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Information Box   

NORP-SORP workshop on polar fresh water: Sources, Pathways and ImpaCts of  

frEshwater in northern and soUthern Polar oceans and seas (SPICE-UP)   

WHAT: up to 60 participants at a time and more than twice as many registrants in total  

from 20 nations and across experience levels met to discuss the current status of  

research on FW in both polar regions, future directions and synergies between the  

Arctic and Southern Ocean research communities  

WHERE: online with plenary keynote and summary sessions and several breakout  

discussions   

WHEN: September 19–21, 2022; varying times to accommodate different time zones  

  

After three days of comprehensive review presentations, productive discussions, and  

enthusiastic debate, the online workshop on polar fresh water: Sources, Pathways and  

ImpaCts of frEshwater in northern and soUthern Polar oceans and seas (SPICE-UP)  

jointly organized by the Northern Oceans Region Panel (NORP) and the Southern Ocean  

Region Panel (SORP) of the Climate and Ocean Variability and Predictability and Change  

(CLIVAR), co-sponsored by Climate and Cryosphere (CliC) and the Scientific Committee  

on Antarctic Research (SCAR), concluded successfully on 21 September 2022. This  

workshop brought together scientists with expertise in processes of the northern and  

southern high-latitude oceans to review the role and evolution of polar fresh water (FW)  

and compare and contrast the two polar oceans. In the oceanographic context of the  
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workshop FW includes both non-salty sources such as precipitation or meltwater and 

relative “fresh” water masses of low salinity.  

We took the participants on a journey a bit out of their comfort zone to better understand 

FW influences in the polar oceans, from the coast to the global basins, and from the sea 

ice and snow cover to the deep ocean. The workshop’s narrative was designed to trace 

FW from its sources in rivers, meltwater, glacial calving, sea ice export, precipitation and 

advected salinity anomalies, to its impacts on ocean stratification and circulation with their 

implications for the global climate system. We connected observationalists, modelers, 

remote sensing experts and those carrying out data assimilation with the aim of providing 

a holistic overview of polar FW and its projected future evolution. Both regional and global 

ocean communities took part. Many experts from both northern and southern 

hemispheres joined, with less representation from large-scale-climate modelers, 

however. This emphasizes the need for a more concerted effort to enhance exchange 

between the “regional” experts and the Earth-system-modeling specialists to better 

represent polar processes that have global impacts in climate change simulations. 

The workshop featured three keynotes, each with two speakers covering the greater 

region of the Arctic and the Southern Ocean. Seven topical discussion sessions 

consisting of small breakout rooms, three summary discussions and a wrap-up were 

organized across time zones following the keynotes. The participants and organizers 

were energized by the exceptionally well-prepared keynote presentations—contrasting 

northern and southern perspectives—and engaged in wide-ranging discussions. More 

than 140 registrants from several continents were able to participate in this virtual 

workshop. To welcome colleagues from all places, the workshop organizers addressed 

the time zone challenge by offering discussion sessions at various times and recordings 

of the keynote and summary sessions. Results of the breakout discussions were collected 

in shared documents editable by every participant. The clear structure of the workshop 

also provided people with the option to selectively participate in sessions covering their 

favorite topic. 

The achievements of this workshop can be summarized as: 
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● sharing multidisciplinary knowledge among a large group of scientists, each with 

expertise in parts of the broad topic; 

● enhancing networking within the community, in particular between hemispheres, 

and between modelers and observationalists; 

● identifying gaps in knowledge and observations, discussing unresolved conceptual 

issues and model biases; 

● forming a basis for future collaboration and further events, such as a summer 

school. 

 

Sources and Sinks 

 

Taking the ocean perspective, precipitation, runoff and inflow of relatively low salinity 

waters and sea ice melt are sources, whereas evaporation and sea ice formation 

constitute a sink. In both hemispheres, the poleward atmospheric moisture transport is 

balanced by an equatorward oceanic transport of low-salinity waters (Wijffels et al., 1992; 

Tietäväinen and Vihma, 2008). Sources and sinks are estimated locally from in-situ flux 

measurements and on large scales from less well-constrained model simulations. 

Additional important tools are ocean tracers, inverse models and state estimates, which 

are constrained by observations, atmospheric reanalyses, and remote sensing products 

(e.g. Solomon et al., 2021).  

