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Operator fusion from wave-function overlap: Universal finite-size corrections
and application to the Haagerup model
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Given a critical quantum spin chain described by a conformal field theory (CFT) at long distances, it is crucial to
understand the universal conformal data. One most important ingredient is the operator product expansion
(OPE) coefficients, which describe how operators fuse into each other. It has been proposed in [Zou and Vidal,
Phys. Rev. B 105, 125125 (2022)] that the OPE coefficients can be computed from overlaps of low-energy
wave functions of the spin chain. In this paper, we establish that all conformal data including central charge,
conformal dimensions, and OPE coefficients are encoded in the wave-function overlaps, with universal finite-
size corrections that depend on the operator content of the cyclic orbifold CFT. Thus this method allows us to
numerically compute all the conformal data based solely on the low-energy eigenstates. The predictions are
verified in the Ising and XXZ model. As an application, we study the recently proposed Haagerup model built
from the Haagerup fusion category. We find that the CFT has central charge c ≈  2.1 and the lowest spin-1
operator in the twisted sector has scaling dimension 1 <  1 J  6  1.4.
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I. INTRODUCTION

Universality is one of the most prominent features of phase
transitions [1]. Near a continuous phase transition, physics at
low energies is determined by the universal data. In 1+1
dimensions, a continuous phase transition is usually described
by a conformal field theory (CFT) [2]. A CFT is completely
determined by the conformal data, which consists of a set of
primary operators φα with scaling dimensions 1 α  and con-
formal spins sα , the operator product expansion coefficients
Cαβγ , and the central charge c [3,4].

Given a quantum critical spin chain, it is both important
and challenging to compute the universal data. One approach,
initiated by Cardy, Affleck, and others in the 80s [5–7], is
based on the operator-state correspondence. In this approach,
one starts with the low-energy eigenstate |φαi of the critical
quantum spin chain with periodic boundary conditions (PBC).
Once the Hamiltonian is properly normalized, the scaling di-
mensions 1 α  and conformal spins sα are given by the energies
Eα and momenta pα of the states. In order to compute the
OPE coefficients, one has to first identify lattice operators
that correspond to CFT primary operators [8,9], which is in
general hard to do without prior knowledge of the CFT.

To overcome this difficulty more recently, it has been
proposed in Refs. [10,11] that the OPE coefficients can be
numerically extracted with the eigenstates alone. The key is to
start with three normalized eigenstates |φαi, |φβ i, |φγ i  of the
critical quantum spin chain with PBC and sizes N1, N2, and
N3 =  N1 +  N2, respectively. It is then shown that the wave-
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function overlap

Aαβγ =  hφγ |φαφβ i (1)

is related to the OPE coefficient Cαβγ . This provides a nu-
merically feasible way to extract the OPE coefficients by
computing the wave-function overlaps. In passing, we note
that wave-function overlaps of this type have also been investi-
gated in integrable models [12,13]. Our focus in this paper will
be generic lattice quantum many-body systems at criticality
without relying on integrability.

However, two important problems remain unsolved in
Ref. [11]. Firstly, the paper only considered the case where
N1 =  N2. It remains a question if OPE coefficients can still
be extracted when the sizes are not equal. Secondly and more
importantly, the relation between wave-function overlap Aαβγ
and the OPE coefficient Cαβγ is only expected to hold in the
thermodynamic limit. At finite sizes, the finite-size correc-
tions to Aαβγ may be large. Unlike the finite-size corrections
to the energies Eα , whose exponents are determined by the
scaling dimensions of irrelevant operators of the CFT through
standard conformal perturbation theory [14], an understand-
ing of finite-size corrections to Aαβγ is still missing. This
makes it hard to extrapolate the finite-size data to the ther-
modynamic limit.

In this paper, we solve these two problems. First, using a
generalized conformal map from three-sided cylinder to the
complex plane, which appeared in the string field theory liter-
ature [15–17], we establish a relation between wave-function
overlaps Aαβγ and OPE coefficients Cαβγ for general sizes.
Second, we show that the exponents in the finite-size cor-
rection to Aαβγ are universal by mapping the wave-function
overlaps to three-point correlation functions of the cyclic
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orbifold of the original CFT. The exponents are determined
by the operator content and fusion rules of the cyclic orbifold,
which are in turn determined by the original CFT. The result
also implies similar universal finite-size corrections in Renyi
entropies of CFT, as observed in Ref. [18]. As a benchmark,
we examine the finite-size corrections to Aαβγ for the Ising
and XXZ spin chain. All numerical data agrees with the theo-
retical predictions in high precision.

Our result enables us to compute the conformal data
from Aαβγ in a systematic way, with a proper estimation of
finite-size corrections. For example, when N1 =  N2 =  N , the
overlap hφγ |11i scales as

A11γ  =  O
¡
N − 8 −  2 

¢
, (2)

where |1i is the ground state. The exponent gives the central
charge and scaling dimensions without proper normalization
of the lattice Hamiltonian. Another example is that if the CFT
has a spin-1 conserved current J and its conjugate J�, then

AJJ�1 =  
1 

+  O(N −2 ). (3)
1 1 1

As an application, we compute the overlaps in a recently pro-
posed Haagerup model [19,20], which is conjectured to have c
=  2 and a spin-1 current J . Our numerical result, however,
indicates that the CFT has c ≈  2.1 and that the proposed
operator J cannot be a conserved current that saturates the
unitarity bound 1 J  >  1. Rather, our numerical result supports
that the operator is a spin-1 primary operator close to the
unitarity bound, with an upper bound of the scaling dimension
1 J  6  1.4.

Our paper is both of interest from numerical and theoretical
perspectives. Numerically, we provide a simple method to
compute the conformal data based solely on the low-energy
wave functions. Compared with the prior work, our method
does not rely on input such as identification of lattice oper-
ators with CFT operators, symmetry of the model or correct
normalization of the Hamiltonian, which makes it practical to
explore a less-known CFT. Theoretically, we show that the
wave-function overlaps encode the information of the corre-
sponding cyclic orbifold CFT. It is therefore interesting to
investigate how to relate other orbifold CFT data with mea-
surable quantities in the original CFT model. Furthermore,
as noted in Ref. [11], the overlaps considered here can be
regarded as wave functions of a toy three-sided wormhole in
holography [21]. Thus it may be desirable to find a holo-
graphic interpretation of our results.

The rest of the paper is structured as follows. In Sec. II
we review the operator-state correspondence and derive the
relation between wave-function overlaps Aαβγ and the OPE
coefficients Cαβγ . In Sec. III we review the cyclic orbifold
CFT and relate its operator content to the exponents in the
universal finite-size corrections to Aαβγ . As a corollary, we
also derive finite-size corrections to the second Renyi entropy
of CFT. In Sec. IV we compute Aαβγ for the Ising and XXZ
model and verify that the finite-size corrections all match the
analytical predictions with good accuracy. In Sec. V we apply
our method to the Haagerup model and extract part of the
conformal data. Finally, we discuss possible applications and
extensions of the present paper.
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II. OPERATOR FUSION FROM WAVE-FUNCTION
OVERLAPS

In this section we derive the relation between wave-
function overlaps and OPE coefficients of the CFT. We first
represent the wave-function overlaps as path integral on a
three-sided cylinder. Then we use a conformal transformation
to map the path integral to a three-point correlation func-
tion on the complex plane. Our derivation generalizes that of
Ref. [11] in that we do not restrict two sides of the cylinder to
have the same size.

A. CFT on a cylinder

Consider a CFT on a Euclidean cylinder with circumfer-
ence L. The compact dimension represents the space with
coordinate x � [0, L), and the noncompact dimension rep-
resents the imaginary time with coordinate τ � (−∞, ∞). It
is convenient to use the complex coordinates, denoted as z =
τ +  ix and z̄ =  τ −  ix. The Hilbert space is supported on the
equal-time slices. A CFT is composed of a set of local
scaling operators that are covariant under global rescaling of
the spacetime, where the eigenvalue is the scaling dimension.
The scaling operators are organized into conformal towers.
For each tower, there is a primary operator φα with the lowest
scaling dimension 1α ,  and other descendant operators (later
abbreviated as des.) with scaling dimensions that differ 1 α  by
integers.

A crucial property of the CFT is the operator-state
correspondence, which states that each scaling operator cor-
responds to a state on the cylinder. The energies of the states
are related to the scaling dimensions by

µ ¶
Eα =  

L
1 α  −  

12 
, (4)

where c is the central charge of the CFT. For a unitary CFT, the
ground state |1i corresponds to the identity operator 1 with
scaling dimension 1 1  =  0. Other states can be created by
acting with the scaling operator on the ground state at infinity,

|φαi =  φα (−∞)|1i. (5)

hφα| =  h1|φ�(+∞), (6)

where

φα (±∞) ≡  
µ

2π 
¶−1 α  

τ 
lim e± 2π  1α τ  φα (τ , 0), (7)

is a shorthand notation and φ� is the conjugation of φα . In
many cases the primary operator is self-conjugate and we will
not distinguish the two. The states form an orthonormal basis,

hφα|φβi =  δαβ . (8)

Given three primary operators φα , φβ , φγ , the three-point
correlation function is determined by the operator product
expansion (OPE), where the only independent coefficient is
given by

Cαβγ =  
µ

2π 
¶−1 α  

hφγ |φα(0)|φβ i. (9)
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literature [15,16], the conformal map is defined implicitly by

z +  λ =  
2π 

[L1 log(w −  w1)

+  L2 log(w −  w2) −  L3 log(w −  w3)], (14)

FIG. 1. The path integral for the wave-function overlap Aαβγ =
hφ3|φ1φ2 i. The geometry is a three-sided cylinder 6  with circumfer-
ence L1 +  L2 =  L3.

Other correlation functions, including those of descendant
operators, are completely determined by the OPE coefficients
of primary operators. If Cαβγ =  0, there is a fusion channel φα
×  φβ →  φγ , and we denote it by Nα ,β ,γ =  0. Otherwise, the
fusion channel is said to be forbidden, and Nα ,β ,γ =  0. In all
cases considered in this paper, Nα ,β ,γ is either 0 or 1,
depending on whether the fusion channel is forbidden or
allowed.

