Meissner stiff-
ness also shows algebraic and exponential decay as the case
of Anderson localization. The electrical conductance of the
random hopping model decays algebraically as g � 1/ L.
Due to the Wiedemann-Franz law, we expect the thermal
conductance also behaves similarly. The conductance is given
by g � E / 1  with E being the sensitivity of the energy to the
twisted boundary condition and 1  =  1/ρ (0) is the energy level
spacing at zero energy. The exponential decay might be due to
the zero energy level spacing of the random hopping model.

APPENDIX D: BOOST DEFORMATION AND
THERMAL RESPONSE

In this section, we show that the thermal Drude weight and
thermal Meissner stiffness of a disordered lattice fermion are

FIG. 10. (Left) The energy-twist variation of the free energy of the free fermion model with random on-site potential. The curves are shown
as varying σ from 0 to 0.8. The calculation is done with L =  20 and β =  100. The thermal Meissner stiffness for the disordered free fermion
chain with random on-site potential (middle), and with random hopping (right). Dots represent the results from the transfer matrix method
with β =  500 and solid lines are fitting with DQ

 � Lae−b
L .
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related to the boost deformation via (26) and (27). The argu-
ment in this section is basically in parallel with the analogous
U(1) twist.

PHYSICAL REVIEW B 106, 155128 (2022)

2. Boost deformation

We consider a disordered lattice fermion model and the
corresponding boost operator given by

1. Thermal conductivity H (λ) =  
X

t j k (λ )c j ck , (D9)

First, we review the thermal Drude weight DQ and the
thermal Meissner stiffness DQ following [14].

The ac thermal conductivity of a local Hamiltonian H =
Hi coupled with a gravitational field ψ j (t ) =  eiq j−i(ω+iη )t ,

serving as a temperature profile via �ψ (r) =  [�T (r )]/T (r),
is given in (25) in the limit of q →  0, where

µ Z β ¶
DQ =  

2L 
h2 i  −  

0     
dτhJQ (−iτ )JQ i , (D1)

0 β

κKG(ω) =  − dt e−i(ω+iη )t dτhJQ(t −  iτ )JQ i.
−∞ 0

(D2)

Here, A(t ) =  eitH0 Ae−it
H

0 , hAi =  Tr[e−βH0 A]/Z , Z =
Tr[e−βH

0 ] is the partition function, and the heat current
and thermal operators are

JQ =  
X

J j  =  −  
i X

( j  −  k)[Hj , Hk], (D3)
j jk

2  =  −
1

( j −  k)( j −  a)[[Hj , Ha], Hk]. (D4)
jak

Notice that these operators are defined unambiguously when
the distance of two sites j −  k is uniquely defined, that is,
when the Hamiltonian is local (the distance |j −  k| up to
which [Hj , Hk] =  0 is bounded) or unless subject to PBC.

In terms of the eigenenergy En and eigenstates |ni of the
Hamiltonian H0, the thermal Drude weight is

−βE

DQ =  DQ +  
2LT n,m Z 

|hn|JQ|mi|2

�
En m

�
−βEn Q 2

=  
2L

�h2i −  2 
n,m Z Em −  En     

�. (D5)

En         m

In the limit of vanishing temperature (T →  0) while keeping
the system size finite (L ¿  ∞), the thermal Drude weight and
the thermal Meissner stiffness coincide unless the ground state
is degenerate.

When a disordered, free lattice fermion Hamiltonian

jk

B[H (λ)] =
j +  k

t jk (λ)c†ck. (D10)
jk

The boost deformation (12) is reduced to

dt

d (

λ) 
=  

i( j −  k) 

a 

t ja(λ)tak (λ), (D11)

and from this equation the second derivative is

d2t 

λ
(λ) 

=  −  
j 

4 
k 

ab 

( j +  a −  b −  k)t ja(λ)tab(λ)tbk(λ).

(D12)

Notice that we adopted a specific Hamiltonian (D9) since the
second derivative of a general local Hamiltonian H = Hj

cannot be obtained in this way. Referring to (D7) and (D8),
the deformed Hamiltonian is expanded around λ =  0 as

2

H (λ) =  H (λ =  0) −  λJQ +  
2 

2  +  O(λ3), (D13)

where the operators JQ and 2  are defined with hopping pa-
rameters before the deformation t jk (λ =  0).

From (D13), the perturbative expansion of an eigenenergy
up to the second order in the boost parameter is

E (λ) = E  (λ =  0) −  λhn|JQ|ni
� �

+  
2 
�hn|2|ni −  2      

X        E| 
(0) −  

Ei
(0)

�,

En (0)=Em (0)

(D14)

which gives a relation between the thermal Drude weight (D5)
and the boost deformation as shown in (26).

