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ABSTRACT: Metasurfaces have emerged as one highly vibrant
frontier in the field of nanophotonics, since they enable some unique
and practical means to modulate the phase, polarization, angular
momentum, and spatial field distribution through structural
engineering. However, the current methods of phase modulation
based on the propagation phase and Pancharatnam—Berry phase are
typically interrelated between two eigen spin states for each single-
step modulation. It means that when the phase of left-handed
circularly polarized (LCP) light is modulated by a metasurface, the
phase of right-handed circularly polarized (RCP) light will change as
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well, imposing substantial constraints if spin-decoupled or spin-independent applications are sought. In this paper, we numerically
and experimentally demonstrate a new phase modulation pathway based on chiral metasurfaces consisting of V-shaped plasmonic
apertures, which enable fully decoupled phase modulation for the two eigen spin states. Two enantiomers are proposed to achieve
the desired phase decoupling. Specifically, the enantiomer can manipulate the phase of the LCP component of a light beam without
changing the phase of the RCP component, and vice versa. Our method expands the methods of phase engineering and can help us
design novel devices for a wide range of applications, including polarimetric imaging, chiroptical detection, molecular spectroscopy,

and quantum information processing.
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B INTRODUCTION

On-demand manipulation of electromagnetic waves is crucial
for the development of modern technologies. Metasurfaces,
planar metamaterials with a subwavelength thickness that allow
us to flexibly manipulate electromagnetic waves, have been
widely studied over the past decade.'”™ Metasurfaces can
modulate the amplitude, phase, polarization, and angular
momentum of electromagnetic waves. Among these properties,
phase modulation is of much interest, which has led to beam
steering,4_6 holograms,7_11 flat lenses,””™"* and so on. It is
relatively straightforward to achieve selective control of the
phase of a linearly polarized beam by changing the geometric
parameters of the subwavelength meta-atoms.' Thereafter, a
single metasurface with multiple and independent phase
modulations for different linearly polarized light (i.e., trans-
verse magnetic and transverse electric modes) was investigated
for a variety of applications.””~"” Recently, the phase
modulation of LCP and RCP light has attracted much
attention, since these two orthogonal eigen spin states can
produce many interesting phenomena and applications while
interacting with matter, such as chiral sensing and sorting,]g_21
polarization imaging,”*’ information codin§,24_27 and spin-
to-orbital angular momentum conversion.”*”"

The conventional methods to manipulate the phase of LCP
and RCP light are generally based on the propagation phase
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and Pancharatnam—Berry (PB) phase modulation.”’ ™ The
former is related to the geometric parameters of subwavelength
meta-atoms and always imparts the same phase modulation to
LCP and RCP light simultaneously.”’ Due to its identical
phase modulation for LCP and RCP incidences, the
propagation phase is a good candidate for circular-polarization
insensitive devices.*"*> In contrast, the PB phase imparts
different phase modulation for LCP and RCP light, with the
same magnitude but opposite signs. Therefore, the PB phase
modulation is used to split LCP and RCP light. For example,
people have studied the photonic spin Hall effect using the
metasurface platform.””*>** However, both the propagation
phase and the PB phase modulation approaches have their own
limitations, and we can hardly decouple the phase modulation
for LCP and RCP lights by either approach (ie., modulating
LCP phase while leaving RCP phase unchanged by
propagation phase or PB phase, or vice versa), though the
independent control for linearly and orthogonally polarized
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Figure 1. (a—c) Schematics of (a) enantiomer A, (b) achiral, and (c) enantiomer B apertures. (d—f) The corresponding phase responses of the

apertures in (a—c) at a wavelength of 1064 nm. In (d) the length of top arm Lip

fixed at 430 nm.

is fixed at 430 nm, while in (f) the length of bottom arm Ly, is

light can be easily achieved by using anisotropic struc-
tures.'”~"” Fortunately, by combining propagation and PB
phases, the arbitrary phase modulation for LCP and RCP light
has been achieved, which has expanded the fields of spin-
dependent optical devices.”’ > Even though this combination
method can manipulate the phase of LCP and RCP light
simultaneously, there is still a pressing need to find an
alternative way to completely decouple the phase modulation
for these two spin states of light.