B. Path integral for wave-function overlaps

Let us consider three cylinders with circumference L1, L2,
and L3 with L1 +  L2 =  L3. On each cylinder a primary op-
erator is inserted at infinity to create a state. Then the
wave-function overlaps can be represented by a path integral
on the three-sided cylinder 6  with three insertions,

Aαβγ = φ3 ¯φ1φ2
®

=  D8 φ1 (−∞)φ2 (−∞)φ3�(+∞)e−SCFT [8] , (10)
6

where D 8  is the functional measure and SCFT is the action of
the CFT,

Z
SCFT[8] =  dτdx LCFT [8] , (11)

6

where LCFT [8] is the Lagrangian density. An illustration of
the three-sided cylinder is shown in Fig. 1. The partition
function is the path integral with no insertions, thus

Z
D8 e−SCFT [8] =  h13|1112i. (12)

6

Taking the ratio gives
 

3
¯ 

1     2
®

h13|1112i 
=  φ1 (−∞)φ2 (−∞)φ3�(+∞) 6 . (13)

Note that the three cylinders meet at z0 =  iL1 on the τ =  0
time slice.

Next, we use a conformal transformation w(z) to map 6
to the complex plane C .  Inspired by the string field theory

where w1, w2, and w3 are arbitrary complex numbers and λ
depends on the w’s. The role of λ will be evident shortly. It
is clear that the conformal transformation maps the three
infinity points to w1, w2, and w3, respectively. One exam-ple
considered in Ref. [11] is when L3 =  2L1 =  2L2 =  L, w1 =
i, w2 =  −i , w3 =  0, and λ =  0, where the conformal
transformation simplifies to an explicit form

w =  √
e4π z/L

 
−

 
1

. (15)

There is a second-order algebraic branch point at z0 =  0
where the three cylinders meet. This is illustrated in Fig. 2(a).
For general choices of parameters, the conformal transforma-
tion w(z) is hard to express explicitly. However, the conformal
transformation still possesses a second-order algebraic branch
point, which can be shifted to z0 =  0 by tuning λ. Let w(z0) =
w0, then the branch-point condition demands that

dw
(w0) =  0. (16)

Solving the equation gives w0. Substituting w0 back to
w(z0) =  w0 then fixes λ. For example, if we choose L2 =
2L1 =  2L/3 and w1 =  i, w2 =  −i , w3 =  0, then w0 =  3i and
λ =  (L log(32/27))/(6π ). The conformal transformation then
becomes

32 
· e

6πz 
=  

(w −  i)(w +  i)2 

, (17)

which is illustrated in Fig. 2(b).
Using conformal transformation of primary operators, the

correlation function on 6  transforms into a three-point corre-
lation function on the complex plane C ,

φ1 (−∞)φ2 (−∞)φ3�(+∞)
®

6

=  |Ji|−1i φ1 (w1)φ2 (w2)φ3�(w3) C , (18)
i

where

Ji =  e± 2π  λ dz 
(wi ) (19)

is the conformal factor. The prefactor e± 2π  λ comes from the
definition Eq. (7), where the plus sign is taken for φ3 and the
minus sign is taken for φ1 and φ2 . The three-point correlation
function on the complex plane has the standard form

φ1(w1)φ2 (w2)φ3�(w3)
®

C =  Cαβγ 
Y

| w i  −  wj|−di j , (20)
i< j

where d12 =  1 α  +  1 β  −  1 γ  , and others follow from permu-
tation symmetry.
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FIG. 2. Illustration of the conformal transformations that map three-sided cylinder to the complex plane. (a) Equation (15) for the case of
L1 =  L2 and (b) Eq. (17), for the case of L2 =  2L1. Colored lines represent equal time slices with equal real part of z. Darker color corresponds
to larger τ . Red lines correspond to equal time slices on cylinders 1 and 2, and the blue lines correspond to equal time slices on cylinder 3. For
better illustration purposes we show both w and 1/w for the two conformal transformations.

Finally, combining Eqs. (18), (20), and the expression for
λ, we obtain

φ3
¯
φ1φ2

® �µ
L3 

¶ L

3 
µ

L3 
¶ L

3 

�− L

1 
1α −

L

2  
1 β + 1 γ

h13|1112i              L1 L2
αβγ

(21)

The result is independent of the parameters w1, w2, and w3, as
expected. The special case in Ref. [11] corresponds to L3 =  2L1

=  2L2, where the expression simplifies to
 

3
¯ 

1     2
®

− 2 1 α − 2 1 β + 1 γ

h13|1112i

On a finite lattice, Eqs. (21) and (22) are satisfied up to
finite-size corrections. Physically, the finite-size corrections
come from the singular point where the three cylinders meet.
In order to define the geometry, one has to put a UV cutoff ²
around the singular point, analogous to the UV cutoff in the
calculation of entanglement entropy in CFT [22–25]. On the
lattice, the UV cutoff ²  is inversely proportional to the number
of spins N . So far the conformal transformation works in the
limit of ²  →  0. Thus we expect that Eqs. (21) and (22) strictly
hold in the thermodynamic limit N →  ∞. In what follows, we
focus on the special case with L1 =  L2 and study the finite-size
corrections to Eq. (22). To this end, it is useful to switch from

a path integral of a CFT on 6  to an equivalent viewpoint, the
Z2 orbifold of the CFT defined on a cylinder.

III. UNIVERSAL FINITE-SIZE CORRECTIONS

In this section we consider finite-size correction to
Eq. (22). Specifically, we consider the normalized wave-
function overlap

 
3

¯ 
1     2

®

Aαβγ ≡  
h13|1112i

(23)

and its finite-size corrections

Aαβγ =  A(0)
γ +  

X  
˜(p)

γ N
−pαβγ  , (24)

pαβγ > 0

where

˜
αβγ =  2 −2 1 α −2 1 β + 1 γ  Cαβγ . (25)

We show that pαβγ only take on specific values determined by
the scaling dimensions and fusion rules of the cyclic orbifold
of the original CFT. They are given explicitly in Eq. (51).

When a CFT possesses a global symmetry, one can define
an orbifold CFT by gauging the symmetry. The orbifold CFT
has been extensively studied in string theory [26–33], and in
this paper, we shall focus on the cyclic orbifold where the
cyclic permutation symmetry ZN is of interest [34,35]. Cyclic
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orbifold has played an important role in the study of entangle-
ment in quantum field theories. It is defined by gauging the
cyclic permutation group ZN of N copies of the original CFT.
In this paper we focus on N =  2, but generalizations to larger N
is straightforward.

In the following, we first review the definition and the
operator content of the cyclic orbifold. We then map the wave-
function overlaps to the OPEs of the cyclic orbifold and derive
the universal finite-size corrections. Finally, we remark on the
implication of our construction on the finite-size corrections
to entanglement in CFT.

A. Cyclic orbifold on the cylinder

Given any CFT with Lagrangian density LCFT [8], the
cyclic orbifold is defined as follows [34,35]. We start with two
copies of the original CFT known as the mother CFT, whose
Lagrangian density is given by

Lmother [81 , 82 ] =  LCFT [81 ] +  LCFT [82 ]. (26)

The mother CFT has a Z2 global symmetry that swaps the two
copies. Denote the generator of the Z2 symmetry as σ , then

σ 8 i  =  8 i + 1 , (27)

where the subscript is understood to have periodicity 2. The
cyclic orbifold theory is obtained by promoting the global
symmetry to a gauge symmetry. The meaning of gauging a
symmetry is twofold. Firstly, we enlarge the Hilbert space by
allowing twisted boundary conditions,

8 i (τ , x +  L) =  σ 8i (τ , x ). (28)

This plays the role of gauge fields in usual gauge theory such
as electrodynamics. Secondly, we project the Hilbert space
onto subspace that is invariant under σ [36]. This amounts to
enforcing gauge constraints in usual gauge theory.

To see the operator content of the cyclic orbifold, first note
that there are two sectors of operators, the untwisted sector
and the twisted sector. The untwisted sector contains eigen-
states of the mother CFT with periodic boundary conditions.
The twisted sector contains eigenstates of the mother CFT
with twisted boundary conditions. Second, only the operators
that are invariant under the σ swapping is kept. This is essen-
tial to obtain a consistent CFT because any operator that is not
invariant under σ is nonlocal with respect to the twist sector. In
the following subsection, we review the operator content of
cyclic orbifold in more detail.

B. Operator content of cyclic orbifold

As has been well studied, the operator content of the cyclic
orbifold is completely determined by the original CFT. The
operator content is composed of the untwisted sector and the
twisted sector. In the untwisted sector, the states are obtained
from the tensor product theory. For α =  β, the symmet-ric
states |φα,ii|φβ, j i +  |φβ, j i|φα,ii and antisymmetric states
|φα,ii|φβ, j i −  |φβ, j i|φα,ii in the Hilbert space are isomorphic.
The labels i, j in the above expressions are the labels for
descendants. Due to the isomorphism, we only keep one of
the copies, say, the symmetric states. We denote the orbifold
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primary operator corresponds to this copy as

φ(α,β ), (29)

with scaling dimension

1 (α ,β ) =  1 α  +  1β . (30)

For α =  β, the above isomorphism fails because when
α =  β , i =  j, the antisymmetric state does not exist. For this
reason, both the copies should be kept, and we denote the two
orbifold primary operators as

φ(α,α)s , φ(α,α)a , (31)

where s stands for symmetric and a stands for antisymmetric.
Their scaling dimensions are

1(α ,α )s  =  21α ,

2 1  +  2, if φ has level-1 des. (32)
(α,α )a 21α  +  4, otherwise,

where “des.” stands for descendant. Note that φ(α,α) has larger
scaling dimension than φ(α,α) , because antisymmetrization
of the state with lowest L0 eigenvalue |φαi|φαi simply van-
ishes. Hence, a primary state |φαi must be combined with its
descendant and then antisymmetrized. As far as the chiral
algebra involves only conformal symmetry, only 1 operator
does not have a level-1 descendant. (Namely, |1i is the con-
formal vacuum.) This is no longer the case if the Kac-Moody
algebra is taken into account, where the 1 operator does have
level-1 descendants, which are current operators. The identity
operator in the orbifold theory is φ(1,1)s , which has 1  =  0.

Summarizing, if the original theory has n primary opera-
tors, then the untwisted sector of the orbifold theory has n(n −
1)/2 +  2n =  n(n +  3)/2 primary operators. In Appendix A
we list the characters of each orbifold primary.