On the other hand, the derivative of the free energy F (λ) =
−β − 1  ln Z (λ) is, by using (D13) and the absence of the heat
current hJQi =  −dF/dλ|λ=0 in the ground state,

d2F (λ) ¯ =  h2 i  −  
Z β 

dτhJQ (−iτ )JQ i, (D15)
λ=0                           0

H0 =  
X

t j k c j c k (D6)
jk

which leads to the relation (27) between the thermal Meissner
stiffness and the derivative of the free energy.

is considered, the above operators are given, respectively, by 3. A clean system in the thermodynamic limit

JQ =  −  
i X

( j  −  k)t jatakc j ck , (D7)
jak

2  =  −
1  X

( j  −  k)( j +  a −  b −  k)t jatabtbkc†ck. (D8)
jabk

We rederive the thermal Drude weight and thermal Meiss-
ner stiffness of a clean lattice fermion in the thermodynamic
limit [14] by using the boost deformation. When spatial trans-
lation symmetry is present and in the thermodynamic limit L
→  ∞, the single-particle eigenenergy ²q = t j j+aeiqa

is a differentiable function of the momentum q and the
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boost parameter λ, and thus the heat current and thermal
operators are

JQ =  −
X  ∂ ²q c†cq =  

X
² q  

∂ ²q c†cq, (D16)
q q µ ¶

2  =  
q      

∂λ
q c†cq =  

q     
∂q 

² 2 

∂q 
c†cq , (D17)

where cq =  L−1/2 P  
eiq jc j . The derivatives of the aver-

aged many-body eigenenergy E and the free energy F =
−β − 1

q ln(1 +  e−β ²q ) are
−βEn        2 2

Z dλ2 
= f (²q ) 

∂λ2 
, (D18)

dλ2 
=  

X ·
f  (²q ) 

∂λ
q +  

d

d ² 
q )

µ 

∂λ 

¶2 ¸
, (D19)

where f is the Fermi distribution function. Substituting into
(26) and (27), we obtain

Z µ ¶µ ¶2

¯Q =  
4π

dq −
d ²q

²q ∂q
=  

12β2 
FP |

vF

|,

Z · ¸ (D20)

DQ =  
4π      

 
dq

∂q 
f (²q )²2 

∂q     
=  0, (D21)

where FP stands for the Fermi points.

4. Finite-length behavior

In this section, we see that the thermal Meissner stiffness at
T =  0 depends qualitatively on the length modulo 4, and that
they are related to the low-energy excitations.

Figure 11 shows the detailed length dependence of the ther-
mal Meissner stiffness at T =  0 for PBC and APBC. When
the length is L =  4n(n � N), the thermal Meissner stiffness of
PBC scales as 2πv3/6L2 while that of APBC scales as
−π v3/6L2 . However, when the length is L =  4n +  2, these
behaviors are inverted. When the length is an odd integer (L
=  4n +  1 or 4n +  3), the thermal Meissner stiffness scales as
−(1/4)πv3/6L2.

As was shown in Sec. III A, the thermal Meissner stiffness
(40) of CFT at sufficiently low temperature is proportional to
the ground state energy E0 =  −(2πv/L )(c −  24h)/12. A one-
dimensional Dirac fermion is equivalent to two real fermions
corresponding to the Ising CFT, and hence the ground state
energy of the Dirac fermion is equal to twice that of the
Ising CFT (c =  1/2). Specifically, when a boundary condi-
tion ψ (x +  L) =  e2π iαψ (x) where α � [0, 1) is imposed, the
single-particle eigenenergy of a chiral Dirac fermion H =
−iv∂x is 2πrv/L (r � Z +  α), and hence

H =  
2πv X

r c † c r  =  
2πv X

r  : c†cr : +E0 , (D22)
r r

where : : is the normal ordering, and via the zeta-function
regularization,

E0 =  
2πv 

n=1

(−n +  α) =  −
2π v

·

24 
−  

2

µ

2 
−  α

¶2 ¸
.

(D23)

FIG. 11. Low energy excitations for α =  0, 1/4, 1/2, and 3/4.
The thermal Meissner stiffness at zero temperature of a lattice free
fermion is shown for PBC and APBC and is fitted by the correspond-
ing CFT results.

As for the left mover, we impose ψ (x +  L) =  e−2π iαψ (x) to
make α-dependence of the energy levels the same as the right
one. Then the ground state energy of the helical Dirac fermion
(including both left and right movers) with PBC (α =  0) is E0

=  (1/6)(2πv/L) that corresponds to twice the ground state
energy of CFT with c =  1/2 and h =  1/16, and that with
APBC (α =  1/2) is E0 =  (−1/12)(2πv/L ) corresponding to c
=  1/2 and h =  0.

To make a connection to the lattice fermion, we naively
anticipate that the ground state energy used for deriving the
thermal Meissner stiffness can be identified with that of the
linearized helical Dirac fermion, since low-energy states are
relevant to low-temperature behavior. In doing so, we no-
tice that energy levels near the Fermi level depend on the
length and the boundary condition (Fig. 11). Let us assume
the cosine band ²k =  −2 cos k . With PBC and L =  4n, there
are states kF =  ±π /2 exactly at the Fermi level and thus the
right and left movers correspond to α =  0. Similarly, PBC
with L =  4n +  2 corresponds to α =  1/2, and PBC with L =  4n
+  1(4n +  3) to α =  3/4(1/4). Specifically, when the
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length is odd, the ground state energy is −(1/48)2πv/L from
(D23), and the corresponding thermal Meissner stiffness is
estimated as DQ =  −(1/4)(πv3/6L2 ). Strictly speaking, the
ground state energy obtained in this way is not the actual
energy, but a quantity related to thermal response. When
switched to APBC, the above results still hold by shifting α
→  α +  1/2 mod 1, and hence this explains mod 4 behavior
seen in Fig. 11. Notice that this argument is true when the
chemical potential is 0, where α depends on the length only
modulo 4.

APPENDIX E: QUANTUM HALL SYSTEMS WITH
BOOST DEFORMATION

In this Appendix, we consider the boost deformation of the
quantum Hall system. We start with the Hamiltonian of 2d
electron gas in the presence of uniform magnetic field,

H =  
2m

(−ih̄ ∂ −  eA)2, (E1)
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