B DESIGN AND SIMULATIONS

In this paper, we demonstrate a new approach to decouple the
phase of LCP and RCP light using chiral metasurfaces, which
can uniquely manipulate the phase of either LCP or RCP light.
For example, we can achieve independent modulation of the
LCP phase by single-step modulation while keeping the RCP
phase unchanged, which is not possible in conventional
methods.*' ~*

The concept of decoupled phase of LCP and RCP light can
be understood by considering the Jones matrix of nanostruc-
tures under circularly polarized base of light as follows:*’

1 rioy ™ A
ALR

el )
where R(0) is the rotation matrix corresponding to the in-
plane rotation of the nanostructures (i.e., directly related to the
PB phase), A and ¢ are the amplitude and phase, respectively,
and the subscript of R/L refers to the RCP/LCP. In general,
the Jones matrix in eq 1 should have four independent
components. However, in most cases, the phase of crossed
polarized light are always the same (i.e., @, = @), which can
be regarded as the coupled phase, inevitably limiting the
functionalities of LCP and RCP light. Therefore, an arbitrarily
customized Jones matrix is needed to break the coupled phase.

In this work, we propose a novel way to decouple the phase
of crossed polarization of LCP and RCP light, by using chiral
V-shaped apertures to realize the decoupled phase of @y, #
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@1x- In addition, @y, and @y can be arbitrarily customized,
after breaking their coupling.

As shown in Figure la, the V-shaped aperture is etched in a
silver film with thickness t,, = 40 nm by focused ion beam
system (FEIL FIB 200). The opening angle of the aperture is
= 60°, the periodicity of the metasurface is P = 450 nm, and
the substrate is silica. The V-shaped aperture has two tunable
arms, ie., the top arm L, and bottom arm L., and an
identical width W = 100 nm. Figure la-c illustrate the
schematics of two enantiomers and an achiral aperture.
Specifically, the V-shaped aperture with tunable bottom arm
Ly, is enantiomer A (Ent A), while its length of top arm Ligp is
fixed at 430 nm, as shown in Figure la. In Figure 1b, the
achiral V-shaped aperture has two tunable arms of the same
length. Enantiomer B (Ent B) in Figure lc has an adjustable
top arm Ly, while the length of bottom arm L is fixed at 430
nm, showing the opposite chirality in comparison with
enantiomer A. Depending on the geometry, these apertures
have different phase responses. We have investigated their
phase responses under LCP and RCP illumination at a
wavelength of 1064 nm by commercial electromagnetic solver
CST Studio Suite. The simulation results are shown in Figures
1d—f. Throughout the remaining of the paper, we denote LCP
and RCP light as — and + , respectively. For example, symbol
@._ represents the phase of the transmitted RCP component
under the incidence of LCP light. We can find that Ent A has a
large phase variation in response to the change of Ly, when
the incidence is RCP light (red line in Figure 1d). As for its
counterpart, the rapidly changed blue line in Figure 1f
indicates that Ent B is sensitive to LCP incidence. The results
in Figure le for an achiral V-shape aperture show identical
phase responses to LCP and RCP light. Therefore, the
simulation results presented here demonstrate the feasibility to
decouple the phase modulations of LCP and RCP light using
Ent A and Ent B, elucidating a clear distinction from the achiral
aperture. We want to emphasize that the enantiomers have no
obvious circular dichroism,””**™* since the amplitudes of
transmission for LCP and RCP incidences almost keep the
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same (see Figure S1 in the Supporting Information). Instead,
the phase response of the enantiomer pair shows a
phenomenon similar to “circular dichroism”. The same
transmission amplitude but different phase response is
desirable for chiroptical sensors using chiral metasurfaces, as
it can suppress the background circular dichroism signals from
the metasurfaces.”””'

To reveal the underlying mechanism of spin-decoupled phase
modulation in Figure 1, we have simulated the magnetic field
distributions of three types of V-shaped apertures, as shown in
Figure 2. For the achiral aperture, the magnetic field shows

(ne) HI

Figure 2. (a—c) Magnetic field distribution in Ent A (a), achiral
aperture (b), and Ent B (c) for RCP incidence. (d—f) Magnetic field
distribution in Ent A (d), achiral aperture (e), and Ent B (f) for LCP
incidence. The fields are plotted in the plane 10 nm above the surface.
The long arm is 430 nm, while the short arm is 260 nm.
Counterclockwise circles indicate RCP incidence and clockwise
circles indicate LCP incidence.

obviously different distributions depending on the handedness
of incidence. Intriguingly, the magnetic field of achiral aperture
is more concentrated in the bottom/top arm with RCP/LCP
incidence (Figure 2b,e). Therefore, when we decrease the
length of the bottom arm (i.e, Ent A), the magnetic field
distribution changes significantly for RCP incidence, resulting
in a larger local field enhancement in the bottom arm (Figure
2a). However, when irradiated with LCP light, the magnetic
field distribution (Figure 2d) in the top arm of Ent A is very
similar to that of the achiral structure (Figure 2e), even though
the length of the bottom arm is reduced. As a result, changing
the bottom arm has negligible effect on the phase of LCP
incidence. On the contrary, Ent B shows a concentrated
magnetic fleld in the top arm while illuminated with LCP light
(Figure 2f), and hence, the top arm can independently control
the phase of LCP incidence. To conclude, these chiral near
field distribution of Ent A and Ent B are strictly dependent on
the chirality of incident light, leading to the independent
control of the phase response of RCP and LCP incidence. The
spin-decoupled phase modulation on the basis of our
enantiomers is different from the PB-phase modulation or
propagation-phase modulation, which imposes opposite or
identical phase rather than arbitrary phases. It is noted that the
chiral near field distribution presented in the achiral V-shaped
antennas has been well studied.””*® The reason is attributed to
the interference of resonant modes in the V-shaped antenna.

