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ABSTRACT
Rust is a young systems programming language, but it has gained
tremendous popularity thanks to its assurance of memory safety.
However, the performance of Rust has been less systematically
understood, although many people are claiming that Rust is com-
parable to C/C++ regarding efficiency.

In this paper, we aim to understand the performance of Rust,
using C as the baseline. First, we collect a set of micro benchmarks
where each program is implemented with both Rust and C. To en-
sure fairness, we manually validate that the Rust version and the C
version implement the identical functionality using the same algo-
rithm. Our measurement based on the micro benchmarks shows
that Rust is in general slower than C, but the extent of the slow-
down varies across different programs. On average, Rust brings
a 1.77x “performance overhead” compared to C. Second, we dis-
sect the root causes of the overhead and unveil that it is primarily
incurred by run-time checks inserted by the compiler and restric-
tions enforced by the language design. With the run-time checks
disabled and the restrictions loosened, Rust presents a performance
indistinguishable from C.
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1 INTRODUCTION
Rust is a rising programming language designed to build system
software [4, 10, 20]. On the one hand, Rust offers access to and
control of the low-level system resources. On the other hand, un-
like conventional systems programming languages, Rust ensures
memory and concurrency safety. Thanks to these properties, Rust
has gained tremendous popularity in recent years and has been
adopted to develop infrastructural system software such as oper-
ating systems [3, 14, 18, 19], web browsers [16], and embedded
systems [21].

One thing that has been broadly discussed but less systematically
understood is the performance of Rust. Many people have argued
that Rust is as fast as or even faster than C [2, 8, 12, 15, 17]. This
is understandable since Rust introduces many language features
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and strict compiler checks to minimize run-time operations. For
instance, Rust enforces explicit lifetimes of data objects so that all
use-after-free issues can be identified at compilation time, avoiding
the need for run-time checks. However, despite all those efforts, Rust
can still introduce or force the use of extra operations, compared
to C. For instance, §2.1 will point out that Rust often inserts bound
checks at the execution time to rule out out-of-bound accesses. In
this regard, Rust should be slower than C. But, is this true, and
if so, by how much and why? Those questions are essential for
understanding the performance of Rust but remain unanswered.

In this paper, we aim to shed light on the above questions by
comparing the performance of Rust v.s. C. The key challenge is to
build two sets of benchmark programs where the only difference
between the two sets is the programming language. Previous ob-
servations of Rust performance are not based on such benchmarks.
For instance, the Rust version of Coreutils [2] has been found faster
than the C version in some programs. However, the two versions
are likely using different algorithms and designs in certain places.
Thus, the performance gain can be attributed to the implementation
instead of the programming language.

To address the above challenge, we opt to build a set of micro-
benchmark programs. All the programs are collected from The
Algorithms [22], a large open-source algorithm library. Each pro-
gram comes with both the Rust version and the C version, and
we manually verified that the two versions implement the same
algorithm, follow the same code structure, and use similar data
structures. Further, the programs do not involve external libraries
or system calls, allowing a more controlled comparison. In addi-
tion to these Algorithm Benchmarks, we further collect another
set of programs from The Computer 22.05 Language Benchmarks
Game [6], a platform asking for the fastest implementations of var-
ious computation tasks in different programming languages. Each
program in this set also includes a Rust version and a C version.
Both versions use the same algorithms, but they have different
code structures, data structures, and library functions (which the
developers believe to be the best option in the corresponding pro-
gramming language). We call the second set of programs Game
Benchmarks.

Measuring the performance on the two benchmarks, we observe
that the Rust version is in general slower than the C version, but the
extent of slowdown varies across different programs. Considering
C as the baseline, the Rust version incurs an average “overhead”
of 1.96x and 1.35x on the Algorithm Benchmarks and the Game
Benchmarks, respectively. Throughout our manual analysis, we find
the major source of performance overhead is the run-time checks
inserted by the compiler to ensure memory safety. For instance,
out-of-bounds checks account for 52.7% of all the overhead. Going
beyond run-time checks, restrictions enforced by the language
features can also lead to extra overhead. For example, Rust disallows
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indexed access to strings. Thus, any access to individual elements in
a string often needs to convert the string to a vector first, inevitably
introducing extra cost. More details can be found in §4.

