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Tea is a steeped beverage made from the leaves of Camellia sinensis. Globally,
this healthy, caffeine-containing drink is one of the most widely consumed
beverages. At least 50 countries produce tea and most of the production
information and tea research is derived from international sources. Here,
we discuss information related to tea production, genetics, and chemistry
as well as production issues that affect or are likely to affect emerging tea
production and research in the United States. With this review, we relay
current knowledge on tea production, threats to tea production, and solutions
to production problems to inform this emerging market in the United States.
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Introduction

Tea, or Camellia sinensis (L) Kuntze, is a sub-tropical species of evergreen shrub or
small tree, in the plant family Theaceae, that is native to Southwest of China and extending
to around such areas as Laos, Burma, Nepal, and Vietnam. This C; plant is grown for its
young leaves that are processed and used to make a water based infused beverage. This
caffeine-containing non-alcoholic beverage is the most widely consumed drink in the world
after water. Cultural production practices maintain this woody perennial tree in a bushy
vegetative stage so that young leaves and buds can be harvested during the production
period for processing into the three main tea types used by consumers: black tea (oxidized),
green tea (non-oxidized) and oolong tea (semi-oxidized).

The initial use of tea as a medicinal beverage was started in China and there are
reports of tea plants that are more than 1,500years old in the Yunnan province of
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Southwestern China (Hara et al, 1995). Tea subsequently
became popular throughout China during the Tang and Sung
dynasties (618-907). The origin of tea in Japan is thought to have
been derived from materials brought from China during the 9th
century by Buddhist monks. Tea making changed during the
Ming dynasty (1368-1,644) at which time steeping of the whole
leaf became a standard practice, which was followed by a new
processing method, tea leaf rolling. This rolling process was
further advanced in Japan during the 18" century with the
Sencha method that combined steaming, drying, and rolling of
the green tea leaves.

While Arab traders documented the use of tea as early as the
9th century, and Portuguese traders introduced tea to Europe in
1559; the use of tea in Europe did not become popular until
1,606 when the Dutch East Indies Company started importing
tea from China and Japan. The Dutch tea drinking culture was
carried to New Amsterdam in the New World. This practice
continued in the colony after the English took control and
renamed the colony New York in the late 1660’s. Tea popularity
in England expanded when the British East India Company
started importing tea in commercial quantities (Ukers, 1935;
Macfarlane and Macfarlane, 2003). By the 1690’s, serving tea was
a prominent practice of the New York colony. As tea grew in
importance to the British empire, its demand grew, and supply
limitations led to production expansions globally. Tea seeds were
brought to North America by trading ships from China and by
the end of the 18th century, tea could be found growing in South
Carolina. Wild tea was found in Nepal and the Assam region of
India in 1788 and 1823, however, those teas were not used
commercially. Tea production by the British was started in the
Assam region of India in 1834 with tea plants and production
techniques illicitly acquired from China by Robert Fortune, a
Scottish botanist, and G.J. Gordon of the East India Company.
Tea production in the Darjeeling region of India started in 1841
from allegedly the same teas used in Assam (Ukers, 1935;
Macfarlane and Macfarlane, 2003). The British tea production in
India proved the practicality of growing tea commercially
outside of East Asia and inspired attempts in the Americas to
grow tea, particularly in the southern states. Based upon the
preferred Chinese growing regions between the parallels of 20°
and 45° N Latitude and taking into consideration the need for
loam soils, Delaware, Maryland, The Carolinas, Georgia, Florida,
Alabama, Mississippi, Tennessee, Kentucky, Arkansas, Louisiana
and Virginia were deemed viable tea growing regions in the
United States (Shepard, 1893). In 1859, 32,000 plants produced
from seeds were sent to the United States Commissioner of
Patents, Charles Mason, by Robert Fortune, who had been
contracted to obtain the seeds from China. Unfortunately, the
establishment of these tea plants was not completed and many
of the plants were distributed by congressmen to their
constituents throughout the Southern states.

Tea production in the United States was largely halted due to
the Civil War, but started again with $5,000 and $10,000
Congressional appropriations made to USDA in 1880 and 1881,
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respectively, to fund a research station in Summerville, South
Carolina (Klose, 1950). This research station became The
Pinehurst Tea farm in 1890 when USDA funding ended, and Dr.
Charles Shepard purchased the station. Over the next two decades,
Dr.
agronomic, economic, and cultural aspects of tea cultivation in

Shepard documented his experiments enumerating
various South Carolina tea gardens. Approximately 50 years later,
tea cultivation studies were initiated in California (Ingbretsen,
1972). Like the Shepard studies, several test plots were established
using seeds and cuttings from South Carolina sources. Following
the California studies, small-scale tea growing and processing
studies were conducted on the island of Hawaii. Three clonal
varieties (Bohea, Yabukita and Yutaka midori) were included in
the study along with the most extensive description of pest and
diseases affecting C. sinensis in Hawaii to date (Zee et al., 2003).
The California and Hawaii experiments indicated that clonal tea
plants afforded uniform growth, which was deemed important for
mechanical harvesting. The South Carolina and California studies
concluded that labor costs associated with tea harvesting were a
limiting factor toward commercial tea production. Acknowledging
this reality, researchers at The University of Florida introduced the
idea of growing tea in the home landscape (Crane and
Balerdi, 2005).

More recently, several studies of domestically grown tea have
appeared in the literature. Researchers from University Georgia
evaluated alternative propagation and nursery systems
(McConnaughey, 2013). In-ground, greenhouse, and container
nursery systems were compared; the in-ground system was up to
10% more efficient. It was concluded that approximately 400,000
liners would have to be sold annually in order to sustain
centralized production, which would translate to approximately
100 acres of tea being planted each year. It is estimated that fewer
than 100 acres of tea are currently planted in the US and many of
the growers are relatively small operations of less than 10 acres.
Equally important considerations of scale include the number of
mature plants in North America available for propagation and
knowledge of the plant characteristics to assure high quality tea
production. To address these issues, Bi and co-workers screened
nine tea cultivars grown at Mississippi State to assess both leaf
quality and plant growth (Zhang Q. et al., 2020). All were found
to possess attributes required of green tea production.
Internationally, tea is grown in at least 50 countries and the top ten
tea producing countries (includes both green and black tea)
according to FAOSTAT 2020 are China 2.98 M tons (1), India
1.42M tons (2), Kenya 569,500 tons (3), Sri Lanka 278,489 tons
(4), Turkey 255,183 tons (5), Vietnam 240,493 tons (6), Indonesia
138,323 tons (7) Myanmar 126,486 tons (8), Iran 84,683 tons (9),
and Japan 69,800 tons (10).