To explicitly demonstrate the spin-decoupled phase
modulation of the enantiomers, we have simulated the phase
diagrams ¢ and transmitted amplitudes of RCP and LCP
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incidences at 1064 nm for the cross-polarized components.
The results are depicted in Figure 3. It is apparent that the
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Figure 3. Phase diagrams for the cross-polarized component of
transmitted light, when the metasurface is subject to (a) RCP
incidence, and (b) LCP incidence. Amplitude for the cross-polarized
component of transmitted light, when the metasurface is subject to
(c) RCP incidence and (d) LCP incidence.

amplitude distributions (Figure 3c,d) of LCP and RCP
incidences almost keep the same. However, the phase
responses (Figure 3a,b) of LCP and RCP incidences show
significant differences, as they vary along the vertical and
horizontal directions, respectively. In most areas of Figure 3a,
the phase modulation of RCP incidence shows continuous
phase gradients along the horizontal direction but almost the
same values along the vertical direction, indicating that L,
plays an important role in the phase modulation for RCP
incidence. While for LCP incidence presented in Figure 3b, the
trend is opposite to Figure 3a, that is, L, can modulate the
phase of LCP incidence. These results suggest that we can
achieve fully decoupled phase modulation for the RCP/LCP
incidences by designing some specific enantiomers. Our
enantiomer design strategy is simpler than the existing
methods, which rely on the combination of propagation
phase and PB phase to achieve spin-decoupled phase
modulation.”’ ~*° The spin-decoupled phase modulation of
enantiomers provides another degree of freedom in phase
engineering, which can open new ways to design metasurface
and ease the design and fabrication.

B EXPERIMENTAL DEMONSTRATION

In the following, we apply the spin-decoupled phase
modulation to design functional devices. As a proof-of-
principle demonstration, three metasurfaces using arrays of
Ent A, Ent B, and achiral apertures have been designed and
fabricated to validate our theoretical analysis. The scanning
electron microscope (SEM) images of the samples are shown
in Figure 4a, d, and g, respectively. Each metasurfaces consists
of four apertures to form a phase gradient of dg/dx = 7/2P
along + «x direction for the corresponding incidence. For
example, the Ent A metasurface has four Ent A apertures (red
box in Figure 4a), with Ly, equals 430, 260, 200, and 260 nm,
respectively. Therefore, Ent A metasurface represents the
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Figure 4. SEM image of the fabricated (a) Ent A metasurface, (d) Ent B metasurface, and (g) achiral metasurface. The red, blue, and green boxes
indicate the supercell of the individual metasurface. The phase gradients of RCP cross-pol and LCP cross-pol are plotted on the right side. Scale
bar: 1 ym. Measured cross-polarized transmission with RCP incidence for (b) Ent A metasurface, (¢) Ent B metasurface, and (h) achiral
metasurface, respectively. Measured cross-polarized transmission with LCP incidence for (c) Ent A metasurface, (f) Ent B metasurface, and (i)
achiral metasurface, respectively. The measured efficiencies of the metasurfaces are shown at the upper right corners.
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Figure S. (a) SEM image of the chiral metasurface to achieve dual refractions for RCP and LCP light. (b, c) Measured intensity distribution at
plane 30 um above the metasurfaces for RCP and LCP incidences, respectively. The measured efficiencies of the metasurfaces are shown at the

upper right corners.