This paper makes the following contributions.
❖ New Benchmarks.We build two set of micro-benchmark pro-

grams to compare the performance of Rust and C. All the bench-
mark programs are open-sourced and available at the repository:
https://github.com/yzhang71/Rust_C_Benchmarks.

❖ Performance Measurement.We measure the performance of
Rust and C on our micro-benchmark programs. It brings quan-
titative evidence to unveil the performance of Rust in various
computation tasks.

❖ Overhead Understanding. We present a breakdown analysis
on the performance overhead of Rust. The analysis gives an
understanding of the major sources that introduce performance
overhead to Rust.

2 BACKGROUND AND MOTIVATION
2.1 Safety Assurance of Rust
Rust introduces many mechanisms to ensure memory safety and
concurrency safety. Those mechanisms are the major sources of
extra run-time operations and the corresponding performance slow-
down. In general, the mechanisms can be classified into several
categories. The first category is language designs, which are vali-
dated and enforced at compile time:
❖ Lifetime: Every Rust object has a lifetime that is explicitly regu-

lated. At compile time, Rust relies on lifetime analysis to ensure
no reference can happen to an object that has not been created
or has expired. This avoids use-after-free.

❖ Ownership: Each value in Rust is owned by a single variable
that decides its lifetime. The ownership will be relinquished if the
value is moved to another variable or function. This property can
help avoid issues like double free: when the variable representing
a buffer is freed, the variable loses the ownership of the buffer
and, thus, it cannot be used with free again.

❖ Borrowing: Apart from moving or transferring the ownership,
Rust also allows borrowing a value. Borrowing in Rust autho-
rizes programmers to have multiple references to the same value
throughout the lifetime of the owner variable without violating
the “single owner” concept.

❖ Exclusive Mutability:With the borrowing mechanism, objects
can be passed by reference. There are two types of references in
Rust: 1) immutable reference to support one ormore read accesses
on a borrowed object, and 2) mutable reference that only allows
one write access to a borrowed object. The compiler ensures an
object cannot be both immutably and mutably borrowed at the
same time, which helps avoid data races.
The second category of mechanisms is static compiler checks. For

instance, the Rust compiler prohibits dereference of raw pointers
unless it occurs in unsafe code. Static compiler checks have no
direct impact on performance. Hence, we omit more details. In
many cases, static checks are infeasible. Thus, Rust further adopts
the mechanism of run-time checks, which we summarize below.
❖ Out-of-Bounds: Given an access to a stack-based array where

the index cannot be determined statically, the Rust compiler will

insert run-time checks to detect out-of-bound accesses. Given a
dynamically sized data object (e.g., a vector), Rust presents it as a
“fat-pointer”, which consist of a pointer to the data, the data
size, and the capacity. At an access to the data object, the Rust
compiler will insert a bound check, leveraging the length field in
the fat pointer. Code below shows how this is done:

1 %_5 = icmp ult i64 %idx, %length ; compare idx with len
2 %1 = call i1 @llvm.expect.i1(i1 %_5, i1 true)
3 br i1 %1, label %bb1, label %panic ; abort if idx => len

❖ Integer-Overflow: Given an arithmetic operation on signed/un-
signed integers where the value of any operand cannot be deter-
mined, the Rust compiler will insert a check for integer overflow
detection. The code below shows how this is done using an LLVM
intrinsic function. In practice, the integer-overflow checks are
disabled by default when a program is built with the “–release”
option.

1 %11 = call @llvm.uadd.with.overflow(i8 -1, i8 %u8_1)
2 %_23.0 = extractvalue { i8, i1 } %11, 0
3 %_23.1 = extractvalue { i8, i1 } %11, 1
4 %12 = call i1 @llvm.expect.i1(i1 %_23.1, i1 false)
5 br i1 %12, label %panic, label %bb9 ; abort if overflow

❖ Division-by-Zero: Given a division or modulo operation where
the denominator cannot be determined to be non-zero, the Rust
compiler will add a check for division-by-zero. The code below
shows an example check.