In this literature review, we present a comprehensive review of
tea-related issues, including background information, the genetics,
genomics, and chemistry of tea, and tea production issues from
global tea research. Understanding this research is critical for
understanding issues that are likely to be important in the
emerging tea industry in the United States.
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Tea production, genetics and
chemistry

Production

There are several stages of tea production beginning with
propagation, cultivation and all agricultural activities required for
plant growth, followed by harvesting of the leaf, and finally
processing of the leaf. C. sinensis is an evergreen shrub or tree, that
can reach up to 17 meters if not pruned (Martin et al., 1997). Tea
plants will take at least 3 years before they are mature enough for
harvesting. Typically, during this time the trees are pruned to the
desired shape and height to maintain the tea plants in a harvestable
shrub form (Martin et al.,, 1997). Tea plants are normally grown in
well-drained acidic soils that have a high organic matter content.
The plants need to be protected from strong winds that can
damage the tender young leaves. Terroir, or the environment
where tea is grown, affects the flavor, thus elevation, soil type,
shading, temperature, and rainfall can impart unique
characteristics to the final tea. The genetic diversity, the type of tea
being processed and how it is harvested will also affect the
final flavor.

Tea leaves are harvested by plucking new leaves and terminal
buds from the tips on the branches. Alternatively, mechanical
trimmers can be used to cut the new flushes from the plants. These
harvesting techniques aim to remove the buds and several young
immature leaves, for subsequent processing while stimulating the
growth of dormant terminal buds thus forming new shoots and
leaves. Successive harvests are typically done during the growing
period and are conducted at intervals that range from 4 to 14 day,
depending on the growth rate of the plants. After removing the tea
leaves, they are normally sorted before processing. Post-harvest
processing is summarized in Figure 1 for multiple tea types. At
harvest, the tea leaves can have a moisture content of 75-83%,
which is reduced during the next step in the process called wilting
or withering (Tomlins and Mashingaidze, 1997). In the withering
step, the leaves are spread out onto racks under controlled drying
conditions; the leaves will soften and the moisture content of the
leaves drops to less than 70%. However, the actual moisture
percentage will vary depending on the crafting style (Das et al.,
2017). Without withering, the later steps can result in cooked
leaves instead of the desired dried leaves. White teas (minimally
fermented and processed), oolong teas (semi-fermented), and
black teas (fermented) all undergo withering, whereas green and
yellow teas (minimally fermented) either undergo short periods
of withering or none at all. Dark teas (post-fermented) are usually
not withered (Ye et al., 2022).

Oolong and black teas undergo bruising processes during or
after withering that roll, crush, and twist the leaves to break the
cell walls open, releasing the oxidizing enzymes, exposing
chemical components to oxygen, and releasing volatiles (Hu
et al., 2018; Wong et al., 2022). This bruising process must
be uniformly done for the entire batch of leaves, therefore some
have replaced this method with chopping to acquire the desired
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bruising. The latter technique is sometimes called crush, tear,
and curl (CTC) and results in a shredded granular leaf particles
(Pou et al., 2019). The bruised leaves are then subjected to
another drying step, which continues the oxidation and
enzymatic activity of the cellular contents turning the leaves
brown. These enzymatic activities are primarily associated with
polyphenol oxidases and peroxidases (Subramanian et al., 1999).
Oolong teas are produced by limiting the oxidation step while
black teas are fully oxidized. Green, yellow, white, and dark teas
skip the oxidation step (Xu et al., 2018). After the bruising and
oxidation step, teas are fixed by heating, which stops the
oxidation and enzymatic reactions thus halting the browning
and preserving any green color. The fixing step, also known as
de-enzyming or kill-green, is used in all teas except black and
white teas, which are fully oxidized or combine the fixation and
drying steps, respectively (Chen et al., 2019). The fixation step
can be done with steam, as in Japanese green teas, frying in a
wok, as with Chinese green teas, or in a rotating drum.
Depending on the crafting style of the final product, each
method will impart a different taste to the tea (Ukers, 1935;
Langat et al.,, 2015). Some teas use an additional step called
rolling or shaping, which releases enzymes and breaks down
components of the leaves (Naheed et al., 2007).

Drying is the final step for most teas and removes residual
moisture from the leaves and stabilizes the tea for storage.
Depending on the method or temperatures used, drying can also
impart flavor to the tea product (Teshome, 2019). Lastly, the flavor
of all dark teas, such as Pu-erh, benefit from aging over periods of
months or years, while certain white and oolong teas can see
improvements as well (Qi et al., 2018; Cheng et al., 2021; Hong
etal, 2021; Zhang Q. et al., 2021). Dark teas continue to undergo
fermentation, but distinguish themselves in that the post-
processing fermentation occurs both endogenously and
exogenously via microbes such as Aspergillus luchuensis (Hong
etal., 2013).

Altitude

The elevation at which tea is grown has a marked influence on
the quality, chemical composition and delicate changes to the taste
of tea (Owuor et al,, 1990; Kfoury et al., 2018). These alterations
in the flavor attributes are associated with the microclimate
changes of elevated tea, which result in more precipitation, longer
periods of mist and or dew, alterations in the amount and quality
of sunlight and greater fluctuations between the day and nighttime
temperatures. Other locations that mimic these temperature
fluctuations have also been associated with high quality flavorful
teas. In Hawaii, half-acre planting was established at three different
elevations, Waiakea (600ft), Mealani (2,800ft) and Volcano
(4,0001t). Tea plants grown at Waiakea grew slower than at the
higher elevations. Time to harvest for all three locations was
18-20 months, and processed green and oolong tea from the
higher elevations was superior in quality (Zee et al., 2003).
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The tea production process summarized for the six different styles of tea. Solid lines indicate steps always used while dotted lines indicate steps

Genetic diversity

Camellia sinensis is a diploid (2n=30) with a genome size
originally estimated to be 4.0 Gbp (Tanaka et al., 2006). The
genome of tea has been sequenced revealing a more accurate
genome size of 3.1 Gbp (Xia et al., 2017; Wei et al., 2018). Tea has
been placed into the plant family Theaceae and into two
subspecies, var. sinensis and var. assamica. Before the establishment
of genotyping, the primary criteria used to classify individuals into
subspecies were purely morphological and included leaf size,