In the twisted sector, the operator with the lowest scaling
dimension is denoted as τ ˆ , whose scaling dimension is
completely determined by the central charge,

1 ( 1 ,0 )  =  
c

. (33)

This is known as the branch-point twist operator in the lit-
erature [24]. However, there are other primary operators in
the twisted sector, which play an important role in this paper.
One may fuse τ ˆ with each primary operator φ(α,1) in the
untwisted sector to generate other twist operators,

τ(1,0) ×  φ(α,1) →  τ(α,0) +  τ(α,1), α =  1. (34)

For each α, there are two primary operators in the twisted
sector [37],

τ(α,0), τ(α,1), (35)

with scaling dimensions

1 (α ,0 ) =  
8 

+  
2 

,

c +  1 α  +  1, if φα has level-1 des.
(α,1)

8 +  2 +  3, otherwise.

Summarizing, if the original theory has n primary operators,
then the orbifold theory has 2n primary operators in the
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twisted sector. We would like to note that the fusion of twist
operator and CFT operators has been useful for studying a
wide range of properties of CFT, including entanglement in
nonunitary CFTs [38,39], symmetry-resolved entanglement
[40], and behavior resembling that of the c theorem [41].

Finally, we need the fusion rules of the orbifold theory. It is
intuitively clear that an operator in the untwisted sector fusing
with an operator in the twisted sector only gives operators in
the twisted sector. Furthermore, it has been shown [34] that the
fusion rules are completely determined by the modular S  and T
matrices of the original CFT. For an introduction to modular
matrices and details of the derivation, see Appendix A. We
will need the following two fusion coefficients,

X  SαηSβηSγ ηSηδ
(α,β ),(γ ,ψ ),(δ,χ̂ )

η 1η

and

(37)

1 X  S 2
ηSγ ηS�

(α,α) ,(γ ,ψ ),(δ,χ̂ )
η 1η

1 iπ (ψ +χ ) 
X  SαηPγ ηPη ,δ

2 η S1 ,η
(38)

where P  =  T 1/2 ST 2 S T 1/2. In particular, Eq. (37) can be
simplified to

N(α ,β ),(γ ,ψ ),(δ,χ̂ ) =  
X

Nα ,β , s N γ , δ , s � (39)
s

if all primary fields are self-conjugate.

C. Universal finite-size corrections in wave-function overlaps

Now we relate the wave-function overlaps to path integral
of the cyclic orbifold. Denote the field on 6  as

81 (τ , x ) =  8(τ , x ), 0 6  x <  L1, (40)

82 (τ , x ) =  8(τ , x ), L1 6  x <  L3. (41)

It is then clear [as illustrated in Fig. 3(b)] that the fields are
subject to the boundary conditions

FIG. 3. Mapping the path integral for the wave-function overlap
Aαβγ to the cyclic orbifold path integral. (a) The three-sided cylinder is
conformally equivalent to the double-sheeted Riemann sphere with
branch cut on [1,∞). The conformal transformation is achieved by
z0 =  e2πz/L1 . (b) The corresponding path integral of the cyclic
orbifold for Aαβγ . The insertions of branch-point twist operators at τ
=  0 and τ =  +∞  correspond to the branch cut in (a).

also vanish due to symmetry of the lattice model, as we later
examine specific models.

Using the operator-state correspondence, Eqs. (5) and (6),
we obtain

8 i (τ , x +  L1) =  8i (τ , x ), τ <  0, (42) h13|1112i =  hτ(1,0)|τ (0)|φ(1,1)s iorb , (46)

8 i (τ , x +  L1) =  σ 8i (τ , x ), τ >  0, (43)

where σ 8 i  ≡  8 i + 1  and the subscript is understood to have
periodicity 2. Now we see the path integral on 6  is exactly
that of the cyclic orbifold on a cylinder with circumference L1,
with two twist operators τ inserting at τ =  0 and τ =  +∞ ,

h13|1112i =  h1|τ (+∞)τ (0)|1iorb, (44)

where the twist operator changes the boundary condition. The
twist operator may contain all operators in the twisted sector,
and it can be expanded as

τ =  
X

a (α ,ψ ) ² 1 ( α , ψ )  τ(α,ψ ) +  des. (45)
α,ψ

where we have introduced the UV cutoff ² , and a ˆ     is
presumably nonuniversal constant that depends on specific
lattice realizations of the CFT. Some of the coefficients may

where the bra is fixed to hτ ˆ | because other states in the
twisted sector die off under the infinite imaginary time evolu-
tion. Using Eq. (9) and the fact that C1φφ =  1 for any primary
operator φ (we are using φ =  τ(1,0) here), we see

A1 1 1  =  h13|1112i =  a(1,0)N
−c/8 , (47)

where N =  L1/(2π ² ) is the system size of the lattice model,
and c/8 is the scaling dimension of the leading twist operator τ

ˆ . This is remarkable, since it gives a way to compute the
central charge of the CFT from wave-function overlaps.

Now we consider the general wave-function overlap
hφ3|φ1φ2 i. The ket state can be created by inserting φ(α,β )

at τ =  −∞ .  Hereafter we take φ(α,α ) to mean φ(α,α) . The
bra state can be created by inserting φ at τ =  +∞  [42].
Recall that at τ =  +∞  there is already a twist operator τ ˆ

insertion, so the two operators fuse to give τ ˆ ×  φ         →
τ(γ�,0) +  τ(γ�,1), and we only keep τ(γ�,0)     at τ →  +∞ .
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Therefore, we obtain

φ3¯
φ1φ2® 

=  hτ(γ ,0)

|

τ (
0)|φ(α,β)

i

orb. (48)

Using Eq. (45) and (9) we obtain the expansion

φ3¯φ1φ2® 
=  

X
a ( δ , χ̂  )N

−1(δ,χ̂ )C(α ,β ),(δ,χ̂ ),(γ ,0) +  · · · ,      (49)
δ,χ

The Renyi entropies are defined by

N

SN =  
1 −  N 

log 
(Trρ)N 

. (55)

Specializing to N =  2, the purity can be computed as the path
integral of the cyclic orbifold on the complex plane with two
twist operators insertions,

where · · · stands for contributions from descendant operators.
The OPE coefficients can be computed from the OPEs in the
original CFT following Ref. [38]. In particular,

C(α,β ),(1,0),(γ ,0) =  2 −2 1 α −2 1 β + 1 γ  Cαβγ , (50)

which recovers Eq. (22) in the thermodynamic limit. Fur-
thermore, we obtain the finite-size corrections of the form
Eq. (24), where the exponents are

pαβγ � 
©

1(δ,χ̂ ) −  1(1,0)

¯
N(α ,β ),(δ,χ̂ ),(γ ,0) =  0

ª
. (51)

This is the central result of our paper. We see that the ex-
ponents inside the finite-size corrections are universal, as
claimed. Later we will consider various CFTs and their lattice
realizations, where we numerically extract the leading expo-
nent pαβγ in the finite-size corrections. To compare it with
Eq. (51), it is useful to use the crossing symmetry,

N(α ,β ),(δ,χ̂ ),(γ ,0) =  N(α ,β ),(γ�,0),(δ�,χ̂ ). (52)

The leading 1 (δ , χ̂  ) in the set of Eq. (51) is the lowest scaling
dimension of the twist operators (except τ ˆ ) in the OPE of
φ(α,β ) and τ(γ�,0).

One simple example is hφ3|1112i when φγ =  1. The fu-
sion channel is forbidden, meaning that A(0)     =  0. Since the
fusion of identity operator with τ � ˆ     only gives τ � ˆ , the
leading exponent in finite-size correction is

p11γ  =  1 (γ �,0) −  1 (1 ,0 )  =  
1 γ  . (53)

This provides another consistency check of scaling dimen-
sions of primary operators.

We stress that the result Eq. (51) only applies to wave-
function overlaps with N1 =  N2. For N1 =  N2, the exponents
pαβγ in finite-size corrections may be different. Nevertheless,
the exponents are still the difference between the scaling di-
mensions of an operator τ(δ,χ̂ ) in the twisted sector and τ(1,0),
while the operator τ(δ,χ̂ ) does not necessarily satisfy the fusion
constraint in Eq. (51). This is examined and further explored
in Appendix D.

D. Finite-size corrections to Renyi entropy of CFT

Cyclic orbifold has also played an important role in com-
puting the entanglement of CFT. The twist operators as well as
its fused version provide valuable tools for computing various
entanglement measures [22–25,43,44]. We expect that the sec-
ond Renyi entropy of CFT has similar finite-size corrections
as the wave-function overlaps, since the twist operator inser-
tion is essentially of the same nature as Eq. (45). Consider, for
example, the ground state of a CFT on the complex plane and
the reduced density matrix on [0, l],

ρ =  TrR−[0,l ] |1ih1|. (54)

2

(Trρ)2 
=  h1|τ (0)τ (l)|1iorb. (56)

Using Eq. (45), the correlation function can be expanded as

h1|τ (0)τ (l)|1iorb =  
X  

a(α ,χ̂ ) l
−21 (α , χ̂ ) +  · · · , (57)

(α ,χ̂ )

where · · · contains contributions from descendant operators.
In the limit where l À  ² , the second Renyi entropy also has
universal finite-size corrections

S2 =  
4 

log 
²  
−  2 log a(1,0)

+
X a(α,χ̂ ) l −2(1 (α , χ̂ ) −1 ( 1 , 0 ) ) , (58)

(α , χ̂ )=(1,0)     (1,0)

where the last term contains the universal finite-size correc-
tions, which has been observed in Ref. [18]. As a side remark,
one may consider similar finite-size corrections to other Renyi
entropies on the same footing, and then analytically con-
tinue the result to the case of entanglement entropy (N =  1).
Finally, we note that only the twist operators τ     ̂  have been
considered in previous work that discusses entanglement of
CFT. As we will show numerically, in the context of wave-
function overlaps the other twist operator τ     ̂  also plays an
important role. It remains to be explored whether operators
such as τ     ̂  can be observed in the finite-size corrections to
the entanglement entropy of CFT.

IV. APPLICATIONS TO ISING AND XXZ MODELS

In this section, we apply the above general method to two
specific lattice models: the Ising model and the XXZ model.
The Ising model is the lattice realization of the c =  1/2 Ising
CFT, which is a minimal model. The XXZ model is a lattice
realization of the c =  1 compactified boson theory at radius R,
which is a rational CFT at special radii. Both the Ising
model and the XXZ model at R =  2 can be mapped to a
free fermion problem. Thus we are able to obtain low-energy
eigenstates for up to thousands of spins using the covariance
matrix techniques [45].

We first review the operator content of each CFT and the
N =  2 cyclic orbifold, and then show how the orbifold fusion
rule determines the universal finite-size corrections in wave-
function overlaps. We then verify the leading exponent in
the finite-size corrections (24) numerically. All the exponents
agree with our analytical expression (51).