1 %_34 = icmp eq i8 %denominator, 0 ; compare divisor with 0
2 %11 = call i1 @llvm.expect.i1(i1 %_34, i1 false)
3 br i1 %11, label %panic, label %bb9 ; abort if divisor = 0

2.2 Motivation
Rust remains young but is gaining market share in the industry.
Many influential software vendors have been considering Rust for
developing their products [7], including Meta [11], Google [18], and
Amazon [13]. For these industry users to confidently and wisely
adopt Rust, a key factor to consider is its run-time performance,
compared to conventional system programming languages, in par-
ticular C.

In fact, the controversy about “is Rust as fast as C” has lasted
since Rust was born. Some unofficial discussions [8, 15] indicate the
answer is “Yes” and Rust can be even faster than C in certain cases.
Their main reason is that Rust offloads many run-time checks to
the compiler and offers better optimization opportunities (e.g., it
can inline more functions). However, no data exists to back up their
claims.

Another line of work, which can reflect on the above question, is
the migration of existing C applications to Rust. Many of the cases
show that the Rust replacement can run faster than the original C
implementation. For instance, the “hck” [17] tool, a Rust version of
the “cut” command, is demonstrated to run faster than the original
C version. A similar observation is obtained on some programs
from the Rust version [2] of GNU Coreutils. To the contrary, the
Rust versions of low-level networking applications developed by
Michal [12] only achieve 85% of the performance of their C coun-
terparts. While these cases come with data, they still cannot fairly
compare the performance between Rust and C. The Rust version
may use new algorithms and different code structures. Thus, the
performance difference can be a result of the disparity in imple-
mentations instead of the languages.

2
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Figure 1: Performance comparison between C-LLVM, C-GCC and Rust onAlgorithmBenchmarks (the left part) and Game Bench-
marks (the right part). The C-LLVM version is considered as the baseline.

This study is motivated by the above practice. It aims to initiate
a quantitative, fair performance comparison between Rust and C, thus
providing insights for future applications.

3 PERFORMANCE COMPARISON: RUST V.S. C
3.1 Dataset Collection
To enable a fair comparison of Rust and C, it is essential to build
two sets of programs that have minimal implementation differ-
ences. Towards this goal, we searched for public platforms gath-
ering implementations of the same computation task in different
programming languages. Eventually, we picked two platforms, The
Algorithms [22] and The Computer 22.05 Language Benchmarks
Game [6]. Both platforms provide programs developed in Rust and
C for the same algorithm or “game”. Importantly, their programs
are small-sized1, which can be manually validated to rule out im-
plementation variations. We detail the collected programs below.
Algorithm Benchmarks: From The Algorithms library, we se-
lected 22 programs that implement classic algorithms in both Rust [1]
and C [9]. Names of the algorithms can be found in Figure 1 and all
the programs are contributed by irrelevant third parties. We manu-
ally inspected the code of each program and ensured that the two
versions (i) implement the same algorithm, (ii) follow the same code
structure (e.g., both use for loops), (iii) use similar data structures
when possible, and (iv) involve no library functions and system
calls. We envision that, this way, the implementation differences
are reasonably minimized. To further demonstrate a more fine-
grained analysis, we also separate the benchmarks into different
categories: “Compute-Intensive (Sorting Algorithm)”, “Memory-
Intensive (Searching Algorithm)” and “Memory-Heavy (Dynamic
Programming)”. Due to the fact that the programs do not come
with test cases, we created a million test cases with random values
and random lengths for each program. We also ensured that both
versions receive the same set of inputs. All the programs, both the
Rust and the C version, are compiled with optimization level O3, to
ensure optimal performance is presented.

1On average, programs from the two platforms have about 50 lines of code and 125
lines of code, respectively.

Game Benchmarks: From the Computer 22.05 Language Bench-
marks, we picked 10 code snippets (see Figure 1) and their fastest
implementations in Rust and C. As required by the platform, both
versions use the same algorithm, which we manually confirmed.
However, the two versions may not use similar code and data struc-
tures. Also, theymay use different library functions and system calls.
While this benchmark involves an implementation discrepancy, we
include it to complement the Algorithm Benchmarks. Essentially,
it will demonstrate that, when using the same algorithm for the
same task, how much performance difference can arise between
the best Rust implementation and the best C implementation. All
the programs are shipped with test cases, which we reuse in our
evaluation. Similarly, we compile the programs with O3.