Frontiers in Plant Science

flowers, and branching characteristics (Mukhopadhyay and
Mondal, 2017). The assamica types have large (15 to 20 cm long),
thin glossy leaves, borne on small trees with robust branches that
are sensitive to environmental stresses such as drought and cold,
whereas sinensis types have small leaves (3 to 6 cm long) that are
erect and purple when young and grow into large shrubs with
thick, hard, leathery leaves that can withstand environmental
stresses (Mukhopadhyay and Mondal, 2017). The separation of the
subspecies is supported by matK chloroplast nucleotide sequence
polymorphisms, as well as simple sequence repeats (SSRs)
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identified via the more recent comparison of whole chloroplast
genomes (Katoh et al.,, 2003; Meegahakumbura et al., 2018; Rawal
etal., 2021).

The center of origin for C. sinensis is in Southwestern China,
with modern cultivation spread across latitudes spanning from
45° North to 34° South (Xia et al., 2020). The speciation of tea
appears to be the result of the rise of the Tibetan plateau which
would have separated the founding population, providing
isolation where differentiation could occur. The Yunnan-Guizhou
plateau has been proposed as the area of divergence for the
assamica and sinensis subspecies (Yao et al., 2012). This can
be visualized by separation of the large leaf Indian Assam tea,
found in eastern India from the Small leaf Chinese tea, found in
western China. These subspecies have been calculated to have
separated from each other somewhere between 0.38 to 1.54
million years ago (Wei et al.,, 2018). The current view of the genetic
diversity of tea supports three main populations of tea: Indian
Assam, Chinese Assam and Chinese tea (Wambulwa et al., 2016).
This view is strongly supported by the recent resequencing of 81
tea accessions from a variety of different geographical origins (Xia
et al., 2020). Intriguingly, this study was also able to show that
there was an increase in genetic diversity of cultivated tea
accessions when compared to wild varieties. Robust single
nucleotide polymorphic assays have greatly improved our ability
to access the genetic diversity of teas and allow the analysis to
be conducted on a single tea leaf, regardless of the type of
processing (i.e., green, oolong or black; Fang et al., 2014, 2016).
This methodology in combination with the aforementioned
chloroplast genome comparisons not only allows the assessment
of genetic diversity but can be used to authenticate varieties for
quality control.

Tea chemistry

The wide-ranging health benefits of tea are associated with its
bioactive, secondary metabolites (da Silva Pinto, 2013; Fang et al.,
2021). The major constituents associated with tea are caffeine,
catechins, theanine and other free amino acids (Figure 2A; Tai
et al, 2015; Zhang S. et al., 2018). Green leaf volatiles are also
notable metabolites in the aroma of tea and these compounds are
classified as secondary metabolites (Tai et al., 2015; Ono et al,,
2016; Zhang S. et al., 2018). The sedentary nature of plants requires
them to produce specialized compounds, or secondary
metabolites, that fight off biotic and abiotic environmental factors
(Kim etal,, 2016). Specifically, these secondary metabolites play a
key role in the flavor, aroma, and overall health benefits of tea (Li
etal., 2015).

Caffeine is classified as a purine alkaloid and behaves as a
plant defense compound due to its anti-herbivory properties
(Zhao et al., 2020). Purine alkaloids are nitrogenous compounds
containing a fused five-membered and a six-membered ring.
Purine alkaloids are known for having certain pharmacological
effects (Koshiishi et al, 2001). Specifically, caffeine is a
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neurostimulant that has been implicated in influencing mood,
sleep, and cognitive behavior (da Silva Pinto, 2013). As little as a
single cup of tea contains enough caffeine to have indicative
alertness and psychomotor effects (Rogers et al., 2008). Black tea,
on average, contains more caffeine in comparison to green tea, due
to different cultivars used for black tea versus green tea (Astill
etal, 2001). There is approximately 47.5 mg of caffeine per gram
of tea bud and 30.5 mg of caffeine per gram of tea leaves (Tai et al.,
2015). In both tea and coffee, the biosynthetic pathway of caffeine
contains several N-methyl transferases (Figure 2B; Li et al., 2015).
All of the N-methyl transferases involved in the pathway for both
coffee and tea are part of the SABATH family of enzymes and
utilize SAM (S-adenosyl-methionine) as a methyl donor (Ashihara
etal, 2008; Li et al., 2015). The genome of C. sinensis var. sinensis
contains a total of 32 SABATH genes, which are classified into
three groups based on motif structure (Guo et al., 2020). Contrary
to coffee, the first two N-methyl transferases in tea accumulate in
young leaves and shoots, while the enzyme TCS (tea caffeine
synthase) is present in both young leaves and mature leaves. This
is indicative that caffeine biosynthesis in tea plants begins in
young leaves but can be completed in either young or mature
leaves (Ashihara et al., 2008; Li et al., 2015). Caffeine levels of nine
tested Mississippi cultivars over three seasons consistently showed
highest levels in summer (3.49-2.67%), followed by spring (2.92-
2.06%) and then fall (1.53-2.46-1.53%). Varietal differences were
also observed, however the seasonal trend was similar across
varieties (Zhang Q. et al., 2020).

Theanine and caffeine are the major components affiliated
with the taste of tea. Caffeine is associated with the bitter taste of
tea and theanine is responsible for the unique taste known as
“umami” (Zhang S. et al, 2018). L-theanine is a unique,
non-proteinic, free amino acid derived from the amino acid
glutamate (Figure 2C; Ashihara et al, 2008); theanine is a
recognized antagonist against caffeine that is an effective
compound for the treatment of individuals experiencing caffeine-
induced paralysis. In addition, theanine is also effective as an
inhibitor of caffeine-induced elevation of blood pressure (Rogers
et al., 2008). The total content of theanine in tea leaves and buds
is estimated to be around 1-3% (Tai et al., 2019; Huang et al,
2022). This concentration of theanine in the tea plant can still
produce substantial physiological effects because it is quickly
absorbed in the bloodstream following ingestion (Koshiishi et al.,
2001). A wide array of positive medicinal properties has been
ascribed to theanine including its promotion of relaxation and
improving concentration. In addition, theanine has been
implicated as an anti-tumor agent, and has been studied for the
prevention of cardiovascular and cerebrovascular diseases (Liang
etal, 2015). Lastly, theanine is also implicated in improving the
immune system and suppressing body weight increases as well as
the accumulation of fat. Besides tea plants, the only other known
source of L-theanine is Xerocomus badius, the bay bolete
mushroom (Mu et al., 2015).