 

In the Arctic, the dominant FW sources are precipitation over the ocean and riverine 

runoff. Both are projected to increase in the future, with more rain and less snow 

(McCrystall et al., 2021). However, current estimates from reanalysis are uncertain 

(Winkelbauer et al., 2022). FW accumulated in the Pacific sector of the Arctic during the 

past 20 years due to anthropogenic forcing (Jahn and Laiho, 2020), and mainly derived 

from rivers and the Bering Strait. FW fluxes through the oceanic gateways have been 

measured since about 2000, although sparse coverage, data gaps, and funding gaps are 

ubiquitous. Liquid FW fluxes to the subpolar North Atlantic are expected to increase as 

the Arctic excess FW drains, but observations do not show any long-term positive trends 
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(Curry et al, 2015; Karpouzoglou et al, 2022). Arctic sea ice export has been decreasing 

in accordance with the diminishing sea ice storage (Sumata et al, 2022). 

 

In the Southern Ocean, precipitation exceeds evaporation with both decreasing toward 

Antarctica. Atmospheric reanalyses suggest an overall increase in net precipitation over 

past decades (Bromwich et al., 2011; Nicolas and Bromwich, 2011; Pauling et al. 2016) 

— an expected signal in a warming climate. FW input from melting ice shelves and 

icebergs have been contributing significantly along the coast with a few giant icebergs 

also exporting FW far offshore (Depoorter et al., 2013; Silva et al., 2006; Abernathey et 

al., 2016; Rackow et al., 2017). Satellite data suggest that iceberg discharge almost 

doubled since the early 1990s and is expected to increase in the future (The IMBIE team, 

2018; Paolo et al., 2015; Greene et al., 2022). The seasonal sea ice formation and melt 

redistributes FW vertically and laterally, exceeds the atmospheric flux at higher latitudes, 

and forms a salinity minimum around the sea ice edge (Haumann et al., 2016; Abernathey 

et al., 2016). While sea ice fluxes are expected to decline in the future (Lockwood et al., 

2021), satellite estimates suggest that sea ice fluxes have increased over past decades 

(Haumann et al., 2016). A net export of FW as part of upper-ocean waters balances the 

net surface input (Talley, 2008).  

 

Polar FW sources and sinks differ between the hemispheres. The Arctic receives 10% of 

the global river runoff, whereas runoff is negligible in the Southern Ocean. Icebergs 

redistribute FW in the Southern Ocean, but are negligible in the Arctic. The Arctic 

connects to adjacent basins through confined gateways, whereas the Southern Ocean is 

unconstrained. Southern Ocean sea ice is more seasonal than in the Arctic (Haine and 

Martin, 2017). Atmospheric modes of variability and teleconnections have differing 

impacts in both polar regions. Dynamical impacts on the ocean are similar in both 

hemispheres, but poorly understood; for example, how sea ice (and ice shelf) melt is 

modified by turbulent mixing, and how coastal currents determine the FW exchange with 

the open ocean. 
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A fundamental issue concerns whether “fresh water” is a well-defined and useful concept,  

due to the sensitivity to reference salinity (Schauer and Losch 2019), with various  

approaches on how to define it (e.g. Bacon et al., 2015). Workarounds exist, for example  

by using salt budgets, but are not yet uniformly adopted and leave gaps in the  

interpretation of fluxes. Similarly, sources and sinks, regions, and passages should be  

defined consistently. Chemical tracers, such as oxygen and neodymium isotopes, are a  

useful emerging tool to identify FW sources, track its redistribution and to close budgets.  

Recent efforts by the GEOTRACES community have been helpful (Charette et al., 2020),  

but further studies based on provenance tracers are needed, such as those based on  

oxygen and neodymium isotopes (e.g., Laukert et al., 2017; Laukert et al., 2022; Huhn et  

al., 2021), to track glacial runoff (e.g. from Greenland) far offshore. Previous use of widely  

available tracers has been subject to significant caveats, e.g., nutrients in the Arctic  

(Forryan et al., 2019), therefore, more robust alternatives are needed.  

  

General circulation models—from regional ocean to global coupled climate models— 

provide unambiguous FW sources, sinks and closed budgets, but suffer from  

uncertainties and shortcomings. First, there is a large spread in simulated precipitation  

and runoff associated with an interactive atmosphere. Second, models typically do not  

resolve processes on small scales that disperse and transport FW. Third, ice shelf and  

iceberg processes are not well represented in models. Satellite data, state estimates and  

process studies using observations from drift campaigns help to evaluate model  

simulations of FW sources, sinks, and budgets, and resolve the seasonal cycle.   

  

Change in Ocean Structure and Circulation  

  

Following keynote presentations and discussions on sources and sinks of FW, we turned  

our attention to how this FW affects the ocean. In the Arctic, the majority of the FW is  

stored in the Amerasian Basin, in response to the anti-cyclonic, convergent Beaufort Gyre  

circulation (Haine et al., 2015; Carmack et al., 2016). Over recent decades, increased  

sea ice melt and river runoff in this region have caused surface freshening and a more  

stable stratification in the water column (MacDonald et al., 1999; McPhee et al., 2009;  
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Toole et al., 2010; Peralta-Ferriz and Woodgate 2015).  Models struggle to simulate the  

observed stratification in the Amerasian Basin and do not capture the increased  

stratification nor surface freshening of the recent decades (Holloway et al., 2007; Wang  

et al., 2022; Muilwijk et al., 2023), which is linked to unrealistically deep vertical mixing  

(Rosenblum et al., 2021). This likely has similar reasons as the excessive deep  

convection in the Southern Ocean (Heuzé et al., 2015) and questions the capability of  

model parameterizations controlling stratification.  