A. The Ising model

In this subsection we study the ferromagnetic Ising model.
For later discussions, it will also be useful to study the an-
tiferromagnetic Ising model, which is described by the same
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CFT. Since the computations are largely identical, the result
for the antiferromagnetic case is shown in Appendix B. The
ferromagnetic Ising spin chain Hamiltonian at the critical
point is

PHYSICAL REVIEW B 107, 155124 (2023)

TABLE I. Correspondence between the primary fields in the
Ising cyclic Z2 orbifold (first column) and the free boson Z2 orbifold
(third column) at R =  4. T =  e2π i(hi− 24 ) is the ith diagonal element of
the modular T matrix.

H =  −
X

X i X i + 1  −  
X

Z i , (59)
Untwisted

i=1 i=1

where X , Z are Pauli matrices. There are three primary oper-
ators in the Ising CFT: 1, σ , ² , with scaling dimension 1  =  0,
1 , 1, respectively.

The nontrivial OPE coefficients in the Ising CFT are

C1 1 1  =  1, C² ² 1 =  1, Cσ σ 1 =  1, Cσσ ² =  2 , (60)

and the modular matrices are (in the basis 1, σ , ² )
� �

e− 24 0 0
T =  � 0 e

iπ
0 �,

0         0       eiπ 23

� �
1          1             2

S  = � 1 1 −  2�. (61)
2     −  2         0

In the following, we consider the cyclic orbifold theory of the
Ising CFT. It is straightforward to compute scaling dimensions
of all primary operators and the fusion rules using general
framework presented in Sec. III B. For the Ising CFT, how-
ever, it is possible to map the cyclic orbifold to a more familiar
CFT, that is, a compactified boson Z2 orbifold at radius R =  4.
The U (1) charge conservation symmetry in the latter CFT
makes it more intuitive to understand the fusion rules. We
have checked that the fusion rules given by Eqs. (37) and (38)
coincide with the those of the free boson orbifold.

primary
(Ising orb.)

(1, σ )
(1, ² )
(σ , ² )
(1, 1)s

(1, 1)a

(σ , σ )s

(σ , σ )a

(² , ² )s

(² , ² )a

Twisted

primary
(Ising orb.)

τ(1,0)

τ(1,1)

τ(σ ,0)

τ(σ ,1)

τ(²,0)

τ(²,1)

1
1
8

1
9
8

0

4
1
4

9
4

2

4

1

1
16

49
16

1
8

9
8

9
16

25
16

primary
(boson orb.)

σ (1)

φ4

τ (1)

1

8 (1 )

φ2

φ6

2

8 (2 )

primary
(boson orb.)

φ1

φ7

σ (2)

τ (2)

φ3

φ5

χ

χ1 (τ )χσ  (τ )
χ1 (τ )χ² (τ )
χσ  (τ )χ² (τ )

2 χ1 (τ ) +  2 χ1 (2τ )

2 χ
2 (τ ) −  2 χ1 (2τ )

2 χ
2 (τ ) +  2 χσ  (2τ )

2 χ
2 (τ ) −  2 χσ  (2τ )

2 χ ²  (τ ) +  2 χ² (2τ ) 2

χ 2 (τ ) −  2 χ² (2τ )

χ

2 [χ1 ( 2 ) +  T1 
2 χ1 ( 2  +  2 )]

2 [χ1 ( 2 ) −  T1 
2 χ1 ( 2  +  2 )]

2 [χσ  ( 2 ) +  T −  2 χσ  ( 2 +  2 )]

2 [χσ  ( 2 ) −  T −  2 χσ  ( 2 +  2 )]

2 [χ² ( 2 ) +  T −  2 χ² ( 2 +  2 )] 2

[χ² ( 2 ) −  T −  2 χ² ( 2 +  2 )]

1. Orbifold operator content

Following the general discussion in Sec. III B, there exist
15 primary operators in the cyclic orbifold CFT, nine in the
untwisted sector and six in the twisted sector. The 15 primary
operators are listed in the first column of Table I, along with
their characters χ  in the last column.

(a) Untwisted sector. The three primaries for α =  β are

(1, σ ), (1, ² ), (σ , ² ), (62)

with scaling dimensions 1  =  1 , 1, 9 . Additionally, there are
six primary operators,

(1, 1)s , (σ , σ )s , (² , ² )s , (63)

with 1  =  0, 1 , 2 and

(1, 1)a , (σ , σ )a , (² , ² )a , (64)

with 1  =  4, 9 , 4.
(b) Twisted sector. In the twisted sector, twist operators

τ(α,0) have scaling dimension 1  =  8 +  2 , which gives 1  =  16 ,

8 , 16 . τ(α,1) have conformal dimension 1  =  8 +  2 +  1, except
for τ ˆ , which has 1  = +  i +  3. This stems from
the fact that 1 corresponds to conformal vacuum |0i and
L−1|0i =  0. Thus, we have 1  =  49 , 9 , 25 for the primary
operators τ(α,1).

2. Mapping to compactified boson orbifold

It has been noted in Ref. [35] that the scaling dimensions
of the Ising orbifold listed above are identical to those of the
compactified boson Z2 orbifold at radius R =  4. Indeed the
two theories are dual to each other. The free boson action is

S =  
4π

d2z∂ϕ∂ϕ. (65)

The compactified boson with radius R is obtained by identi-
fying ϕ ≡  ϕ +  2πnR, n � Z. It has a Z2 reflection symmetry: ϕ
→  −ϕ ,  and a U (1) symmetry ϕ →  ϕ +  α. After gauging the
Z2 reflection symmetry, we obtain the compactified boson
orbifold theory.

The compactified boson orbifold at radius R = 2k with
k � Z+  is a rational CFT with k +  7 extended primary fields,
which consists of the following five families [46]:

(1) φλ, λ =  1, 2, . . . , k −  1 with dimension 1 λ  =  2k .

(2) 8 (1 )  and 8(2 ) , with dimension 1  =  k     =  k .

(3) σ (1), σ (2) with dimension 1  =  1 , and τ (1), τ (2) with
dimension 1  =  9 .

(4) Identity operator 1 with dimension 0.
(5) Operator 2  with dimension 1  =  2.
When taking k =  8, i.e., at radius R =      2k =  4, the con-

formal dimensions of these 15 extended primaries match those
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of the 15 primaries in the cyclic Ising orbifold, as shown in
Table I. This correspondence of conformal dimensions was
first noticed in [35]. We took one step further and also verified
numerically that this correspondence holds at the level of the
characters χ  and the modular matrices T , S .

Mapping to the compactified boson orbifold at radius R =
4 is useful in the problem concerned, because the fusion
rule in the compactified boson orbifold is well understood,
which we will now exploit to derive the universal finite-size
corrections. For example, the U (1) charge conservation gives

[φλ] ×  [φμ] =  [φλ+μ ] +  [φλ−μ ], μ  =  λ, 2k −  λ, (66)

and

[2]  ×  [φi] =  [φi]. (67)

The latter corresponds to the fact that 2  is charge neutral.

3. Universal finite-size correction

Now we examine the universal finite-size corrections in
Eq. (24). As the Ising model has a Z 2  global symmetry, the
expansion Eq. (45) does not contain τ(σ ,χ̂ ) , χ  =  0, 1. We
further consider several examples.

As a first example, let us compute the universal finite-size
correction to the wave-function overlap Aσ ²σ for the following
allowed OPE channel:

σ ×  ²  →  σ. (68)

To find all the scaling terms in the wave-function overlap, we
would need to find all operators τ(α,χ̂ ) such that C ˆ

is nonzero. Using the crossing symmetry, we can compute
C(σ ,² ),(σ ,0),(α ,χ̂ ) equivalently. By mapping to compactified bo-
son orbifold, (σ , ² ) is mapped to τ (1) and τ(σ ,0) is mapped to
σ (2). The fusion rule reads

[τ (1)] ×  [σ (2)] =  [φ1] +  [φ3] +  [φ5] +  [φ7], (69)

which maps back to

[(σ , ² )] ×  [τ(σ ,0)] =  [τ(1,0)] +  [τ(²,0)] +  [τ(²,1)] +  [τ(1,1)].
(70)

The four resulting primaries on the right-hand side. have
scaling dimensions 1  =  1 ,  9 ,  25 , 49 , respectively, and the
scaling of the wave-function overlap is thus

Aσ ²σ ≈  a(1,0)C(σ ,² ),(1,0),(σ ,0)N
− 16

(71)
+  a(² ,0)C(σ ,² ),(²,0),(σ ,0)N 16 ,

where we only keep the leading and first subleading terms.
The leading term scales as N − 16 with power agrees with − c  .
This aligns with the fact that the wave-function overlap for an
allowed fusion process has a leading term that scales as N − 8  .
After dividing by A1 1 1  and subtracting the leading term, the
universal finite-size correction scales as N − 2  , namely, pσ ²σ =

−        =  . This is exactly what we get from numerics in
Fig. 4.

As a second example, let us study the channel

FIG. 4. Finite-size corrections of wave-function overlap in the
critical Ising model, for the four channels: σ ×  ²  →  σ , σ ×  σ →
² , ²  ×  ²  →  1 , 1 ×  ²  →  1  under discussion. The powers of leading
finite-size corrections are p =  1 ,  3 , 2, 1 , respectively, from the orb-
ifold CFT. In the numerical computation we choose the system size
N1 � [100, 500), and we see the discrepancy between the theory and
numerical value is less than 1%.

[τ ˆ ] →  [τ ˆ ] +  [τ ˆ ]. This shows τp can take τ ˆ     or
τ(²,1), and the difference of their scaling dimension predicts

pσσ ² =  25 −  1 =  3 .
Following the same reasoning, for the OPE channel

²  ×  ²  →  1, (73)

the corresponding orbifold fusion channel is [2]  ×  [φ1] →
[φ1], which translates into [(² , ² )s] ×  [τ ˆ ] →  [τ ˆ ]. This
indicates τp lies within the conformal tower of [τ ˆ ]. Indeed,
the leading exponent is controlled by a level-two descendant,
which gives p² ² 1 =  2.