The biosynthesis of L-theanine in tea begins with the amino
acid L-glutamate (Figure 2C; Chen et al., 2021). It is known that
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Major constituents of Camellia sinensis and their biosynthetic pathways. (A) Catechins (left), caffeine (upper right) and L-theanine (bottom right)
are shown. Biosynthetic pathways of (B) caffeine and (C) L-theanine in C. sinensis.

mature plants are the highest producers of L-theanine, with the
biosynthetic pathway being the most active in the roots. Once
made, L-theanine is translocated to developing leaves via the
phloem. Recent reports have described the biosynthesis of
theanine from a tea-associated endophyte suggesting that
microbial partners may also assist in the biosynthesis of theanine
(Xie et al., 2020). Studies focused on measuring total amino acid
content among different varieties and seasons found that theanine
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content was highest in the fall for all varieties tested (Zhang
Q. et al,, 2020). In addition to theanine, arginine and glutamine
concentrations are also positively correlated with price and tea
quality (Kato and Suzuki, 1971; Mukai et al., 1992; Goto et al.,
1994; Wang and Ruan, 2009; Miyauchi et al., 2014).

Flavonoids have a wide array of functions for the plant, and
health benefits for consumers. The core structure of flavonoids is
derived from the amino acid phenylalanine (Li et al, 2015).
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Catechins are classified as flavan 3-ols, a subcategory of flavonoids
and can also be categorized as polyphenolic compounds.
Catechins are known for their ability to protect plants from
ultraviolet light and phytopathogens (Li et al, 2015). For
consumers, catechins are acknowledged for their antioxidant
properties, and are thought to be one of the major cardioprotective
and anti-tumor components of C. sinensis (Musial et al., 2020).
There is an abundance of catechin and catechin derived
compounds present in tea, which are usually described as total
catechins (Tai et al., 2015). Total catechins are defined as catechin,
gallocatechin, gallocatechin gallate, epicatechin, epigallocatechin,
epigallocatechin gallate, and epicatechin gallate (Figure 2A). The
biosynthesis of each catechin is complex, however known
flavonoid biosynthesis pathway genes have been identified and
studied in tea (Zhang Y. et al., 2018). Many of the enzymes present
in the biosynthetic pathway are promiscuous and can utilize
multiple different substrates and yield multiple different catechins
(Figure 3; Zhang et al., 2016). Catechins remain intact during
green tea production. However, the bruising steps used in black
tea preparation promote enzymatic oxidation of catechins, thus
lowering their overall content in black tea (Astill et al., 2001).
Catechins also contribute to the color and taste of tea plants
(Zhang et al.,, 2016). The total polyphenol content of several
varieties studied was highest in summer for eight of the nine
cultivars tested, while the remaining cultivar was highest in spring
(Zhang Q. et al,, 2020). In that same study, total polyphenol
content was lowest in fall across all varieties tested.

While green leaf volatiles are not considered to be a major
component of tea, they are fundamental in developing the aroma
of tea (Ono et al., 2016). Over 600 volatile compounds have been
associated with tea aroma (Zheng et al., 2016b); the content of
volatile compounds is dependent on the materials and methods
used during the tea processing steps. Green leaf volatiles (GLVs)
are 6-carbon molecules emitted when a plant is wounded
mechanically (D’Auria et al., 2007). In tea, these 6-carbon volatile
alcohols are the alcohols (Z)-2-hexen-1-ol and (Z)-3-hexen-1-ol,
the aldehydes hexanal and (E)-2-hexenal, as well as the ester
(Z)-3-hexen-1-yl acetate (Figure 4; Ul Hassan et al., 2015).

In addition to the green leaf volatiles, terpenes also play an
important role in tea aroma and stress tolerance. Specifically, the
terpene alcohols linalool and nerolidol (Figure 4) are major
constituents in the volatile headspace of black and oolong teas and
their storage seems to involve storage via the non-volatile
glycosides (Mizutani et al., 2002; Liu et al., 2018). The terpene
synthase and UDP-glucosyltransferase families in tea have been
amplified in number via gene duplication and with several gene
clusters co-locating with known caffeine biosynthesis related
genes (Xia et al., 2020). Collectively, these volatiles are the leading
contributors of the sensory components responsible for the green,
grassy, sweet, and fruity aroma of different types of teas. Each of
these secondary metabolites are necessary for developing the
enticing aroma and rich flavor of all varieties of tea. More
importantly, the major constituents (caffeine, catechins, and
theanine) are responsible for the comprehensive health benefits
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associated with tea (Higdon and Frei, 2003; Cooper, 2012; Ttirkozii
and Sanlier, 2017). The content of tea volatiles in processed US
teas has yet to be reported.

United States production zones

In the United States, tea can be grown in the USDA Hardiness
zones 7, 8, 9, and 10 where the temperature ranges from 21 to
29°C (70 to 84°F) and where there is sufficient rainfall of
150-250cm/year (59-98 inches/year; USDA Agricultural
Research Service, 2012; Duncan et al., 2016). Tea plants will
decrease shoot growth and new flushes when temperatures fall
below 13°C (55°F), while high soil temperature during the day
and low soil temperature at night will induce flowering and reduce
vegetative growth (De Costa et al., 2007). There are several cold
tolerant tea clones that are claimed to survive at Hardiness zone
6b (Extension Gardener: Camellia sinensis, 2021).

The recent surge in artisan teas has increased tea production
in the United States, with tea production occurring on more than
60 farms across 17 states (American Specialty Tea Alliance,' The
US League of Tea Growers).” Producing tea under suboptimal
growth conditions may cause further stresses to the plants. Tea
plants that are exposed to abiotic and biotic stresses produce a
series of additional phytochemicals. The concentrations of these
metabolites vary depending on the genetic, environmental, and
culture conditions (Li et al., 2007; Adnan et al., 2013; Ahmed et al.,
2013). Therefore, production issues have a direct impact on the
quality of the final tea product.