  

Improved understanding of “change” in ocean structure and circulation is needed to  

understand dynamical processes caused by the addition of FW over a range of temporal  

scales. A primary focus has been the impact on the stratification of the water column; sea  

ice and meteoric water input at the surface is often reported to strengthen the vertical  

stratification of the water column (Timmermans and Marshall, 2020). However, the  

addition of glacial melt water at depth from  ice shelves has been shown to result in  

immediate turbulent mixing at the ice shelf front (Naveira Garabato et al, 2017) but also  

persistent meltwater signatures up to 500 km from the ice shelf (Biddle et al, 2017,  

Nakayama et al 2019). This indicates a sub-mixed layer stratification in the water column.  

The buoyancy changes associated with FW fluxes have been shown to drive instabilities  

at sub-mesoscales, further impacting heat fluxes to sea ice and ice shelves (Timmermans  

et al, 2012; Giddy et al., 2021). Due to their small time and space scales, observations  

and modeling of submesoscale processes near and under sea ice are limited and  

represent a new scientific frontier.  

  

The discussion highlighted uncertainties in projections of FW change and its impact on  

stratification and circulation in the Arctic Ocean. It was emphasized that the non-uniform  

geographic domain used for FW computations in the Arctic leads to ambiguous results   

(e.g. Tsubouchi et al, 2018). The currently predominant haline stratification in the polar  

regions is predicted to persist until the end of this century, except in the Barents Sea and  

parts of the marginal ice zone of the Southern Ocean (Muilwijk et al, 2023).  Stratification  

projections are sensitive to small model errors in surface buoyancy fluxes, such as brine  

rejection during sea ice formation, and the formulation of vertical mixing schemes (Zhang  
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and Steele, 2007; Nguyen et al., 2009). Narrow coastal and slope currents impact the  

vertical redistribution and transport of FW (Carmack et al., 2016), but their representation  

in global ocean models with coarse resolution is problematic. The same goes for ocean  

dynamics affecting FW input by ice shelves, tidewater glaciers and rivers, particularly in  

cases where the FW does not enter at the surface. On the other hand, large-scale  

currents, such as the Transpolar Drift stream require improved satellite-observations (e.g.  

Doglioni et al., 2022) and numerical modeling to accurately represent the cross-basin  

near-surface transport.  

  

Although the discussion focused on the ocean, we emphasized the importance of the  

atmosphere as a major driver of ocean dynamics. Atmospheric circulation strongly  

influences not only the upper-ocean liquid freshwater distribution by currents but also  

mixing and shelf water mass transformation (e.g. Luneva et al., 2020). Particularly in the  

Arctic, retreating sea ice will affect atmosphere-ocean fluxes and momentum transfer  

across the ocean and ice surfaces (Martin et al., 2014; Meneghello et al., 2018).  

  

The potential benefit of future drift campaigns to understand FW-relevant processes and  

help to evaluate model simulations at a local level and on seasonal time scales was  

highlighted in both discussions of sources and sinks as well as ocean circulation. Past  

examples includeMOSAiC (Shupe et al., 2022; Nicolaus et al., 2022; Rabe et al., 2022),  

N-ICE (Granskog et al., 2018), ISW (e.g., Gordon and Lukin, 1992) and ISPOL (Hellmer  

et al., 2008); a year-round effort is direly needed in the south.  

  

Global Linkages  

  

In both hemispheres, polar FW impacts deep and intermediate water formation due to  

changes in stratification, with ramifications for global climate. While the impact of Arctic  

FW is confined to the subpolar North Atlantic, Southern Ocean FW has circumpolar  

effects. Model projections suggest that in both hemispheres FW inputs will increase  

where they have the most impact on intermediate or deep water formation (e.g., Meijers  

et al., 2014; Zanowski et al. 2021).  
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In the north, Fram Strait FW fluxes may have greater potential to affect North Atlantic  

deep convection (Chretien and Frajka-Williams, 2018; de Steur et al, 2018; LeBras et al.  