Finally, we consider the following forbidden channel:

1 ×  ²  →  1. (74)

The fusion rule [φ4] ×  [φ1] =  [φ3] +  [φ5] is translated to
[(1, ² )] ×  [τ(1,0)] =  [τ(²,0)] +  [τ(²,1)], which predicts the lead-

ing term in this forbidden channel scales as N − 16 , i.e., p =
9 1 1

16 
We

6
show in Fig. 4 the numerically obtained finite-size

scaling F βγ defined by
 

3
¯ 

1     2
®

αβγ ≡  
h13|1112i 

−  Aαβγ

=  
Aαβγ −  2−2 1 α −2 1 β + 1 γ  Cαβγ , (75)

1 1 1

which agrees exactly with our prediction that for the leading
order,

σ ×  σ →  ² , (72) log αβγ =  −pαβγ  logN +  const. (76)

where we need to find nonzero C(σ ,σ ) ,τ ,τ        . The fusion
rule [φ2] ×  [φ3] →  [φ1] +  [φ5] is mapped to [(σ , σ )s] ×

For readers’ reference, the finite-size corrections for all fusion
channels are listed in Table II.
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TABLE II. Universal finite-size corrections to wave-function overlaps of the critical Ising model for all fusion channels. The wave-function
overlaps for 1 ×  1  →  σ and σ ×  σ →  σ are strictly zero due to the global Z2 symmetry in the Ising model.

Overlap

1 ×  1  →  ²

1 ×  ²  →  1

²  ×  ²  →  1  ²

×  ²  →  ²  1 ×

²  →  ²  1 ×  σ

→  σ σ ×  ²

→  σ σ ×  σ

→  1

σ ×  σ →  ²

Responsible operator τp

[τ(²,0)]

[τ(²,0)]

[τ(1,0)] des.

[τ(²,0)]

[τ(1,1)]

[τ(²,0)]

[τ(²,0)]

[τ(²,0)]

[τ(²,1)]

Responsible fusion channel

[(1, 1)s] ×  [τ(²,0)] →  [τ(²,0)]

[(1, ² )] ×  [τ(²,0)] →  [τ(1,0)]

[(², ² )s] ×  [τ(1,0)] →  [τ(1,0)]

[(², ² )s] ×  [τ(²,0)] →  [τ(²,0)]

[(1, ² )] ×  [τ(1,1)] →  [τ(²,0)]

[(1, σ )] ×  [τ(²,0)] →  [τ(σ ,0)]

[(σ , ² )] ×  [τ(²,0)] →  [τ(σ ,0)]

[(σ , σ )s] ×  [τ(²,0)] →  [τ(1,0)]

[(σ , σ )s] ×  [τ(²,1)] →  [τ(²,0)]

FS correction leading power p

1
2
1
2

2
1
2

3
1
2
1
2
1
2
3
2

B. The XXZ model

The XXZ model is a lattice realization of c =  1 compact-
ified boson with radius R. The free boson has a U (1) current J
=  i∂ϕ. In the spin basis, the Hamiltonian is

the partition function

2k−1

Z =
2

|2l ,k|2,
l =0

2 l , k  =  
X

q k ( n + 2 k  )
2 
. (81)

n

H =  −
X

( X i X i + 1  + Y Y + 1  +  1Zi Zi+1 ), (77)
i=1

where the radius R is related to 1  via 1  =  cos(2π/R2). At
1  =  0 (namely, k =  2, R = 2k =  2), the spin Hamilto-
nian can be Jordan-Wigner transformed into the free fermion
Hamiltonian

N

H =  −2 (c†ci+1 +  ci+1ci ). (78)
i=1

In the following, we will focus on this free fermion point for
its numerical efficiency.

1. Operator content

(a) Original theory. At radius R = 2k, the valid chiral
and antichiral momentum modes in the compactified boson
theory are

p =  
R 

+  
nR 

=  
m 

+  n,

p̄ =  
R 

−  
2 

=  
2 
−  n, m, n � Z, (79)

where m is the quantized momentum and n is the quantized
winding. The operators can be labeled by O(m,n) . The partition
function is obtained after summing over contribution from
valid momentum modes,

Z =  |
η
| 2

 
m,n 

q
1 ( m + n R  )2 

q̄
1 ( m − n R  )2 

, (80)

where η(τ ) is the Dedekind eta function. Equivalently, for
integer k, this U (1) chiral algebra can be viewed as being ex-
tended by two vertex operators {ei 2kϕ , e−i 

2
kϕ̄ }, which allows

us to interpret it as u(1)k rational CFT and block diagonalize

From the block-diagonal partition function, we read off 2k
extended primaries. For the u(1)2 rational CFT at k =  2,
there are 2k =  4 extended primaries with scaling dimension
1 l  =  l2     

=  l2 
, l =  0, 1, 2, 3. The first several modes in each

extended primaries are

(m, n)
1 (0, 0), (0, 2), (2, 1), (4, 0)

O1 (1, 0), (−3, 0) (82)
O2 (2, 0), (−2, 0), (0, 1)
O3 (3, 0), (−1, 0), (1, 1)

Namely, O(1,0) , O(−3,0)     belong to the conformal family
O1 , etc.

The modular matrix T can be obtained directly from the
scaling dimension: Tll =  exp (2π i(1l /2 −  c/24)), and the
modular matrix S  is

Sl ,l 0 =  √ 2
k  

exp − iπ  
ll0      

. (83)

The original theory modular matrices allow us to compute the
modular matrices in the orbifolded theory.

For later discussions, we focus on the wave-function over-
lap associated with current operator J =  i∂ϕ. Specifically, we
consider the process

J ×  J →  1. (84)

In the U (1) Kac-Moody algebra, J is the Kac-Moody descen-
dant of O(0,0) =  1 (while not being the Virasoro descendant).

(b) Orbifold theory. Following the general procedure in
Sec. III B, the untwisted sector has 14 primary operators,
including operators like (1, O1 ), (O1 , O2 ), (O1 , O1 )s/a , etc.;
and there are eight primaries in the twisted sector,

τ(1,0) τ(1,1) τ(O1 ,0) τ(O1 ,1)
1                    9                    1                    5
8 8 4 4

(85)
(O2 ,0)          (O2 ,1)          (O3 ,0)          (O3 ,1)

5 21 5 13
8                    8 4                    4
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Note that the difference between 1  for τ ˆ     and τ ˆ     is
1 rather than 3 as in the Ising orbifold. This is because we are
considering the Kac-Moody algebra and J is a level-1
descendant of 1 with respected to the extended symmetry.

2. Universal finite-size correction

Since the XXZ model has a U (1) global symmetry (which
corresponds to m charge conservation in primary operators
O(m,n)), the expansion Eq. (45) does not contain τ (O ,χ̂ ) , i =
1, 2, 3, χ =  0, 1. As a first example, consider the OPE
channel

O(1,0) ×  O (−1 ,0) →  1. (86)

From Eq. (82), O(1,0) belongs to the conformal family O1 and
O (−1 ,0) belongs to the conformal family O3 . We thus need to
find τp such that [(O1 , O3 )] ×  [τp] →  [τ ˆ ] is valid in
the orbifold theory, namely, C(O , O  ),τ ,(1,0) is nonzero. Using
the crossing symmetry C(O1 ,O3 ),τ p ,(1,0) =  C(O1 ,O3 ),(1,0),τ � and
orbifold fusion rule

[(O1 , O3 )] ×  [τ(1,0)] =  [τ(1,0)] +  [τ(1,1)], (87)

we see τp can be either τ(1,0) or τ(1,1). The scaling dimension of
the leading term τ ˆ     gives the leading scaling 1  =  1 ,
which agrees with c/8. The difference between the scaling
dimensions of τ(1,0) and τ(1,1) gives the finite-size correction
with power p =  9 −  1 =  1.

We may also consider the channel involving current opera-
tor J , which belongs to the conformal family 1. Consider the
OPE channel

J ×  O(1,0) →  O(1,0) , (88)

we need to find nonzero C(1 ,O ),τ , ( O ,0), which—by crossing
symmetry—is, C(1,O1 ),(O3 ,0),τ � . The relevant orbifold fusion
rule is

[(1, O1 )] ×  [τ(O3 ,0)] =  [τ(1,0)] +  [τ(1,1)]. (89)

Again, this gives the finite-size correction with power p =  1
as the previous example.

In the third example, let us consider

J ×  J →  1, (90)

where we need to find nonzero C(1,1 ) ,τ ,(1,0) . There is only
one valid τp =  [τ(1,0)] from

[(1, 1)s] ×  [τ(1,0)] =  [τ(1,0)]. (91)

In this case, we observe p =  2, which means a level-2 descen-
dant in the expansion Eq. (45) is responsible. Similarly, the
process J ×  O(2,1) →  O(2,1) also has correction p =  2 using
the same orbifold fusion rule. We summarize the numerical
results for the above three channels in Fig. 5(a).

Moving away from the free fermion radius, we have to
resort to exact diagonalization or tensor network methods.
We have examined the case of R = 6 (namely, 1  =  1/2)
where the system size is chosen in the range N1 � [6, 24]. The
results of finite-size correction exponents for the above three
channels are shown in Fig. 5(b). We observe the fitting results
agree with analytical predictions, with the largest discrepancy

FIG. 5. Finite-size correction of wave-function overlap of the
XXZ model at (a) 1  =  0 and (b) 1  =  1/2, for the three channels
under discussion. At the free fermion point 1  =  0, the system size is
chosen in the range N1 � [100, 500). The discrepancy between the
theory and numerical value is less than 0.1%. At 1  =  1/2, we resort
to tensor network method and the system size is chosen in the range N1

� [6, 24]. Due to the relatively small system size, the largest
discrepancy is 5.1%.

being 5.1%. The discrepancy is relatively larger for the chan-
nel involving higher energy states, as what usually happens for
finite-size corrections in CFT; the state corresponding to J has
higher energy than the states corresponding to O(1,0) , O(−1,0) .
The numerical results at R = 6 demonstrate the applicabil-
ity of our method to interacting lattice models.

V. APPLICATIONS TO THE HAAGERUP MODEL

In the previous section, we have examined the universal
finite-size corrections in the Ising model and XXZ model.
We now move on to the Haagerup model, which is a re-
cently proposed [19,20] anyonic chain that is believed to be
described by a CFT with c � 2. The input data for the lattice
Hamiltonian is the H 3  fusion category. The fusion rule in this
category is noncommutative thus does not admit braiding. The
operator content of the Haagerup CFT is still obscure due to
strong finite-size corrections as only very small systems
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are numerically accessible. Due to its Z3 global symmetry,
one of the candidate theory is the Z3 orbifold of toroidal
compactified sigma model, with central charge c =  2. The
candidate has two current operators J and J� with scaling
dimension and conformal spin 1  =  s =  1. The holomorphic
nature of the current operators strongly constrain possible
fusion channels involving these operators, which enables us
to check it numerically.