United States teas and origins

The origin of tea produced in the United States have multiple
backgrounds with most coming from either China or India. Since
most of the teas commercially grown in the United States are
derived from the South Carolina USDA Pinehurst Experimental
Tea Station, historical records were evaluated to attempt to identify
their ancestries. Dragon pool or Loong Tsin tea (current name
Longjing = Dragon well), which was grown in the South Frazer tea
gardens, was acquired in 1892 from seed harvested from
celebrated gardens near Hangchow, the capital of Chekiang
province in China, now Hangzhou Zhejiang (Shepard, 1893). Tea
from the Rose Gardens are reported to be Assam-hybrid teas. Tea
germplasm maintained by USDA and University of Hawaii are
primarily comprised of Chinese and Japanese varieties. Bohea
(Wuyi tea from Fujian China) is a variety suitable for both oolong
and black tea production while the Japanese varieties Yabukita and
Yutaka midori are suitable for both green and oolong teas (Zee
et al., 2003).
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Tea in the genomics era

metabolism, and aroma and flavor in tea, while allowing for new
developments in molecular breeding. The first draft assembly of

Advances in genomics and transcriptomics have enhanced
our understanding of the genetic basis of stress responses,

Frontiers in Plant Science 08

C. sinensis var. assamica (Xia et al., 2017) revealed that the
relatively large size of the tea genome was explained by the
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repetitive nature of the sequence, a large majority of which
consisted of transposable elements. This genome also
demonstrated that caffeine biosynthesis evolved independently in
tea, with a distinct pathway from cacao and coffee caffeine
biosynthesis. Successively better genomes of both C. sinensis
varieties assamica and sinensis have been released and each
subsequent genome release has led to the discovery of important
genomic features, e.g., identifying the genomic signatures of
artificial selection (Xia et al., 2020; Zhang X. et al., 2021), or the
impact of structural variation and gene family expansion on the
unique aroma of an important oolong cultivar (Wang P. et al,,
2021). Modern tea genomes now reach chromosome level
contiguity and are approximately 3.1 Gb in size, slightly lower than
the estimates of 3.5-4.0 Gb suggested by previous cytogenetic
work. To date, 17 total tea genomes have been published and made
available on databases such as NCBI and NGDC, including 7
C. sinensis var. sinensis assemblies, 5 C. sinensis var. assamica
assemblies, and various hybrids and wild teas (Wei et al., 2018; Xia
etal, 2019, 2020; Chen et al., 2020; Zhang Q. J. et al., 2020; Zhang
W. et al., 2020; Wang P. et al,, 2021; Zhang X. et al., 2021). With
these groundbreaking new resources, researchers are beginning to
understand what governs the complex traits important to both
growers and consumers, where previously, this was challenged by
tea’s outcrossing tendency and long lifecycle. For example,
genomic prediction and genome-wide association studies (GWAS)
have been employed with moderate success to correlate single
nucleotide polymorphisms with the catechin EGCG and total
caffeine content (Yamashita et al., 2020). GWAS has also been
used to discover sites controlling spring bud flush timing, an
important factor in pest avoidance and flavor in prized early
spring teas (Wang et al., 2019).

Researchers have also taken advantage of technologies that
sequence mRNA and capture the content and quantity of those
transcripts, collectively called the transcriptome. The first
comprehensive transcriptome of tea identified 127,094 unique
transcripts, providing an important tool for researchers interested
in studying differentially expressed transcripts under a vast array
of experimental conditions (Shi et al., 2011). Advances in modern
sequencing technologies have allowed researchers to generate
increasingly higher quality transcriptomes that can resolve
alternative splicing events (Xu et al., 2017; Qiao et al., 2019; Wang
E et al, 2021). There has been great interest in transcriptome
studies of tea and its wild and cultivated relatives over the past
decade, with over 660 Datasets available on the NCBI Gene
Expression Omnibus to date. Recently, transcriptome studies have
been used to identify candidate genes involved in cold acclimation
and stress (Wang et al., 2013; Li et al., 2019; Samarina et al., 2020),
drought tolerance (Liu et al., 2016; Wang W. et al., 2016; Samarina
et al., 2020), heat shock (Seth et al.,, 2021), aluminum stress
(Huang et al,, 2021a), salt stress (Zhang et al., 2017; Wan et al.,
2018) and more. Researchers have also used transcriptomics to
better understand how genes involved in secondary metabolite
pathways are differentially expressed across growing practices and
time, e.g., by observing the effect of red-light withering on amino
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acid and theaflavin biosynthesis in black teas (Li et al., 2021), or
by tracking anthocyanin degradation across the seasons (Maritim
et al,, 2021). The cumulative effect of all these efforts with
transcriptomics is the construction of a large reservoir of target
genes and gene networks to potentially inform tea improvement.

Tea production issues
Water availability

Drought stress is a major tea production problem and can
affect most growing regions at least some time throughout the year.
Globally, drought is responsible for yield reduction of 14 to 20%
and the death of 6 to 19% of the tea plants (Hajiboland, 2017).
Young tea plants are particularly susceptible due to drought due to
under-developed root systems (Karunaratne et al., 1999). Drought
stressed plants typically have reduced chlorophyll concentrations,
which subsequently reduces photosynthesis and increases levels of
malondialdehyde which indicates oxidative stress, further reducing
growth (Guo et al., 2017). Drought stress reduces the total
polyphenols, free amino acids, total flavanols, catechins, caffeine,
theanine, and starch, while ABA, ethylene, salicylic acid, mannitol,
trehalose, and sucrose increase in the leaves (Liu et al., 2016; Wang
W. et al,, 2016). Transcriptome analysis has revealed that there is a
plant specific gene response to both drought and cold, suggesting
that tea has a combined response to these stresses (Zheng et al.,
2016a). Tea harvested during the spring drought was 50% lower in
production but had 50% higher levels of catechin and
methylxanthine (Ahmed et al., 2014). Drought tolerant clones and
drought tolerant root stocks are two approaches that are being used
to combat persistent drought conditions. One method identified
for the selection of drought tolerant tea clones is to screen for
higher polyphenol and catechin contents during drought stress,
which appears to be a common mechanism in tolerant lines
(Cheruiyot et al., 2007). Irrigation as a backup for inadequate
rainfall was first suggested for US tea production by Dr. Charles
Shepard in 1893 (Shepard, 1893). The use of irrigation can be used
in most environments provided there is sufficient high quality
ground water, and the use is economically feasible.