phase of RCP cross-pol (cross-polarized light when the
incidence is RCP) ¢ = 0°, 90° 180° and 270° and always
@ = 0 of LCP cross-pol (cross-polarized light when the
incidence is LCP). With this specific arrangement, the Ent A
metasurface deflects only the LCP component (i.e., cross-
polarization) of the transmitted light when the incidence is
RCP. The fourth aperture in Ent A has a rotation angle of 90°,
to achieve a phase increment of 270° relative to the first
aperture in Ent A. The additional rotation angle is a trade-off
due to the limited modulation range of the decoupled phase
for single-layered metallic structures, while this limitation can
be eased by multilayered structures. However, it is worth
noting that the decoupled phase itself still works well with an
additional 90° rotation, whereas the previous methods required
flexible rotation angles. Then, we experimentally characterized
the metasurface using a homemade setup (see Figure S2 in the
Supporting Information). The measured cross-polarized
components of transmitted light of Ent A metasurface are
shown in Figure 4b,c. It is clear that for RCP incidence, the
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detected LCP component of transmitted light has an obvious
deflection. The refraction angle in Figure 4b is 35.8°, in
excellent agreement with our expectation (36.2°). However, if
we flip the polarization of the input laser beam to LCP, the
RCP component of the transmitted light shows a refraction
angle of 0°, as presented in Figure 4c. As a counterpart of Ent
A metasurface, the measured results of Ent B metasurface
(Figure 4d) are exactly opposite. The RCP incidence has a
refraction angle of 0° (Figure 4e), and the deflection of the
LCP incidence in Figure 4f is the same as that in Figure 4b. As
a comparison, the cross-polarized component of the trans-
mitted light through the achiral metasurface (Figure 4g) has
the same deflection angle regardless of RCP and LCP
incidences, as shown in Figure 4h,i. The results of copolarized
transmission are presented in Figure S3 of the Supporting
Information, demonstrating that all three metasurfaces have no
deflection for copolarized components. In addition, the
measured efficiency in Figure 4b is about 7.6% (calculated
by the transmitted power of polarized channel compared to the
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input power), while the efficiency in Figure 4c is about 9.3%.
Compared to the 15% efficiency in our simulations, the slightly
lower efficiency in measurements is mainly due to the
imperfection of samples. The efficiency can be further
enhanced by using a dielectric metasurface or a reflective
metasurface, in which the spin-decoupled phase modulation is
still applicable. Moreover, the metasurfaces have considerable
bandwidth of around 200 nm, as shown in Figure S4 of the
Supporting Information.

With the ability to control the phase of LCP and RCP light
independently, the proposed spin-decoupled phase modulation
has its novelty in comparison to the conventional method that
combines the propagation phase and the PB phase. For
example, as shown in Figure S5a, we have designed a chiral
metasurface that can simultaneously deflect light into
horizontal/vertical directions for RCP/LCP incidences. It is
noted that some enantiomers have in-plane rotation in order to
further boost the functionality of our devices. The red and blue
arrows denote the phase gradient directions for RCP and LCP
light, respectively. On the right side of Figure 5a, the phase
distributions of RCP cross-pol and LCP cross-pol are plotted
along horizontal and vertical directions, respectively. The
phase interval between two neighboring apertures equals 90°,
corresponding to a designed refraction angle of 36.2°. In order
to detect the refraction along the horizontal and vertical
directions simultaneously, we collected transmitted light
without a polarization filter. In other words, we collected
transmitted light with co- and cross-polarizations. The results
obtained with the polarization filter can be found in Figure S5
of the Supporting Information. As shown in Figure Sb and c,
we extracted the intensity at z = 30 ym plane, the efficiencies
of the metasurface is 19.4% and 22.8% for RCP and LCP
incidence, respectively. The central bright spot in Figure 5b,c
represents directly transmitted light with a refraction angle of
0°, while the relatively weak spot is the deflected light with
cross-polarization. The 20.5 ym displacement of the two spots
along the horizontal direction in Figure Sb implies a refraction
angle of 34.3° which is slightly smaller than the refraction
angle of our theoretical prediction (36.2°). In addition, the
22.2 pum displacement along the vertical direction in Figure Sc
represents an angle of 36.3°, which is in good agreement with
our theoretically expected refraction angle. Overall, the chiral
metasurface shows two-dimensional beam steering for both
RCP and LCP incidences, confirming that our enantiomers can
achieve independent functions subject to RCP and LCP
incidences.

B CONCLUSION

In conclusion, we have proposed a new method to decouple
the phase responses of RCP and LCP light. The key feature of
this spin-decoupled phase modulation originates from V-
shaped apertures that support chiral near-field distributions. To
demonstrate the proposed spin-decoupled phase modulation,
we first designed and fabricated the Ent A and Ent B
metasurfaces, allowing anomalous refraction only for the
transmitted cross-polarized component of RCP or LCP
incidence. Then we demonstrated a chiral metasurface showing
anomalous refraction along the horizontal/vertical directions
for RCP/LCP light. The measured results of our fabricated
chiral metasurfaces and theoretical results match each other
very well, validating the capability of spin-decoupled phase
modulation by our proposed enantiomers. The results
presented here have significant implications in the field of
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metasurfaces to expand the horizon of phase engineering,
which would enable novel spin-based meta-devices, including
polarization imaging, optical manipulation, holograms, and
sensing.
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