In what follows, we use the wave-function overlaps to com-
pute central charge, conformal dimensions of certain primary
states. We present strong evidence that the lowest operator
with s =  1 is not a holomorphic field, thus ruling out the
possibility of this Z orbifold. Nevertheless, we will denote
the operators as J and J�. Our results give an upper bound of
the scaling dimension 1 J  6  1.4, and indicate that the central
charge is roughly c ≈  2.1. Our code for numerical calculation is
available in GitHub [47].

PHYSICAL REVIEW B 107, 155124 (2023)

The projector P projects the fusion ρ ×  ρ into channel ρ.
The above anyonic chain construction is standard, and can
be regarded as a generalization of the spin-1/2 Heisenberg
chain [51].

It is nontrivial and has to be verified case-by-case whether
an anyonic chain Hamiltonian corresponds to a lattice real-
ization of a CFT. One should distinguish the input fusion
category with the Moore-Seiberg tensor category of a ra-
tional CFT, where the object of the Moore-Seiberg tensor
category are in one-to-one correspondence with primary op-
erators, which is not true for the input fusion category. For
the Haagerup model, previous evidence of CFT comes from
ground state energy and entanglement entropy [19]. We will
see in the following that the ground-state wave-function over-
lap A1 1 1  provides another evidence for CFT with consistent
central charge.

By the Haagerup fusion rules, the Hamiltonian has a global
Z3 symmetry,

A. Haagerup anyon chain and spectrum γ : 1 →  a →  a� →  1, ρ →  aρ →  a�ρ →  ρ. (96)
1. H 3  fusion category

In the following we give a short review on H 3  fusion
category [48,49]. There are six simple objects (anyons) in this
category,

1, a, a2 , ρ , aρ , a2ρ . (92)

We will use a2 and a�     interchangeably. 1, a, a�     are in-
vertible objects and ρ , aρ , a�ρ are noninvertible simple
objects. Their quantum dimensions are d1 =  da =  da� =  1, dρ
=  daρ =  da�ρ =  3+

2 
13 . The nontrivial fusion rules read

a3 =  1, aρ =  ρa� ρ2 =  1 +  (1 +  a +  a2)ρ. (93)

Note that for example, a and ρ do not commute, aρ =  ρa.
Given the fusion rule, the F symbols can be determined by
the pentagon equations (self-consistency requirement).

2. Anyon chain construction and spectrum

Given a fusion category as input data, the anyon chain
Hamiltonian is constructed using the fusion rule and the F
symbol [19,50,51]. The Hilbert space consists of the anyon
chains |a1, a2, . . . , aN i that satisfy the following fusion con-
straint,

(94)

Namely, the fusion ai ×  ρ needs to contain ρ. We assume
periodic boundary condition for the anyon chain.

The Hamiltonian is then constructed as sum of projectors
acting on three subsequent anyon sites [19,50],

H =  −  
X

P ( i ) ,

P(i)|ai−1aiai+1 i =
X £

F ai−1ρρ
¤

ai c

£
F ai−1ρρ

¤�
0 c|ai−1a0ai+1 i.

a0

(95)

This can also be seen at the level of F symbols. There is
another intrinsic shift Z3 symmetry s, that is, translation by
3n, 3n +  1 and 3n +  2 sites. The shift symmetry is nontrivial
because the energy spectrum depends on N mod 3. Similar
phenomena occur in the antiferromagnetic Ising model, which
we review in Appendix B. To gauge the shift Z3 symmetry s,
we keep only the states near P =  0 at system size N =
3n, 3n +  1, 3n +  2, which correspond to the original Hilbert
space H ,  shift Z3 twisted Hilbert space H s  and Hs 2  . It is clear
from the Z3 symmetry that H s  =  Hs 2  .

The energy-momentum spectrum of N =  12 (H) and N =
13 (Hs ) anyon chain is shown in Fig. 6. To better understand
the conformal towers, we also use the Koo-Saleur lattice
Virasoro generators as in Refs. [9,52,53],

N

Hn = hjei jn 2π 
, (97)

j =1

where hj is the Hamiltonian density operator at site j. These
operators correspond to linear combinations of the Virasoro
generators,

Hn =  Ln +  L−n −  
12

δn,0. (98)

There are several numerical observations with the Koo-
Saleur generators:

(1) There is only one spin-2 low-energy state that has
nonzero overlap with H−2|1i, which we identify as the stress
tensor state |T i. This is used to normalize the energies in the
plot by utilizing |T i has 1  =  2. H−1 acting on |1i gives zero
overlap for every state in the spectrum, confirming this state is
the conformal vacuum.

(2) In the spectrum of N =  13 chain (shift Z3 twisted
sector Hs ), there exists a state with Z3 =  0 being close to P
=  1 , 1  =  1. This is proposed to be the chiral current op-
erator J. There is a similar state in the N =  14 chain, which is
proposed to be J�.

(3) In the N =  13 chain, H−1 acting on the lowest pri-
mary state in Z3 =  0, P =  0 gives the largest overlap with the
second lowest state in Z3 =  0, P =  1. This overlap is
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FIG. 7. Ground-state overlap A 1 1 1  for the Haagerup model with
N, N and 2N spins, where N =  3, 6, 9, 12. The first two points are
obtained by exact diagonalization, and the last two points are ob-
tained by puMPS with maximal bond dimension D =  66.

FIG. 6. Energy-momentum spectrum of the Haagerup model at
(a) N =  12, and (b) N =  13.

significantly larger than that with the first excited state with
Z3 =  0, P =  1. This indicates the lowest state in Z3 =  0, P =  1
is not a descendant of the primary state. Thus it is a primary
state.

3. Z3 orbifold of sigma model

The Z3 orbifold theory referred in this paper is the non-
linear sigma model on torus target space modded out the Z3

rotational symmetry on the target space. We will briefly
review the relevant features of this CFT below.

Let us start with the toroidal compactified boson theory,
namely, there are two bosonic fields and the target space is
T 2 [54]. Recall that in the familiar example of compactified
boson, the target space is S1, which is equivalent to saying
that the boson field 8  can only take value in 8  � [0, 2πR),
and 8  � 8  +  2nπR, n � Z are identified. Analogously, the
toroidal compactification free boson theory has two massless
scalar fields 8 μ , μ  � {1, 2}. For the target space torus T 2

generated by λ  , λ  , we need to identify
µ  

1
¶ µ  

1
¶

8 2 �     8 2       +  n1λ1 +  n2λ2 , n1 � Z, n2 � Z. (99)

This compactification gives constraint on the momentum
modes p, p̄, from which one can write down the partition
function [54].

When the target space torus T 2 is generated by basis vec-
tors proportional to λ1 =  (1, 0)T , λ2 =  (− 1 ,  3 )T , the theory
has an additional Z3 rotational symmetry. Gauging (modding
out) this Z3 rotational symmetry gives the Z3 orbifold theory.

The partition function of this rational CFT can be written out
explicitly, from which we can read out the operator content.
We list the several important features that are relevant to our
problem, and refer the interested readers to Ref. [54] for more
details. The features are:

(1) The spectrum includes two chiral current operators:
J1 =  i∂81 and J2 =  i∂82 . This is true for all toroidal com-
pactified theory, independent of the Z3 symmetry.

(2) In the Z twisted sector, the lowest energy state is
threefold degenerate, with (h, h) =  ( 1 , 1 ). Similar feature ap-
pears in Z2 twisted sector. The degeneracy comes from the
three target space fixed points under rotation.

The exact degeneracy in the second feature is hard to con-
firm numerically, as the states suffer from strong finite-size
corrections and the energies do not exactly coincide. However,
the wave-function overlap provides a way to check the first
feature, with relatively small finite-size corrections. We will
see below that the overlap indicates that the lowest spin-1
operator is not a current, which contradicts the proposal that
Haagerup model is described by this Z3 orbifold.

B. Wave-function overlaps

We now turn to the wave-function overlaps, from which
we can extract conformal data, such as central charge, scaling
dimensions and OPE coefficients. We perform exact diago-
nalization for small system sizes N 6  15 and the periodic
uniform matrix product state (puMPS) techniques for up to N
=  27. The latter is briefly reviewed in Appendix C.

Firstly, from the conformal vacuum state overlap, we can
extract the central charge via

A1 1 1  � N − 8  . (100)

We obtain c =  2.06 from Fig. 7, in a reasonable agreement
with previous results, which give c =  2.03 [20] and c =  2.11
[19]. If we discard the data from the smallest system size (N
=  3), then we obtain c =  2.12 by fitting the remaining three
points. Given that current numerical methods all give
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FIG. 8. A1 1ε /A1 1 1  for the Haagerup model. The states are taken
from the Haagerup model with sizes 3n, 3n and N =  6n, where n =
2, 3, 4.

c >  2, it is possible that the true central charge is not exactly
at c =  2, but c ≈  2.1.

Secondly, we compute the scaling dimension of the first
spinless Z3 neutral excited state, which we denote as |εi. The
relevant overlap is

A11ε  � N −1ε /2 . (101)
1 1 1

As shown in Fig. 8, we obtain 1 ε  ≈  0.26. This agrees with
the energy spectrum with reasonable accuracy.

Thirdly, we compute the AJJ�1 where |Ji is the low-
est eigenstate with sJ =  1 at size N =  3n +  1. Similarly, J
is the lowest eigenstate with sJ� =  1 at size N =  3n +  2.
Suppose the operator J and J are chiral currents with scaling
dimension 1, then they would be Kac-Moody descendants of
1, and the wave-function overlap AJJ�1 would only involve
one fusion channel in the cyclic orbifold,

[(1, 1)s] ×  [τ(1,0)] =  [τ(1,0)]. (102)

This implies that the finite-size corrections to AJJ�1 would
come from descendants of τ(1,0), thus we would expect

AJJ�1 =  
1 

+  O(N −2 ) (103)
1 1 1

similar to the XXZ model considered in Sec. IV. However,
our numerical result shown in Fig. 9 violates Eq. (103) as
the extrapolation gives AJ J �1 /A111 ≈  0.02. Therefore we can
conclude that J is not a current. The scaling dimension can be
estimated by

1 J  =  −
1  

log 
AJJ�1 , (104)

1 1 1

which gives 1 J  ≈  1.4. Considering the error in finite-size
extrapolations, we conclude that 1 J  6  1.4.