Instead of not enough water, some potential tea-growing
regions of the United States are susceptible to flooding and too
much rain. During flooding, water saturates the soils and air is no
longer available to the root (Dat et al, 2004). Under these
conditions, roots become dependent on the gas exchange with the
aerial portion of the plant and may suffer hypoxia, limiting the O,
required for respiration available to the roots. In water-logged soil
conditions, the soil pH increases to a neutral level (7.0) which
interferes with the mineral uptake of the plant, particularly
nitrogen and phosphorus (Patrick and Mahapatra, 1968). The
selection of flood-resistant tea clones has helped some global tea
production regions (Duarah et al., 2012). Symptoms associated
with flooding in tea are stunted plants, defoliation and death of
the plants.
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Shading

Shading is the act of limiting sunlight to the tea plant
(75-95%), typically by covering the plants, which alters the
photosynthesis of the plant, changes temperature, transpiration
rates, and the morphology and chemical composition of the
harvested leaves (Sano et al., 2018). Leaf thickness increases and
leaf weights are reduced under shaded conditions. In tea, shading
is used to manipulate the growth of the tea leaves and harvested
leaves and is typically only done for high grade green teas. The
length of shading for the tea plants varies from 9 to 20 days prior
to harvest, and the morphology of the harvested tea shows a
tendency for longer shoot lengths, more leaves per shoot, and
larger dark green leaves. Non-gallate catechin levels are reduced
by shading while caffeine, theanine, asparagine, glutamine,
glutamic acid, tryptophan, phenylalanine and aspartic acid are
increased (Wang et al., 2012; Lee et al., 2013; Sano et al., 2018;

fang et al., 2021).

Frost

Tea production in the United States primarily occurs in the
temperate zones, which can subject this semi-tropical plant to
frost damage. During dormant non-growth periods, tea plants can
survive several hours of —10°C (14°F) without permanent
damage. However, once new flushes have started to grow, the cold
tolerance of the plant is greatly reduced and temperatures as low
as —2°C (29°F) can cause significant frost damage. Generally,
there are two types of frost damage that occurs on the leaves: a
white frost damage that occurs on the leaf surface and turns the
leaves white, and black frost, which freezes the leaves without any
change in the color of the leaf. In some regions of the world frost
damaged leaves are harvested to produce a black or green tea that
is referred to as frost tea. The effects of low temperatures upon tea
grown in South Carolina were noted by Charles Shepard (1899).
Plants that were fully covered in snow before the cold front fell
upon them survived well, presumably because they were brought
into hibernation by the earlier snow fall (Shepard, 1899). Plants
with exposed leaves were severely damaged by the cold front and
had to be pruned in the spring. However, this episode did not
impact the long-term production; in many tea-growing regions of
the world, tea plants are periodically rigorously pruned to
rejuvenate the plant and increase lifetime yield (Martin
etal., 1997).

Soil pH

Soil pH under most tea growing is typically low
(pH =4.5-6), resulting in acid soils. Fertilization and high rain
fall can further reduce soil pH. In tea, liming of soil in not
normally recommended unless the soil pH falls below 4.0
because the high calcium levels from liming can reduce
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potassium uptake. In California, sulfur was used to decrease the
soil pH.

Fertilizer and nutrient deficiencies

Harvested tea leaf yields under favorable climate and nutrient
conditions can reach 4 to 5 tons/ha/year and under exceptional
conditions and have reached 6.5 tons/ha/year (Hajiboland, 2017).
The most important nutrients found in tea flushes are nitrogen
(N), potassium (K), calcium (Ca), phosphorus (P), sulfur (S),
magnesium (Mg), and zinc (Zn) with the highest nutrient contents
being nitrogen (up to 5%), potassium (up to 2%) and magnesium
(up to 0.3%) in the harvested dry matter (Sedaghathoor et al.,
2009). Mineral nutrients are loosely classified as mobile and
nonmobile. Mobile nutrients can move in the plant once deposited
and move from older plant part to younger when needed.
Nitrogen, potassium, and phosphorus are considered mobile
nutrients while calcium, boron, manganese, and iron
are nonmobile.

Nitrogen fertilizers are associated with higher yields, and
recommendations vary by country but typically range from
100kg/ha/year to over 600kg/ha/year (Cheruiyot et al., 2009).
Nitrogen deficiency in tea leaves is evident when the leaf content
of N drops below 3% which leads to shorter internodes, lighter leaf
color, and stunted growth (Hajiboland, 2017). Tea plants take up
nitrogen in the form of ammonia (NH,") rather than the nitrate
form (NO;"), so nitrate fertilizers are inefficiently absorbed and
can even inhibit the entry of ammonia ions and lead to nitrogen
fertilizer runoff (Ruan et al., 2007; Yang et al., 2013).

Phosphorus is an essential nutrient in cellular structures and
energy metabolism and severe deficiency levels are associated with
young and old stem die back. Phosphorus lacks mobility in the soil
and its availability is highest in soils with a pH range from 5.5 to
7.0, but limited outside of that range (Hajiboland, 2017). Tea is
highly tolerant to phosphorus deficiencies with the most
prominent symptom being reduced growth (Nagarajah and
Ratnasuriya, 1978). Tea tolerance to low phosphorus may be due
to the release of organic acid anions from the roots (Lin et al,
2011). However, the concentrations of flavor- and aroma-related
compounds in green tea have been observed to be lower due to
phosphorus deficiency (Lin et al., 2012).

Potassium is the last of the major mineral nutrients. Moderate
to high soil potassium levels must be maintained for growing tea
because, as with nitrogen, harvesting leaves results in the depletion
of potassium in the soil (Hajiboland, 2017). Potassium is involved
in enzyme activation, carbohydrate metabolism, translocation,
and protein synthesis. Sources of potassium fertilizer are
potassium chloride (KCl) and potassium sulfate (K,SO,) but since
chloride inhibits nitrogen uptake and reduces theanine levels,
which is important for flavor in green teas, the use of KClI is
inadvisable (Ruan et al, 2007). Deficiency in potassium is
associated with necrosis of the leaf margins primarily at the leaf
tips, a depletion of starch in the roots and root die back, which is

frontiersin.org


https://doi.org/10.3389/fpls.2022.934651
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

D’Auria et al.

associated with thin weak branches and a reduction in the size of
the leaves (Ruan et al., 2013).