3.2 Experimental Setup
We compiled the Rust programs with Rust version 1.61.0, which
is supported by LLVM-14.0.0. When compiling the Rust programs,
we also enabled the run-time checks described in §2.1, as those are
essential for the safety guarantee of Rust. For consistency, we com-
piled all the C programs using LLVM-14.0.0 (C-LLVM). For illustra-
tion purposes, we also compiled the C programs using GCC-7.5.0
(C-GCC). To minimize the effect of randomness, we sequentially
repeat each test case of each program five times and report the
average results. All our experiments are conducted on a machine
running Genuine Intel Processor (i7-8700, 3.20 GHz, 6 cores, 64GB
RAM) and Ubuntu 18.04 LTS.

3.3 Results
Following the setups above, we separately measured the run-time
performance of the Rust and the C implementations. Figure 1 shows
the comparison results. On both benchmarks, the Rust version is
slower than both of the C versions for every program. The ex-
tent of slowdown varies across different programs. For instance,
on the “Longest ComStr” algorithm, the Rust version is 3.9 times
slower than the C-LLVM version, while on the “Merge Sort” algo-
rithm, the Rust version is only slightly slower than the C-LLVM
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Figure 2: Performance comparison between Rust and C on Algorithm Benchmarks (the left part) and Game Benchmarks (the
right part), after disabling Rust run-time checks. The red bar, representing the C version, is considered as the baseline. From
left to right, the other bars show the overhead after we disable the corresponding checks in the Rust compiler, one after
another.
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Figure 3: Performance comparison between Rust and C on
different program categories. The C version is the baseline.

version. Considering C-LLVM as the baseline2, the average perfor-
mance overhead brought by Rust programs is 1.96x on Algorithm
Benchmarks and 1.35x on Game Benchmarks. The lower perfor-
mance gap on the Game Benchmarks seems to indicate that im-
plementations can offset the performance disadvantage of Rust.
However, the Rust programs in the Game Benchmarks prevalently
include “unsafe” code blocks, where extra operations and run-time
checks are omitted. We further break down the benchmarks into
“Compute-Intensive” ones, “Memory-Intensive” ones (issuing inten-
sive memory accesses), and “Memory-Heavy” ones (using a large
amount of memory). As shown in Figure 3, the three groups incur
a performance overhead of 1.62x, 1.96x, and 2.49x respectively.

4 RUST OVERHEAD DECOMPOSITION
4.1 Experimental Setup
To understand the performance overhead of Rust, we conducted
a follow-up experiment where we disable the run-time checks in
turn and measure the performance after each. The specific settings
are as follows:
❖ Rust_Full: all run-time checks covered in §2.1 are enabled.

2C-GCC presents a similar performance to C-LLVM on average. Using C-LLVM as the
baseline, the performance overhead of C-GCC is 1.01x.

❖ Rust_NoInt: checks on integer overflows are disabled by set-
ting compilation option “-C overflow-checks=no”. All other
checks are maintained.

❖ Rust_NoBound: besides checks on integer overflows, out-of-bound
checks are disabled by modifying the Rust compiler.

❖ Rust_NoChk: all run-time checks are disabled by modifying the
Rust compiler.

4.2 Results
Algorithm Benchmark: The evaluation results for this bench-
mark are shown in the left part of Figure 2. The C version is con-
sidered as the baseline. Evidently, the run-time checks are a major
source of the performance overhead. With all run-time checks
enabled, Rust incurs an 1.96x overhead, which drops to 1.77x,
1.27x, and 1.23x after we in turn disable integer-overflow checks,
out-of-bound checks, and division-by-zero checks. Particularly, the
out-of-bound checks contribute to a majority part of the overhead
(about 52.7% of the total).
GameBenchmark: The evaluation of this benchmark leads to sim-
ilar conclusions. As shown in the right part of Figure 2, enabling all
run-time checks in Rust results in a 1.35x overhead, using C as the
baseline. By disabling all the run-time checks, Rust’s performance is
improved and only incurs a 1.18x overhead on average. Similarly,
the out-of-bound checks incur most of the overhead.