2021) than Arctic FW exports west of Greenland, which remain within the Labrador  

current (Chretien and Frajka-Williams, 2018). FW from the Labrador current can have a  

delayed impact on deep convection either by wind anomalies forcing a transport out of  

the Labrador current into the subpolar gyre or by recirculating with the latter (Holliday et  

al., 2020; Biló et al., 2022; Fox et al., 2022). How and where FW-induced deep water  

formation changes affect the Atlantic Meridional Overturning Circulation (AMOC) is a  

question under active investigation. Specifically, the Overturning in the Subpolar North  

Atlantic Program (OSNAP) measurements show that Labrador Sea waters contribute only  

a small percentage of the AMOC variability on sub-decadal time scales (Lozier et al.,  

2019). High-resolution modeling studies demonstrated no significant impact by enhanced  

Greenland runoff on open-ocean deep convection in the Labrador Sea and suggest that  

such convection contributes minimally to the long-term mean AMOC strength, whereas  

Arctic overflow waters are potentially more important (Böning et al., 2016; Zhang and  

Thomas, 2021).  

  

In the Southern Hemisphere, Antarctic FW governs upper-ocean stratification south of  

the Polar Front (Stewart and Haine, 2016), affecting global climate via several pathways.  

Precipitation and glacial FW regulate the oceanic heat supply to the Antarctic Ice Sheet  

by affecting coastal stratification (Thompson et al., 2018). In continental shelf sectors  

(e.g., Amundsen and Bellingshausen) with a large FW input and weak easterly winds,  

warm offshore Circumpolar Deep Water can reach ice shelves, leading to strong melting.  

In continental shelf sectors where sea ice is formed, a local FW deficit results in the  

densification of shelf waters, ultimately forming Antarctic Bottom Water (Silvano et al.,  

2018; Morrison et al., 2020; Solodoch et al., 2022). Moreover, upper-ocean stratification  

in the open Southern Ocean, chiefly established by sea ice melt (Abernathey et al., 2016),  

exerts a profound control on the large-scale structure and circulation of the Southern  

Hemisphere oceans. One aspect of this is the generation of the permanent pycnocline in  

the seasonal sea ice zone (Klocker et al., 2023), setting apart relatively well-ventilated  
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upper-ocean waters from poorly-ventilated deep waters, and thereby configuring ocean  

interior ventilation (DeVries et al., 2017).   

As with sources and sinks, the discussion highlighted the growing potential to track the  

redistribution of FW from different sources by noble gas, isotope and radionuclide  

concentrations (Rhein et al., 2018).  

  

Models are useful tools to fill gaps in observations and help to gain an overall  

understanding of the role of polar FW. This includes tracking of simulated FW to identify  

export routes as well as projections of the global feedbacks between ice, ocean and  

atmosphere triggered by large-scale polar freshening. Model uncertainty due to  

shortcomings in, among others, (sub)mesoscale dynamics in the boundary current,  

mixing processes, local wind forcing, location of water mass formation, and dense  

overflows were extensively discussed. For simulating ice shelf melting, meltwater export  

and mixing processes more accurate bathymetry data are urgently needed, which is an  

ongoing effort (Dorschel et al., 2022; GEBCO Seabed 2030 Project,  

https://seabed2030.org). Improved process understanding in particular in the Southern  

Ocean is needed and so are in-situ observations supporting this process.   

  

Robust impacts, such as southern hemisphere surface cooling, sea ice expansion, deep  

ocean warming, reduced bottom water production and (sub)tropical precipitation shifts  

occurring over decades to centuries have been identified (Bronselaer et al., 2018; Park  

and Latif, 2019). Part of the discussion was also dedicated to the role of internal climate  

variability largely masking potentially already ongoing change (Jahn and Laiho, 2020).   

  

Model uncertainty still is a major liability in our capability to project future uptake of  

anthropogenic heat and carbon by the ocean. Extensive, year-round observational  

programs in high-latitudes planned jointly with the modeling community are much needed  

to overcome these problems.      

  

Conclusions  

  

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 03/28/23 01:11 PM UTC



11
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0046.1.

 

  

This workshop yielded an excellent overview of the current state of research on the  

sources, pathways and impacts of FW in the Arctic and the Southern oceans, as well as  

cross-hemispheric linkages, similarities, and common challenges. The keynote talks  

highlighted the need for more observations as well as for improving climate models, which  

was further elaborated during the discussions sessions. While enhanced polar FW export  

is anticipated to affect our climate over the coming decades to centuries, (sub)mesoscale  

processes and the seasonal cycle were identified as major gaps in our knowledge,  

observations and modeling capabilities. Participants unanimously praised the bi-polar  

exchange, which triggered interest in intensifying such activity in a summer school and  

creating new opportunities for future north-south collaborations.  

  

Lastly, the online format including coordination across global time zones worked better  

than expected and provided an inclusive platform for scientific exchange. Summary slides  

and a brief logistics report of the workshop are provided by CLIVAR (2023).  
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