Calcium is a crucial growth regulator and therefore essential
to tea plant growth and development (Hepler, 2005). The typical
approach to increasing calcium and adjusting soil pH levels is to
lime the soil; however, this approach may be difficult in tea
gardens due to closely spaced plants. High levels of nitrogen
fertilizer can lower the soil pH and one compound used to counter
this is to use of the slow-release nitrogen fertilizer, calcium
cyanamide (CaCN,). In addition to maintaining soil pH balance,
CaCN, also limits the growth of soil-borne pathogens and weeds
(Oh et al., 2006). The use of calcium cyanamide also reduces the
amount of nitrogen lost due to the conversion of nitrogen fertilizer
to nitrous oxide (Hirono and Nonaka, 2014). Calcium is not
mobile in the plant so deficiency symptoms in tea are expressed as
downward curling leaves followed by the appearance of small
necrotic spots on the surface of young leaves.

Magnesium is vital for photosynthesis since Mg ions are part
of the chlorophyll molecule, and a major enzymatic cofactor for
various energy and metabolism processes. Magnesium deficiencies
subsequently reduce plant growth and reduce root and shoot
translocation. Furthermore, magnesium fertilizer has been shown
to increase the uptake of nitrogen ions, increase biomass
production, increases amino acid concentrations, particularly
theanine in the leaves and roots, and increase of the mobilization
of amino acids and sugars in the plant vascular system (Ruan et al.,,
2012). Magnesium deficiencies are common in acid soils and the
symptoms include chlorosis of the leaf margins and interveinal
regions alongside green veins, and the turning yellow and red of
older leaves.

Sulfur is important in tea production for photosynthesis and
is associated with chlorophyll and protein synthesis. Sulfur
deficiency can occur in water-logged soils (Dick et al., 2008).
These deficiencies are expressed as interveinal yellowing of the
leaves, reduced growth of leaves and internodes resulting in
shorter and smaller leaves (Ananthacumaraswamy et al., 2003).

Zinc affects the growth and development of tea through gene
regulation, enzymatic function, and protein structure. Zinc
deficiencies in plants are common and can be induced with
excessive phosphorus fertilizers (Mousavi, 2011). Zinc deficiency
symptoms in tea plants are expressed as stunting with narrow
erect leaves that can form a rosette at the bud apex with reduced
chlorophyll contents and photosynthesis (Nelson, 2006).
Application of zinc to the soil is highly inefficient, but there has
been some successful application of foliar zinc treatments (Huang
et al., 2021b). Zinc has also been shown to moderate drought
stress by mediating biochemical damage in tea (Upadhyaya
etal., 2013).

Tea is an aluminum accumulator species and aluminum
content of the leaves is correlated with transpiration rate and
duration. About 40-50% of aluminum is partitioned in the cell
wall component and boron deficiency increases aluminum
binding to cell wall components thus restricting soluble forms
from translocating to the phloem and accumulating in the leaves.
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Maintaining a proper aluminum/boron supply increases the
proportion of soluble phenolics in the leaf contributing to the
overall quality of the tea (Hajiboland et al., 2015).

Iron and manganese are important micronutrients for
maintaining healthy chlorophyll levels in the tea plant which in
turn leads to higher quality leaf material and higher yields. The
availability of iron is correlated with soil pH, with optimal levels
achieved at lower pH. This has led to the use of ferrous sulfate
sulfuric acid solutions to lower the soil pH and enhance plant
health (Fu et al., 2013). Copper, like iron and manganese, is
essential for healthy plant growth but too much can inhibit
growth, cause chlorophyll loss and impede photosynthesis. Table 1
shows optimal nutrient compositions in leaves of tea adapted from
a Taiwan tea industry extension bulletin (Zee et al., 2003).

Pests and diseases

Camellia sinensis is susceptible to various fungal, bacterial,
viral, and algal diseases and to insect, mite, and nematode pests.
Many of these specific diseases, the causal pathogens and
symptoms are detailed in Supplementary Table 1, which was
compiled from multiple sources (Petch, 1923; Hainsworth, 1952;
Eden, 1976; Chen and Chen, 1982; Holliday, 1995; Lehmann-
Danzinger, 2000; Chakraborty et al., 2006; Bhujel et al., 2016;
Wang Y.-C. et al., 2016; Hao et al., 2018; Thangaraj et al., 2018;
Koebnik et al., 2021). Fungal plant diseases are the main disease
threat to tea with blister blight being one of the most prominent
(Lehmann-Danzinger, 2000). All tea plant tissue types are
vulnerable to attack by fungal pathogens (Pandey et al., 2021b).

Foliar fungal diseases, or diseases that occur in the leaves,
shoots, petioles, and young green stems, are the most economically
important because they directly harm the primary product
harvested from tea plants. Not only do foliar fungal diseases
reduce rates of photosynthesis, severely reducing yield, but also
cause significant decreases in flavor volatiles (Ponmurugan et al.,
2016). Symptoms of foliar fungal diseases, such as blister blight,
caused by Exobasidium vexans, or gray blight, caused by

TABLE 1 Optimal nutrient compositions in leaves of tea adapted from
a Taiwan tea industry extension bulletin (Zee et al., 2003).

Element Suitable range* Unit
Nitrogen 4.00-6.00 %
Phosphate 0.25-0.40 %
Potassium 1.50-2.10 %
Calcium 0.25-0.55 %
Magnesium 0.15-0.30 %
Aluminum 400-900 ug/g
Manganese 300-800 ug/g
Iron 90-150 ug/g
Zinc 20-40 ug/g
Copper 8-15 ug/g
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Pestalotiopsis spp., consist of brown, yellow or necrotic spots or
lesions that can spread to encompass the entire leaf (Chen et al.,
2017; Pandey et al., 2021b). Defoliation and tip die back are also
associated with many foliar diseases in tea, such as anthracnose or
brown blight, caused by Colletotrichum spp. (Wang Y.-C. et al.,
2016). Anthracnose and gray blight have both been reported in
Hawaii and California test plots (Zee et al., 2003). Fungal root
diseases affect the canopy by reducing water uptake that results in
wilt (Gadd, 1936). Wilting of the entire plant as well as yellowing
of all the leaves and defoliation are also found in root diseases.
Stem cankers and branch/stem diebacks are key symptoms of
some root diseases (Sinniah et al., 2017). In some root diseases,
the progression of the symptoms, listed above can lead to the
death of the stems, branches or the entire plant.