4.3 Discussion
In the above experiment with the Algorithm Benchmarks, the Rust
implementations still incur a 1.23x overhead even after disabling
all the run-time checks. Further analysis found that the overhead is
mainly caused by extra operations enforced by the safety require-
ments of Rust.
Case 1: Rust uses saturating floating-point-to-integer conversions
for type casting, which is conservative but incurs extra run-time
operations.

Rust ISSUE#10184 [5] reports that floating-point-to-integer cast-
ing can cause undefined behavior. By default, LLVM performs
floating-point-to-integer casting with the “fptoui” instruction,

4
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Figure 4: Performance comparison between Rust and C on
certain programs from the Algorithm Benchmarks. The
Rust implementations are fixed by us as described in the pa-
per.

which can lead the resulting integer to wrap around if the source is
larger than the maximal value of the destination type. To prevent
such issues, Rust programs are compiled to use an overloaded in-
trinsic function “llvm.fptoui.sat.*” (termed saturating casting)
on any floating-point-to-integer conversion. However, the saturat-
ing casting introduces extra operations to ensure safety, as shown
below:

1 %A = fptoui float -1 to i8 ;--> 255
2 %B = fptoui float 256.0 to i8 ;--> 0
3 ************************************************************
4 %X = call i8 @llvm.fptoui.sat.i8.f32(float -1) ;--> 0
5 %Y = call i8 @llvm.fptoui.sat.i8.f32(float 256.0) ;--> 255

Specifically, when the source operand is smaller than zero, zero
is returned. Otherwise, if the source operand is larger than the
maximum value of the result type, the largest allowed value will be
returned. Evidently, extra checks will be performed, compared to
the native conversion.

In the Algorithm Benchmarks, “Comb Sort” involves saturating
casting, which presumably leads to its 1.20x performance overhead
after all run-time checks are disabled. To confirm this hypothesis,
we fixed the Rust code of “Comb Sort” to only involve integers and
thus, remove the floating-point-to-integer casting. As shown in
Figure 4, after the code is fixed, the Rust implementation presents
performance comparable to the C implementation.
Case 2: The Unicode encoding design guarantees the safety of strings,
but it introduces extra overheads for modifying strings.

By the programming language design, Rust prohibits access to
strings through indexing. The main reason is that Rust uses UTF-8
encoding, where each ASCII character in strings is encoded as one
byte, but other characters may require multiple bytes to store. Thus,
directly indexing into strings’ bytes does not necessarily correspond
to a valid Unicode scalar value. For safety reasons, indexed access
to strings is disabled to avoid undefined behaviors. However, such
Unicode-safe string design has a trade-off. The extra conversion
operation from “String” to “Vector” is often required before any
modifications to strings in Rust. The code below showcases an
example.

1 fn main() {
2 let orig_string : String = "Hello, World!".to_string();
3 let mut my_vec: Vec<_> = orig_string.chars().collect();
4 ...
5 } // "my_vec" can be accessed or modified through indexing

The above is the main reason why “Longest ComStr”, “In-place Rev”,
“Manacher”, and “Hamming Distance” still incur an overhead after
all run-time checks are disabled. To verify this part, we refactor
the code to directly use "Vector" as input argument and redo the

evaluation. As shown in Figure 4, without the extra conversion, the
Rust implementation presents performance close to the C version.

5 CONCLUSION
This paper presents a study on the performance of Rust, considering
C as the baseline. To support the study, we collect a set of micro
benchmarks where each program is implemented with both Rust
and C and the two versions only differ in the programming lan-
guage. Our measurement based on the micro benchmarks unveils
that Rust is in general slower than C, but the extent of the slow-
down varies across different programs. On average, Rust brings
a 1.77x “performance overhead” compared to C. We also unveil
that the performance overhead of Rust is primarily incurred by
run-time checks inserted by the compiler and restrictions enforced
by the language design. With the run-time checks disabled and the
restrictions loosened, Rust presents a performance indistinguish-
able from C. We envision that our study will shed light on a better
understanding of Rust performance.
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