VI. DISCUSSION

In this paper we have studied wave-function overlaps
Aαβγ =  hφγ |φαφβ i of a critical quantum spin chain, where the

PHYSICAL REVIEW B 107, 155124 (2023)

FIG. 9. AJ J �1 /A111 for the Haagerup model. In AJJ�1 the three
states are taken from the Haagerup model with sizes 3n +  1, 3n +  2
and N =  6n +  3. In A1 1 1 ,  the three states are taken from the
Haagerup model with sizes 3n, 3n +  3 and N =  6n +  3. The three
points in the plot correspond to n =  2, 3, 4.

three states are primary states of the spin chain. Through a
conformal mapping from the three-sided cylinder to the com-
plex plane, we derive the relation between OPE coefficients
Cαβγ and the ratio of wave-function overlap Aαβγ /A111 . In
order to study the finite-size corrections, we rewrite Aαβγ as a
path integral of the cyclic orbifold on the cylinder, with twist
operator insertion at the branch points. We then show that
finite-size correction exponents pαβγ are universal, and are
completely determined by the orbifold operator content. As a
benchmark, we extracted OPE coefficients Cαβγ and finite-
size correction exponents pαβγ for the Ising model and the
XXZ model and found that they agree with the prediction using
the cyclic orbifold.

We then illustrate an application of our method to a less-
known CFT. We have computed the wave-function overlaps
for the Haagerup model, and found that it has central charge c
≈  2.1, lowest spinless primary operator with dimension 1 ε

≈  0.3 and lowest spin-1 primary operator with dimension 1 J

6  1.4. The fact that AJ J �1 /A111 is not close to 1/16
provides negative evidence against the conjecture that J is a
current operator, so the Haagerup CFT is likely more compli-
cated than the free boson Z3 orbifold.

As noted in Ref. [11], the overlap Aαβγ can be viewed
as a wave function of a multiboundary wormhole state. In
this paper we interpret the same overlap as a three-point
correlation function involving twist operators in the cyclic
orbifold. It would be interesting for future work to explore
the holographic interpretation of twist operators and cyclic
orbifold.

Given three primary states, it is possible to construct other
overlaps that are inequivalent to the three-sided cylinder, but
nevertheless also contain similar universal information of the
CFT. One useful example is given in Ref. [55], where the
authors consider the vertex state that describes a trisection of a
two-dimensional chiral topological phase (see Appendix E for
details). It is shown in the Appendix that conformal data, such
as central charge and OPE coefficients, can be extracted
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from the wave function of the vertex state, with finite-size cor-
rections that appear universal. It is an open question whether
the finite-size corrections to these wave-function overlaps are
indeed universal, and if so, what operators are responsible.
More generally, given a bunch of primary states, it is possible
to construct many different overlaps, which may correspond
to multipoint correlation functions of the CFT. The finite-size
corrections remain elusive at this point.

In conclusion, we have developed a method based on
wave-function overlaps that compute conformal data solely
from low-energy eigenstates of a critical quantum spin chain.
We have shown that the finite-size corrections are universal,
which provides consistency conditions on the wave-function
overlaps at finite sizes. It is interesting both practically and
conceptually. Practically, the method is useful for identifying
new CFTs realized in lattice models without too much prior
knowledge. Conceptually, the method relates wave-function
overlaps to operator fusion in the cyclic orbifold, which may
be easily generalized.
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APPENDIX A: FUSION RULES OF CYCLIC ORBIFOLD
FROM MODULAR TRANSFORMATIONS

We first recall basic aspects of modular invariance, which
are crucial to the consistency of a CFT defined on a torus. A
torus is characterized by two period vectors w1 and w2,
which can be represented as complex numbers. Scale invari-
ance of CFT implies that the partition function only depend
on the modular parameter τ =  w2/w1. There are two basic
operations S  : τ →  −1/τ  and T : τ →  τ +  1 that generate
equivalent descriptions of the same torus. Therefore, the two
operations generate the modular group under which the CFT
partition function is invariant.

Modular invariance puts strong constraints on the operator
content of the CFT. To see this, we first recall that the partition
function is bilinear in the character of conformal towers,

χa (τ ) =  Tra qL0−c/24 , (A1)

where q =  exp(2π iτ ), and a is the label of primary operator.
Expanding the character in the power of q gives degeneracy of
the conformal tower at each level of descendants. In a diagonal
theory, the partition function is simply

Z (τ ) =  
X

|χa (τ )|2 , (A2)
a
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where the summation is finite for minimal model [56], for
example, the Ising CFT. Modular invariance then demands
that

χa (−1/τ ) =          Sabχb (τ ),                      (A3)

χb (τ +  1) =  
X

T a b χ b (τ ) ,                        (A4)
b

where S  and T are unitary matrices that form a representation
of the modular group. One can further show that

Tab =  e2π i(ha−c/24)δab (A5)

is diagonal with ha =  1a /2 and

Sab =  Sba (A6)

is symmetric. The celebrated Verlinde formula relates the
fusion rule to the modular matrices,

Ni , j,k =  
X  Sim S j m Smk . (A7)

m 1m

Next, we review how characters of the orbifold theory can be
constructed from the original theory and use the Verlinde
formula to derive the fusion rules.

The characters in the orbifold theory are related to the
characters in the original theory via

χ(α,β ) (τ ) =  χα (τ )χβ (τ ),

χ(α ,α )φ  (τ ) =  
1

£
χ2(τ ) +  eiπφχα (2τ )

¤
,

· µ  ¶ µ ¶¸
χ(α,ψ ) (τ ) =  

2 
χα       

2     
+  eiπψ T −1/2χα      

2 
+  

2      
. (A8)

Here Tα =  exp (2π i(hα −  c/24)) is the diagonal matrix ele-
ment in T matrix, φ can take 0 (symmetric sector, denoted as s
in the main text) or 1 (antisymmetric sector, denoted as a in the
main text), and ψ can take 0 or 1. The partition function of the
orbifold theory is

Z =  Zun +  Ztw ,

Zun = |χ(α,β)(τ )|2 + |χ(α,α)φ (τ )|2

α<β                                        α,φ

=  
2 

X
|χα (τ )|2|χβ (τ )|

2
 +  

2 

X
|χα (2τ )|2 ,

Ztw =  
X

|χ (α ,ψ ) (τ )|2

α,ψ
µ¯ µ  ¶¯2 ¯ µ ¶¯2¶

=  
2 α

¯χα       
2 ¯ +  ¯χα       

2 
+  

2 ¯ . (A9)

We see that since the characters of φ(α,α )s/a include χα (2τ ), it
is necessary to include the twisted sector with characters
χα (τ /2) and χα (τ /2 +  1/2) such that the partition function is
modular invariant.

For the purpose of computing wave-function overlap, we
need to use the following two orbifold fusion coefficients: 

v

(α,β ),(γ ,ψ ),(δ,χ̂ ), α =  β and N(α ,α )s ,(γ ,ψ ),(δ,χ̂ ), where ψ , χ  take
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We now derive the Eqs. (37) and (38) in the main text.
Using the Verlinde formula, the first fusion coefficient can be
expressed as

N(α ,β ),(γ ,ψ ),(δ,χ̂ )

=  
X  S(α ,β ),m S(γ ,ψ ),mSm,(δ,χ̂ )

m (1,1 )s ,m

X  S(α,β ),(η,η)φ S(γ ,ψ ),(η,η )φ 
S(η,η )φ ,(δ,χ̂ )

S(1,1)s ,(η,η )φ

=  
X  (SαηSβη )

¡
2 eiπφSγ η

¢¡
2 e−iπφS� 

¢

η,φ 2     1η

=  
X  SαηSβηSγ ηSηδ  . (A10)
η 1η

From the second to the third line, we use the relation between
the orbifold modular S  matrix and the original S  matrix,
which can be derived using the orbifold character Eq. (A8) as
in [34,57]. For the case where S  is real (e.g., the Ising CFT),
this still gives the correct result; while for the general case
where S  is complex (e.g., the compactified boson rational CFT),
this would change the final expression. Only when S  is real
can we decompose N ˆ into the product
of N  in the original CFT. In short, the fusion rule of the
orbifold CFT is fully determined by the modular matrices of
the original theory.

Similarly, the second fusion coefficient can be written as
N(α,α )s ,(γ ,ψ ),(δ,χ̂ )

=  
X  S(α ,α )s ,mS(γ ,ψ ),mSm,(δ,χ̂ )

m (1,1 )s ,m

X  S(α,α )s ,(η,η)φ S(γ ,ψ ),(η,η)φ 
S(η,η )φ ,(δ,χ̂ )

η,φ
S(1,1)s ,(η,η )φ

+  
X  S(α ,α )s ,(η,ξ )S(γ ,ψ ),(η,ξ )S

(
η,ξ ),

(
δ,χ̂ )

(1,1)s ,(η,ξ )

X  
¡ 1 S 2

η
¢¡ 1 eiπφSγ η

¢¡ 1 e−iπφS� ¢

1     2
η,φ

¡
2 Sαη

¢¡
2 eiπ

(
ψ +ξ )Pγ η

¢¡
2 e−iπ (ξ +χ )P� 

δ
¢

β
,
ξ                                                

1 S1η

1 X  S 2
ηSγ ηSηδ 1 iπ (ψ +χ ) 

X  SαηPγ ηPη ,δ

2 η S1η 2 η S1 ,η

(A11)

where P  =  T 1/2ST 2 S T 1/2.

APPENDIX B: WAVE-FUNCTION OVERLAPS FOR
ANTIFERROMAGNETIC ISING MODEL

In the main text, we consider the ferromagnet Ising model,
where 1, σ , ² are the primary operators when taking periodic
boundary condition (PBC), and μ, ψ , ψ appears in antiperi-
odic boundary condition (APBC). There is no distinction of
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low-energy spectrum for even and odd number of sites, and
all the primary operators are inside the light cone at P =  0.

On the other hand, the low-energy spectrum of the antifer-
romagnetic Ising model depends on even or odd number of
sites. Furthermore, there exists lightcones centered at P =  0 as
well as P =  π . The Haagerup model is more similar to the
antiferromagnetic Ising model, in the sense that (1) the
operator content changes with different system sizes N =
3n, 3n +  1, 3n +  2; and (2) there appear three light cones,
which are located at P =  0, P =  π /3, P =  −π /3 if N =  3n.
For this reason, we study the wave-function overlap for the
antiferromagnetic Ising model in this Appendix, with an em-
phasis on the case where low-energy eigenstates with odd
number of sites fuse into low-energy eigenstates with even
number of sites. This provides an analogy to what we did for
the Haagerup CFT.