Bacterial pathogens can cause stem canker with exudates, leaf
and shoot lesions, and, rarely, stem or crown galls in tea (Uehara
et al., 1980; Matsumoto and Fukui, 1998; Tomihama et al., 2009).
Viral diseases of tea are associated with yellowing or mottling,
chlorotic rings of the leaves, leaf curling, and necrotic black or brown
lesions of the phloem (Hao et al., 2018). Algae are not normal plant
pathogens but in tea an algal pathogen produces raised spots or
blotches along the margins on leaves that can be gray, green, tan,
purple to reddish brown in color (Keith et al., 2006).

Insects, mites, and nematodes cause direct damage to tea
plants by consuming plant tissue, either through chewing or by
feeding on plant sap. Sap-feeding insects and mites can also act as
vectors for disease-causing pathogens (Gadd, 1939). Several insect
and mite pests have been collected and identified from tea in
Hawaii (Hamasaki et al., 2008), including two unique chewing
pests and 12 unique sap-feeding pests. While the overall economic
losses of tea due to disease is higher than due to insect pests, if left
unchecked and given a favorable environment, pests can cause up
to 55% yield loss (Lehmann-Danzinger, 2000; Hazarika et al., 2009).

Pest and disease control

Multiple strategies can be used to control pests and diseases
of tea. Standard plant care procedures essential to promoting
healthy plants and reducing stress are recommended such as
sufficient spacing between plants to permit adequate air flow to
reduce humidity and leaf wetness, growing plants in well drained
soils, and providing adequate sunlight and nutrients. The
reduction of initial inoculum levels of plant pathogens can slow
the progression of the disease. This can be accomplished by using
chemical controls such as fungicides prior to the growing season,
eliminating alternative hosts in or near the fields, or through crop
rotation. If chemical controls are used, strict adherence to the
manufacturer’s guidelines should be followed. Phytosanitation, or
the removal of diseased tissues or plants from the production area,
is recommended to eliminate sources of future infections.

Plant activator compounds (PACs) are compounds that
stimulate or induce plant defense responses. Yeast extract PACs have
been shown to reduce anthracnose and gray mold diseases in Japan,
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while calcium chloride reduced blister blight disease in India
(Yoshida et al., 2010; Chandra et al., 2014). Fungal Biocontrol Agents
(FBCAs) are microbial agents that are predicted to have a significant
impact on how tea insect pests and pathogens will be managed in the
future (Pandey et al, 2021a). FBCAs are a sustainable and
eco-friendly method of promoting plant health and stimulating plant
growth and defenses (Sain and Pandey, 2017).

Scouting fields for insects and inspecting for crop damage are
the primary ways of monitoring pest populations to determine
their levels of infestation (Handique and Roy, 2020). Pheromone
traps can also be used to monitor for specific pest insects (Noguchi
1981; and Ahmed, 2011;
Radhakrishnan, 2015). Insect, mite and nematode populations

et al, Mamun Srikumar and
can be reduced by using chemical controls, such as insecticides,
miticides, or nematicides, prior to the growing season (Barooah,
2011). Eliminating alternative hosts in or near the fields,
interplanting non-host plants that inhibit the growth of the pest,
and using pheromone traps are key recommendations for control

of insect pests of tea (FHazarika et al., 2009).

Other production problems

Other production problems connected with C. sinensis
include bud drop, sunscald, and oedema (edema). Bud drop is a
developmental condition of flower buds that causes the buds to
drop off before opening or that causes the necrosis of young buds.
This condition is caused by multiple factors but is mostly
associated with plant stresses caused by extreme temperature and
moisture fluctuations (Sakai and Hakoda, 1979), nutrient
deficiencies (Blake et al., 2021), or by Camellia bud mites (Subirats
and Self, 1972; Salinero et al., 2008). Sunscald is a leaf disorder that
can affect tea plants in full sun and is typically seen as scorched or
bronzed areas on the leaves. Sunscald can be a problem on
C. sinensis plants that are transplanted from shaded areas to
locations in full sun (Camellia: Sunburn, 2014; Blake et al., 2021).
Oedema is a rupture of leaf cells that occurs on the lower surface
of the leaves. This problem occurs when the roots take up excessive
water under conditions where foliar transpiration is limited. The
excess water in the leaves cause small, light-colored, water-soaked,
blister-like areas to form (Camellia: Oedema, 2014). The water-
soaked areas or blisters erupt, causing disorganized patches of
dead cells that are rusty brown or yellowish brown in color. This
condition can occur during the late winter or early spring during
cool, cloudy, humid or rainy days (Blake et al., 2021).

Discussion

With the recent surge in artesian tea production and
consumption in the United States there is a renewed interest in the
expansion of this specialty crop. In the United States, 17 states now
have some form of tea production. In this review, we have tried to
pull together the key components of tea production for
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United States growers. This is not the first-time tea production has
expanded beyond its origin in Southeast Asia and, as tea is moved
to new environments, production challenges may occur.
Management skills, environment modifications and new plant
genetic diversity may be required on a regional or national level to
meet these challenges and to find economically viable solutions.

Research needs for United States tea production include: a
comprehensive analysis of varietal adaptation to environmental
stresses, and to different growing regions that can be used to identify
the best varieties for each region. There is a need to establish a
United States tea germplasm collection with as much genetic
diversity as possible to meet the needs of plant breeders and
producers for disease and stress resistance and for maintaining and
improving quality. A United States specific disease and pest survey
should be undertaken to help regional and national efforts to focus
on the main production issues. The existing US League of Tea
Growers, tea researchers and research institutions working with
production issues should link efforts and coordinate national and
regional research projects. As United States tea production increases,
more resources and attention will need to be focused on managing
and improving this specialty crop. Alternative approaches to growing
tea in controlled indoor environments including tissue culture and
hydroponics should also be expanded as these technologies can
alleviate climate related stresses such as drought, fire and flood and
enable rapid expansion of lines available for field planting. Moreover,
controlled growing environments can be broadly distributed across
the US offering high paying technological jobs to a new generation
of farmers. Tea is especially well suited for these innovations because
presently the United States has no investment in a tea-growing
infrastructure. Embracing these new technologies would give tea
growers in the United States a unique opportunity to enter the global
tea market as high-tech, high yield producers.
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