The operator content of the antiferromagnetic Ising
model is summarized below, for both boundary conditions
(PBC/APBC) and for both types of lattice site (even/odd):

spin PBC spin APBC fermion
even 1, ² : P =  0       ψ , ψ : P =  0         NS

σ : P =  π μ  : P =  π R (B1)
odd ψ , ψ : P =  π       1, ² : P =  π           NS

μ  : P =  0 σ : P =  0 R

A possible fusion may be, for example, obtaining Aσ σ 1
by fusing σ at size N1 =  2N +  1 and σ at size N2 =  2N −  1
into 1 at size N3 =  4N . This is analog to what we did for
the current operator in the Haagerup model. We then take the
ratio Aσ σ 1 /A111 where the 1 in the denominator is taken from
N1 =  N2 =  2N and N3 =  4N . For a better comparison with
Haagerup model, we use the small systems, where N takes
value from 5 to 12, and show the results in Fig. 10.

In Fig. 10(a), we show the scaling of A1 1 1      com-
puted using N =  2N, N =  2N, N =  4N , where the theo-
retical derivation gives A1 1 1  =  a ˆ N −1/16. The fit gives
the power −0.0623, which is within 1% error even for
such a small system. In Figs. 10(b)–10(f), we show the
finite-size correction F βγ     for the five different channels
σ σ ² , μμ² , σ σ 1, μμ1, ² ²1, where Aαβγ is computed using
N1 =  2N −  1, N2 =  2N +  1, N3 =  4N , and A(0)     is computed
using Eq. (21) with different system size. From the value of
log F , we see in Fig. 10(f) the numerical value approaches the
theoretical value much quicker that (b), (c); and (b), (c) are
quicker than (d), (e). This is expected because p =  2 for ² ²1, p
=  3 for σσ1 and μμ1; and p =  1 for σ σ ² , μμ² . At this system
size, the largest error for p is 8%, and the error for p gets
smaller with increasing N .

The above observation shows that the overlap result
Aαβγ /A1 1 1  is indeed more accurate for larger pαβγ .

The extraction for p matches with the value in Table II as
we further increase the system size N .

APPENDIX C: PERIODIC UNIFORM MATRIX
PRODUCT STATES

For a quantum spin chains with N spins and each spin with
Hilbert space dimension d , a periodic uniform matrix product
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FIG. 10. (a) Scaling of A1 1 1 ,  computed for N1 =  2N , N2 =  2N , and N3 =  4N . [(b)–(f)] Scaling of F βγ , where Aαβγ is computed for
N1 =  2N +  1, N2 =  2N −  1, and N3 =  4N . To simulate small system, N takes value from 5 to 12.

state (puMPS) is

|ψ (A)i =  
X

Tr ( A s 1  As2 · · · AsN )|si, (C1)
s

where s ≡  s1s2 · · · sN , si =  1, 2, · · · d and As is a D ×  D ma-
trix, with D being the bond dimension. For a critical system, a
puMPS can represent the ground state faithfully given that D
grows polynomially with N . The tensor A can be found by
optimizing the energy. An ansatz for excited states with
momentum p is given by the puMPS Bloch state

|φp(B; A)i =  
X

e i p j T  j 
X

Tr ( B s 1  As2 · · · AsN )|si, (C2)
j s

where T is the translation operator. It has been shown that
this ansatz can capture all low-energy excitations given large
enough bond dimensions. The tensor B can be found by solv-
ing a generalized eigenvalue problem in the tangent space.
The total cost for the ground state optimization and finding

low-energy excitations is O(ND5) and O(ND6), respectively.
Moreover, it is not hard to show that an anyon chain model of
the form

H =  
X  X  

O j−1ha,bO j+1 (C3)
j =1 a,b=1

can be represented as a matrix product operator (MPO) with
bond dimension DMPO =  2d +  2, where the MPO tensor is

1

MMPO =  �
OT

h � (C4)

O     1

where O =  (O , O , . . . , O ) is a 1 ×  d block and h is a d ×  d
block with entries ha,b. For the Haagerup model d =  6 and Oa

is a projector onto a specific anyon subspace, and ha,c has ma-
trix elements ha,b =  −F aρρF aρρ�, where α, β =  1, 2, . . . , d
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TABLE III. Finite-size correction to the wave-function overlap
for three more general cases L2 =  2L1, L2 =  3L1, and L2 =  3 L1. The
value of system size N1 is taken in the range [200,500]. A 1 1 1  scales as
N −1/16 . The values for p are close to 1/2 and 2. For σ ×  σ →  ²
channel in the case L2 =  3 L1, the value will go to 0.5 if we further
increase the system size.

p

Overlap L2 =  2L1 L2 =  3L1 L2 =  2 L1

1 ×  1  →  ² 0.4999

1 ×  ²  →  1 0.4983

²  ×  ²  →  1 2.0003

²  ×  ²  →  ² 0.4991

1 ×  ²  →  ² 1.9946

1
2
1
2

2
1
2

2

0.4996

0.4978

2.0010

0.4974

1.9957

1
2
1
2

2
1
2

2

0.4999

0.4969

2.0002

0.4994

1.9828

1
2
1
2

2
1
2

2

FIG. 11. Wave-function overlap of three cylinders with the same
circumference. The maximally-entangled state |Ä ii acts as a “glue”
to form the path integral on the Riemann surface.

1 ×  σ →  σ 0.4993 2 0.4989 2 0.4990 2

σ ×  ²  →  σ 0.4994 2 0.4996 2 0.4984 2

σ ×  σ →  1 0.5000 2 0.4999 2 0.5000 2

σ ×  σ →  ² 0.4827 2 0.4909 2 0.4057 2

label physical indices. This MPO is useful for the algorithm
of finding the excitations.

Finally, given three puMPS Bloch states |8p (Bi; Ai )i with
system sizes Ni (i =  1, 2, 3) and N1 +  N2 =  N3, the wave-
function overlap h8p (B3; A3)|8p (B1; A1 )8p (B2; A2 )i can
be computed with cost O(D2(N1D2 +  N2D2)).

APPENDIX D: FINITE-SIZE CORRECTIONS
FOR GENERAL OVERLAPS

In the main text, we consider the finite-size correction to
Eq. (21), where L1 =  L2. The finite-size correction in this case is
solvable using the cyclic orbifold. In the more general case
where L1 =  L2, the path integral on Riemann surface 6  is not
the simple N =  2 cyclic orbifold.

We numerically compute finite-size correction to wave-
function overlap in Table III, for the three examples L2 =
2L1, L2 =  3L1, and L2 =  2 L1. In all the cases, A1 1 1  scales as

N − 16 , and the values of p are close to either 1 or 2. It is
worth noticing that for a given channel, the values of p are
the same for all the three choices in the N →  ∞ limit. Note
that all powers are still p � {1 (α , χ̂  ) −  1 ˆ }, indicat-
ing that they are determined by the scaling dimension of
the twist operator insertion at the singular point. However,
not all p’s are the same as the L1 =  L2 case. For example,
pσσ ² =  1/2 for L1 =  L2, as opposed to 3/2 for L1 =  L2. This
indicates that the wave-function overlaps for L1 =  L2 are no
longer three-point correlation functions of the cyclic orb-
ifold, but more complicated correlation functions of the cyclic
orbifold.

(The case L2 =  4 L1 is also computed with the same trend.
Not listed in the Table III.)

APPENDIX E: OPE FROM VERTEX STATE

The extraction of OPE coefficient from wave-function
overlap can be applied to even more general cases. In

Sec. II B, we discuss the overlap configuration of three cylin-
ders with circumference L1, L2, L3 and L1 +  L2 =  L3, where
two cylinders (L1, L2) are joined into one cylinder (L3). In
this Appendix, we consider a different configuration, where
all three cylinders have the same circumference L, as shown in
Fig. 12. This configuration was considered by some of the
authors [55] in the context of vertex state in CFT.

The wave-function overlap in this configuration can be
understood as follows. Let us define the maximally entangled
state |Äii, which can be regarded as a “glue” (as illustrated in
Fig. 11). This is nothing but the vertex state studied in [55].
Using |Äii, we can glue the three half infinite cylinders into a
junction shape of surface 6 .  Denote the wave-function overlap
as

Aαβγ =  Ä¯¡¯φα
®¯φβ

®¯φγ 
®¢

. (E1)

Note that this is not the same overlap as appeared in the
main text. After the conformal transformation ω(z), the path
integral on this surface 6  is related to the three-point function
on the plane

Aαβγ =  φ1 (−∞α )φ2 (−∞β )φ3 (−∞γ  )
®

1 1 1

=  
Y      dωi     

1 i  

φ1 (eiπ /3)φ2 (e−iπ /3 )φ3 (e−iπ )
®

C, i

(E2)

TABLE IV. Finite-size correction of wave-function overlap in
vertex-state configuration, for system size N � [100, 500).

Overlap p

1 ×  1  →  ² 0.6656
1 ×  ²  →  1 0.6656
²  ×  ²  →  1 1.3838
²  ×  ²  →  ² 2.0002
1 ×  ²  →  ² 1.3838
1 ×  σ →  σ 0.6676
σ ×  ²  →  σ 0.6608
σ ×  σ →  1 0.6676
σ ×  σ →  ² 0.6608
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with ω1,0 =  eiπ /3, ω2,0 =  e−iπ /3 , ω3,0 =  e−iπ , z =  eτ +iσ . Plug
in dω/dz and the three-point correlation function on a plane,
we obtain

µ ¶ 1 α + 1 β + 1 γ

=  √  Cαβγ . (E4)
1 1 1

The above relation is checked numerically using ferro-
magnetic Ising model with accurate agreement for extracted
OPE. In this configuration, however, the form of finite-size
correction to Eq. (E4) is different, because the cyclic orbifold
picture does not apply to this case. We show the numerical
obtained p in Table IV using N � [100, 500) and the plot for
three channels in Fig. 12, where

FIG. 12. Finite-size correction of wave-function overlap of Ising
model using the vertex state, for system size N � [100, 500).

µ ¶ 1 α + 1 β + 1 γ

αβγ = −  √  Cαβγ
1 1 1

=  const · N −pαβγ  . (E5)

where the conformal transformation ω(z) maps 6  to a com-
plex plane

µ ¶2/3

ωi =  ωi,0     
1 −  z

, (E3)
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